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Abstract
The diversity of the five single nucleotide polymorphisms located in genes of the TP53 path-

way (TP53, rs1042522;MDM2, rs2279744;MDM4, rs1563828; USP7, rs1529916; and
LIF, rs929271) were studied in a total of 282 individuals belonging to Quechua, Aymara,

Chivay, Cabanaconde, Yanke, Taquile, Amantani, Anapia, Uros, Guarani Ñandeva, and

Guarani Kaiowá populations, characterized as Native American or as having a high level (>

90%) of Native American ancestry. In addition, published data pertaining to 100 persons

from five other Native American populations (Surui, Karitiana, Maya, Pima, and Piapoco)

were analyzed. The populations were classified as living in high altitude (� 2,500 m) or in

lowlands (< 2,500 m). Our analyses revealed that alleles USP7-G, LIF-T, andMDM2-T
showed significant evidence that they were selected for in relation to harsh environmental

variables related to high altitudes. Our results show for the first time that alleles of classical

TP53 network genes have been evolutionary co-opted for the successful human coloniza-

tion of the Andes.
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Introduction
The product of the TP53 gene is a transcription factor (p53) that activates or represses a large
number of target genes that regulate a broad array of extremely important cellular functions,
such as cell cycle, metabolism, DNA repair, senescence, and apoptosis. This factor is therefore
essential for maintaining genome integrity [1]. In humans, p53 has 393 amino acids and the
TP53 gene is located in the short arm of chromosome 17 [2]. Alterations of the TP53 gene or
perturbations in the TP53 pathway are frequently correlated with carcinogenesis; more than
50% of human tumors carry mutations in this gene [3].

The steady-state levels of p53 are primarily determined by the rate at which it is degraded,
rather than the rate at which it is produced. The TP53 gene is constitutively expressed in all cell
types, but p53 does not accumulate in non-stressed cells, since it is rapidly degraded by the pro-
teasome via ubiquitination [4, 5]. On the other hand, the p53 levels increase in response to vari-
ous stress signals, such as UV irradiation, low oxygen concentrations (hypoxia), and exposure
to high temperatures [6, 7, 8, 9].

There are many polymorphisms described for TP53, but a C!G non-synonymous substitu-
tion (rs1042522: c.215C>G, p. Pro72Arg; [10]) that promotes the amino acid change
Pro!Arg at codon 72 of p53 is one of the most widely studied. This polymorphism has been
described to be associated with an increased risk for developing cancer, since the p53-Pro allele
is less active than p53-72Arg in inducing apoptosis, among other characteristics [11, 12].

Proper p53 transcriptional function is strongly linked to the activity of several other proteins
encoded by the genesMDM2 (Mouse double minute 2 homolog; OMIM 164785),MDM4
(Mouse double minute 4 homolog, OMIM 602704), and USP7 (Ubiquitin-specific protease 7;
OMIM 602519), also known asHAUSP (Herpesvirus-associated ubiquitin-specific protease).
Another important gene in the so-called classical TP53 network [13] is LIF (Leukemia-inhibi-
tory factor; OMIM 159540), which plays an essential role in the early phases of embryonic
development in humans, and is regulated by p53 (S1 Fig).

The E3 ubiquitin-protein ligase, MDM2, mediates the activity of p53 by directing it to deg-
radation by the proteasome [5, 14, 15].MDM2 expression is also tightly regulated by p53 [16].
This auto-regulatory loop allows for the precise regulation of protein levels and activities of
both p53 and MDM2 proteins [4, 17, 18].

The most well studied polymorphism in theMDM2 gene (rs2279744: c.14+309T>G) is
located in its internal promoter. It consists of a single-nucleotide change from T!G, which
increases the affinity of a sequence inMDM2 for the Sp1 transcription factor (Specificity pro-
tein 1; OMIM 189906). As a result, homozygotes for the G allele express more MDM2 than
homozygotes for the T allele [19, 20]. In the presence of high levels of MDM2, there is a corre-
sponding decrease of p53, causing a reduced response to cellular stress, impaired DNA repair,
decreased apoptosis, and senescence [19]. Some studies have demonstrated thatMDM2-309T
andMDM2-309G alleles have different distributions in human populations [18, 21]. For
instance, derived alleleMDM2-309-G has higher frequency in European and Asian than Afri-
can populations (average values:*0.35,*0.70, and*0.03, respectively; [22, 23, 24]). This
allele may compensate for the higher apoptotic frequencies caused by the prevalence of allele
p53-72Arg in Eurasians (*0.56; [22, 23, 24]), suggesting adaptation [18].

The MDM4 protein, encoded by theMDM4 gene acts as a negative regulator of p53, inhibit-
ing its transcriptional activity [25, 26, 27]. MDM2 and MDM4 form heterodimers with a high
capacity for ubiquitination of target proteins, thus leading to degradation of targets, like p53
[28]. Deletion of eitherMDM2 orMDM4 induces p53-dependent early embryonic lethality in
an animal model [16, 29]. The AA genotype for the single-nucleotideMDM4 polymorphism
(rs1563828:g.204547449A>G) was associated with an increased risk for breast cancer [30].
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Another important regulator of p53 is USP7, encoded by the USP7 gene, which deubiquity-
lates p53 and protects it from proteasome degradation [31]. The USP7 gene has a G!A substi-
tution in intron 25 (rs1529916: g.8897333G>A), and derived allele A has been associated with
endometriosis, female infertility, and prostate cancer [13, 32].

LIF is a cytokine expressed in various cell types, and its main function is to strengthen the
blastocyst training of human embryos. In the very first days post-fertilization, LIF expression
increases in the endometrium, creating a favorable environment for blastocyst implantation.
Allele G of LIF (T!G transversion at the 30 UTR region of the gene; rs929271: g.30242237T>G)
is associated with female infertility [13]. LIF expression level is also known to be 2 times lower in
cells bearing the p53-72Pro allele, compared to p53-72Arg, which can lead to the decrease of the
implantation and fertility rate. In summary, several studies have strongly suggested that poly-
morphisms in the p53 signaling pathway play an important role in blastocyst implantation and
are associated with recurrent pregnancy loss [13, 33, 34].

The genetic variability observed in contemporary human populations and the functionali-
ties associated with the polymorphisms described above allow us to infer that a simple neutral
model of mutation and drift is insufficient to explain the allelic distributions observed. Thus, it
has been suggested that positive selection contributed to adaptation of Homo sapiens in differ-
ent ecosystems. For example, the p53-72Arg allele (rs1042522) is more common in Europeans
than in Africans, leading to the hypothesis that its distribution is dependent on latitude and
maintained by selective pressures [35, 36]. On the other hand, Shi et al. [23] found that winter
temperatures and UV radiation correlated significantly with the TP53 (rs1042522) andMDM2
(rs2279744) allele distributions in East Asian populations, indicating the possibility of adapta-
tion to distinct environments.

America was the last continent occupied by humans in pre-colonial times. González-José
et al. [37] and Bortolini et al. [38] suggested that an initial major dispersal began after 21,000
years before present, and that the biological and cultural characteristics of the first Americans
that emerged, in part, were reshaped by recurrent trans-Beringian/circum-Arctic gene flow
and important local population dynamics during a standstill period in Beringia. For example,
Native Americans have experienced dramatic episodes of genetic drift and successive bottle-
neck events during migration across the continent. Furthermore, signals of positive natural
selection associated to autochthonous environmental and cultural conditions have also been
described [39, 40, 41].

Based on these findings, we hypothesize that the allele distributions of the classical TP53
pathway genes in Native American populations reflect adaptation, not only demographic and/
or random events. To test our hypothesis, we determined the genotypes of the five above-men-
tioned SNPs in 282 unrelated individuals and compared the results to a large number of cli-
mate-related environmental variables, such as altitude, temperature, and seasonal mean UV
radiation. Additional data regarding two of these SNPs (TP53-rs1042522 andMDM2-
rs2279744) were compiled from the literature for a more extensive population analysis.

Materials and Methods

Samples and ethical procedures
Five SNPs (rs929271, rs1042522, rs1563828, rs2279744, and rs1529916) were genotyped in 282
volunteers characterized as Native American or as having large (> 90%; [42]) Native American
ancestry. Volunteers were from 12 populations located in different ecoregions, namely high-
land (populations located at altitudes� 2,500 m; [43]) and lowland (populations located at alti-
tudes below 2,500 m). Highland populations were Aymara (n = 18) and Quechua (n = 17)
from Bolivia, and Chivay (n = 18), Cabanaconde (n = 17), Yanke (n = 10), Taquile (n = 43),
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Amantani (n = 29), Anapia (n = 15), and Uros (n = 22) from Peru. All highland populations
were located in the Andean region, including on Lake Titicaca islands or in their vicinity. Low-
land populations were Andoas (n = 61), a Native Amazonian population living in North Peru,
and Guaraní Indians from Brazil (Tupian speakers from two sub-groups: Ñandeva, n = 16; and
Kaiowa, n = 16). Details about these populations have been summarized elsewhere [42, 44, 45,
46]. To facilitate the presentation of the results and discussion, we will collectively refer to all
communities as “Native Americans”. The geographical coordinates (latitude and longitude) of
all populations are presented in S1 File (Table A in S1 File).

Ethical approval for the use of these samples was obtained from the National Ethics Com-
mittee of Brazil (Resolution No. 123/98 CONEP) for individuals from Brazilian tribes; and by
the Ethics Committee of Universidad San Martín de Porres, Lima, Peru (Peruvian samples)
and Université Paul Sabatier Toulouse, Toulouse, France (Bolivian samples). Written informed
consent or verbal informed consent (illiterate persons) was obtained individually from tribal
participants. Verbal informed consent was registered in the field, and the institutional review
ethics committees approved this procedure. This study was carried out in accordance with the
Declaration of Helsinki.

Data from literature
Data from 100 additional individuals from five other Amerindian populations (Surui and Kar-
itiana (Brazil), Piapoco (Colombia), Maya and Pima (México) were included in this study. For
more details on these samples, please refer to http://www.cephb.fr/HGDP-CEPH-Panel/[47].
The environmental conditions evaluated for all populations (present study and literature sam-
ple) are compiled in S1 File (Table A in S1 File). The environmental data were collected for
each population using the SoDa Service andWorldClim (http://www.soda-is.com/[48] and
http://www.worldclim.org/[49], respectively; last access: December 19, 2014).

All analyses were performed with two sets of data: (A) 12 South American populations, for
which original data regarding five SNPs (rs1042522, rs2279744, rs1529916, rs1563828, and
rs929271) were obtained in the present study, and (B) all populations genotyped in this study
plus five additional populations, for which TP53 rs1042522 andMDM2 rs2279744 data are
available in the HGDP-CEPH panel [22].

Laboratory methods
Genomic DNA was obtained from saliva, whole blood, or plasma, using the QIAamp DNA
extraction Mini kit (Qiagen; https://www.qiagen.com/br/[50]) according to manufacturer’s
instructions. Genotyping of the TP53-rs1042522,MDM4-rs1563828, USP7-rs1529916, LIF-
rs929271, andMDM2-rs2279744 SNPs was performed by allelic discrimination using the Taq-
Man Genotyping Assays (Applied Biosystems; http://www.lifetechnologies.com/br/en/home/
brands/applied-biosystems.html [51]). Genotyping ofMDM2 rs2279744 was performed using
a customized (assay-by-design) assay using probes FAM-TCCCGCGCCGCAG and VIC-CTCC
CGCGCCGAAG, with primers 50-CGGGAGTTCAGGGTAAAGGT-30 (forward) and 50-ACAGG
CACCTGCGATCATC-30 (reverse).

PCR reactions were carried out in 48-well plates, with each reaction containing: 10 ng of
genomic DNA, 2× TaqMan1 genotyping Master Mix (Applied Biosystems), specific probes for
each SNP (40×), and ultra-pure water for a final reaction volume of 10 μL. The PCR conditions
were as follows: 95°C for 10 min, followed by 45 cycles of 95°C for 15 s and 63°C for 60 s.
MDM2 rs2279744 genotyping was also done in 48-well plates, with each reaction containing:
10 ng of genomic DNA, 2× TaqMan1 genotyping Master Mix, 5 μM of each primer and
probe, and water to reach a final volume of 10 μL.MDM2 PCR conditions were as follows:
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50°C for 2 min, 95°C for 10 min, and 45 cycles of 95°C for 15 s and 60°C for 60 s. All reactions
were performed in an Illumina Eco Real-Time PCR System, (http://www.uniscience.com/ [52])
and results were analyzed using an Eco Real-Time PCR System and the Software v5.0 associ-
ated with that system. All wet-lab analyses were performed in the Laboratory of Human and
Molecular Evolution of the Department of Genetics at Federal University of Rio Grande do Sul
in Brazil.

Statistical analyses
Hardy-Weinberg equilibriums were calculated using a web-based program (http://www.oege.
org/software/hwe-mr-calc.shtml [53]), and the statistical significance was assessed by Chi-
square tests (p< 0.01). Analysis of molecular variance (AMOVA) using Arlequin 3.5.1.227
was applied to assess the variance among and within the investigated Native American popula-
tions [54, 55, 56].

Allele distributions were tested for possible associations with three groups of environmental
conditions: 1) geographic: altitude, latitude, and longitude; 2) annual and seasonal mean UV
radiation, and 3) Nineteen climate-related variables (Table A in S1 File). Principal component
analysis (PCA) was performed to convert the nineteen possibly correlated bioclimatic variables
into a smaller number of artificial variables (PCs) accounting for most of the variance in the
previously observed variables. The correlation analysis between allele frequencies in each popu-
lation and the environmental conditions was performed using Spearman´s rho correlation
coefficient. The association between SNPs and altitude was assessed through binary logistic
regression using two geographic categories (highlands:� 2,500 m, and lowlands:< 2,500 m
[43]) as the outcome and SNPs as predictors. Since this analysis was not intended to infer cau-
sality relationships, the odds ratio was reported as an estimate of size effect. For these analyses
a Bonferroni correction was performed and the alpha was set at 0.01 (αBonferroni = 0.05/5 SNPs
tested). Additionally, we performed the nonparametric Multifactor Dimensionality Reduction
(MDR, v3.0.2; [57]) approach to detect potential gene–gene interactions. Thus, we used MDR
to incorporate information from our 5 and 2 selected loci (data sets A and B, respectively) and
an environmental condition as the outcome (altitude: highland and lowland geographic catego-
ries). The percentage of information gain (IG) by each SNP is visualized for each node, while
the IG for each pairwise connection between SNPs is visualized for each branch. Thus, the
independent main effects of each SNP can be compared to the interaction effect. The p-value
was calculated based on 10,000 permutations.

Results
Table 1 shows the derived allele frequency for each SNP investigated (individual genotypes
can be seen in S2 File). Wide variations were observed in some allele frequencies in both popu-
lation groups (highland and lowland). For instance, the frequency of MDM2-309-G is about
five times higher in Guaraní Ñandeva than Guaraní Kaiowa, which may reflect genetic drift
since the split of these two Guaraní partialities occurred less than 2,000 years ago [45]. On the
other hand, several highland populations from Peru and Bolivia present similar distributions
ofMDM2-309-G. Most of these highland populations show deviations from the Hardy-Wein-
berg equilibrium (HWE), especially in Peruvian samples for theMDM2-309 locus (Table B in
S1 File).

AMOVA analysis, using both data sets (Table 1), indicated that homogeneity and popula-
tion structures could be seen in both highland and lowland populations. For instance, popula-
tion structure measured by FST statistics (i.e. the among-populations component of genetic
variance) is observed in the two groups considering TP53 rs1042522 (FST = 0.068 and 0.054,
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for highland and lowland, respectively), while forMDM2 rs2279744 homogeneity is observed
in highland populations (FST = −0.020; p = 0.801) while high heterogeneity is observed in low-
land populations (FST = 0.274; p< 0.001). Only the FST value observed for LIF rs929271 in the
highland group (11.8%) is similar to the average estimated across the human genome (12%;
[58]). For FCT (between-groups component of variance), the variance is high (11%) forMDM2
rs2279744 data, indicating a remarkable and significant difference between the allelic distribu-
tions of the highland and lowland populations.

Principal component analysis
In data set A, the first principal component (PC1) accounted for 73% of total variance, com-
prising the following bioclimatic variables: annual mean temperature, mean diurnal range,
maximum temperature of warmest month, minimum temperature of coldest month, tempera-
ture annual range, mean temperature of wettest quarter, mean temperature of driest quarter,

Table 1. Derived1 allele frequencies and AMOVA results.

Population (n) TP53 G
rs1042522

MDM2 G
rs2279744

MDM4 G
rs1563828

USP7 A
rs1529916

LIF G rs929271 Reference

Highlands (�2.500 m.)

Amantani (29) 0.86 0.13 0.60 0.39 0.77 This study

Anapia (15) 0.77 0.13 0.57 0.30 0.47 This study

Cabanaconde (17) 0.88 0.12 0.74 0.09 0.32 This study

Chivay (18) 0.83 0.14 0.67 0 0.36 This study

Taquile (43) 0.92 0.05 0.63 0.23 0.44 This study

Uros (22) 0.93 0.20 0.84 0.05 0.27 This study

Yanke (10) 0.65 0.05 0.80 0.10 0.45 This study

Aymara (16–18)2 0.78 0.21 0.50 0.14 0.12 This study

Quechua (15–17)2 0.53 0.21 0.66 0.24 0.40 This study

Fst 0.068, p = 0.017 -0.020, p = 0.801 -0.006, p = 0.506 0.068, p = 0.013 0.118, p<0.001

Lowlands (<2.500 m.)

Andoas (61) 0.74 0.16 0.53 0.39 0.59 This study

Guarani Kaiowa
(16)

0.94 0.07 0.66 0.34 0.56 This study

Guarani Ñandeva
(15–16)2

0.87 0.33 0.72 0.57 0.63 This study

Karitiana (23–24)2 0.62 0.59 ND ND ND Sucheston et al.
2011

Maya (23–21)2 0.83 0.64 ND ND ND Sucheston et al.
2011

Piapoco/Curripaco
(12–13)2

0.92 0.81 ND ND ND Sucheston et al.
2011

Pima (21–24)2 0.65 0.69 ND ND ND Sucheston et al.
2011

Surui (17–20)2 1 0.32 ND ND ND Sucheston et al.
2011

Fst 0.054, p = 0.028 0.274, p<0.001 0.029, p = 0.200 0.020, p = 0.243 -0.044,
p = 1.000

Fct -0.008, p = 0.516 0.111, p = 0.029 0.001, p = 0.413 0.091, p = 0.043 0.020, p = 0.261

1Defined in comparison with the Chimpanzee sequence. For the loci in bold deviations from Hardy-Weinberg Equilibrium were detected.
2The number of individuals vary according to the investigated locus. ND: No data available.

doi:10.1371/journal.pone.0137823.t001
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mean temperature of warmest quarter, mean temperature of coldest quarter, annual precipita-
tion, precipitation of wettest month, precipitation in the driest month, precipitation seasonal-
ity, precipitation of wettest quarter, precipitation of driest quarter, precipitation of warmest
quarter, and precipitation of coldest quarter. The second principal component (PC2) repre-
sented 13% of variance, and comprised temperature seasonality, which is a measure of standard
deviation × 100 of average annual daily temperatures.

When we expanded our analysis to data set B, PC1 represented 59% of total variance and
comprised sixteen bioclimatic variables: annual mean temperature, mean diurnal range, maxi-
mum temperature of warmest month, minimum temperature of coldest month, mean temper-
ature of wettest quarter, mean temperature of driest quarter, mean temperature of warmest
quarter, mean temperature of coldest quarter, annual precipitation, precipitation of wettest
month, precipitation in the driest month, precipitation seasonality, precipitation of wettest
quarter, precipitation of driest quarter, precipitation of warmest quarter, and precipitation of
coldest quarter. The second principal component (PC2) represented 23% of variance, and com-
prised isothermality (the ratio of mean diurnal range to temperature annual range), tempera-
ture seasonality, and temperature annual range, all of which are connected with climatic
changes by seasonality.

Correlation analyses
Correlation coefficients and their statistical significances are given in Table 2. In data set A,
there were significant associations between the G allele of USP7 (rs1529916) and the annual
mean of ultraviolet irradiance (rho = 0.760 p = 0.004) and PC1 (rho = −0.741, p = 0.006). This
allele was also nominally associated with the mean of ultraviolet irradiance in the coldest
semester (rho = 0.681 p = 0.015) and in the warmest semester (rho = 0.618 p = 0.032).MDM2
(rs2279744) T allele was nominally associated to longitude (rho = −0.587 p = 0.045) and the
mean of ultraviolet irradiance in the coldest semester (rho = 0.605 p = 0.037), while LIF
(rs929271) T allele was nominally associated to annual mean of ultraviolet irradiance
(rho = 0.693 p = 0.013) and PC1 (rho = −0.664, p = 0.018).

In data set B, there were significant associations between the T allele ofMDM2 (rs2279744)
and altitude (rho = 0.673, p = 0.003), the mean of ultraviolet irradiance in the coldest semester
(rho = 0.827 p< 0.001), and PC1 (rho = −0.610 p = 0.009). This allele was also nominally asso-
ciated to PC2 (rho = −0.567, p = 0.018).

Binary logistic regression analyses
We performed a binary logistic regression analysis to search for possible associations between
SNPs and two geographic categories (Highlands:� 2,500 m; Lowlands:< 2,500 m) using alti-
tude as dependent variable (Table C in S1 File). In data set A, we observed statistically signifi-
cant associations for USP7 rs1529916 and LIF rs929271 SNPs. Individuals who inhabit the
highlands were less likely to carry USP7-GA (OR = 0.417, p = 0.002) and USP7-AA (OR =
0.135, p< 0.001) genotypes. A similar association was observed for LIF-TG (OR = 0.324, p =
0.001 and LIF-GG (OR = 0.270, p< 0.001) genotypes. Regarding data set B, an association
between theMDM2 rs2279744 SNP and altitude was detected. Individuals who inhabit the
highlands were less likely to carryMDM2-TG (OR = 0.218, p< 0.001) andMDM2-GG
(OR = 0.175, p< 0.001) genotypes.

Gene-gene interaction analyses
We used the MDR approach to search for gene-gene interactions (Table D in S1 File). These
analyses were intended to explore differences between highland and lowland populations in
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genotype combinations among the SNPs investigated since gene networks, such as those inves-
tigated here, can be sources of epistasis. Significant two- (p = 0.004) and three-locus interac-
tions (p = 0.004) were identified in data set A. However, an analysis of IG based on entropy
measures revealed that these effects were not explicated by epistasis (negative values in the
branches among nodes; Fig 1A). On the other hand, IG values of both USP7 (7.26%) and LIF
(4.23%) indicated that both genes have a large main effect in a scenario where altitude is con-
sidered, corroborating our previous analysis. Regarding data set B, the largest main effect was
observed forMDM2 (IG = 9.51%), which contrasts with the low value for TP53 (IG = 0.41%).
A potential synergism (epistasis) between the two loci was also found, but it is apparently weak
(IG value of only 1.54%; Fig 1A), at least when it is compared with the potential mechanism of
action onMDM2. On the other hand, it is 3.7 times greater than the main effect of TP53. It is
noteworthy that independent of the TP53 genotype, the genotypeMDM2-TT is always favor-
able and most commonly found in highlands (Fig 1B). In other words,MDM2 showed the
greatest contribution to adaptation to hostile environments, such as those found in the
highlands.

Discussion
More than 60,000 scientific studies have been published in the last 30 years concerning the
roles of TP53 network genes, as well as of their variants, in human susceptibility to cancer and

Table 2. Correlation analysis results.

Variables TP53 C MDM2 T MDM4 A USP7 G LIF T

rs1042522 rs2279744 rs1563828 zrs1529916 rs929271

rho p-value rho p-value rho p-value rho p-value rho p-value

Data set A

Altitude 0.091 0.778 0.442 0.150 0.330 0.295 0.291 0.359 0.312 0.324

Latitude 0.503 0.095 0.380 0.224 -0.074 0.820 0.301 0.342 0.140 0.665

Longitude -0.161 0.618 -0.587 0.045 0.322 0.307 -0.371 0.236 -0.035 0.914

UV irradiance 1 0.092 0.776 0.542 0.069 -0.143 0.657 0.760 0.004 0.693 0.013

UV irradiance 2 0.190 0.553 0.605 0.037 -0.120 0.710 0.681 0.015 0.497 0.100

UV irradiance 3 -0.042 0.897 0.369 0.238 -0.165 0.608 0.618 0.032 0.516 0.086

PC1 -0.140 0.665 -0.390 0.210 0.109 0.737 -0.741 0.006 -0.664 0.018

PC2 -0.140 0.665 -0.464 0.129 -0.175 0.586 -0.049 0.880 0.028 0.931

Data set B

Altitude 0.006 0.981 0.673 0.003 - - - - - -

Latitude 0.277 0.281 -0.292 0.255 - - - - - -

Longitude -0.293 0.253 -0.270 0.294 - - - - - -

UV irradiance 1 0.265 0.304 0.410 0.102 - - - - - -

UV irradiance 2 0.147 0.574 0.827 <0.001 - - - - - -

UV irradiance 3 0.215 0.408 0.245 0.343 - - - - - -

PC1 -0.177 0.497 -0.610 0.009 - - - - - -

PC2 -0.015 0.955 -0.567 0.018 - - - - - -

Nominal associations are depicted in italics and significant associations (after Bonferroni correction) are depicted in bold.

UV irradiance 1: annual mean of ultraviolet irradiance, UV irradiance 2: mean of ultraviolet irradiance in the coldest semester, UV irradiance 3: mean of

ultraviolet irradiance in the warmest semester.

PC = Principal Component.

doi:10.1371/journal.pone.0137823.t002
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other pathological conditions. Special issues in scientific journals, dedicated to these topics,
have also been published (see, as example [59]). This overwhelming number of studies con-
trasts with the rarity of studies of an evolutionary context, which are indispensable for explain-
ing differences in the TP53 network allele distributions along human populations, which often
cannot be understood as simply a result of stochastic processes. Our goal here was to help fill
this gap, providing information about five polymorphisms of the classical TP53 network in
Native American populations and how their variability patterns could be explained.

Our analysis of data set A, which included original information of 5 SNPs in 12 Native
American populations, suggests a well-known role of genetic drift in those groups, illustrated
by wide difference inMDM2-G allele frequencies between the two Guaraní sub-groups. How-
ever, other instigating results can be associated to adaptation to environmental conditions in
Native American populations. Alleles USP7-G (rs1529916) and LIF-T (rs929271) were corre-
lated with ultraviolet irradiance and index of temperature and precipitation, variables compris-
ing PC1. Additionally, examining variables with the highest representation in the PC1
components (> 0.90), it is possible to see that in regions where the annual mean temperatures,
minimum temperatures of the coldest month, mean temperatures of the driest quarter, mean
temperatures of the coldest quarter, and precipitation are low, the presence of ancestral alleles
G and T are significantly higher. In other words, our analysis as whole reveals that alleles
USP7-G and LIF-T are more highly represented in stressful environments (low temperature,
arid climate, wide temperature range during the day, and high levels of UV radiation), which is
typical of high altitudes. It is noteworthy that derived alleles of these SNPs have been associated
with cancer susceptibility, infertility, and endometriosis [13, 32], so that the alleles USP7-G and
LIF-T could be considered as protective factors against the consequences of harsh environmen-
tal stress.

Human populations living at high altitudes are likely to have developed specific adaptations
to support both the harsh conditions described above and low oxygen concentrations (hypoxia;
[41]). Monge in 1948 [60] proposed that the hypoxia could reduce fertility in humans.

Fig 1. Summary of the multifactor dimensionality reduction (MDR) interaction models. (A) Interaction
graphs comprised of nodes with pairwise connections between them. Values in nodes represent information
gain (IG) of individual genes (main effect), while values between nodes are the IG of each pairwise
combination (interaction effects). Positive entropy (plotted in red) indicates interaction (epistasis) and
negative entropy (plotted in green or blue) indicates redundancy. Independence is represented by the gold
color. (B) TheMDM2-TP53 interaction associated with altitude in data set B. High-frequency genotype
combinations in individuals who inhabit highlands (� 2,500 meters) are depicted as darkly shaded cells and
low-frequency combinations in those individuals as lightly shaded. For each cell, the left bar indicates the
absolute number of individuals who inhabit highlands and the right bar the absolute number of individuals
who inhabit lowlands (< 2,500 meters).

doi:10.1371/journal.pone.0137823.g001
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However, recent studies have shown that the reproductive functioning of populations indige-
nous to high altitudes is adapted to hypoxia and other extreme conditions [61]. Our results
with USP7 (rs1529916) and LIF (rs929271) polymorphisms could be connected with adapta-
tion of the reproductively successful ancestors of modern Andes populations.

In examining data set B, we found the ancestralMDM2-T allele is strongly correlated with
winter mean UV radiation, altitude, and PC1. The highest representations in the PC1 compo-
nents (> 0.90) are annual mean temperature, minimum temperature of coldest month, mini-
mum temperature of coldest quarter, and annual precipitation. Allele T is significantly more
frequent in communities located at high altitudes experiencing extreme environmental condi-
tions, such as high UV radiation and dry and cold climate. In addition, the binary logistic
regression analysis showed thatMDM2-TT individuals are more frequently found in high-
lands.MDM2-TT homozygotes express typical steady-state levels of MDM2, maintaining an
adequate level of p53 [20], and consequently can appropriately respond environmental stresses.
An important confounding factor could be admixture with Europeans, which is more impor-
tant in Andean than in the lowland populations considered here [42, 62, 63]. However, any
effect of admixture would be in the opposite direction, sinceMDM2-G frequency is relatively
high in Spaniards (0.39; [24]).

The inverse correlation betweenMDM2-T frequencies and winter UV radiation is consis-
tent with the findings of Shi et al. [23], which showed that low levels of UV are significantly
correlated with genotypeMDM2-GG in Han Chinese populations, similarly deviating from
HWE. These authors suggested thatMDM2-GG is selected for in areas of low UV activity (at
high altitudes, the thinner atmosphere will filter less UV radiation; consequently for every 1000
m increase in altitude, the UV radiation level will increase*12%; http://www.weather.gov.hk/
radiation/tidbit/201012/uv_e.htm [64]). Natural selection can be evoked to explain these
results, although the HWE test is considered too weak to detect this phenomenon.

As mentioned above, native Andean populations have successfully adapted to environments
with low oxygen concentrations. One gene that contributes to hypoxia adaptation is EPAS1
(Endothelial PAS domain-containing protein 1, also known as HIF-2α, Hypoxia-inducible fac-
tor—alpha 2 (OMIM 603349)), which acts by preventing toxicity promoted by hypoxia. This
gene plays an important role in both the classical and the expanded TP53 network. For
instance, the alpha subunit of EPAS1 regulates p53 activity, including through prevention of
damage-induced degradation and nuclear export of MDM2, stabilizing nuclear p53 [65]. Foll
et al. [41] confirmed the action of positive selection on EPAS1 in both Tibetans and Andeans.
Furthermore, several studies have revealed a role for p53 and its regulation in physiological
and metabolic processes resulting from environments with low oxygen concentrations [8, 66,
67]. Recently, Eichstaedt et al. [68] studied an indigenous population living in the Argentinean
Andes (Colla) and identified signatures of positive selection in genes involved in cellular hyp-
oxia, including TP53. Importantly, hypoxia induces p53 accumulation through down-regula-
tion of MDM2 [66]. These results reinforce our suggestion that individuals with theMDM2-
TT genotype represent an adaptation to the environmental stresses of high altitudes. In addi-
tion, the interaction analysis performed by the MDR method using both data sets (A and B)
revealed the potential for theMDM2, LIF, and USP7 genes to play an additional central role in
a high altitude setting. Thus, taken together, our results demonstrate that variation of the
p53-activating stressors could not be directly correlated with p53-Pro72Arg alleles, but with
frequencies of the other functional polymorphisms examined, such as USP7-G (rs1529916),
LIF-T (rs929271), andMDM2-309, as well as synergic interactions between them.

Under neutral model conditions, South Amerindians living in lowlands present higher
levels of population structure when compared to those seen in indigenous Andean communi-
ties [62, 69]. However, not all FST values obtained in our study were consistent with this
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expectation (Table 1). Positive selection disturbs the patterns of genetic variation expected
under a standard neutral model [70]. Additionally, it is possible to see that some derived
alleles, such asMDM2-G, have high frequencies in Asian populations with putative common
ancestry (0.57–0.82; [22, 23, 24]), but a surprisingly low distribution in Andeans (average
value:*0.13). An excess of unexpectedly low and/or high frequencies of derived alleles can
also be considered a marker of positive selection [70]. Thus, the distributions of the classical
TP53 pathway alleles in Native American populations could be under selective pressure.
Sucheston et al. [22] investigated 52 worldwide populations from the HGDP-CEPH-panel
for the prevalence of p53-Pro72Arg andMDM2-309 polymorphisms, but found no signifi-
cant association with climate variables. However, the Native American samples in the
Sucheston et al.’ study [22] were much smaller than the present study (see Table 1), which
may explain the divergent results.

Finally, government surveys in Peru indicate that the rate of gestational and postpartum
complications in Aymara regions is lower than the national average (1.8% and 5% respectively;
http://www.dge.gob.pe/publicaciones/pub_asis/asis26.pdf, p. 165; [71] http://www.dge.gob.pe/
portal/docs/intsan/asis2012.pdf, p. 76 [72]). These same official sources also indicate differ-
ences in the cancer incidences between lowland localities and some regions situated at high alti-
tude (for example in the Puno state, where the Anapia community is located; http://www.dge.
gob.pe/portal/docs/asis_cancer.pdf, p. 64 [73]). These findings are in agreement with our
genetic results. However, only additional and specific studies can accurately relate our evolu-
tionary findings with those related to the health of contemporary Andean populations.

A well-regulated p53 network is crucial for maintaining genomic integrity. Several poly-
morphisms in this pathway have been described, and the different allele frequencies among
human populations have been interpreted as the result of selective pressure. Humans occupied
high-altitude locations in the Andes as early as 12,800 years ago, providing a sufficient period
of time for the initiation of organismal selection and developmental functional adaptation
([74] and references therein). Here we are suggesting that natives from Andes, who are sub-
jected to low temperatures, arid climates, wide temperature ranges during the day, high levels
of UV radiation, and hypoxia, among other environmental insults, are protected by a selected
combination of alleles/genotypes of the TP53 pathway. The present study identifies for the
first time the potential role of theMDM2, LIF, and USP7 in the adaptation of the Andean
populations.

Supporting Information
S1 Fig. The p53 network. Network view of p53 pathway analyzed by STRING 10.0 (http://
string-db.org/). Interaction confidence score cutoff was 900 (highest confidence). Each color
arrow represents a predicted functional partner: green (activation), red (inhibition), blue (bind-
ing), purple (catalysis), pink (post-translational modification), black (reaction), and yellow
(expression). TP53 = tumor protein p53, USP7 = ubiquitin specific peptidase 7 (herpes virus-
associated), MDM4 =Mouse double minute 4 homolog, MDM2 =Mouse double minute 2
homolog, and LIF = leukemia inhibitory factor.
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sion analyses results (Table C). Locus interaction by the multifactor dimensionality reduction
(MDR) approach (Table D).
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