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Abstract

How do different countries tackle nanoscience research? Are all countries similar except for

a trivial size effect, as science is often assumed to be universal? Or does size dictate large

differences, as large countries are able to develop activities in all directions of research,

while small countries have to specialize in some specific niches? Alternatively, is size irrele-

vant, as all countries have followed different historical paths, leading to different patterns of

specialisation? Here, we develop an original method that uses a bottom-up definition of sci-

entific subfields to map the international structure of any scientific field. Our analysis shows

that nanoscience research does not show a universal pattern of specialisation, homothetic

of that of a single global leader (e.g., the United States). Instead, we find a multipolar world,

with four main ways of doing nanosciences.

Introduction

A basic (and generally implicit) assumption of science policies is that countries should focus

on those fields in which they can be more competitive, for whatever reason. This assumption

is probably inspired on the idea of comparative advantages through (economic) specialisation,

that was initially conceived in trade theory [1,2]. Therefore, except for a few large countries

(particularly the United States), which can be active in all fields of knowledge, most countries

may show specialisation in specific areas and this specialisation will be coherent with the

degree of development [3,4].

On the empirical side, there have been many studies of the international scientific produc-

tion, with different focuses. Among the topics addressed, one finds the competition between

different regions of the world [5–7] or the emergence of China as new scientific power [8–10].

Several papers have studied how different countries specialize in different areas of science

[11–14]. Most of these studies divide science in a ‘top-down’ way, by using pre-defined fields

such as the Journal Subject Categories (JSC) of the Web of Science. Countries specialisations

are determined by comparing the country production in each field to the world average, lead-

ing to the well-known “Revealed comparative advantage” (RCA) index introduced by Béla

Balassa [15] and widely used in economics to study the relative efforts of countries in different

domains, such as exports of different products.
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Here, we study the international landscape of a specific field: nanoscience. This area repre-

sents a high priority for many countries, which have devoted huge amounts of funding to pro-

mote research [16,17]. There is an abundant literature studying nanoscience publications.

Methodological articles have dealt with the proper way to define nanosciences, in order to

obtain relevant databases [18–22]. Many papers have focused in specific subfields (ZnO nano-

structures [23]; nano-energy [24]. Some have addressed important features of this new field,

such as its interdisciplinarity [25], its relation to technological innovation [26,27] or its pro-

gressive institutionalization [28]. The international structure of nanoscience research has

also received considerable attention. Most articles deal with specific geographical regions:

Europe [29]; South Africa [30]; Australia [31]; Brazil [32]; China [33]. Islam and Miyazaki

(2010) have studied the worldwide landscape based on nanotechnology-related academic pub-

lications from Elsevier Engineering Index Compendex database [34]. They define a priori

(top-down) subfields and study the relative specializations of several regions of the world.

They conclude that the “US leads exceptionally in biotechnology sector”, while the EU coun-

tries favor nanomaterials and Asian countries “show their strong research performances in

nanoelectronics”.

The main originality of the present study lies in the description of the international land-

scape of nanoscience through a bottom-up partition of the field based on single articles. As

pointed out by Rafols et al [35], the advantage of these “local” maps is that they can be “more

accurate in their description of the relations within a field” than maps obtained through top-

down categories. We will show that this bottom-up approach is crucial to obtain a faithful

description of countries’ specializations. Thanks to advances in methodology and computer

power, there have been recently many articles using bottom-up methods to study scientific

domains [36–41]. However, none has dealt with the description of the international landscape

of nanosciences.

In this paper, we first show that the single dimension of the country ’size’ is not sufficient to

characterize in a meaningful way countries’ specializations in nanoscience. Then, we build a

multidimensional landscape (hereafter ’nanoscape’), using the relevant subfields of

nanoscience, to obtain a detailed map of countries’ specializations. We find a multipolar world

of nanoscience research, structured around four main poles: the first gathers rich countries

with ancient research traditions, the second and third group so-called ‘emergent’ countries—

both with a rapid scientific and economic growth but focused on different topics, and the

fourth is mostly composed by the former Eastern European communist countries, with strong

research traditions concentrated in some specific fields.

Brief Description of the Method

A detailed description of our method is given in the S1, S2 and S3 Appendices. In short, we

have used the well-tested Arora et al. [18] query to gather the nanoscience records from Web

of Science over three years (2010–2012, 340350 records obtained). Table 1 shows the number

of publications for each country.

To identify the relevant subfields for research in nanosciences, we use a ‘bottom-up’ strat-

egy that creates groups of articles that share many references and therefore are close in cogni-

tive space. We hitherto distinguish ‘disciplines’, which are predefined by the Web of Science

through JSC and ‘subfields’, obtained by our bottom-up method. In practice, we create a net-

work using the records as ‘nodes’ and their number of common references as links. On this

network, we use the Louvain algorithm [42] to maximize modularity and identify the 36 rele-

vant subfields for research in nanosciences. Each record belongs to a single subfield. This

approach, detailed in the S1 Appendix, is well-known in scientometrics under the label

The Multipolar International Landscape of Nanoscience
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Table 1. Essential size statistics for the intensity of nanoscience research among countries.

All papers Articles in nano %country/world nano %country /world national share nano

World 6959136 340350 100 100 6.04 World

China 734480 80322 10.55 23.60 10.94 China

Usa 1690863 74563 24.30 21.91 4.41 Usa

Germany 399922 24791 5.75 7.28 6.20 Germany

Japan 320936 24340 4.61 7.15 7.58 Japan

South korea 172880 21677 2.48 6.37 12.54 South korea

India 175625 18258 2.52 5.36 10.44 India

France 272581 16460 3.92 4.84 6.04 France

UK 444697 15367 6.39 4.52 3.46 UK

Taiwan 104174 10752 1.50 3.16 10.32 Taiwan

Italy 237029 10637 3.41 3.13 4.49 Italy

Spain 206671 10520 2.97 3.09 5.09 Spain

Russia 100355 9610 1.44 2.82 9.58 Russia

Iran 80950 9327 1.16 2.74 11.52 Iran

Canada 249953 8427 3.59 2.48 3.37 Canada

Australia 185824 6998 2.67 2.06 3.77 Australia

Singapore 40015 6010 0.57 1.77 15.02 Singapore

Switzerland 99650 5112 1.43 1.50 5.13 Switzerland

Brazil 135370 4727 1.95 1.39 3.49 Brazil

Netherlands 140969 4669 2.03 1.37 3.31 Netherlands

Poland 82167 4514 1.18 1.33 5.49 Poland

Sweden 85402 4073 1.23 1.20 4.77 Sweden

Belgium 76552 3552 1.10 1.04 4.64 Belgium

Turkey 92740 3328 1.33 0.98 3.59 Turkey

Romania 36234 2736 0.52 0.80 7.55 Romania

Israel 49080 2641 0.71 0.78 5.38 Israel

Malaysia 35176 2451 0.51 0.72 6.97 Malaysia

Austria 55028 2416 0.79 0.71 4.39 Austria

Portugal 47375 2394 0.68 0.70 5.05 Portugal

Czech 45997 2303 0.66 0.68 5.01 Czech

Mexico 40850 2145 0.59 0.63 5.25 Mexico

Finland 41229 2129 0.59 0.63 5.16 Finland

Denmark 53612 2122 0.77 0.62 3.96 Denmark

Ukraine 18187 2101 0.26 0.62 11.55 Ukraine

Greece 46262 1976 0.66 0.58 4.27 Greece

Saudi arabia 20262 1963 0.29 0.58 9.69 Saudi arabia

Ireland 34361 1738 0.49 0.51 5.06 Ireland

Egypt 24007 1726 0.34 0.51 7.19 Egypt

Thailand 24498 1615 0.35 0.47 6.59 Thailand

Argentina 29927 1346 0.43 0.40 4.50 Argentina

Hungary 23856 1123 0.34 0.33 4.71 Hungary

South africa 35851 1078 0.52 0.32 3.01 South africa

Norway 41257 886 0.59 0.26 2.15 Norway

Slovenia 13578 876 0.20 0.26 6.45 Slovenia

Pakistan 19146 838 0.28 0.25 4.38 Pakistan

Serbia 18417 811 0.26 0.24 4.4 Serbia

New zealand 31505 756 0.45 0.22 2.40 New zealand

(Continued )
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‘bibliographic coupling’ and has been shown to lead to meaningful subfields [43,44]. The main

subfields are listed in Table 2, and a detailed description of all of them is given in the S1

Dataset.

Then, we compute the proportion of articles for each country in each cluster (S2 Dataset).

This corresponds to the ‘effort’ or ‘output’ that each country devotes to each subfield of

nanoscience. By normalizing by the corresponding world ‘effort’, one recovers the well-known

“Revealed comparative advantage” (RCA) index. Finally, we perform a Principal Component

Analysis (PCA) using the FactoMineR package [45] to find the most meaningful correlations

among countries’ RCAs. To interpret the PCA results, we add variables characterizing the

countries’ socioeconomic characteristics, such as GDP or the rate of scientific growth.

Results

Does size matter?

As a first step, we analyze the international distribution of nanoscience articles (Table 1). It is

clear that the country scientific ‘size’ (i.e. its total number of publications, first column) does

not determine the intensity of nanoscience research, given by the domestic share (last col-

umn). For example, the United States is by far the leader in science (world share of 24%) but

not in nanoscience, dominated by China, which publishes more than one out of five of all

nanoscience articles, well above its 10% science share. More generally, Table 1 shows a clear

difference between most Asian countries (China, South Korea, Taiwan. . .) that have a domes-

tic share of nanoscience articles above the world share, while many European countries have a

much lower share (UK, Italy, Netherlands. . .). But, again, this geographic difference is not

related to a size effect. In next section, we produce a richer description of the scientific produc-

tion of each country, to reveal which are what the important dimensions that determine its

position in the nanoscape.

The multipolar nanoscape obtained by the multidimensional landscape

To go beyond this simple size analysis, we compute a partition of the nanoscience field into rel-

evant subfields using our ‘bottom-up’ strategy that creates groups of articles that share many

references and therefore are close in cognitive space. Table 2 shows the main nanoscience sub-

fields found by our method (with more than 5000 articles).

The next step is to map the distribution of the articles of each country over the 36 subfields

(see the S1 Dataset for the whole table). Then, Principal Component Analysis (PCA, see S1

Appendix), allows to find the most significant dimensions that characterize the nanoscape, i.e.

the international landscape of nanoscience research (Fig 1a and 1c). Intuitively, the PCA

Table 1. (Continued)

All papers Articles in nano %country/world nano %country /world national share nano

Bulgaria 9193 715 0.13 0.21 7.78 Bulgaria

Slovakia 13583 682 0.20 0.20 5.02 Slovakia

Chile 20860 625 0.30 0.18 30 Chile

Essential size statistics for the intensity of nanoscience research among countries. For the period 2010–2012, we list for each country: its total number of

articles, its articles in nanosciences, its share of the total world production, its share of the publications in the nanosciences and finally the national share of

nanoscience articles, i.e. the proportion of nanoscience articles among the total scientific production of the country. Countries are ordered by ‘size’, i.e. their

total number of articles. A world map representing each country with a land area proportional to its number of nanoscience articles is given in the S1

Appendix.

doi:10.1371/journal.pone.0166914.t001
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components represent the combinations of subfields (Fig 1b) that retain most of the informa-

tion present in all the data, while reducing the number of dimensions. In our case, PCA finds

three significant components that explain 56% of the variance present in all the subfields. PCA

takes advantage of correlations such as: “Very often, countries that have a high share in the

TiO2MAT cluster also have a high share in ZnOwirestMAT” to infer a similarity between

those two subfields and the corresponding countries, and display them in the same region of

Fig 1a and 1b (we only discuss the two most important dimensions of the nanoscape, see the

S1 Appendix for more details). The position of the arrows in Fig 1b and 1c arises from the

position of the countries in the nanoscape and the corresponding values of their subfields

shares or socio-economic characteristics. For example, countries in the upper-right quadrant

of Fig 1a have high shares in “opticsMAT” or “drugBIO” (Fig 1b) and a substantial percentage

of highly cited articles (Top10 arrow in Fig 1c).

The main results of our analysis can be summarized as follows. In terms of subfields (Fig

1b), the first dimension opposes subfields related to cellular biology or biochemistry (such as

proteinBIO or drugBIO, right side) to subfields related to materials science such as TiO2MAT

or thermoMAT (left side). The second dimension opposes traditional subfields related to phys-

ics or metallurgy such as metalMAT or magnetPHYS to more interdisciplinary subfields such

as fibersBIO. From the socio-economic point of view (Fig 1a), the first dimension opposes rich

countries (right) to less-developed countries (left), while the second dimension opposes East-

european countries (bottom) to countries that are emerging in the scientific arena (top).

Table 2. Main nanoscience subfields (more than 5,000 articles).

Cluster label Topic # articles ID

drugBIO Drug delivery 32650 16

nanotubesMAT Mechanical properties of nanotubes 26749 23

opticsMAT Optical Properties 22173 13

QDotsMAT Quantum dots as probes 20632 4

ZnOwiresMAT ZnO nanowires 18682 7

sievesCHEMPHYS Molecular sieves. Mesoporous nanoparticles 16476 62

theoryCHEMPHYS Total energy calculations 16031 8

proteinBIO Protein dynamics 15099 11

TiO2MAT TiO2 solar cells, degradation 15052 26

QDotsPHYS Quantum dots for spintronics, study of quantum systems 14197 1

metalMAT Mechanical properties of metals 12833 15

fibersBIO Nanofibers in biomaterials 12429 39

compositeMAT Mechanical properties of nanocomposites 9902 136

magnetPHYS Magnetic films and nanoparticles 9137 18

graphenePHYS Electrical properties of nanosheets 8695 9

grapheneMAT Applications of graphene 7138 14

orgaMAT Polymer solar cells 6258 12

HstorageCHEM Coordination polymers 6004 25

batteryCHEM Nanoparticle batteries 5830 73

Main nanoscience subfields (more than 5000 articles). For each cluster of articles found by ‘bibliographic coupling’ (section 2 and S1 Appendix), We show

the cluster label, its main topic, its number of articles and ID. The main topic is found by studying the articles gathered in each cluster, especially through

their most frequent keywords and references. The cluster label captures the main topic and the discipline that is the most specific to this subfield. Disciplines

are taken from the Journal Scientific Categories of Web of Science: MAT = Materials Science; CHEM = Chemistry; PHYS: Physics;

CHEMPHYS = Chemical Physics; BIO = Biology. The ID allows to match the subfields listed here with their detailed description given in S1 Dataset.

doi:10.1371/journal.pone.0166914.t002
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Fig 1. (a) First two axis of the PCA analysis that determine the ‘nanoscape’. First two axis of the PCA

analysis that determines the ‘nanoscape’, the position of countries according to their profiles in nanoscience

research. Colors correspond to OECD membership (black: founding member; blue: present member; red: non

member); (b) Representation of the most significant (cos2 higher than 0.1) subfields in the first two

axis of the nanoscape. Representation of the 20 most relevant subfields, ie those with the highest

projections (square cosine) along the two first axis. Arrows point towards the countries (Fig 1a) that have high

shares of the corresponding subfields. For example, OECD countries have a high share of “proteinBIO”

The Multipolar International Landscape of Nanoscience
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This analysis is fully confirmed by the position of the additional variables (Fig 1c). We find

on the right-hand side countries with higher GDP, investment in Research and Development

(‘RD.GDP’), higher proportion of scientists in the population (‘scientists’) and higher share of

Top cited articles (‘Top10’). These countries also have larger shares of countries’ total publica-

tions (not only those in nanosciences) in cellular biology (‘CELLBIO’), biochemistry (‘BIO-

CHEM’) and biophysics (‘BIOPHY’). On the contrary, countries located in the left-hand side

of Fig 1a are ‘emergent’, i.e. have increased rapidly their number of scientific articles in the last

20 years. They have larger shares of total publications in polymer science (‘POLYM’), engi-

neering (‘ENGI’) or materials science (‘MATSCI’). The second axis opposes countries located

in the lower side, that publish many articles in the disciplines of metallurgy (‘METAL’) or

physics (‘PHYS’), to countries located in the upper side, which have a high share of articles in

fields such as environment (‘ENVI’) or toxicology (‘TOXIC’).

To further interpret the nanoscape, it is interesting to create groups of similar countries

(details given in S1 Appendix). A standard k-means algorithm allows to create, in an objective

way, four groups of countries that are close in the nanoscape. These groups confirm to a great

extent the previous categorization. The first cluster gathers mostly OECD countries: 78% of

them are OECD founding members, compared to 19% in the other clusters (p-value < 0.001).

A second cluster essentially groups former communist countries from Eastern Europe: they

represent 60% of the countries of this cluster, to be compared to 10% for the other clusters

(p-value = 0.014). The k-means algorithm introduces a distinction between two types of emer-

gent countries: one specialised in the production of electronics devices (lead by South Korea,

China and Malaysia) and a second, more specialised on chemical and physical standard meth-

ods of material synthesis, lead by Iran and South Africa. This distinction corresponds to the

information contained in the third dimension of the PCA, which is taken into account in the

clustering analysis.

Features that do not appear in the nanoscape are also interesting. The total number of arti-

cles published does not appear in Fig 1c, confirming the absence of ‘size’ as a relevant variable.

For example, China and Bulgaria have very different sizes but they are close in the nanospace.

Conversely, Ukraine, Pakistan and Thailand have all published about 20000 articles, but they

have completely different shares in the different subfields and therefore different positions in

the nanoscape. One could also wonder why there aren’t countries with a high domestic share

of nanoscience articles and also a high share of biochemistry or cellular biology (opposing

‘nanoart’ and ‘BIOCHEM’ arrows in Fig 1c). A tentative explanation is the inertia of the scien-

tific communities. When countries have a well-structured and ancient scientific traditions,

which is needed to build biology communities, it is difficult to reorient 15% of the scientists

into a new field in a few years. Instead, if the countries’ scientific communities are young, it is

easier to develop new fields through central financing agencies.

articles (right side on both Figs 1a and 1b), while emergent countries have a high share in “batteryCHEM” (top

left in both figures); (c) Additional variables in the nanoscape. Socio-economic and scientific variables.

These are not used to compute the nanoscape, but are projected on the PCA axis to help interpreting the

results [43]. As in Fig 1b, arrows point towards the countries (Fig 1a) that have high values for the

corresponding variable. Only the 32 most significant variables are shown: circuits; EastEur; emergent;

general; nanoart, OCDE, RD.GDP, scientists, Top10; GDP. (BIOCHEM, Biochemistry Molecular Biology);

(BIOPHY, Biophysics); (BIOTEC, Biotechnology Applied Microbiology); (CELLBIO, Cell Biology); (CHEM,

Chemistry); (COMP, Computer Science); (CRYSTAL, Crystallography); (ELECHEM, Electro-chemistry);

(ENERG, Energy Fuels); (ENGI, Engineering); (ENVI, Environmental Sciences Ecology); (IMAGMED,

Radiology Nuclear Medicine Medical Imaging); (INSTRUM, Instruments Instrumentation); (MATSCI,

Materials Science); (MECH, Mechanics); (METAL, Metallurgy Metallurgical Engineering); (PHARMA,

Pharmacology Pharmacy); (PHYS, Physics); (POLYM, Polymer Science); (SPECTRO, Spectroscopy);

(THERMO, Thermodynamics); (TOXIC, Toxicology). See details in S1 Appendix.

doi:10.1371/journal.pone.0166914.g001
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We end by emphasizing the importance of building the subfields bottom-up to achieve a

meaningful representation of the different scientific domains. In such a multidisciplinary field,

most subfields mix various disciplines, as confirmed by their fragmented composition in terms

of Journal Subjects Categories (S3 Dataset). In general, five JSCs are present at significant levels

(more than 10% of the articles), and the most important JSC rarely reaches 50%. This means

that JSC as “Materials Science, Multidisciplinary”, “Nanoscience & Nanotechnology”, “Chem-

istry, Multidisciplinary” or “Physics, Applied” are too wide to characterize precise subfields

within nanoscience. Instead, our bottom-up approach captures important (but subtle for the

outsider) differences between subfields. Take for example the two subfields related to “Quan-

tum dots”. As can be seen through the most cited references and keywords, the first subfield

(labeled “QDotsMAT”) mainly deals with luminescent semiconductor quantum dots, pre-

pared in solvents and covalently coupled to biomolecules, for use in biological imaging and

detection. Instead, “QDotsPHYS” prepares quantum dots by molecular beam epitaxy, and uses

them for fundamental physics problems, such as spintronics, quantum coherence and quan-

tum computing. This scientific difference is correlated to strong contrasts in the countries’ spe-

cializations. Emergent countries focus on the first subfield, while members of the OECD

specialize in the second, as shown by the countries shares (S2 Dataset) and summarized by the

arrows for these subfields in Fig 1b. A similar contrast is found for “graphenePHYS” and “gra-

pheneMAT” (S3 Appendix).

Discussion: A Multipolar World

We have presented a method that, by using a bottom-up definition of scientific subfields, is

able to map the international structure of any scientific field, while remaining faithful to the

specificities of the field. Our method improves on the too generic description of scientific fields

in terms of standard disciplines, such as the ‘Journal Scientific Categories’ from Web of Sci-

ence (see the S3 Appendix for a full discussion of this point). In the present application to

nanoscience, we have shown that the country size does not contain much information about

its position in the nanoscape. Instead of a universal pattern of specialisation, homothetic of

that of a single global leader (the US), we find a multipolar world with four distinctive profiles.

There are several reasons that explain these four (main) different ways of tackling nanos-

ciences. The most important is that countries approach emerging fields starting from their spe-

cific position in the general scientific landscape, which signals their specific strengths. This is

particularly clear for an interdisciplinary field such as nanoscience, which can be entered from

a variety of disciplinary angles. In practice, nanoscience means something different for (East-

European) countries with a strong background in physics or metallurgy or for (OECD) coun-

tries with strong biomedical research.

In this aspect, our study connects to (and updates) previous mappings of science as a whole

[12,13,46,47]. According to Glanzel (2001), four basic paradigmatic patterns in publication

profiles could be distinguished at that time: The “western model” with clinical medicine and

biomedical research as dominating fields; the former socialist countries with “excessive activ-

ity” in chemistry and physics; the ‘bio-environmental model’ with biology and earth and space

sciences in the main focus; finally, the ‘Japanese model’ with engineering and chemistry being

predominant. A similar study was carried out recently [14] and found some evolutions of this

pattern. They proposed three distinct types: “well-developed” countries with a strong speciali-

sation in biomedical disciplines, a group of former “iron-curtain” countries with many publi-

cations in physics, chemistry and engineering and finally a group of “less-developed” countries

with a strong record in “agricultural” subjects. Our work confirms the importance of the first

two regions (“well-developed” and “former iron-curtain”) and shows how their specific

The Multipolar International Landscape of Nanoscience
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strengths explain their approach to nanosciences. However, the two last groups from Glanzel

(2001) and the last from [14] are not relevant for nanosciences. Instead, we have shown the

importance of a group of emergent countries, focusing on engineering and chemistry (as

Japan used to do), that were hardly visible in 2001 but that are now among the most important

in the world.

Clearly, the scientific landscape is in continuous evolution, and the photograph we present

here is likely to change in a few years. These evolutions may preserve the overall landscape

(i.e., the meaning of the two first dimensions), but countries will probably shift positions. Or

new scientific dimensions may emerge as more significant, dramatically changing the nanos-

cape. In both cases, future work could combine quantitative and qualitative research to investi-

gate the origins of these poles and their evolutions. We can list a few candidates: the specific

scientific traditions of each country or region; the impact of science and technology policies;

the weight of knowledge-based industries. . . For example, nanosciences have been, for more

than 15 years, a priority for the policies of OECD countries [16]. Industrial research has not

the same impact in all the countries, as some of them have strong and ancient scientific sys-

tems but have been traditionally weak in industrializing scientific knowledge.

Our findings shed new light on the ‘center-periphery’ relationships [48,49]. It is well-

known that some ‘developing countries’ are now becoming global leaders—as China and

India—or very active in scientific research—as most South Asian countries and Brazil [8,50].

In addition, our map shows that the emergence of these new centers (such as China) also

implies the correlative rearrangement of new peripheries, within the frame of a more complex

worldwide division of scientific work.

Finally, this method could be used to investigate the international landscape in other fields.

Several factors may affect international specialisation: The presence of a big instrument (such

as an accelerator, an observatory [51], the availability of some specific resource (such as tropi-

cal species) [52], links to nationally strong industries for applications.

Some features of the nanoscape are likely to be specific, especially the rapid growth of emer-

gent countries. The reason is that nanoscience seems to be a field with a relatively low entry

cost, as compared to biochemistry or cellular biology. For example, there exist several inexpen-

sive technologies (such as nanoimprinting lithography, see [53] that allow to develop some

subfields. Our approach, which allows to build a micro description relevant for studying the

macro level, could help understanding in a more general way the relative contribution of these

different factors to specialisation profiles in different fields.
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Locaux. 2012; III:25.

49. Macleod R. Nature and Empire: Science and the Colonial Enterprise. Vol. 15, Osiris. Chiago: Univer-

sity of Chicago Press; 2001.

50. de Almeida ECE Guimarães JA. Brazil’s growing production of scientific articles—how are we doing

with review articles and other qualitative indicators? Scientometrics. 2013; 97(2):287–315.

51. Joerges B, Shinn T. A fresh look at instrumentation: an introduction. In: Instrumentation between sci-

ence, state and industry, Sociology of the sciences yearbook. Dordrecht: Kluuwer Academic publish-

ers; 2001.

52. Kreimer P, Zabala JP. Chagas Disease in Argentina: Reciprocal Construction of Social and Scientific

Problems. Sci Technol Soc. 2007;(12: ):49–72.

53. Tong WM, Hector SD, Jung GY, Wu W, Ellenson J, Kramer K, et al. Nanoimprint lithography: the path

toward high tech, low cost devices. In: Mackay R, editor. Emerging Lithographic Technologies IX, Pts 1

and 2. Bellingham: Society of Photo-Optical Instrumentation Engineers; 2005. p. 46–55. (PROCEED-

INGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE); vol. 5751).

The Multipolar International Landscape of Nanoscience

PLOS ONE | DOI:10.1371/journal.pone.0166914 December 16, 2016 12 / 12

http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://dx.doi.org/10.1002/asi.5090140103

