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Abstract  24 

 25 

An emerging body of work challenges the view that primary visual cortex (V1) faithfully 26 

represents the visual world.  Along this line, theta oscillations in the local field potential (LFP) of 27 

V1 have been found to convey temporal expectations and, specifically, express the delay 28 

between a visual stimulus and the reward it portends.  We extend this work by showing how 29 

these oscillatory states in male, wild-type rats can even relate to the timing of a visually-cued, 30 

reward-seeking behavior.  In particular, we show that with training, high precision and accuracy 31 

in behavioral timing tracks the power of these oscillations, and that the time of action execution 32 

covaries with their duration.  These LFP oscillations are also intimately related to spiking 33 

responses at the single unit level, which themselves carry predictive timing information.  34 

Together, these observations extend our understanding of the role of cortical oscillations in 35 

timing, generally, and V1’s role in the timing of visually-cued behaviors, specifically. 36 

 37 

 38 

Significance Statement 39 

 40 

Traditionally, Primary Visual Cortex (V1) has been regarded as playing a purely perceptual role 41 

in stimulus-driven behaviors. Recent work has challenged that view by showing that theta 42 

oscillations in rodent V1 may come to convey timed expectations.  Here, we show that these 43 

theta oscillations carry predictive information about timed reward-seeking actions, thus 44 

elucidating a behavioral role for theta oscillations in V1 and extending our understanding of V1’s 45 

role in decision-making. 46 
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Introduction 47 

 48 

Timed responses to environmental stimuli are crucial for survival.  Such stimulus-driven 49 

behaviors require knowledge of both what to expect and when, and many high-level brain areas 50 

have been shown to report this information.  Neurons in the striatum (Hikosaka et al., 1989; 51 

Apicella et al., 1992; Shidara et al., 1998; Tremblay et al., 1998), orbitofrontal cortex 52 

(Schoenbaum et al., 1998; Tremblay and Schultz, 1999; Hikosaka and Watanabe, 2000), and 53 

amygdala (Schoenbaum et al., 1998) have been found to express temporal predictions about 54 

outcomes, while  dorsolateral premotor cortex (Okano and Tanji, 1987; Romo and Schultz, 1987; 55 

Kurata and Wise, 1988), prefrontal cortex (Watanabe, 1996), and distinct regions of the striatum 56 

(Schultz and Romo, 1988) have been implicated in translating this temporal information into 57 

action.  Sensory regions like primary visual cortex (V1)—the earliest stage of cortical visual 58 

processing—are typically regarded as contributing only to the first phase of such behaviors: 59 

perception (Hubel and Wiesel, 1962, 1965).  Recent work suggests, however, that experience-60 

dependent plasticity in V1 can also give rise to information about when to expect an outcome 61 

(Shuler and Bear, 2006; Sharma et al., 2015).  It has even been shown that such sustained 62 

modulations in firing rate in V1 may be involved in visually-timed behaviors (Namboodiri et al., 63 

2015).        64 

 65 

Oscillations in V1 local field potentials (LFPs) have also generally been interpreted as relaying 66 

perceptual information.  One of the key roles for oscillations, particularly in the gamma range, 67 

may be to enhance binding of visual features to create a complete visual percept (Eckhorn et al., 68 

1988, 1990).  Another crucial function of oscillations is to facilitate anticipation of upcoming 69 
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stimuli, though this type of predictive information is often reported as lasting on the order of 70 

only tens or hundreds of milliseconds (Engel et al., 2001; Arnal and Giraud, 2012; Gavornik and 71 

Bear, 2014).  But recent observations have also pointed to a role for oscillations in stimulus 72 

prediction on the order of seconds (Lima et al., 2011; Sharma et al., 2015)—the temporal range 73 

that is crucial in most cognitive tasks.  Moreover, it has been found that theta oscillations in the 74 

LFP of well-trained rodents predict the expected delay to reward (Zold and Hussain Shuler, 75 

2015).  While it is of interest that this LFP signal expresses temporal information, it is not known 76 

how it relates to interval timing activity expressed by V1 neurons, nor to the performance of 77 

interval timing behavior. 78 

 79 

To address this, we analyzed data from a task (Namboodiri et al., 2015) in which rodents with 80 

chronic electrode implants in V1 execute a timed action in response to a visual cue in order to 81 

achieve reward.  Surprisingly, we found that these visual cues evoked theta oscillations in V1, 82 

whose presence corresponded to improvement in timing accuracy and precision in the task.  83 

Further, the degree of this improvement was largest when the spatial extent of these oscillations 84 

was greatest.  Importantly, we found that the duration of these oscillations covaried with the time 85 

of action on a per-trial basis, and that this relationship evolved with training.  This theta 86 

oscillatory activity in the LFP was also found to be intimately related to the activity of single 87 

units, which were observed to spike at the frequency of the LFP oscillation and were themselves 88 

found to carry predictive information about the timing of the action.  Interestingly, the likelihood 89 

of evoking these oscillatory states was found to depend on the rate of experienced reward, thus 90 

linking them to motivation and the balance between exploration and exploitation.  Thus, these 91 

findings further our understanding of sensory cortex’s involvement during stimulus-driven 92 
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behaviors, provide evidence for theoretical accounts of timing which implicate neuronal 93 

oscillators (Miall, 1989; Church and Broadbent, 1990; Buhusi and Meck, 2005), and extend our 94 

knowledge of the role for theta oscillations.  95 

 96 

Materials and Methods 97 

 98 

Behavioral task and neural recordings 99 

Experimental procedures were as previously described (Namboodiri et al., 2015).  Briefly, water-100 

deprived, adult, male, wild-type, Long-Evans rats were trained to perform a visually-cued timing 101 

task, in which they entered a nosepoke, waited a random delay without licking, received a 100 102 

ms full-field, monocular visual stimulus, executed a lick, and obtained a water reward (on 5/6 103 

visually-cued trials).  The amount of reward available upon licking post-stimulus increased 104 

linearly up to 1.5 seconds, after which no reward was available (Figure 1a).  After animals were 105 

sufficiently trained (average wait times exceeded one second for three consecutive days), they 106 

were stereotaxically implanted bilaterally with 2x8 electrode arrays (2.5mm length; 0.5mm 107 

width) targeted to the binocular zone of primary visual cortex (V1) (1.5 mm anterior and 4.2 mm 108 

lateral from lambda, at a depth of 1.0 mm). Following recovery and water deprivation, animals 109 

performed the task while neural recordings were collected, amplified, and filtered by Neurlanyx 110 

(Bozeman, MT) hardware.  For a different cohort of animals, referred to here as naïve, 111 

implantation occurred prior to training (and the ramp of available reward extended only to 1, 112 

instead of 1.5, seconds).  All procedures were conducted in accordance with the NIH Guide for 113 

the Care and Use of Laboratory Animals and were approved by The Johns Hopkins University 114 
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Institutional Animal Care and Use Committee.  Six spatially-distant electrodes (3 per 115 

hemisphere) were selected for local field potential analysis, to reduce redundancy in the signals.  116 

Local field potential processing 117 

 118 

 119 

Neural signals were continuously sampled at 32kHz, downsampled to 2.2kHz, and bandpass 120 

filtered (1-400Hz). This filtered LFP signal was then converted to concentrated energy scores by 121 

applying the methodology in (Zold and Hussain Shuler, 2015), which was chosen in that study 122 

because it provided a better agreement between quantitative analysis of signal duration and 123 

visual inspection than using energy alone.  Here, concentrated energy is defined as the mean 124 

energy divided by the purity.  To calculate the mean energy, we first generate a time-frequency 125 

representation from the filtered LFP by applying Gabor filters with frequencies from 4 to 9 Hz in 126 

.5 Hz steps (standard deviation of Gaussian kernel=.5). The mean of this time-frequency 127 

representation across all frequency values for each point in time is defined as the mean energy.  128 

Purity, a measure of how concentrated the energy was among particular frequencies, was 129 

calculated as:  130 

 131 

 132 

 133 

where f is the frequency values and  is the energy at each frequency at every point in time 134 

normalized to the total energy at that time.  Importantly, to minimize the opportunity for bias, the 135 

parameters for this study were taken exactly from the prior study and were not adjusted across 136 

sessions or animals. 137 
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 138 

 139 

Oscillation detection and duration 140 

As done previously (Zold and Hussain Shuler, 2015), the concentrated energy scores during a 141 

session were used to detect the presence of an oscillation and  duration.  To categorize trials into 142 

oscillatory and non-oscillatory groups, we first created a threshold according to the formula:  143 

 144 

 145 

 146 

where  and  are the maximum and minimum mean concentrated energy scores 147 

(taken from a 200-700ms window following a visual stimulus) for any visually-cued trial across 148 

the session, respectively, and c is a constant equal to 2.5.  An oscillation trial is then defined as 149 

any trial where the concentrated energy value crosses this threshold at any point in the 200-150 

700ms post-stimulus window.  For trials with an oscillation, the duration of the oscillation was 151 

the amount of time between when the concentrated energy exceeded this threshold to when it 152 

subsequently fell below the threshold.      153 

 154 

Oscillation states 155 

In order to establish whether it is appropriate to treat trials as belonging to one of two classes 156 

(oscillatory or non-oscillatory), we modeled the post-stimulus responses across trials.  To do this, 157 

we took the mean concentrated energy from a 200-700ms window post-stimulus on each trial 158 

and attempted to find a good fit to this distribution.  We started with the most straightforward 159 

hypothesis that the concentrated energy values across trials arose from a Gaussian proces160 
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which would result in a unimodal distribution.  This was tested against a mixed model 161 

in which two Gaussian processes are linearly combined, , 162 

which would result in a bimodal distribution. To compare these “1-gaussian” and “2-gaussian” 163 

models, we calculated the Akaike information criterion (AICc) values for each.  The AIC takes 164 

into account the likelihood (derived from maximum likelihood estimation) and also the model 165 

complexity, such that models with more parameters are penalized. In this case, the 2-gaussian 166 

model has 5 parameters whereas the 1-gaussian model has only 2 parameters.  AICc is a 167 

correction for small samples and is calculated as .  The 168 

difference in AICc values (or, more specifically, ) provides a measure, 169 

then, of the relative likelihoods of the models.   170 

 171 

Because a unimodal Gaussian model is a simplistic alternative, we also tested against a variety of 172 

more plausible models.  Specifically, we tried to find the best alternative to the 2-gaussian model 173 

among 17 continuous distributions implemented in a custom MATLAB script by Mike Sheppard 174 

(and includes, among others, the following distributions: Beta, Exponential, Gamma, 175 

Generalized extreme value, Inverse Gaussian, Logistic, Log-logistic, Lognormal, Normal, 176 

Rayleigh, and Weibull).  Of these, ten provided reasonable fits to the data in less than 30% of 177 

cases and, thus, were excluded from the data.  Of the remaining seven candidates (which 178 

provided reasonable fits in 100% of cases), the Generalized extreme value distribution had the 179 

lowest overall AICc value across sessions and, therefore, was chosen as the best alternative to 180 

the 2-gaussian model.  Unlike the unimodal Gaussian model, this model has skew and, thus, can 181 

fit the distribution of concentrated energies across trials better.  182 

 183 
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Sheppard, Mike (2012). Fit all valid parametric probability distributions to data, MATLAB 184 

Central File Exchange.  Retrieved November 17, 2015.  185 

 186 

Visually-evoked potential correlation 187 

 188 

The acute response to the visual stimulus, termed the visually-evoked potential (VEP), is defined 189 

here as the voltage modulation in the local field potential during the first 200ms post-stimulus.  190 

To assess whether the correlation between the timed lick and oscillation can be explained by an 191 

earlier physiological event, we assessed whether the magnitude of the visually evoked potential 192 

(that is, the absolute difference between the peak and the trough in the voltage trace during this 193 

200ms period) might be predictive of wait time.  Specifically, we calculated the percent of 194 

variance explained by a single variable (either oscillation duration or VEP amplitude) compared 195 

to a linear regression with both variables, across all sessions and channels. 196 

 197 

Spike-LFP phase locking 198 

 199 

Spiking data was manually sorted using Offline Sorter software from Plexon (Dallas, TX).  200 

Finding the phase of the oscillation at which these spikes occurred required converting the 201 

filtered LFP signal into a phase position at each time point.  This was achieved, as previously 202 

described (24, 54, 55), by decomposing the signal with a discrete, Meyer-type wavelet transform 203 

into its 3.9 to 7.9Hz components, applying a Hilbert transform on the reconstituted signal, and 204 

computing the angle of this result, z, with the following equation: .  205 
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Rayleigh’s test for circular uniform distributions was then used to determine whether the phase 206 

angles at which the spikes occurred was isotropic.      207 

 208 

 209 

 210 

Spike train analysis 211 

In order to compare the degree of rhythmic activity on oscillatory and non-oscillatory trials, we 212 

created the Autocorrelation Difference Index (ADI).  The ADI is the difference in the 213 

autocorrelation scores on oscillation and non-oscillation trials, which are defined as the sum of 214 

the sample autocorrelation function from 100 to 300ms (which encompasses the range of the 215 

oscillatory periods) derived from the peristimulus time histogram (PSTH).  Note that this range 216 

is distinct from the 200-700ms range to determine the energy of the oscillation, which is a fixed 217 

window.  This 100 to 300 ms range is not a fixed observation window, but rather a span over 218 

which the autocorrelation function is evaluated.  219 

 220 

To separate trials based on their spike trains alone, we assessed whether the autocorrelation score 221 

defined above increased or decreased as each trial was removed from a session’s overall PSTH.  222 

If removing a trial decreased the overall autocorrelation, it was considered an oscillatory trial and 223 

vice versa.  For the ensemble analysis, each neuron in the ensemble (that is, the group of neurons 224 

recorded simultaneously during a session) was given a vote based on the aforementioned 225 

criterion, and the majority vote determined whether a particular trial was labeled as oscillatory. 226 

 227 

Oscillation prevalence modeling  228 
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As stated, a 200-700ms window post-stimulus was used to determine whether an oscillation was 229 

present on each trial.  To dissociate the contributions of various behavioral rates (reward, trial, 230 

and photic) to the likelihood of evoking an oscillation, we systematically swept through a 231 

parameter space of integration filters that incorporated past behavioral statistics.  For 232 

completeness, we used both a uniform and exponential distribution as filters.  The distribution of 233 

means tested for each filter type were identical, and were  seconds, where x took on all integer 234 

values from 0 to 11, inclusive.  The differentiability between the rates computed for all these 235 

parameters on oscillation and non-oscillation trials was measured on each session using the 236 

receiver operating characteristic (ROC).  The mean ROC for a particular filter, mean parameter, 237 

and rate type was the average ROC value computed in this way across sessions and channels.  238 

We define the maximal mean ROC as the highest mean ROC for a given filter type (across all 239 

mean parameters and rate types). 240 

 241 

Assessing the acute effect of licking  242 

We examined the possibility that the lick itself could affect an ongoing oscillation, thereby 243 

artificially creating a distinction between oscillatory and non-oscillatory states.  Three analysis 244 

were brought to bear on this question.  First, we asked whether licking acutely suppresses an 245 

oscillation.  To address this, we calculated the average difference in concentrated energy 246 

between a 50ms window before and after a lick and compared it to the null distribution of 247 

concentrated energy differences obtained by repeatedly (n = 1000) shuffling the relationship 248 

between the wait times and trial number.  Second, we investigated whether there was a phase 249 

relationship between licking and oscillations, in a manner similar to that described above in 250 

Spike-LFP Phase Locking, but for licks.  Third, we asked whether there was a discernable 251 
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difference in oscillatory power even prior to licking.  To address this, we calculated the 252 

distribution of concentrated energy scores in 50ms windows prior to the first lick on a given trial 253 

for oscillation and non-oscillation trials separately.    254 

 255 

 256 

Experimental Design and Statistical Analysis 257 

 258 

All of the above analyses were performed using MATLAB_R2015b.  Experimental procedures 259 

were as previously described (Namboodiri et al., 2015) and were performed with eight wild-type 260 

adult male Long-Evans rats.  In total, 150 experimental sessions, each consisting of 360 trials, 261 

were run (69 trained, 81 naive).  Statistical tests and results are as reported in the Results section.  262 

 263 

Results 264 

 265 

Oscillatory states appear in V1 during a visually-cued timing task 266 

 267 

Eight wildtype rats were trained on a timing task (Namboodiri et al., 2015).  In this task, the 268 

animal enters a nosepoke to initiate a trial, waits a random delay without licking, receives a full-269 

field, monocular visual stimulus (100ms, green LED, delivered through head-mounted goggles), 270 

and then licks at a chosen time.  The time that the animal chooses to lick post-stimulus 271 

determines the amount of reward it obtains on a given trial.  Specifically, the amount of water 272 

reward available rises linearly with time up until 1.5 seconds, at which point it drops to and 273 
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remains at zero (Figure 1a).  In this way, animals are encouraged to time their licks from the 274 

visual stimulus so that they fall near, but not past, the peak of the reward ramp. 275 

 276 

Animals trained in this task exhibit cue-evoked theta oscillations in the local field potential 277 

recordings from the primary visual cortex.  This theta oscillation can be seen in the average 278 

voltage trace across trials of a session when aligned to stimulus onset, as in Figure 1b.  In this 279 

example, the average voltage trace exhibits appreciable oscillatory strength for about one second 280 

following visual stimulation.  Separating the responses per trial (Figure 1c) reveals differences in 281 

the presence, amplitude, and duration, of theta oscillations across trials (Figure 1c, inset).   282 

 283 

In order to quantify these across-trial differences in the presence, amplitude, and duration of 284 

oscillations, we transform this raw voltage signal into a metric of oscillation strength. We focus 285 

our analysis within a 4 to 9 Hz frequency range as the preponderance of the signal power falls 286 

within this range (Figure 1d).  Using this range, we generate a “concentrated energy” score—a 287 

measure of the power and purity of the oscillation (methods)—for every time point within each 288 

trial, as done previously (Zold and Hussain Shuler, 2015) (Figure 1e).  (Note that, unlike for the 289 

raw voltage signal in Figure 1c, the concentrated energy scores rise before stimulus onset due to 290 

the blurring in time that occurs when translating to a time-frequency representation).  291 

Qualitatively, trials with large oscillations in voltage (as in Figure 1c) have high concentrated 292 

energy scores (as in Figure 1e).  Using these concentrated energy scores, we can investigate how 293 

the oscillation strength— defined as the mean concentrated energy within a 200-700ms time 294 

window—varies across trials. By inspection, the probability density function (Figure 1f) of the 295 

oscillatory strength (Methods) is well described for this session by a bimodal fit (bottom), but not 296 
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a unimodal fit (top), suggesting that there are distinct oscillatory states across trials.  Therefore, 297 

we compared the quality of each fit by calculating the difference in the Akaike information 298 

criterion (AIC) scores (Methods).  For this example, the AIC is large and negative (~-99.76) 299 

which indicates that the bimodal model is heavily favored over the unimodal model.  Applying 300 

this process across all sessions, we found that the bimodal model is overwhelmingly preferred 301 

(p=6.87e-66, W414=1186, z=-17.14; Figure 1g, histogram), for a variety of metrics (including the 302 

median concentrated energy ( AIC=-27.78), mean concentrated energy in a later window from 303 

.5-1s ( AIC=-49.33), and using raw energy scores ( AIC=-120.99)) and when compared to a 304 

number of alternative models (p=4.20e-33, W414=13753, z=-11.99 for best alternative, 305 

Generalized extreme value distribution; Materials and Methods).  Given that trials appear to have 306 

either a high or low-power oscillation, a threshold (Figure 1h) for sorting trials into “oscillation” 307 

and “non-oscillation” trials was lawfully applied (Zold and Hussain Shuler, 2015).  Ordering the 308 

trials from Figure 1c by the strength of their oscillation makes the difference in oscillatory power 309 

across trials visually apparent (Figure 1i).  Finally, we define an oscillation’s duration as the 310 

interval between the first moment post-cue that the concentrated energy score surpasses this 311 

threshold for detection and the first moment it falls below it. 312 

 313 

Lick timing precision and accuracy improve during theta oscillation states 314 

 315 

Having defined cue-evoked oscillations and their duration, we next addressed whether across-316 

trial differences in the performance of the visually-cued timing behavior tracks changes in the 317 

oscillatory state.  To visualize whether performance is related to the presence/absence of cue-318 

evoked theta oscillations, we plot, per trial, the time of the first lick post-stimulus (the behavioral 319 
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variable relevant for reward acquisition) atop the concentrated energy values (see Figure 2a, top 320 

for an example session).  Viewed in this way, it is apparent that there is considerable variability 321 

in the time of the first lick (white squares), but challenging to see what, if any, relationship there 322 

is between concentrated energy and the delay to the first lick (the “wait time”).  However, sorting 323 

trials by the strength of the oscillation (Figure 2a, bottom) reveals that there is considerably 324 

greater precision in time to initiate licking on trials with higher oscillatory power.  To quantify 325 

this difference, we compared the temporal distribution of wait times (under five seconds post-326 

stimulus (>95%) to avoid outliers) on oscillation and non-oscillation trials (Figure 2b; threshold 327 

shown by black dotted line).  Wait times on oscillation trials tend to be more tightly packed 328 

(purple line) than on non-oscillation trials (green line).  Indeed, this tends to be the case across 329 

all sessions recorded on this channel (Figure 2c; p= 4.05e-11, W66= 2139, z= 6.60, two-tailed 330 

Wilcoxon signed rank test against median=0) and all channels (p=4.8e-54, W408=78618, 331 

z=15.48).  Moreover, the difference in variability across sessions from this channel tends to be 332 

more pronounced in well-trained animals (i.e. rats performing at least three consecutive sessions 333 

with a median wait time of one second or greater), compared to naïve, on this channel (methods; 334 

p= 0.01, U=5274, z= 2.43, n1=66, n2=75, two-sided Mann-Whitney U-test) and across all 335 

channels (Figure 2d; p= 1.4062e-15, U=205955, z=7.98, n1=408, n2=457).  Since this increased 336 

variability on non-oscillation trials predominantly comes from a higher fraction of early licks, the 337 

central tendency of the wait times across sessions is significantly lower on non-oscillation trials 338 

(median of ~1006ms) than oscillation trials (median of ~1103ms) (p=1.51e-14, U=193710, 339 

z=7.69, n1=409, n2=410, two-sided Mann-Whitney U-test).  This means that, on average, licks on 340 

oscillation trials occur farther along the ramp, where more water is available and, thus, are more 341 
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accurate.  Therefore, the precision and accuracy of timed licks are considerably higher on trials 342

with strong oscillations. 343

344

Since the presence of an oscillation detected at a given electrode covaries with behavioral 345

improvements, we hypothesized that there would be larger behavioral improvements during trials 346

with more spatially widespread oscillations in V1.  Because we analyzed LFP recordings from 347

six channels (3 per hemisphere) per session, we can assess how the timed lick behavior varies 348

with the number of electrodes reporting an oscillation on a given trial. Variability systematically 349

decreases (Figure 2e, top; p=8.27e-05, slope=-1.91e+04, r=.98) and the central tendency 350

systematically increases (p=0.020, slope=23.78ms, r= 0.83) as the number of electrodes 351

reporting oscillations grows.  These effects translate into a systematic increase in the amount of 352

water obtained per trial (Figure 2e, bottom; p=4.9e-04, slope=3.43, r=0.96).  Thus, the greater 353

the spatial extent of cue-evoked oscillations within V1, the greater the precision and accuracy of 354

timed reward-seeking actions, and the greater the obtained reward. 355

356

These observations suggest that cue-evoked theta oscillatory states observed in V1 may be 357

effectors of timed behavior, but this relationship might arise from other sources.  Because there 358

is a random delay period between nosepoke entry and visual stimulus onset, this higher 359

variability in lick precision on non-oscillation trials might arise from higher variability in time 360

waited prior to the stimulus (pre-stimulus wait time).  Countering this hypothesis, we find 1) that 361

the difference in lick variability between oscillation and non-oscillation trials is considerably 362

higher than the difference in pre-stimulus wait time variability (Figure 3a; p=3.94e-30, z=11.4, 363

U=201251, n1=414, n2=414, two-sided Mann-Whitney U-test), and that 2) the lick variability is 364
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consistently higher on non-oscillation trials when holding the time waited since nosepoke entry 365 

constant (Figure 3c).  The same is true when controlling for inter-trial interval duration and trial 366 

number within session (Figures 3d and e respectively), indicating that these variables do not 367 

account for differences in timed licking.  While the distribution of oscillation strength scores 368 

from a given electrode are best described by a bimodal fit, oscillation and non-oscillation 369 

classified trials do not form fully separable distributions within a session.  The distribution for 370 

oscillation strength scores for non-oscillation and oscillation classified trials are given in Figure 371 

3b, showing the degree of overlap when collapsing across all recordings.  Given this overlap, it is 372 

not surprising that the median difference in lick variance between non-oscillation and oscillation 373 

trials across sessions consistently increases as trials with more extreme strength scores are 374 

selected (p-.0021, r=.9625).   375 

 376 

Timed reward-seeking action tracks oscillation duration on a per-trial basis 377 

 378 

Given these differences in behavior with respect to the presence and spatial extent of cue-evoked 379 

theta oscillations within V1, we next assessed whether the duration of these oscillations is 380 

directly related to the timing of the reward-seeking action (lick initiation). Figure 4a shows the 381 

first lick time (wait time) per trial (pink squares) plotted over the concentrated energy values for 382 

an example session, sorted by oscillation duration.  Lick initiation tends to follow the edge of the 383 

oscillations’ termination (black circles).  By transforming this data into a scatter plot (Figure 4b), 384 

it appears that there is a positive relationship between wait time and oscillation duration 385 

(slope=.236, p=1.49e-04, r=.240).  Indeed, across all sessions from this electrode, the distribution 386 

of regression slopes is significantly right-shifted (Figure 4c, histogram; p=3.29e-05, W69=1902, 387 
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z=4.15, two-tailed Wilcoxon signed rank test against median=0), meaning that there tends to be a 388 

positive linear relationship between wait time and oscillation duration.  This relationship holds 389 

across all sessions and channels (Figure 4d, blue line; p=3.43e-25, W414=65641, z=10.28), and is 390 

more pronounced in well-trained compared to naïve animals (Figure 4d, blue vs red line; 391 

p=3.72e-10, U=196120, z=6.27, n1=414, n2=486; two-sided Mann-Whitney U-test).  The same is 392 

also true when collapsing across channels per session (p=.0029, U=5999, z=2.98, n1=69, n2=81), 393 

and using a variety of other metrics/filters (using unrewarded trials only (p=6.61e-08, U=174568, 394 

z=5.40, n1=414, n2=486) and using the correlation coefficient instead (p=5.65e-07, U=191575, 395 

z=5.00, n1=414, n2=486)).  Moreover, the mean slope across sessions is significantly higher 396 

(p<<.05) than the distribution of mean slopes for shuffled wait time data (Figure 4e; black dotted 397 

line is actual mean slope).  Finally, as described previously (Zold and Hussain Shuler, 2015), the 398 

amplitude of the visually evoked potential (VEP) (Figure 5a)—the acute response to the visual 399 

stimulus—is also related to the duration of the oscillation, but is a considerably worse predictor 400 

of wait time than oscillation duration (Figure 5b). 401 

 402 

Given these observations, we investigated whether the strength of the oscillation influences the 403 

relationship between wait time and oscillation duration.  Since the oscillation would likely exert 404 

less influence over behavior the weaker it is, we hypothesize that the relationship between wait 405 

time and oscillation duration would degrade with oscillation strength (as appears to be the case in 406 

Figure 4a).  Indeed, filtering by trials with the strongest oscillations (that is, taking the x percent 407 

strongest oscillations, as defined by the mean concentrated energy in a 200-700ms window post-408 

stimulus, in a given session) yields the strongest correlations (Figure 4f).  Note that, while the 409 

largest drop occurs from the top 5% to top 10% strongest oscillations (which may be due to non-410 
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linear control over behavior by these strongest oscillations or to relatively low statistical power 411 

inherent in selecting a small sub-group), there is a consistent downward trend. Coupled with the 412 

observations above, this indicates that the duration of cue-evoked oscillations relates to the 413 

timing of reward-seeking actions. 414 

 415 

Cue-evoked single unit oscillations are predictive of timing performance 416 

 417 

Having observed this timing-related activity at the level of the local field potential, we sought to 418 

investigate the response patterns of single neurons recorded during this task.  An example 419 

response is shown in Figure 6a.  The spike raster (top) and peristimulus time histogram (bottom) 420 

across the whole session (i.e. all trials with a stimulus) suggest that this neuron primarily 421 

responds acutely to the visual stimulus (presented at time zero).  However, separating each trial 422 

by whether an oscillation was detected in the local field potential (for a given electrode within 423 

the same hemisphere) reveals that there are, in fact, quite different response patterns during 424 

oscillation and non-oscillation trials (Figure 6b and c).  In particular, there is a long-duration 425 

oscillatory firing pattern on the oscillation trials, whereas there is predominantly an acute 426 

stimulus response on non-oscillation trials.  Indeed, many neurons (~66%) show a significant 427 

difference in their responses on oscillation and non-oscillation trials (Figure 7a; methods).  This 428 

difference is quantified as the Autocorrelation Difference Index (ADI; methods) (Figure 7b), for 429 

which positive scores indicate more oscillatory spiking activity on LFP-identified oscillation 430 

trials.  The ADI for this example neuron is ~1.46, and the distribution of ADI’s across all 431 

neurons is positively-shifted (Figure 7c, histogram; p =5.27e-34, W263=32152, z=12.16, two-432 

tailed Wilcoxon signed rank test against median=0).   433 
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 434 

Given this rhythmic discharge pattern, we characterized how oscillatory single unit activity was 435 

synchronized with the local field potential signal.  To assess this, we converted the local field 436 

potential voltage into a phase angle at every point in time and asked how well the spikes aligned 437 

to a particular phase of the signal (methods).  For this example, the spikes (white squares) appear 438 

to be concentrated before the peak of the oscillatory envelope (Figure 7d; Figure 7e, left; 439 

p=1.50e-88, z=182.33, Rayleigh’s test for non-uniformity).  Indeed, the spikes from most 440 

neurons across the population cluster around this phase (Figure 7e, right), indicating that these 441 

single units tend to be part of ensembles of neurons which are locked with one another. 442 

 443 

Given that the LFP oscillations are related to timing behavior and that single unit activity is 444 

related to the LFP signal, we next assessed whether, and in what way, single unit oscillatory 445 

activity could be related to timing behavior. We addressed this issue by restricting our analysis to 446 

the spiking activity for each recorded neuron, setting the categorization of trials on the basis of 447 

the LFP aside.  For each neuron in a recording session, we categorized each trial as oscillatory or 448 

non-oscillatory on the basis of its spike train (methods), and then quantified the difference in first 449 

lick variance between these categories.  As with categorizing trials on the basis of oscillations 450 

detected in the LFP, we found that sessions tended to have higher lick variance on non-451 

oscillatory trials, which in this case corresponds to leftward-shifted scores (Figure 8a, blue line; 452 

p=6.49e-05, W257=11812, z=-3.99).  Further, given that neurons tended to be phase-locked to a 453 

particular phase of the LFP theta oscillation, we assessed whether aggregating evidence from 454 

multiple spike trains recorded simultaneously might boost the signal, improve classification, and 455 

consequently accentuate these behavioral differences.  Indeed, by categorizing a trial based on 456 
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the activity of multiple units, we found an even greater average difference in lick variance on 457 

oscillation and non-oscillation trials (Figure 8b, red line; p=4.06e-05, W63=416, z=-4.05).  In 458 

addition, the performance of timed reward-seeking behavior on oscillating trials improves with 459 

the size of the ensemble, as indexed by an increase in the difference of lick variance between 460 

oscillation and non-oscillation trials (Figure 8b, sessions in gray, session averages in pink; p=.03, 461 

slope=-276, r=.28) 462 

 463 

Oscillation prevalence covaries with reward rate 464 

 465 

Since timing is more precise and accurate during oscillatory states in V1, we wondered what 466 

behavioral variable(s) might influence the likelihood of observing an oscillation on a given trial.  467 

To assess this, we created a logistic regression model with several candidate explanatory 468 

variables, in which the dependent variable was the fraction of channels detecting an oscillation 469 

(out of six).  Of the variables tested, the inter-trial interval (that is, the time from nosepoke exit to 470 

subsequent trial initiation) was consistently the most informative (i.e. the distribution of its t-471 

statistic across sessions was shifted farthest from zero) (Figure 9a).  Because the regression 472 

statistics can be influenced by extreme values, we probed this relationship further by plotting the 473 

likelihood of oscillation with respect to inter-trial interval alone (Figure 9b).  It can be seen from 474 

this plot that longer inter-trial intervals decrease the probability of evoking an oscillation.  Such a 475 

relationship may arise if the cortical state was tracking some behavioral rate, such as the trial 476 

rate, photic rate (i.e. the rate of visual stimulation), or reward rate experienced by the animal.  477 

Therefore, we sought to dissociate these possibilities.  Specifically, we compared the receiver 478 

operating characteristic (ROC) values—a measure of the discriminability between two 479 
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distributions, in this case the rates on oscillation vs non-oscillation trials—across all sessions.  480 

For the filter parameter (which sets the integration dynamics for calculating the behavioral rates) 481 

associated with the maximal mean ROC (methods), all three variables are good predictors of 482 

oscillation likelihood, but the experienced reward rate is the best predictor of the three (Figure 483 

9c).  In fact, the reward rate was consistently the best predictor over the full range of time 484 

windows analyzed (that is, the windows over which the rates were calculated) (Figure 9d).  This 485 

suggests that oscillations are most prevalent during periods of high experienced reward rate in 486 

this behavioral timing task.  487 

 488 

Discussion 489 

Appropriately timing actions in response to sensory stimuli is necessary for survival.  Here, we 490 

show that oscillatory states evoked by reward-predicting cues in primary visual cortex may 491 

contribute to this ability.  Specifically, we show that there is an enhancement of precision and 492 

accuracy of timed reward-seeking responses following a visual cue when that cue evokes theta 493 

oscillations in V1.  The more widespread this theta oscillation across V1, the greater the 494 

improvement in timing performance.  An appealing hypothesis to explain the difference in timed 495 

lick behavior between oscillatory and non-oscillatory states is that an ongoing oscillation in V1 496 

exerts an influence on the animal’s decision to lick (perhaps via a downstream motor region) by 497 

suppressing licking throughout its duration.  Under this hypothesis, we would expect the time of 498 

the first lick to covary with the duration of the oscillation.  Indeed, this relationship was stronger 499 

for well-trained compared to naïve animals, suggesting that the association between the 500 

oscillatory state and the timed behavior is learned.  Furthermore, we found evidence for this 501 

oscillatory state in the spiking data of simultaneously recorded neurons.  These oscillatory firing 502 
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signals are related to enhanced timing precision, apparently acting in concert to boost the 503 

predictive signal.  Together, these data suggest that there is a distinct oscillatory state in primary 504 

visual cortex that is related to the performance of visually-timed actions. 505 

 506 

An alternative to this interpretation is that lick initiation itself shuts down ongoing oscillations.  507 

If this were the case, non-oscillation trials would appear to have earlier (and perhaps more 508 

variable) wait times, as a lick during the scoring window would increase the likelihood of being 509 

categorized as a non-oscillation trial. This explanation is not satisfactory for a number of reasons, 510 

however.  First, a prior study (Zold and Hussain Shuler, 2015) in which animals could lick freely 511 

post-stimulus did not detect a suppression in ongoing oscillatory power.  In line with this 512 

observation, we find that the first lick following a visual stimulus does not acutely suppress an 513 

ongoing oscillation (p=.90, by random shuffling; methods). Second, as shown previously (Zold 514 

and Hussain Shuler, 2015), we did not find any phase relationship between licking and 515 

oscillations, suggesting that the oscillation was not being driven by motor output (p>.05, 516 

Rayleigh’s test for non-uniformity; methods).  Third, we found that the distribution of oscillation 517 

strengths is already much lower for non-oscillation than oscillation trials prior to a lick (Figure 518 

3b; p<.001, U=2.89e09, z=-261.86, n1=59466, n2=143514, two-sided Mann-Whitney U-test; 519 

methods) indicating that these differences exist before the action.  In sum, these observations 520 

suggest that the timing activity in V1 is not merely a consequence of the behavioral action itself.  521 

 522 

Another interpretation of this data is that the oscillatory state is driven by some non-specific 523 

variable like arousal or motivation.  While this is plausible, it seems that a) the duration of the 524 

oscillation is specifically related to the wait times in the task and b) even when controlling for 525 
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variables related to motivation, we still observe wait time differences between oscillation and 526 

non-oscillation trials.  Specifically, the wait time differences are maintained when controlling for 527 

the time waited since nosepoke entry, inter-trial interval duration, and trial number within the 528 

session (Figures 3d-f).  Together, these results suggest that the theta oscillations in V1 carry 529 

timing information that is not explained by broad changes in behavioral state.  Still, it is possible 530 

that this signal carries information about motivation or arousal (as addressed by the oscillation 531 

prevalence analysis and discussion below).  532 

 533 

Our findings thus further our understanding of V1’s involvement during stimulus-driven 534 

behaviors.  Traditionally, V1 was thought to contribute only to the first stage of such behaviors: 535 

sensation.  Along these lines, primary visual cortex has been regarded as a feature detector which 536 

relays faithful representations of the visual world to downstream regions.  This view has been 537 

challenged by recent work suggesting that V1 can actively generate predictions about visual 538 

input (Murray et al., 2002; Summerfield et al., 2008; den Ouden et al., 2009; Alink et al., 2010; 539 

Kok et al., 2012) and can be influenced by behavioral variables such as attentional states 540 

(Ahissar and Hochstein, 1993; Roelfsema et al., 1998; Gandhi et al., 1999; Somers et al., 1999; 541 

Fahle, 2004) and reinforcement (Serences, 2008; Seitz et al., 2009; Stănişor et al., 2013) (e.g. 542 

water reward).  Whereas these findings pertain to influences on perception, our findings provide 543 

evidence that V1 relates to the timing of behaviorally-relevant actions.  Specifically, we find that 544 

following the acute visual response, V1 exhibits long-lasting theta oscillations that subtend the 545 

interval between stimulus and action during a timing task.  Thus, these oscillations in primary 546 

visual cortex may be a signature of V1’s involvement beyond perception and into the decision-547 

making phase of a timed, stimulus-driven behavior. 548 



 

 25 

 549 

Nevertheless, it is likely that V1 does not act in isolation.  Indeed, several studies have pointed to 550 

a top-down influence on intrinsic dynamics and expectancy signals in visual cortex (Engel et al., 551 

2001).  Given the breadth of evidence suggesting that timing emerges from interaction across 552 

multiple brain regions, it is likely that the contribution from V1 is part of a broader cortico-553 

thalamic-basal ganglia (CTBG) loop (Merchant et al., 2013).  In this view, the core CTBG 554 

timing circuit, which is engaged across a broad range of behavioral contexts, interacts with a 555 

distributed network of local timing circuits which are involved in timing in a task and modality-556 

dependent manner.  One influential model of timing in this vein, the Striatal Beat Frequency 557 

model, posits that the striatum recognizes an interval of time by detecting that pattern of 558 

activation from a bank of cortical oscillators (Matell and Meck, 2004).  Besides top-down 559 

influence, V1 may also receive bottom-up expectation signals.  In this regard, non-primary 560 

thalamic neurons have been implicated in reward expectation in a modality-specific manner 561 

(Komura et al., 2001).  In the future, it would be informative to make specific manipulations of 562 

the oscillatory activity in V1 and other regions implicated in timing to observe their influence on 563 

each other and their effect on timing behavior. 564 

 565 

These observations also extend our knowledge about the role and behavioral significance of theta 566 

oscillations.  In the hippocampus, theta oscillations have been implicated in several cognitive 567 

functions, including voluntary movement, learning, and memory processes (Hasselmo, 2005).  568 

This rhythm is believed to contribute to these processes partly through facilitation of information 569 

transfer with prefrontal cortex (Hyman et al., 2005; Siapas et al., 2005).  Indeed, oscillatory 570 

synchrony is a common mechanism for inter-regional communication which has been shown in a 571 
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number of circuits (Fries, 2005), including those involving visual cortex (Roelfsema et al., 1997; 572 

Bernasconi et al., 2000; von Stein et al., 2000; Siebenhuhner et al., 2016).  In our visuomotor 573 

task, this mechanism may allow the output from primary visual cortex to be more effectively 574 

read out by a motor region that ultimately initiates the action.  Within visual cortex itself, 575 

oscillations are often studied from a perceptual perspective and have been found to enhance 576 

responding to particular stimuli (Fries et al., 2001, 2002; Schroeder and Lakatos, 2009) and 577 

enable feature binding (Eckhorn et al., 1988, 1990).  Yet, recent work has found that theta 578 

oscillations in V4 cortex may be important for maintenance of information during the delay 579 

period of a working memory task (Lee et al., 2005) and that in primary visual cortex LFP 580 

oscillations may be related to expectancy of future outcomes (Lima et al., 2011; Zold and 581 

Hussain Shuler, 2015).  We extend these findings by showing that theta oscillations in V1 are 582 

related to the precise timing of visually-cued behaviors.  Though theoretical accounts of timing 583 

often implicate oscillatory processes in such timed behaviors (Buhusi and Meck, 2005), evidence 584 

supporting these theories has been lacking (Kononowicz and Wassenhove, 2016).   Finding this 585 

kind of signal as the earliest stage of cortical visual processing is particularly surprising and may 586 

suggest that such a mechanism is a common feature of local circuits.  This view is supported by 587 

evidence that disruption of MT/V5 selectively impairs visual, but not auditory, timing (Bueti et 588 

al., 2008). 589 

 590 

These findings also raise the question of why there are oscillatory and non-oscillatory states in 591 

V1, given that one appears superior, behaviorally, over the other.  One straightforward 592 

possibility is that maintenance of an oscillatory response pattern is energetically taxing and, 593 

therefore, must be limited.  Another, compatible possibility—given the relationship between 594 
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reward rate and oscillation prevalence (Figure 9)—is that animals performing the timing task are 595 

seeking to balance knowledge accumulation with reward accumulation (i.e. the exploration vs 596 

exploitation trade-off) (Cohen et al., 2007).  Under this construction, it may be advantageous for 597 

an agent to exploit its knowledge of the environment by tracking a theta oscillation and waiting a 598 

precise amount of time when the reward rate is high, but explore the environment otherwise.  In 599 

support of this hypothesis, a prior study found that experimentally increasing the reward rate 600 

increased the likelihood of evoking an oscillation (Zold and Hussain Shuler, 2015).  Future 601 

studies that precisely manipulate reward rate during a behavioral timing task will help elucidate 602 

the role this factor plays in governing cortical state and temporal decision-making.  603 

 604 
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 770 

 771 
Figure Legends 772 

Figure 1: Oscillatory states are present in V1 during a visually-guided timing task.  a)  773 

Schematic of the task reward structure, in which waiting longer to lick following a visual 774 

stimulus (time zero) results in a larger volume of water delivery at the lick tube. Maximum 775 

delivery occurs at 1.5 seconds, and drops to zero thereafter, so that animals must time their lick. 776 

b) The average voltage trace in the local field potential (LFP) taken from an electrode in an 777 

example session, with a green bar overlaid to indicate when the visual stimulus was on.  The 778 

voltage values seem to oscillate for ~1 second post-stimulus. c) Voltage traces per trial for the 779 

example session. d) Average time-frequency representation of the trials in c. e) Concentrated 780 
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energy through time of the trials in c. f) The empirical probability density function (PDF) for the 781 

log(mean concentrated energy) scores on each trial shown in e are shown in blue.  The mean 782 

concentrated energy is calculated in a 200-700ms window post-stimulus. A unimodal Gaussian 783 

fit is shown in red (top) and a bimodal Gaussian fit is shown in green (bottom).  g) The 784 

distribution of the difference in Akaike Information Criterion (AIC) values for each model across 785 

all sessions is left-shifted, indicating an overall preference for the bimodal model.  The dotted 786 

lines around zero are the bounds at which the relative likelihood of a model compared to another 787 

model is 5%.  h) Sorted concentrated energy scores for the example session with a dotted line 788 

indicating the threshold used for determining whether a trial has an oscillation. If the 789 

concentrated energy score crosses this threshold during the 200-700ms window post-stimulus, it 790 

is considered to have an oscillation.  i) The raw voltage trace in c sorted by the mean 791 

concentrated energy in the analysis window on a given trial.  Oscillations were detected for trials 792 

above the dotted line.  793 

 794 

Figure 2: Wait time precision is higher during oscillatory states. a) Concentrated energy values 795 

with first wait times (white squares) post-stimulus overlaid for each trial of an example session 796 

in chronological order (top) and sorted by oscillation duration (bottom).  The dashed black line is 797 

the threshold for being categorized as oscillatory. b) Empirical cumulative density functions for 798 

the first lick times (wait times) post-stimulus on oscillation (black) and non-oscillation (green) 799 

trials in a. c) Histogram of the difference in lick variability on oscillation and non-oscillation 800 

trials for each session recorded on a given electrode. d) Differences in wait time variability on 801 

oscillatory and non-oscillatory trials for all sessions and channels of trained (blue) and naïve 802 

(red) animals. e) (top) Lick variability decreases as the number of electrodes on which an 803 
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oscillation was detected increases for a given trial. Standard error bars shown in black, with 804 

regression line in red.  (bottom) The percent of water obtained over baseline (defined as trials in 805 

which no oscillations were detected on any electrodes) increases as the number of electrodes 806 

showing an oscillation increases. Standard error bars shown in black, with regression line in red.  807 

 808 

Figure 3: Trial and session statistics do not account for differences in lick precision between 809 

oscillatory and non-oscillatory trials. a) Differences in wait time variability (blue) are 810 

considerably larger than differences in stimulus onset time (from nose-poke entry) variability 811 

(red) on trials in which there was no licking pre-stimulus. b) The concentrated energy scores 812 

taken from a 50ms window prior to the first lick on oscillation (blue) and non-oscillation 813 

(yellow) trials from all sessions and channels. c) Differences in lick variability between 814 

oscillatory and non-oscillatory trials for trials within a given range of times to stimulus onset 815 

(from nose-poke entry) from 0 to 2.5s in 100ms steps, collapsed across all sessions and channels. 816 

d) Differences in lick variability between oscillatory and non-oscillatory trials for trials within a 817 

given range of inter-trial intervals from 0 to 10s in 100ms steps, collapsed across all sessions and 818 

channels. e) Differences in lick variability between oscillatory and non-oscillatory trials for a 819 

given trial number in a session, collapsed across all sessions and channels. 820 

 821 

Figure 4: Wait time correlates with oscillation duration in trained animals. a) Concentrated 822 

energy values with first lick times (wait times) overlaid (pink squares) on trials sorted by 823 

oscillation duration. b) Scatter plot showing the relationship between oscillation duration and 824 

wait times for the trials in a with a regression line shown in orange. c) The distribution of the 825 

slopes of regression for each session recorded on a given channel. d) The empirical cumulative 826 
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distribution of the slopes of regression for all sessions and channels from naïve (red) and trained 827 

(blue) animals. e) The null distribution of slopes for the sessions taken from the trained cohort, 828 

calculated by randomly shuffling the relationship between the wait time and oscillation duration 829 

1000 times.  The actual mean slope across session is shown by the black dotted line. f) The slope 830 

of regression decreases as the percentage of trials with the strongest oscillations is systematically 831 

increased.  To do this systematic sweep, we sorted trials recorded on a given session/electrode by 832 

their mean concentrated energy and took the top x percent of trials. Therefore, the x-axis ranges 833 

from 5% (in which only the trials in the top 5% of oscillation strength are included) to 100% (in 834 

which all trials are included). 835 

 836 

Figure 5: Wait time correlates with oscillation duration across a wide range of metrics and 837 

parameters. a) Local field potential trace from a single trial with a 250ms gray bar overlaid to 838 

highlight the visually evoked potential [VEP]. b) The percent of variance explained by a 839 

regression of wait time against oscillation duration (brown) or VEP amplitude (green) relative to 840 

a model containing both variables.  841 

 842 

Figure 6: Neural oscillations occur during LFP oscillations. a) Spike rasters (top) for an 843 

example neuron on all trials, b) oscillation trials, and c) non-oscillation trials of a session.  The 844 

peristimulus time histogram for each group is shown below.  845 

 846 

Figure 7: Neurons spike at a consistent phase of the oscillations in the local field potential. a) P-847 

values for the null hypothesis that there is no difference in spike distributions between trials with 848 

and without an oscillation in the local field potential for each neuron.  The dotted red line 849 
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indicates where p=.05. b) The Autocorrelation Difference Index (which is a measure of the 850 

difference in the level of autocorrelation between spike-separated oscillation and non-oscillation 851 

trials) is considerably higher in neurons for which the null hypothesis stated in a is rejected 852 

(blue) than in those for which it is not (red). c) Heat maps showing the filtered local field 853 

potential (top) and phase angle (bottom) on LFP oscillation trials, with spikes from the example 854 

neuron in Figure 7 overlaid (white squares). d) The distribution of the Autocorrelation 855 

Difference Index across all neurons is right-shifted, indicating that the spike train autocorrelation 856 

is higher on LFP oscillation trials than non-oscillation trials. e) Polar plots indicating the 857 

distribution of LFP oscillation phase angles at which spikes occur for the example neuron (left) 858 

and the mean phase angle for each neuron in the population (right). 859 

 860 

Figure 8: Neural oscillations are predictive of timing performance. a)  Empirical cumulative 861 

distribution functions for the difference in lick variance on spike-separated oscillation and non-862 

oscillation trials (var[osc]-var[non-osc]) for individual neurons (blue) and neural ensembles 863 

(red). b) Relationship between neural ensemble size and difference in lick variance on each 864 

session (gray dots), shown with a regression line (dotted black line), and session means per 865 

ensemble size (pink dots).  866 

 867 

Figure 9: Oscillation prevalence is related to experienced reward rate.  a)  Distributions of t-868 

statistics across sessions for several variables in a logistic regression model in which the 869 

dependent variable is the fraction of electrodes displaying an oscillation on a given trial (out of 870 

six).  Of the variables considered here, the distribution of t-statistics for the inter-trial interval 871 

(red line)—the time between exit on the previous trial to subsequent trial initiation—is the 872 
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farthest shifted from zero.  b)  Relationship between the probability of oscillation and the inter-873 

trial interval (exit to poke time).  Probabilities are calculated by taking the number of oscillations 874 

divided by the total number of observations (i.e. all analyzed channels and trials) falling within a 875 

range of inter-trial intervals 500ms wide, sweeping from .5s to 30s.  c)  Empirical cumulative 876 

distribution functions (CDFs) for the receiver operating characteristic (ROC) values, across 877 

sessions, associated with the difference in various behavioral rates (reward, trial, and photic) 878 

between oscillation and non-oscillation trials.  These CDFs correspond to the exponential filter 879 

(used to calculate the rates) yielding the maximal mean ROC (methods).  d)  The mean ROC 880 

values for each rate variable across sessions, for each exponential filter size tested.  Daggers 881 

denote where the mean ROC value associated with reward rate is significantly different from that 882 

associated with trial rate.  883 




















