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Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

E-mail: barra@cab.cnea.gov.ar

Abstract. We study the time evolution of an incoherent mixture of quantum states

and demonstrate, in very simple terms, a quantum mechanical equivalent of van Cittert

- Zernike theorem, which can be easily explained to Quantum Physics students with

a basic knowledge of the density matrix theory. Finally, we exemplify this result by

applying it to the quantitative analysis of the coherence of a beam of particles in atomic

collisions.
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Van Cittert - Zernike theorem revisited 2

1. Introduction

The Sun is a conspicuously incoherent source of light. However, when Sunlight reaches

the surface of the Earth after an 8-minute journey, it exhibits spatial coherence over a

length of tens of µm (Mashaal et al 2012). The explanation of this remarkable effect,

where the light emitted from an incoherent source becomes approximately coherent at

large distances, relies on a theorem (Born and Wolf 1999) demonstrated by Pieter H.

van Cittert in 1934 (van Cittert 1934) and, in a different context by Frits Zernike in

1938 (Zernike 1938).

Based on a direct analogy between electromagnetic and de Broglie waves, this

theorem from light optics is usually applied to the study of coherent properties of particle

beams (Cronin et al 2009). This strategy of borrowing results from classical optics

and applying them to the study of particle’s coherence, might be sound for qualitative

analysis, but should be validated by a Quantum Mechanical approach for quantitative

applications. For instance, an atom optics version of the van Cittert-Zernike theorem

was proposed by Taylor et al (1994) in terms of a second-quantization model. More

recently, Inpens and Guéry-Odelin (2010) employed a classical phase-space approach

based on the Truncated Wigner equation.

Anyway, the concept that a beam of particles can gain coherence with time is far

from being easy to grasp. Here we present a very simple derivation of van Cittert-Zernike

theorem for an incoherent mixture of quantum states. This demonstration aims to senior

undergraduate students and relies on basic concepts of Quantum Mechanics, as the

density matrix theory and the Born approximation in elastic collisions, as explained in

standard textbooks (See, e.g. Ballentine 2000, Bransden and Joachain 2000, Galindo and

Pascual 1990, Gasiorowicz 2003, Landau and Lifshitz 1977, Schiff 1968). We hope that

this approach would provide Physics students with the understanding of a fascinating

but rather counterintuitive concept.

In this article we study the time evolution of an incoherent mixture of an ensemble

of particles of mass m, described by identical wave packets located at different positions

upon a much larger region of dimension D. We evaluate the time evolution of the

corresponding density operator ρ by solving the Liouville - von Neumann equation.

Actually, we demonstrate that a coherence length ` can be defined, such that for

distances shorter than ` the system behaves coherently (i.e. ρ can be approximated

by the product of pure states). In particular, ` coincides with the coherence length of

each individual wave packet for small times t, as expected; while for large values of t the

standard expression ` ∝ h̄t/mD, of van Cittert - Zernike theorem is recovered. But first,

let us review some basic concepts of the time evolution of an individual wave packet.

2. Free time evolution of a wave packet

Let us consider the time evolution of a normalized wave packet Φt for a particle of

mass m in the absence of a potential. For pedagogical reasons, let us assume that
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Van Cittert - Zernike theorem revisited 3

at time t = 0, the wave packet Φ0 is separable in cartesian coordinates, namely,

〈r|Φ0〉 = 〈x|φ0〉 〈y|ϕ0〉 〈z|ψ0〉. Since this factorization is preserved for all times, we

will only study the evolution of 〈x|φt〉. However, it is important to point out that this

assumption does not represent any loss of generality, since its removal is straightforward.

The calculation of the time evolution of φt is trivial in momentum representation.

It reads

〈p|φt〉 = e−iEpt/h̄ 〈p|φ0〉 , (1)

with Ep = p2/2m. The time evolution of the wave packet in coordinate space can be

readily obtained,

〈x|φt〉 =
1√
2πh̄

∫ ∞
−∞

eipx/h̄ 〈p|φt〉 dp

=
1√
2πh̄

∫ ∞
−∞

ei(px−Ept)/h̄ 〈p|φ0〉 dp . (2)

It is important to note that, since the momentum distribution does not depend on

time, namely |〈p|φt〉|2 = |〈p|φ0〉|2, all the expectation values related to p are also time-

independent,

〈A(p)〉t =
∫ ∞
−∞

A(p)|〈p|φt〉|2 dp =
∫ ∞
−∞

A(p)|〈p|φ0〉|2 dp = 〈A(p)〉t=0 , (3)

as expected for a free particle. In particular, so are 〈p〉 and ∆p =
√
〈p2 − 〈p〉2〉. On the

contrary, ∆x =
√
〈x2 − 〈x〉2〉 varies in time as (Robinett et al 2005)

(∆x)2 = (∆x)2
0 + 2 cov(x, p, 0) t/m+ (∆p)2t2/m2 , (4)

where we have defined the generalized covariance of two operators A and B as

cov(A,B, t) =
1

2
〈[A− 〈A〉][B − 〈B〉] + [B − 〈B〉][A− 〈A〉]〉 . (5)

2.1. Gaussian Wave Packet

As a working example and for pedagogical reasons, from now on we will consider a

gaussian wave packet of initial full width d (Kennard 1927, Darwin 1928, Lekner 2007,

Cox and Lekner 2008), namely,

〈x|φ0〉 =
(

2

πd2

)1/4

e−x
2/d2 , (6)

and

〈p|φ0〉 =

(
d2

2πh̄2

)1/4

e−d
2p2/4h̄2 . (7)

Replacing in eqs (1) and (2), we obtain

〈x|φt〉 =

(
2d2

πσ4

)1/4

e−x
2/σ2

(8)
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Van Cittert - Zernike theorem revisited 4

and

〈p|φt〉 =

(
d2

2πh̄2

)1/4

e−iEpt/h̄ e−d
2p2/4h̄2 , (9)

where we have defined

σ = d

√
1 + i

t

τ
, (10)

with τ = md2/2h̄.

The expectation values of x and p are null, 〈x〉 = 0 and 〈p〉 = 0, and ∆x = |σ|2/2d
and ∆p = h̄/d, which are in accordance with the general result, eq. (4), i.e. (∆x)2 =

(∆x)2
0 +(∆p)2t2/m2, for a null x-p covariance (Nicola 1972, Bradford 1976, Klein 1980).

We see that the Gaussian wave function has its minimum value of ∆x · ∆p = h̄/2 at

t = 0, and then increases (for both positive and negative times) as

∆x ∆p =
h̄

2

√
1 +

t2

τ 2
. (11)

Let us point out that these latter results can be generalized to a wave packet of arbitrary

form, whenever the characteristic time τ is redefined as τ ≡ m(∆x)0/∆p, as can be seen

easily seen in eq. (4).

Finally, the Gaussian wave functions in space (8) and momentum (9)

representations can be related by this simple equation, 〈x|φt〉 =
√

2h̄/σ2 〈p|φt〉 with

p = 2h̄x/σ2; which, for t� τ , reads

〈x|φt〉 ≈
(
m

it

)1/2

eimx
2/2h̄t 〈p|φ0〉 with p =

mx

t
. (12)

It can be easily shown, by means of a stationary phase approximation of (2), that this

asymptotic limit is valid for any functional form of φ0 (Dollard 1971), and not only for

Gaussian wave functions. We will return to this general result in section 4.

2.2. Coherence Length

When a compressed wave packet is colliding with a structured target, the result would

strongly depend on the distance between the source of the projectiles and the target

region. The reason is that if this distance is too short, then the wave packet might not

illuminate the full target coherently, but only a portion of it. But as time goes by, the

width of the wave packet will increase, until it reaches a critical distance, where all the

target will be illuminated coherently.

To be more specific, let us consider that the wave interacts with two similar

delta potentials separated by a given distance xo, namely V+(x) ∝ δ(x − xo/2) and

V−(x) ∝ δ(x + xo/2). In a first Born approximation (See, e.g. Bransden and Joachain

2000, Galindo and Pascual 1990, Gasiorowicz 2003, Landau and Lifshitz 1977, Schiff

1968), the cross section, proportional to the squared modulus of the transition matrix

element 〈p|V+ + V−|φt〉, would present an interference term given by

I(p) = 2 Re 〈p|V−|φt〉〈φt|V+|p〉 ∝ exp

(
− x2

o

2`2

)
cos(p xo/h̄) (13)
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Van Cittert - Zernike theorem revisited 5

with

` = 2∆x = d

√
1 +

t2

τ 2
(14)

This term would be sizable for targets of the order of xo = ` or smaller. Thus, we might

define ` as the ”coherence” length of the wave function at a given time t. This definition,

which relies on the conditions necessary for the appearance of an interference structure,

is standard in optical studies (Svelto 2010), but still might differ from other diverse and

even contradictory definitions. For instance, Cohen-Tannoudji and Guéry-Odelin (2011)

define the coherence length as the width of the global spatial coherence,

G(xo) =
∫ ∞
−∞
〈x− xo/2|φt〉〈φ|x+ xo/2〉dx , (15)

corresponding to the overlapping between two wave packets separated by a distance xo.

For a gaussian wave packet (eqs. (8) and (9)) we obtain, G(xo) = e−x
2
o/2d

2
. Thus, in

the approach by Cohen-Tannoudji and Guéry-Odelin (2011), the coherence length is

time-independent and equal to d.

Here, on the contrary, we retain the definition (14). Note that the more sharply

peaked the wave packet is at t = 0 (i.e. for smaller values of d), the faster its coherence

length spreads (for t > 0) since

` ≈ 2h̄t

md
for t� τ . (16)

As a side comment, let us point out that in Optics this limit is named in honor of

Joseph von Fraunhofer, although he was not actually involved in the development of the

theory. Putting some numbers; let us consider an electron impulsively removed from

the ground state of a Hydrogen atom. For a corresponding initial width of d = 1 Å,

the time necessary to achieve condition (16) is in the range of tens of attoseconds (i.e.

τ = 40 as), whereas the coherence length increases at a constant rate, `/t ≈ 23 km/s.

Finally, let us assume that the wave has a group velocity v, such that it travels a

distance z = vt in a given time t. Even thought we are considering a one dimensional

problem, v might not be necessarily parallel to the direction x̂. We will come back to

this point in the following section. Now, replacing z = vt in the previous equation, we

obtain,

` ≈ λ

πd
z for `� d , (17)

with λ = h/mv the particle’s wavelength.

3. Time evolution of an incoherent mixture of wave packets

Let us now consider the free evolution of an incoherent mixture of an ensemble of

particles described by wave packets 〈x|φt〉, as defined in (2), which are identical except

for their initial positions b, which are distributed along the x axis according to a
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Van Cittert - Zernike theorem revisited 6

normalized distribution f(b). Initially (i.e. at t = 0), the corresponding density operator

ρ(t) reads,

〈x|ρ(0)|x′〉 =
∫

db f(b) 〈x− b|φ0〉〈φ0|x′ − b〉 , (18)

in space representation, and 〈p|ρ(0)|p′〉 = 〈p|φ0〉〈φ0|p′〉 f̃ (p− p′) in momentum

representation, with f̃(q) =
∫

db e−iq·b f(b).

As in the previous sections, and for the sake of simplicity, we are considering a one-

dimensional case. This does not mean any loss of generality, since the generalization to

the three dimensional case is straightforward. The density operator ρ(t) evolves in time

according to the the Liouville - von Neumann equation with a free Hamiltonian Ho,

∂ρ

∂t
=
i

h̄
[ρ,Ho] . (19)

This equation is trivially solved in momentum representation, namely

〈p|ρ(t)|p′〉 = 〈p|ρ(0)|p′〉 e−i(Ep−Ep′)t/h̄ , (20)

with Ep = p2/2m; from which the time dependent expression for the space dependent

matrix element can be easily obtained,

〈x|ρ(t)|x′〉 =
1

2πh̄

∫
dp dp′ 〈p|ρ(t)|p′〉 ei(px−p′x′)/h̄ . (21)

3.1. Gaussian wave packet and impact parameter distribution

In what follows, we will consider that both the wave packets φ and the distribution f(b)

are of a gaussian shape, namely,

〈x|φ0〉 =
(

2

πd2

)1/4

e−x
2/d2 , (22)

and

f(b) =
(

2

πD2

)1/2

e−2b2/D2

. (23)

Thus, in momentum representation,

〈p|ρ(t)|p′〉 = 〈p|φt〉 〈φt|p′〉 e−D
2(p−p′)2/8h̄2 , (24)

with 〈p|φt〉 given by (9), namely,

〈p|φt〉 =

(
d2

2πh̄2

)1/4

e−iEpt/h̄ e−d
2p2/4h̄2 . (25)

Similarly, in space representation,

〈x|ρ(t)|x′〉 = 〈x|φt〉 〈φt|x′〉 e−(x−x′)2/2 Σ2

, (26)

where

Σ =
d

D

√
D2 + d2 + d2t2/τ 2 , (27)

Page 6 of 11AUTHOR SUBMITTED MANUSCRIPT - EJP-102891.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Van Cittert - Zernike theorem revisited 7

with τ = md2/2h̄, and

〈x|φt〉 =

(
2 Re(σ2)

πσ4

)1/4

e−x
2/σ2

, (28)

with

σ =

√√√√D2 + d2 + d2t2/τ 2

1− it/τ
. (29)

Let us note that in both space and momentum representations, the density matrix

(26) is composed of a gaussian pure state, incoherently modulated by a gaussian

distribution of standard deviation Σ. We will come back to this result in the following

section. But first, let us notice that, as expected,

Tr(ρ) =
∫ ∞
−∞
〈x|ρ|x〉 dx =

∫ ∞
−∞
|〈x|φt〉|2 dx = 1 , (30)

while

Tr(ρ2) =

(
1 +

D2

d2

)−1/2

, (31)

so that the total coherence of the beam remains constant in time. Let us point out that

a simple calculation in momentum space can show that Tr(ρ2) is independent of time,

independently of the functional forms employed for φ0 and f(b).

3.2. Emerging coherence from an incoherent mixture of wave packets

It is clear that for D → 0, the width Σ of the modulating gaussian reaches infinity, and

the system becomes completely coherent, consisting of a single gaussian wave centered

at x = 0. The corresponding density matrix element reads

〈x|ρ(t)|x′〉 = 〈x|φt〉 〈φt|x′〉 (32)

with a wave function given by (8), i.e.

〈x|φt〉 =

(
2d2

πσ4

)1/4

e−x
2/σ2

, (33)

where

σ = d

√
1 + i

t

τ
. (34)

Without going all the way to this purely coherent case, we see that for any finite

value of Σ it would be possible to define a characteristic distance for which, if |x′ − x|
is smaller than it, the modulating gaussian would be approximately constant and

the system would mimic a completely coherent state. The emergence of this spatial

coherence out of an incoherent system is the essence of the van Cittert – Zernike theorem.

Now, we find the same dependence on xo for the interference term (13) than the

one obtained in the previous section, i.e.

I(p) = 2 Re 〈p|V− ρ V+|p〉 ∝ exp

(
− x2

o

2`2

)
cos(p xo/h̄) , (35)
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Van Cittert - Zernike theorem revisited 8

but with a different coherence length,

` =

√√√√d2 +
4h̄2t2

m2(d2 +D2)
. (36)

Note that for D = 0, we recover the same result obtained in the previous section for a

purely coherent system.

As a marginal note, let us point out that, when dealing with the concept of

spatial coherence, the corresponding coherence length ` might be defined as the distance

between two points in space for which the right term in (35) is a given fraction ξ of its

maximum value. Thus, in general, we might define

` =
√
|2 ln ξ|

√√√√d2 +
4h̄2t2

m2(d2 +D2)
. (37)

A standard definition is that of the full-width at half-maximum (FWHM), for which

ξ = 1/2. In our case, we have arbitrarily chosen ξ = e−1/2, so that (36) is obtained.

3.3. Small and large t limits

For very small values of t (a limit that in Optics is usually named after Augustin-Jean

Fresnel), we obtain ` ≈ d. This means that the coherence length is limited to that of an

individual wave packet. On the contrary, for t � τ
√

1 +D2/d2, it grows linearly with

time as

` ≈ 2h̄t

m
√
d2 +D2

. (38)

Let us also point out that in general situations, d � D. This is the case, for

instance, in particle accelerators, where the projectile’s wave packets are much smaller

than the macroscopic size of the collimators. In these cases, for t � mDd/2h̄, we can

approximate (36) by,

` ≈ 2h̄t

mD
. (39)

Finally, replacing t = z/v , we write equations (36) and (39) as,

` =

√√√√d2 +

(
λz

π
√
d2 +D2

)2

, (40)

and

` ≈ λ

πD
z , (41)

respectively, with λ = h/mv the particle’s wavelength. As we already mentioned in a

previous section, the velocity v is not necessarily parallel to x. For instance, in the

standard geometry of the collision experiments, the beam of particles is moving in a

direction perpendicular to that of the impact parameter b, a situation that is usually

referred to as of “transversal” coherence.
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Van Cittert - Zernike theorem revisited 9

Finally, let us point out that by comparing equations (14) and (36), we see that the

coherence length grows at a much faster rate for a coherent state than in an incoherent

superposition. In particular, for large values of t, the corresponding ratio becomes

proportional to
√

1 +D2/d2. This characteristic of the coherence length evolution is

already evident when comparing the generalized widths σ in equations (8) and (26).

4. Non-gaussian wave functions and position distribution

In the previous sections, we have assumed Gaussian shapes for the initial position

distribution f(b) and the wave packets φ. The reason for this choice was purely

pedagogical, since all the calculations can be performed analytically. In this respect

let us point out that this analysis in terms of Gaussian functions is simple enough as

to be included in a problem to be solved by the student. However, it is important

to point out that most of the results obtained with Gaussian functions are also valid

for general non-gaussian f(b) and φ functions. Take equation (39), for instance; one

of the main results associated to the van Cittert - Zernike theorem. By replacing the

general asymptotic form (12) of the wave function in the interference term (13), a simple

demonstration leads to ` ∝ t/d for pure states. Similarly, replacing (12) in (35), and

performing a straightforward change of the integration variable, it can be shown that

for an incoherent mixture of wave functions,

` ∝ t

D
, (42)

for large values of t. Perhaps, this latter demonstration is too cumbersome to be of any

pedagogical value. However, it can be numerically tested for different functional forms

of f(b) and φ, providing a complementary avenue for exploration and/or exercises.

5. Conclusions

We have shown in section 3 that it is possible to develop a generalization of van Cittert

- Zernike theorem for massive particles, as a direct application of the density matrix

concept. In particular, we see that this analysis does not imply any difficulty greater

than those encountered in the study of the coherence length of a pure state, as shown

in section 2. Furthermore, similar results are obtained in both cases, but with the

difference that for large values of t the characteristic distance for the incoherent mixture

is the size D of the source, instead of the initial width d of each of its individual waves.

The reason for this result is that coherence emerges as result of the superposition of each

of the individual components of the mixture. In spite of its simplicity, this difference is

trascendental, and goes to the very heart of the van Cittert - Zernike theorem. It makes

the coherence length of the Sunlight to be of the order of tens of µm, instead of larger

than the Earth itself, as it would be for each of its individual photons. The same occurs

in a particle accelerator, where the coherence length at the target region is of atomic

dimensions and can be varied by changing its relative position along the beam’s line.
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Recently, this peculiarity of the van Cittert - Zernike theorem has made it possible to

develop a new set of atomic and molecular collision experiments where the cross sections

are shown to depend on the degree of coherence of the projectiles beam. The coherence

properties of particle beams have been extensively studied for decades, most notably

in connection with neutrino interference and oscillations (Nussinov 1976, Kayser 1981),

but represents a rather new issue in the area of atomic collisions (Egodapitiya et al

2011). It has been usually assumed that under very general and common conditions,

the outcome of a scattering experiment does not depend on the properties of the

projectiles beam (Taylor 1972). However, recent evidence in ionization (Egodapitiya et

al 2011) and electron capture (Sharma et al 2012) experiments points to a breakdown

of these conditions and a dependence of the collision outcome on the incident beams

coherence properties. Finally let us point out that in the present article we have focussed

our attention on the dependence of the spatial degree of coherence with the distance

to the source, but not on its intensity distribution. This element of van Cittert -

Zernike theorem is relevant in Optics, but not in its application to atomic collision

experiments, where the projectile’s beam is assumed to be homogeneously distributed

over the transversal plane.
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