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Abstract: The lithium-pilocarpine model of epilepsy reproduces several features of temporal lobe
epilepsy in humans, including the chronological timeline of an initial latency period followed by
the development of spontaneous seizures. Epilepsy therapies in humans are implemented, as a rule,
after the onset of the spontaneous seizures. We here studied the potential effect on epileptogenesis
of starting an early treatment during the latency period, in order to prevent the development of
spontaneous seizures. Adult male Wistar rats were treated with 3 mEq/kg LiCl, and 20 h later
30 mg/kg pilocarpine. Once status epilepticus (SE) was achieved, it was allowed to last for 20 min,
and then motor seizures were controlled with the administration of 20 mg/kg diazepam. At 1DPSE
(DPSE, days post-status epilepticus), animals started to receive 400 mg/kg/day gabapentin or saline
for 4 days. At 5DPSE, we observed that SE induced an early profuse microglial and astroglial
reactivity, increased synaptogenic trombospondin-1 expression and reduced AQP4 expression in
astroglial ending feet. Blood brain barrier (BBB) integrity seemed to be compromised, as infiltrating
NG2+ macrophages and facilitated access to the CNS was observed by transplanting eGFP+ blood
cells and bone marrow-derived progenitors in the SE animals. The early 4-day gabapentin treatment
successfully reduced microglial cell reactivity and blood-borne cell infiltration, without significantly
altering the mRNA of proinflammatory cytokines IL-1β and TNFα immediately after the treatment.
After 21DSPE, another group of animals that developed SE and received 4 days of gabapentin
treatment, were re-exposed to subconvulsive accumulative doses of pilocarpine (10 mg/kg/30 min)
and were followed by recording the Racine scale reached. Early 4-day gabapentin treatment reduced
the Racine scale reached by the animals, reduced animal mortality, and reduced the number of
animals that achieved SE (34% vs. 72%). We conclude that early gabapentin treatment following SE,
during the latency period, is able to reduce neuroinflammation and produces a persistent effect that
limits seizures and increases convulsive threshold, probably by restricting microglial reactivity and
spurious synaptogenesis.
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1. Introduction

Epilepsy is a prevalent neurological disorder worldwide. It affects nearly 1% of the world
population [1]; more than 65 million patients. The epileptic state is characterized by recurrent
spontaneous abnormal electrical discharges in the brain due to an altered excitatory/inhibitory
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(E/I) neurotransmission balance. The resulting seizures alter patients’ perception, consciousness,
memory and motor activity. There are a significant number of antiepileptic drugs (AED) on the
market, however these therapeutic agents are only aimed at controlling the seizures; there are no
disease-modifying therapies available (reviewed in [2]). In other words, the AED target only the disease
symptoms, and fail to adequately prevent seizure development, or permanently halt the occurrence of
seizures [2]. On the other hand, approximately 30% of epileptic patients immediately present or will
present after years of AED treatment resistance to the treatment, showing intractable seizures that do
not respond to AED or combinations of drugs. For these patients, invasive approaches like surgical
ablation of the epileptic foci or vagus nerve stimulation are the unique therapeutic options [3,4].

Retrospective studies performed on temporal lobe epilepsy (TLE) patients, the most prevalent
epilepsy in humans, have shown that a significant number of patients refer an early event of brain
injury during childhood. Cumulative clinical and experimental data have raised the hypothesis that
early brain injury is an initial precipitating event (IPE) that triggers a cascade of molecular and cellular
consequences leading to epilepsy (reviewed in [5]). The period following this early event is called the
latency period and it may last several years in humans (2–15 years). A similar disease progression can
be mimicked in animal models in a shorter period of time, by inducing an IPE with pro-convulsive
drugs that is followed by a latency period and the subsequent development of chronic seizures.
Given that most studies have been conducted once the chronic phase had been reached, there is
relatively scarce information about the latency period, which would probably offer several key elements
to better understand the epileptogenic process, and would allow the identification of novel therapeutic
targets that could achieve disease-modifying effects. The precise mechanisms as well as the temporal
sequence of events during the latency period are not clearly defined, however the prevailing hypothesis
in the field is that epileptogenesis involves several remodeling events induced by neuroinflammation
and neuronal apoptosis, such as exacerbated synaptic plasticity, synaptogenesis and circuit remodeling,
which lead to an altered E/I balance, hyperexcitability and spontaneous seizures (reviewed in [2]).
The findings in human surgically resected hippocampi of epileptic patients have shown several of
these alterations, including loss of projecting neurons and interneurons, neurogenesis, mossy fibers
sprouting with aberrant reconnection, neuroinflammation, reactive gliosis and altered blood-brain
barrier (BBB) permeability (reviewed in [6]).

Clinical and experimental evidence have shown that the innate immunity and subsequent
activation of inflammatory pathways contribute to the development of epilepsy [7,8]. Astrocytes and
microglia are the innate immunity effectors in the brain and play a major neuroinflammatory role in
Central Nervous System (CNS) diseases, including epilepsy. In particular, reactive astrocytes are able
to secrete molecules that have pro-synaptogenic effects (reviewed in [9]) that may support spurious
synaptogenesis occurring during the latency period of epilepsy [10–14]. Available data have shown
that epilepsy is related to inflammation with increased levels of cytokines, and studies performed
on epileptic patients demonstrated that cytokine level correlates with the intensity and duration
of epileptic seizures [15], while experimental models of epilepsy have shown that microglia, brain
resident macrophages and dendritic cells also become activated [16].

Thrombospondin 1 (TSP-1) is an astroglial-derived synaptogenic molecule that showed the
ability to induce excitatory synapses [17] by interacting with the α2δ1 subunit of voltage-sensitive
calcium channels [18,19]. TSP-1 expression is augmented in astrocytes following brain injury and
seizures [20] and mice overexpressing the α2δ1 subunit show epileptiform activity [11]. On the other
hand, gabapentin, an antagonist of TSP-1 receptor α2δ1, administered after brain cortex trauma reduces
the incidence of epileptiform discharges and has neuroprotective effects probably by suppressing the
excitatory synapse formation [9,21]. Although originally developed as a gabaergic agonist, gabapentin
showed low effectiveness as AED. Today, gabapentin’s main therapeutic use is to treat neuropathic
pain where its effect seems to rely on the reduction of reactive microgliosis [22]. In addition, we have
previously shown that subacute gabapentin administration during the latency period, that follows
the IPE in the pilocarpine model of TLE, reduces neuronal death, increases neuronal plasticity,
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and diminishes reactive gliosis and neuroinflammation in the long term [23]. Here we show that
gabapentin treatment during an early therapeutic window following IPE reduces glial activation
and macrophage infiltration in the pilocarpine model of TLE. These early effects are long-lasting,
as shown by the increased epileptic threshold in animals re-exposed to sub-convulsive pilocarpine
doses. Our results show that controlling reactive gliosis in an early time-window following IPE is a
suitable disease-modifying strategy in epilepsy.

2. Results

2.1. Higher Expression of Innate Immunity Mediators during the Latency Period after SE

Following pilocarpine administration, the development of epileptic seizures was behaviorally
monitored as previously described [23]. Seizures had their onset 20–40 min after pilocarpine injection
and duration was limited to 20 min by diazepam administration. Animals that developed seizures
were classified according to the Racine scale [24,25]. Sustained Racine stages 3–5, without returning to
normal behavior, was considered as status epilepticus (SE) [23,26]. We have previously characterized
the neuronal degeneration and reactive gliosis observed during the latency period that follows SE [23]
and described an ischemic-like core lesion in the piriform cortex also reported by other groups [26,27].
Here, we first analyzed the expression of a number of key molecules that could be related to the
spurious synaptogenesis induced by glial-derived substances. As shown in Figure 1A, we observed
that the innate immunity-related Toll-like-4 (TLR4) receptor was expressed in the hippocampus
and piriform cortex in microglia and neurons that show atypical NeuN cytoplasmic staining at
15DPSE (DPSE, days post-status epilepticus). As shown in Figure 1A, TLR4 expression was more
intense in animals that reached higher Racine index. Then, at 21 DPSE, TLR4 immunostaining was
detected in macrophages and microglia infiltrating the piriform cortex and astrocytes (Figure 1B).
It has been described that reactive glia may re-express synaptogenic molecules that were silenced
after brain development (reviewed in [9,28]). Having this in mind, we studied the TSP-1 expression
during the latency period after SE. Figure 2A shows that TSP-1 expression was detected in the
perivascular astrocytes at 3DPSE, a sticking contrast with the weak and diffuse staining in control
brains (Supplementary Figure S1). Then, at 7DPSE, TSP-1 immunostaining was present in macrophages
that infiltrate the ischemic-like lesion core in the piriform cortex (Figure 2B–D). Detailed images of
the dentate gyrus and hippocampal CA-1 neurons also show TSP-1 immunostaining in neuronal
soma, probably due to TSP-1 binding to the α2δ1 subunit of the voltage-sensitive calcium channels
(Figure 2E). TSP-1 expression was shown to be controlled by different transcription factors, including
Hypoxia-Induced Factor 1 alpha (HIF-1α) [29,30]. As shown in Figure 2F, HIF-1α immunostaining was
observed at early time points (3DPSE) during the latency period. This expression was detected in the
endothelium of striatal and hippocampal blood vessels. We conclude that innate immunity receptor
TLR4 and synaptogenic TSP-1 are expressed in the early latency period, the latter probably due to the
temporary hypoxic episodes during the seizures in the SE.
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Figure 1. TLR4 expression in the lithium-pilocarpine experimental model of temporal lobe epilepsy 
(TLE). (A) Representative photomicrograph of hippocampal brain tissue sections immunostained for 
TLR4 (green) and neurons were identified with the NeuN neuronal specific marker (red). No-SE 
animals were those that reached Racine 1–2, without reaching sustained Racine 3–5 that was 
considered as status epilepticus (SE). Images were obtained in the hippocampal hilus and dentate 
gyrus (DG) at 15 days after pilocarpine-induced seizures. Scale bars: 30 μm (control panel); 15 and 10 
μm (No-SE panel); 30 μm and 15 μm (SE panel). (B) Upper panel: Representative photomicrograph 
of piriform cortex brain tissue sections immunostained for TLR4 (green) showing small rounded cells 
that invaded the piriform cortex that lost NeuN neurons (red) at 21DPSE. Scale bar: 30 μm. Lower 
panel: Immunohistochemistry for TLR4 showing the expression in glial cells and neuronal 
projections from piriform cortex at 21 days post SE (21DPSE). Scale bar: 10 μm. 

Figure 1. TLR4 expression in the lithium-pilocarpine experimental model of temporal lobe epilepsy
(TLE). (A) Representative photomicrograph of hippocampal brain tissue sections immunostained for
TLR4 (green) and neurons were identified with the NeuN neuronal specific marker (red). No-SE animals
were those that reached Racine 1–2, without reaching sustained Racine 3–5 that was considered as status
epilepticus (SE). Images were obtained in the hippocampal hilus and dentate gyrus (DG) at 15 days after
pilocarpine-induced seizures. Scale bars: 30 µm (control panel); 15 and 10 µm (No-SE panel); 30 µm
and 15 µm (SE panel). (B) Upper panel: Representative photomicrograph of piriform cortex brain
tissue sections immunostained for TLR4 (green) showing small rounded cells that invaded the piriform
cortex that lost NeuN neurons (red) at 21DPSE. Scale bar: 30 µm. Lower panel: Immunohistochemistry
for TLR4 showing the expression in glial cells and neuronal projections from piriform cortex at 21 days
post SE (21DPSE). Scale bar: 10 µm.
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Figure 2. Synaptogenic TSP-1 is expressed after status epilepticus (SE). (A) Confocal images of TSP-1 
expression (red) surrounding in brain blood vessels (arrows) at 3DPSE. Blood vessels were identified 
with Tomato Lectin-FICT (green). Scale bar: 30 μm. (B) Infiltrating macrophages expressing TSP-1 
(red) on the blood vessels endothelium (arrow) and astroglial end-feet evidenced by the astroglial 
Glial Fibrillary Acidic Protein (GFAP) immunostaining (green) at 7DPSE. Scale bar: 30 μm. (C) 
Photocomposition of a blood vessel and astrocytes immunostained for TSP-1 and revealed by 
diaminobenzidine (DAB)—developed immunohistochemistry at 7DPSE. Scale bar: 10 μm. (D) 
Confocal low magnification image showing TSP-1 (red) localization in macrophages infiltrating the 
piriform cortex (asterisk) at 7DPSE where astrocytes GFAP+ (green) disappeared after the SE. Scale 
bar: 45 μm. (E) The panel shows different hippocampal areas immunostained for GFAP (green) and 
TSP-1 (red) where perivascular astrocytes and neuronal somata (arrows) are also stained for TSP-1. 
Scale bar: 15 μm. (F) The panel presents several images of HIF-1α immunostaining (red, arrows) in 
the areas where TSP-1 overexpression was detected. Overlapping in merged pictures is seen in 
yellow. Scale bars: 50 μm (upper left image); 30 μm (lower left image); 15 μm (right images).  

Figure 2. Synaptogenic TSP-1 is expressed after status epilepticus (SE). (A) Confocal images of
TSP-1 expression (red) surrounding in brain blood vessels (arrows) at 3DPSE. Blood vessels were
identified with Tomato Lectin-FICT (green). Scale bar: 30 µm. (B) Infiltrating macrophages expressing
TSP-1 (red) on the blood vessels endothelium (arrow) and astroglial end-feet evidenced by the
astroglial Glial Fibrillary Acidic Protein (GFAP) immunostaining (green) at 7DPSE. Scale bar: 30 µm.
(C) Photocomposition of a blood vessel and astrocytes immunostained for TSP-1 and revealed by
diaminobenzidine (DAB)—developed immunohistochemistry at 7DPSE. Scale bar: 10 µm. (D) Confocal
low magnification image showing TSP-1 (red) localization in macrophages infiltrating the piriform
cortex (asterisk) at 7DPSE where astrocytes GFAP+ (green) disappeared after the SE. Scale bar: 45 µm.
(E) The panel shows different hippocampal areas immunostained for GFAP (green) and TSP-1 (red)
where perivascular astrocytes and neuronal somata (arrows) are also stained for TSP-1. Scale bar:
15 µm. (F) The panel presents several images of HIF-1α immunostaining (red, arrows) in the areas
where TSP-1 overexpression was detected. Overlapping in merged pictures is seen in yellow. Scale bars:
50 µm (upper left image); 30 µm (lower left image); 15 µm (right images).
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2.2. Altered Blood Brain Barrier (BBB) Permeability during the Latency Period after SE

Altered BBB permeability has been documented in experimental epilepsy models and human
surgically resected epileptic tissue [31–33]. BBB alteration is also induced by the IPE and thus it is
thought to be involved in the epileptogenic process [31,34]. We here studied the astroglial aquaporin-4
(AQP4), a protein highly expressed in the astroglial end-feet forming an essential part of the BBB.
As shown in Figure 3A, AQP4 expression was altered by the SE showing a reduced expression
in the piriform cortex and hippocampus during the latency period at 7DPSE. In addition, AQP4
showed relocalization from astrocytic end-feet to glial soma (Figure 2B). Pgp-170 (MDR-1) is a BBB
efflux transporter that is regarded as one of the factors inducing AED resistance in patients [35,36].
In agreement with the recent report of Hartz and colleagues [36], we observed that Pgp-170 was
overexpressed after the pilocarpine-induced SE in the blood vessels by 3DPSE (Figure 3C). Then, at
7DPSE, Pgp-170 overexpression persisted in astrocytes and blood vessel endothelium (Figure 3C,D).
We conclude that key molecules involved in the transport through the BBB are altered by the SE.
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Figure 3. Altered expression of blood vessels permeability after SE. (A) Representative images of the
alteration in AQP4 expression (red) in the piriform cortex of 3DPSE and 7DPSE where GFAP+ astrocytes
(green) were also reduced (asterisk) and yellow represents GFAP/AQP4 overlapping. Scale bar: 500 µm.
(B) High magnification details of AQP4 relocalization in astrocytes from the end-feet to the astroglial
soma at 7DPSE in the piriform cortex. Scale bar: 15 µm (C) Pgp-170 (MDR-1) expression is induced
in blood vessels endothelium and astrocytes from hippocampus at 3 and 7DPSE. Scale bar: 20 µm.
(D) High magnification image showing the coexpression of GFAP (green) and Pgp-170 (MDR-1) (red)
in the hippocampus at 7DPSE (arrows). Scale bar: 8 µm.
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Altered BBB cell permeability may have also consequences on the innate immunity response.
Not only does serum albumin behave as a damage associated molecular pattern (DAMP) activating
innate immunity local response and reactive gliosis in the CNS, but also blood-derived leukocytes
access to the CNS is facilitated after BBB disruption [37,38]. To test BBB cell permeability during the
latency period, we transferred at 1DPSE peripheral leukocytes or bone marrow myeloid cells (BMMC)
from the transgenic eGFP+ rat strain [Wistar-TgN(CAG-GFP)184ys] to animals that developed SE.
As shown in Figure 4A,B, eGFP+ leukocytes or BMMC were observed infiltrating the hippocampus,
striatum and piriform cortex by 3DPSE. Infiltrating eGFP+ cells colocalized with reactive astrocytes in
the affected areas at 3DPSE (Figure 4C) and were also observed in the endothelial layer of blood vessels
(Figure 4D). Infiltrating eGFP cells also showed TLR4 expression typical of the myeloid-engaged
lineage (Figure 4E). In agreement with these results, increased abundance of NG2+ blood-derived
macrophages were observed in the hippocampus, striatum and piriform cortex at 3DPSE (Figure 4F).
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A similar experiment, but injecting bone marrow myeloid cells (BMMC) obtained from eGFP+ rats. 
Scale bar: 30 μm. (C) Higher magnification detail showing the eGFP+ leukocytes infiltrating the 
piriform cortex colocalizing with GFAP+ astrocytes (red). Scale bar: 30 μm. (D) Images showing 
some eGFP+ cells adhered to the endothelium of brain blood vessels and immunostained for NG2 
macrophage marker (red) at 3DPSE. Yellow color represents overlapping of both markers. Scale bar: 
10 μm. (E) Representative images showing that infiltrating eGFP+ macrophages (green) are also 
immunostained for TLR4 (red); images were obtained in the piriform cortex at 3DPSE. Scale bar: 30 
μm. (F) Quantification of NG2+ amoeboid infiltrating macrophages in a wild type rat at different 
times after SE. Significance was evaluated by one-way ANOVA and Bonferroni post-test, data are 
expressed as mean ± SEM. (*) p < 0.05; (***) p < 0.001. 
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Figure 4. Increased permeability of blood brain barrier (BBB) to blood-borne cells after SE.
(A) Representative images of eGFP+ leukocytes from donator transgenic Wistar-TgN(CAG-GFP)184ys
rats (green), infiltrating the brain of SE wild type rats after 3DPSE; counter staining was made with
GFAP (red) and 4′,6-diamidino-2-phenylindole (DAPI) nuclear staining (blue). Scale bar: 30 µm.
(B) A similar experiment, but injecting bone marrow myeloid cells (BMMC) obtained from eGFP+
rats. Scale bar: 30 µm. (C) Higher magnification detail showing the eGFP+ leukocytes infiltrating
the piriform cortex colocalizing with GFAP+ astrocytes (red). Scale bar: 30 µm. (D) Images showing
some eGFP+ cells adhered to the endothelium of brain blood vessels and immunostained for NG2
macrophage marker (red) at 3DPSE. Yellow color represents overlapping of both markers. Scale bar:
10 µm. (E) Representative images showing that infiltrating eGFP+ macrophages (green) are also
immunostained for TLR4 (red); images were obtained in the piriform cortex at 3DPSE. Scale bar: 30 µm.
(F) Quantification of NG2+ amoeboid infiltrating macrophages in a wild type rat at different times after
SE. Significance was evaluated by one-way ANOVA and Bonferroni post-test, data are expressed as
mean ± SEM. (*) p < 0.05; (***) p < 0.001.

2.3. Early Gabapentin Treatment in the Latency Period Reduces Reactive Gliosis

We have previously shown that SE induced a long-lasting reactive gliosis and that gabapentin
chronic treatment was able to reduce reactive gliosis by 21DPSE [23]. However, it was not clear
if gabapentin treatment was directly limiting reactive gliosis in a specific time-window after the
IPE, or if the effect was secondary to the improvement in neuronal survival also produced by the
gabapentin treatment. In order to answer this question, we here analyzed the reactive gliosis pattern
immediately after a short 4-day gabapentin treatment administered after SE. As shown in Figure 5A–C,
gabapentin treatment was able to significantly reduce microglial activation when analyzed by Iba-1
immunostaining. In addition, the detailed analysis of microglial phenotypes (Figure 5D) showed that
gabapentin treatment during the 4-day time-window induced a shift in the phenotype abundance
towards a microglial phagocytic resolutive phenotype (type IV) and a reduction in the proinflammatory
type III phenotype (Figure 5E).

The NG2 chondroitin sulfate proteoglycan is expressed by CNS resident polydendrocytes (OPC)
but also by blood-derived macrophages invading the CNS. While NG2+ resident polydendrocytes
are stellated cells uniformly distributed in the CNS parenchyma, invading NG2+ macrophages are
amoeboid phagocytic cells. Microscopy observations and quantitative analysis of the NG2+ phenotypes
during the latency period showed that the early 4-day gabapentin treatment significantly reduced the
NG2+ macrophages with amoeboid phenotype (Figure 6A,B) and increased the OPC-like stellated
NG2+ cells, when compared to vehicle treatment by 7DPSE (Figure 6C,D).

Reactive astrogliosis during the latency period after SE was previously described in detail by
us [23]. Here, we studied the reactive astrogliosis after the early 4-day gabapentin treatment and
compared it with the vehicle treated SE-exposed animals after 5DPSE. As shown in Figure 7A,B, Glial
Fibrillary Acidic Protein (GFAP) immunostained astrocytes showed less hypertrophy evidenced by the
reduction in the area ocupied by astrocytes in the piriform cortex. On the other hand, the reduction in
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astroglial hypertrophy did not reach statistical significance in the hippocampal CA-1 area (Figure 7C).
The astrocytes number was not altered by the gabapentin treatment (data not shown).

Having in mind that microgliosis and blood-derived macrophage infiltration were limited by the
early gabapentin treatment, we then tested if proinflammatory cytokine expression was also altered
by the 4-day gabapentin treatment. Figure 8 shows that, surprisingly, gabapentin treatment did not
produce a significant change in the IL-1β and TNFα levels by real time-RT Polymerase Chain Reaction
(PCR) when comparing gabapentin vs. vehicle-treated animals that developed SE.

We conclude that early gabapentin treatment reduces microglial reactivity and blood-borne cell
infiltration, without producing a sustained change in the expression of the proinflammatory mediators
IL-1β and TNFα.
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vehicle-treated animals at 5DPSE. Scale bar: 15 μm. (B,C) Quantitative analysis of area fraction 
occupied by Iba-1+ microglial cells in GBP- and vehicle-treated animals after 5DPSE in the piriform 
cortex and hippocampal stratum radiatum CA-1 respectively. Significance was evaluated by 
Student-t-test (* p < 0.05), data are expressed as mean ± SEM. (D) Representative images of microglial 
phenotypes used for characterizing the reactive microgliosis in type I, II, III and IV. (E) Quantitative 
analysis of the Iba-1+ microglial phenotypes in the piriform cortex after 5DPSE in vehicle- (white 
bars) and GBP-treated (black bars) animals. Data are expressed as mean ± SEM; (* p < 0.05) after 
one-way ANOVA and Bonferroni post-test. 
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vehicle-treated animals at 5DPSE. Scale bar: 15 µm. (B,C) Quantitative analysis of area fraction occupied
by Iba-1+ microglial cells in GBP- and vehicle-treated animals after 5DPSE in the piriform cortex
and hippocampal stratum radiatum CA-1 respectively. Significance was evaluated by Student-t-test
(* p < 0.05), data are expressed as mean ± SEM. (D) Representative images of microglial phenotypes
used for characterizing the reactive microgliosis in type I, II, III and IV. (E) Quantitative analysis
of the Iba-1+ microglial phenotypes in the piriform cortex after 5DPSE in vehicle- (white bars) and
GBP-treated (black bars) animals. Data are expressed as mean ± SEM; (* p < 0.05) after one-way
ANOVA and Bonferroni post-test.
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the change in NG2+ cells morphology from the macrophage-like amoeboid phenotype in 7DPSE
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(A) Representative images of GFAP+ immunostained astrocytes cells in the piriform cortex of 
gabapentin- (GBP) and vehicle-treated animals at 5DPSE, showing heterogeneous astroglial response 
to GBP treatment. Scale bar: 15 μm. (B) Quantitative analysis of area fraction occupied by GFAP+ 
astrocytes in the piriform cortex. (C) Quantitative analysis of area fraction occupied by GFAP+ 
astrocytes in the stratum radiatum of hippocampal CA-1. Significance was evaluated by two tailed 
Student-t test; data are expressed as mean ± SEM; (*) represents p < 0.05 and n.s. is not statistically 
significant. 
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animals. (A,B) Quantitative real time RT-PCR studies of IL-1β and TNFα mRNA expression in the 
hippocampus of vehicle- or GBP-treated SE animals. Data are relative to the housekeeping gene TBP 
and are represented as mean ± SEM of 3 determinations. Statistical significance was analyzed using 
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Figure 7. Gabapentin treatment reduced reactive astrogliosis in the piriform cortex of SE animals.
(A) Representative images of GFAP+ immunostained astrocytes cells in the piriform cortex of
gabapentin- (GBP) and vehicle-treated animals at 5DPSE, showing heterogeneous astroglial response to
GBP treatment. Scale bar: 15 µm. (B) Quantitative analysis of area fraction occupied by GFAP+
astrocytes in the piriform cortex. (C) Quantitative analysis of area fraction occupied by GFAP+
astrocytes in the stratum radiatum of hippocampal CA-1. Significance was evaluated by two
tailed Student-t test; data are expressed as mean ± SEM; (*) represents p < 0.05 and n.s. is not
statistically significant.
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hippocampus of vehicle- or GBP-treated SE animals. Data are relative to the housekeeping gene TBP
and are represented as mean ± SEM of 3 determinations. Statistical significance was analyzed using
the two tailed Student-t-test.
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2.4. Gabapentin-Treated Animals Have Increased Convulsive Threshold and Increased Survival When
Re-Exposed to Convulsive Agent

Having in mind that early gabapentin treatment during a short time-window after the
experimental SE efficiently reduced microglia activation, blood-derived macrophage infiltration was
previously shown to reduce neuronal death [23]; we then tested whether the convulsive threshold to a
pro-convulsive stimulus was also altered. For that purpose, animals that developed SE after pilocarpine
administration were treated with gabapentin or vehicle for 4 days, and then at 21DPSE were re-exposed
to sub-convulsive repetitive 10 mg/kg pilocarpine doses every 30 min. After four pilocarpine doses,
all animals developed seizures; however, only 33% of the gabapentin-treated animals developed SE
(limited to Racine 4) compared with 72% of the vehicle-treated animals that in all cases reached Racine 5
(Figure 9A). Figure 9A also shows that 33% of the gabapentin-treated animals reached sustained Racine
1–3 stages, while only 14% of animals of the vehicle-treated group attained this low Racine stage
after re-exposure to pilocarpine. In addition, no deaths were observed in the gabapentin-treated
animals while 14% of the vehicle-treated ones died after the pilocarpine-induced seizures (Figure 9A).
Statistical significance of the results is shown by Fisher’s exact test, representing a typical experiment
of pilocarpine re-exposure after vehicle or gabapentin treatment (Figure 9B). We conclude that early
gabapentin treatment during a short time-window in the latency period produces a long-lasting
reduced susceptibility to seizures.
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3. Discussion

The cellular events that occur during the latency period that follows the IPE are still not completely
understood. Although it is proposed that neuroinflammation and exacerbated synaptic plasticity occur
during this period and are essential for the progression of epilepsy as a chronic disease, studies on the
latency period are relatively few (see for example [5,23,39–43]). The supportive hypothesis underlying
these studies is that a number of events which are critical for the epileptogenic process occur during the
latency period that follows IPE. In addition, early therapeutic intervention during the latency period
may change the natural history of the disease by preventing epileptogenesis and thus the appearance
of spontaneous seizures. Several pharmacological compounds were tested during the latency period
including cannabinoids [44], melatonin [45], magnesium sulfate [46] and gabapentin [23], with variable
results. In fact, some treatments even showed to accelerate epileptogenesis [47,48].

The molecular and cellular changes occurring during the latency period cannot be studied in
humans. Human tissue samples from TLE patients are only available from advanced, drug-resistant
stages of the disease and thus the resected tissue exhibits many pathological changes not necessarily
linked to epileptogenesis, but resulting from accumulated seizures, neuronal death, hippocampal
sclerosis and neuroinflammation (reviewed in [49]). Thus, experimental approaches such as the
lithium-pilocarpine model of TLE or the administration of pentylenetetrazole in rodents are essential
to study the early events during the latency period [25,50]. We have previously observed that
hippocampal neurons and piriform cortical neurons degenerate just a few days after the IPE produced
by pilocarpine-induced SE [23]. In addition, reactive astrocytes appear in these areas after the IPE,
but the profuse reactive gliosis disseminates along the entire brain, including distant anatomical
areas [23]. Importantly, these effects have a peak around 7 to 15DPSE, before the establishing of chronic
epileptic seizures. We here extended these observations and showed that the TLR4 innate immunity
receptor is expressed in resident microglia, reactive astrocytes and stressed neurons from hippocampus
and piriform cortex during the latency period after the IPE. The innate immunity participation in
epileptogenesis has been proposed [34,51,52] and specifically TLR4 receptor expression was directly
linked to epilepsy development [7,10,53–55]. Various experimental approaches have shown that
targeting IL1β/TLR4 signaling may prevent epileptogenesis, showing disease-modifying effects [7,56].
In agreement with these reports, we observed that TLR4 expression increases during the latency period
in the anatomical areas that present neurodegeneration. In glial cells, TLR4 expression was recently
linked to astroglial polarization to the astroglial A1 proinflammatory-neurodegenerative phenotype,
which may increase neuronal death [57,58]. Our results show that TLR4 is expressed in astrocytes and
neurons from hippocampus and piriform cortex; in these areas we were also able to detect a significant
number of stressed or degenerating neurons, identified by the atypical distribution of NeuN [59].

Astrocytes are known to express several pro-synaptogenic molecules including proteins, lipids,
and small molecules that bind to neuronal receptors to promote synaptogenesis and regulate synaptic
connectivity (reviewed in [60]). One of the best characterized astroglial-derived synaptogenic molecules
is TSP-1, which specifically induces excitatory synaptogenesis [18]. Reactive astrocytes are known to
re-express synaptogenic molecules that were down-regulated after development (see review in [9]).
Interestingly, we here observed that reactive perivascular astrocytes express TSP-1 at early time points
after the IPE, during the early latency period. Spurious excitatory synaptogenesis in the latency period
is hypothesized as one of the basis of the E/I altered balance that underlies epileptogenesis, and thus
we propose that reactive astrocytes induced by the IPE secrete synaptogenic molecules involved in the
spurious synaptogenesis, a mechanism suggested as one of the basis of epileptogenesis.

BBB integrity is essential for normal brain function and is also a main impediment for
leukocytes and blood-borne cells to enter the CNS. Endothelial cells are also important players in
the neuro-vascular unit that comprises also glial cells and neurons [61]. The BBB allows a controlled
entrance of certain molecules essential for the neuronal metabolism. Experimental evidence showed
that BBB leakage is able to induce seizures [34,62]. As elegantly reviewed by Janigro [62], ictogenic
consequences of BBB leakage are probably related to alterations in the ionic balance (specifically K+),
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deregulation of neurotransmitters/neuromodulators abundance, albumin and immune cells access to
the CNS. We here observed that pilocarpine-induced IPE alters the expression of essential channels
involved in the BBB permeability. Specifically, we observed overexpression of Pgp-170 (MDR-1)
efflux transporter and a downregulation in the astroglial AQP4 expression during the latency period.
Although it is not clear how these changes in expression correlate with alterations in the CNS
homeostasis, Pgp-170 has been regarded as one of the factors inducing pharmacoresistance to AED
by pumping out of the brain the active drugs [35,36]. On the other hand, AQP4 is a key molecule to
maintain CNS homeostasis, specifically by keeping control of the CNS water content, and its alteration
has been observed in numerous brain diseases including epilepsy (reviewed in [63]). AQP4 is expressed
in astrocytes end-feet, which participate of the BBB. AQP4 down-regulation or miss-localization has
been repeatedly linked to experimental epileptic seizures [64–67] and observed in human tissue from
epileptic patients [68,69]. Moreover, variants of genes encoding AQP4 are associated with genetic
TLE [70] and knockout mice lacking AQP4 showed increased seizure duration after in vivo cortical
electrical stimulation [71]. Interestingly, we observed AQP4 downregulation in the hippocampus
but also in the piriform cortex, where loss of GFAP-immunostained astrocytes was also observed.
In this scenario, we could not exclude that AQP4 downregulation could be secondary to an astroglial
dysfunction or malfunction provoked by the pilocarpine-induced IPE.

BBB alteration during the latency period, however, seems to involve also other players.
The transference of naïve eGFP-BMMC to SE-exposed animals during the early latency period showed
that endothelial cells are permissive for myeloid cell infiltration, especially at early time points after the
IPE. In addition, we have also observed NG2+ blood-derived macrophages in the hippocampal and
piriform cortex territories. This is in agreement with the recent previous work showing that vascular
inflammatory mechanisms and leukocyte-endothelial adhesion can contribute to the pathogenesis of
seizures and epilepsy [34,51,52]. Since it is difficult to directly show leukocyte infiltration in epileptic
patients, it remains unclear how leukocyte infiltration contributes to real life seizures in humans
(reviewed in [62]). Brain invasion by leukocytes and immune cells has been clearly evidenced in brain
tissue resected from epileptic patients as well as in viral-triggered epilepsy [34,72]. The available data
suggest that immune cell infiltration in epilepsy contributes to BBB damage and seizures [34,51,52].
In agreement with these results, we show here that IPE induces early macrophage infiltration to the
brain, during the early latency period. Subsequent blood-borne macrophage interaction with resident
microglia and astrocytes probably has an additional role on the microglial and astroglial activation
during the latency period.

Gabapentin and pregabalin are two sister drugs that are collectively known as gabapentinoids [73].
Gabapentin was originally synthesized as an analog of the neurotransmitter γ-aminobutyric acid
(GABA); however it was probed that gabapentin does not act as a GABA-mimetic nor binds to
the GABA receptors. It is now recognized that gabapentinoids, including gabapentin, behave as
inhibitors of α2δ type 1 and 2 of P/Q voltage-dependent calcium channels (VGCC) as initially described
by Gee and colleagues [74]. Since VGCCs are located predominantly in presynaptic membranes,
gabapentionids can control stimulus-dependent synaptic transmitter release, mainly on the excitatory
synapses [74–76]. Despite the fact that originally gabapentin was designed as an AED, systematic
reviews and meta-analysis of clinical trials have shown that gabapentin is better than placebo, but worse
that other classical AED, in the treatment of refractory epilepsy [77,78]. After years of clinical trials,
clinical use and pharmacovigilance, gabapentin is currently indicated for the treatment of chronic
painful conditions, such as painful peripheral or central neuropathies [76,79]. Although prevailing
knowledge points towards the gabapentin effect on α2δ1 VGCC in neuronal pre-synapses, several
studies described gabapentin effects on glial cells [22,23,80–82], anti-inflammatory effects [83] and
the ability of blocking TSP-1 synaptogenic effects [18]. Based on our previous results that show
that gabapentin applied during the latency period following the IPE reduced neuronal degeneration
and reactive gliosis [23], we here used a short, subacute, four-day treatment with gabapentin and
observed a reduced reactive microgliosis and macrophage infiltration during the latency period.
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Astrocytes, on the other hand, were partially sensitive to the gabapentin effects, showing a reduction
in morphological alterations at 5DPSE in the piriform cortex, but not in the stratum radiatum of
CA-1 hippocampal area. Surprisingly, the four-day gabapentin treatment did not significantly change
the level of the mRNA of proinflammatory cytokines IL-1β and TNFα at 5DPSE. In this scenario,
we conclude that gabapentin treatment reduces reactive gliosis and macrophage infiltration during
the latency period without producing sustained changes in proinflammatory cytokines. However, the
four-day gabapentin treatment has persistent effects in the long term. In fact, gabapentin-treated
animals showed an increased seizure threshold when they were exposed to accumulated subconvulsive
doses of pilocarpine 21 days after the IPE. Gabapentin treatment in an early therapeutic window
following the IPE was able to increase seizure threshold, to reduce mortality and to reduce the Racine
level achieved by the animals after a pro-convulsive challenge with accumulated sub-convulsive
pilocarpine administration. Separated administration of sub-convulsive doses of GABA-A antagonist
pentylenetetrazole (25 days apart) has been shown to induce kindling and increase neurogenesis [84,85].
The possible gabapentin effect of pentylenetetrazole-induced kindling and neurogenesis will be the
subject of future investigations.

An obvious limitation of our study is that motor seizures were used to define the convulsive
threshold and the outcome following gabapentin treatment. Video-EEG recordings showed that most
of pilocarpine-treated rats, monitored by intracerebral or cortical electrodes, appear to have epileptic
firing during the first week after SE [48]. Obviously, we cannot discard the gabapentin potential
effects on this epileptic firing that may not be reflected into motor seizures during the initial days after
pilocarpine-induced SE, but it might have consequences on the evolution of the epileptogenic process.

In summary, we report here that a subacute four-day treatment with gabapentin initiated
immediately after the IPE, produced by pilocarpine-induced SE, successfully reduced reactive gliosis,
macrophage infiltration and increased convulsive threshold in the long-term. We conclude that
gabapentin could be proposed as a new agent with probable activity in the epileptogenesis when
applied in the latency period following IPE.

4. Materials and Methods

4.1. Ethics Statement

All procedures involving animals were conducted in accordance with our institutional guidelines,
in agreement with the NIH guidelines for the Care and Use of Laboratory Animals and the principles
presented in the Guidelines for the Use of Animals in Neuroscience Research by the Society for
Neuroscience. The procedures were approved by the CICUAL committee of the School of Medicine,
University of Buenos Aires (Res. Nr. 1278/2012). All efforts were made to minimize animal suffering
and to reduce the number of animals used.

4.2. Materials

Antibodies were purchased from DAKO (policlonal anti-Glial Fibrillary Acidic Protein [GFAP]),
Sigma (monoclonal anti-GFAP, anti-S100B), Abcam (anti-Iba-1), Millipore-Chemicon (anti-NG2),
and Santa Cruz (anti-thrombospondin-1 [TSP-1]). Secondary fluorescent or biotinilated antibodies were
from Jackson Immunoresearch and Sigma (St. Louis, MO, USA) respectively. Gabapentin (Neurontin)
was from Pfizer (Buenos Aires, Argentina). For Quantitative RT-PCR, the Quick-RNA™ MiniPrep
(ZYMO Research,#R1054, Irvine, CA, USA.) was used for RNA extraction, the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) was used for retrotranscription,
and the SYBR® Select Master Mix (Life Technologies, Carlsbad, CA, USA) for Real Time PCR.

4.3. Animals and Temporal Lobe Epilepsy Model

In this study we used adult male Wistar rats (200–250 g) from the animal breeding facility
of the School of Exact and Natural Sciences (University of Buenos Aires). Animal rooms have
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controlled temperature, humidity and lighting conditions (20–25 ◦C, 60% humidity, 12 h/12 h
light/dark cycle). As described previously [23], animals were subjected to the lithium-pilocarpine
model of TLE. Briefly, animals were randomly separated in two experimental groups: both groups
were injected intraperitoneally (IP) with 3 mEq/kg lithium chloride, and twenty hours later one
group received 30 mg/kg pilocarpine (Li-Pilo group) while the other group was injected with saline
solution (Control-Li group). Development of seizures was evaluated behaviorally according with the
Racine scale. SE was defined when animals developed continuous seizures with a Racine score of 3
to 5, without returning to lower stages for at least 5 min. Between 40 and 60 min after pilocarpine
administration, animals developed behavioral signs of SE (Racine 3–5) (SE group). A number of
animals (10–20%) did not develop SE, showing only behavioral features corresponding to stages
1–2 of the Racine score, were considered as a separate experimental group (NoSE) and used in some
experiments as detailed in figures. All animals received 20 mg/kg diazepam (IP) 20 min after the
onset of SE to stop convulsions. SE duration was limited to 20 min to reduce animal mortality and
to allow a subsequent chronic period of spontaneous seizures [25]. SE was considered as an IPE
for the development of epileptogenesis. After 24 h of the SE, a gabapentin treatment was initiated:
we administered daily gabapentin injections (400 mg/kg/day IP) for 4 days, or an equal volume
of saline.

To carry out immunohistochemical studies, we established 3, 5 and 7 DPSE as the end-points of
the experiment. Animals were anaesthetized with ketamine/xylazine (90/10 mg/kg, IP) and were
perfused through the left ventricle as previously described [86]. Then, brains were cryoprotected, snap
frozen and coronal 25–50 µm thick brain sections were cut using a cryostat.

Another group of animals received 3 mEq/kg lithium chloride intraperitoneally and 20 h later
were injected with 30 mg/kg pilocarpine, as described previously. SE was terminated after 20 min and
24 h later animals that developed SE were divided in two groups: the first one received 400 mg/kg/day
gabapentin during 4 days, and the second one received saline. After 21DPSE, both groups were
re-treated with 3 mEq/kg lithium chloride and 20 h later were exposed to subconvulsant doses of
pilocarpine (10 mg/kg) repeated every 30 min up to a maximum of 4 doses. Seizure development was
evaluated according to the Racine scale, and SE was arrested with diazepam as explained before.

4.4. Transfer of eGFP Blood Cells and Bone Marrow-Derived Progenitors

In order to evaluate the role of infiltrating cells, blood cells and bone marrow-derived progenitors
were obtained from eGFP rats [Wistar-TgN (CAG-GFP)184ys] [87], and transferred to recipient animals
exposed to SE, through the lateral tail vein. For the acquisition of the cells, all procedures were done
under sterile conditions, and animals were deeply anesthetized with a ketamine-xylazine solution
(90–10 mg/kg). BMMC fraction was obtained by Ficoll centrifugation of bone marrow extracted from
the long bones of the hind limbs, as described [88]. Briefly, needle puncture was performed on the
spongy bone by injecting 4 mL of DMEM supplemented with 10% fetal bovine serum. The bone
marrow cell suspension was collected and slowly added to a 15 mL tube containing 2 mL of Ficoll
(δ = 1.077). Centrifugation was performed at 1000 RPM for 20 min; the cell interface was collected to
perform a new centrifugation at 1000 RPM for 5 min. After discarding the supernatant, the pellet was
resuspended in culture medium. For the acquisition of blood cells, 5 mL of blood were obtained from
the left ventricle in a heparinized syringe, transferred to a 15 mL centrifuge tube containing 10 mL of
physiological solution, and centrifuged at 200 g for 20 min at room temperature. After discarding the
plasma, the leukocyte layer was collected and the remaining red cells were lysed by incubation with
0.2% NaCl for 1 min. Osmolarity was recovered with the addition of 1 vol. of 1.6% NaCl, and the cells
were centrifuged at 1000 RPM for 10 min at room temperature. The pellet obtained was re-suspended
in physiological solution. In both cases, viable cells were counted with Trypan Blue in the Neubauer
chamber to subsequently inject them through the lateral tail vein in the recipient animals. The volume
of injection was 300 µL, and 6.6 × 105 leukocytes or 15 × 106–20 × 106 BMMC were injected per rat.
3DPSE animals were euthanized and brains were processed for immunohistochemistry.
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4.5. Immunohistochemistry

Brain sections of animals from all experimental groups were simultaneously processed in the
free floating state as previously described [23,86]. Photographs were taken with an Olympus QColor
5 camera mounted on a Zeiss Axiophot microscope (Carl Zeiss, Germany) or with an Olympus IX-81
microscope equipped with a DP71 camera (Olympus, Tokyo, Japan). Primary antibodies dilutions
were: anti-GFAP (1:1000), anti-TSP-1 (1:800), anti-NG2 (1:1000), anti-Iba-1 (1:1000), anti-S100B (1:800).
Secondary Alexa 488 or 594 antibodies were used at 1:800, and nuclear counterstaining was done with
4′,6-diamidino-2-phenylindole DAPI (1 µg/mL).

4.6. RNA Isolation, Reverse Transcription and Real-Time PCR

Quantitative RT-PCR was performed as previously described [58,89]. Total left and right
hippocampi were quickly dissected over ice, snap frozen in liquid nitrogen, and stored at −80 ◦C.
Total RNA from the left hippocampus was isolated using a Bio-Gen PRO200 Homogenizer and the
Quick-RNA™ MiniPrep (ZYMO Research) according to the manufacturer’s instructions, including the
gDNA in column removal step. The cDNA was generated using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems), using oligo-dT primers. Each reverse transcriptase-PCR
(RT-PCR) experiment was run with negative control reactions in the absence of reverse transcriptase.
qPCRs were performed using specific primers. Comparative quantification was performed by
quantitative real time PCR, using the SYBR-green I fluorescence method, and ROX as passive
reference dye (SYBR® Select Master Mix, Life Technologies). TATA Box binding protein (TBP),
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and/or β-actin were used as housekeeping
genes. Samples were run in triplicate. Primer sequences and amplification product sizes are specified
in Supplementary Table S1 and detailed protocols can be requested from authors.

4.7. Quantitative Studies

Experiments were repeated at least 3 times with similar results; a representative experiment
is shown in the figures. A minimum of 3 animals per condition was used in each experiment.
Morphometrical studies were performed as we have previously described using the NIH ImageJ
software [23]. Statistical analysis was performed by one-way, two-way ANOVA, Student t-test or
Fisher’s exact test as appropriate and post test ad hoc. Significance was set at p < 0.05. Data is presented
as mean ± standard error of the mean (SEM).

Supplementary Materials: The following are available online at www.mdpi.com/1424-8247/10/4/93/s1,
Figure S1: TSP-1 immunostaining in control brains, Table S1: Primer sequences and expected cDNA amplification
product size. Interleukin 1 beta (IL-1β), Tumor necrosis factor alpha (TNFα), TATA box binding protein (TBP),
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-Actin.
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