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Abstract. Let (X, d) be a compact metric space and f : X → X, if Xr is

the product of r−copies of X, r ≥ 1, and Φ : Xr → R, then the multifractal

decomposition for V−statistics is given by

EΦ (α) =

{
x : lim

n→∞
1

nr

∑
0≤i1≤...≤ir≤n−1

Φ
(
f i1 (x) , ..., f ir (x)

)
= α

}
. The

irregular part, or historic set, of the spectrum is the set points x ∈ X, for which

the limit does not exist.

In this article we prove that for dynamical systems with specification, the

irregular part of the V−statistics spectrum has topological entropy equal to

that of the whole space X.

AMS Classification: 37C45, 37B40
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1. INTRODUCTION

Motivated by the problems on convergence of multiple ergodic averages Fan,

Schmeling and Wu[5], treated the problem of multifractal analysis of V -statistics.
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In the present paper, we would like to study the irregular part of the multifractal

decomposition.

Let us consider a topological dynamical system (X, f) , with X a compact metric

space and f a continuous map. Let Xr = X × ... ×X be the product of r−copies

of X with r ≥ 1, if Φ : Xr → R is a continuous map, then let

(1) VΦ (n, x) =
1
nr

∑

1≤i1,...,ir≤n

Φ
(
f i1 (x) , ..., f ir (x)

)
.

These averages are called the V−statistics of order r with kernel Φ. For the idea of

V -statistics from a Statistical point of view and its relationship with the U -statistics

see section 2 of[5]

Ergodic limits of the form

lim
n→∞

1
n

n−1∑

i=0

Φ
(
f i1 (x) , ..., f ir (x)

)
,

were studied among others by Furstenberg[8], Bergelson[2] and Bourgain[3].

The multifractal spectra of V−statistics are specified by the decomposition sets

EΦ (α) =
{

x : lim
n→∞

VΦ (n, x) = α
}

.

Fan, Schemeling and Wu[5] treated the problem of measuring the sizes of the

multifractal sets EΦ (α) . They established the following variational principle:

htop(EΦ (α)) = sup
{

hµ (f) :
∫

Φdµ⊗r = α

}
,

where hµ is the measure-theoretic entropy of µ. This formula is valid for dynamical

systems with the specification property. This generalizes the variational formula

obtained by Takens and Verbitski for r = 1[9].

The irregular part of the spectrum, or historic set, is the set of points x for which

lim
n→∞

VΦ (n, x) does not exist. We denote this set by E∞
Φ , so that the space X can

be decomposed as

X =
⋃

α∈R

EΦ (α) ∪ E∞
Φ
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An important problem in Multifractal Analysis is to determine the dimension of

the irregular part. For r = 1 the irregular part of the spectrum has been extensively

studied. Fan, Feng and Wu, in reference [6], did it for topological mixing subshifts.

Barreira and Schmeling[1] obtained a similar result than [6] but for H
..
older contin-

uous maps. More recently the irregular part was studied by Thompson [11] and

by Zhou and Chen [13]. Here we propose the study of the irregular part of the

spectrum for multiple ergodic averages. The result to be proved is

Theorem: Let (X, f) be a dynamical system with the property of specification,

let Φ ∈ C (Xr) , r ≥ 1, if the irregular part E∞
Φ of the spectrum of multiple ergodic

averages VΦ (n, x) is non-empty then it has the same topological entropy as the

whole space X.

The case E∞
Φ = ∅ can occur in situations like for instance Φ cohomologous to 0,

or when the ergodic limits VΦ (n, x) have the same value for any x.

2. Preliminary definitions

Firstly let us recall the Bowen definition of topological entropy of sets: Let

f : X → X, with X a compact metric space, for n ≥ 1 the dynamical metric, or

Bowen metric, is dn (x, y) = max
{
d

(
f i (x) , f i (y)

)
: i = 0, 1, ..., n− 1

}
. We denote

by Bn,ε (x) the ball of centre x and radius ε in the metric dn. Let Z ⊂ X and

let C (n, ε, Z) be the collection of finite or countable coverings of the set Z by balls

Bm,ε (x) with m ≥ n. Let

M (Z, s, n, ε) = inf
B∈C(n,ε,Z)

∑

Bm,ε(x)∈B
exp (−sm) ,

and set

M (Z, s, ε) = lim
n→∞

M (Z, s, n, ε) .

There is an unique number s such that M (Z, s, ε) jumps from +∞ to 0. Let

H(Z, ε) = s = sup {s : M (Z, s, ε) = +∞} = inf {s : M (Z, s, ε) = 0} ,

and

(2) htop (Z) = lim
ε→0

H(Z, ε).
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The number htop (Z) is the topological entropy of Z.

A dynamical system (X, f) has the specification property if the following con-

dition holds: for ε > 0, there is an integer M (ε) such that for any finite disjoint

collection of integer intervals I1 = [a1, b1] , ..., Ik = [ak, bk] , of length ≥ M (ε) and

for any points x1, x2, ..., xk ∈ X, there is a point z ∈ X which ε−shadows the se-

quence {x1, x2, ..., xk} , i.e. d (faj+n(z), fn(xj)) ≤ ε, for any n = 0, .., bj − aj and

j = 0, 1, ..., k.

By M(X) we denote the space of measures in X, and by Minv(X, f) the space

of f−invariant measures on X. The space M(X) can be endowed with a metric D

compatible with the metric in X, in the sense that D(δx, δy) = d(x, y), where δ is

the point mass measure. More precisely the metric considered in M(X) will be

D (µ, ν) =∞n=1

∣∣∫ ϕndµ− ∫
ϕndν

∣∣
2n ‖ϕn‖∞

,

where {ϕn} is a dense set in C(X). We denote by BR (µ) the ball of center µ and

radius R in the above metric. The topology induced by this metric is the weak star

topology, and if X is compact then M(X) is compact in the weak topology. The

weak star convergence is the convergence in the metric which induces the weak star

topology.

The so called empirical measures on X associated to the dynamical system (X, f)

are

En (x) =
1
n

n−1∑

i=0

δfi(x).

We denote the weak limits of the sequence{En (x)} by V (x). Since X is compact,

V (x) 6= ∅. If µ is a measure on X then a point x ∈ X is µ−generic if V (x) = {µ} ,

by G (µ) is denoted the set of µ−generic points. A result by Bowen[4] is that if µ

is ergodic then

htop (G (µ)) = hµ (f) .

For general measures, not necessarily ergodic, the equality holds for dynamical

systems with the specification property[7]. This result is the key point in the proof

of variational theorem of Fan, Schemeling and Wu[5].
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3. Proof of the theorem

Let

MΦ (α) =
{

µ ∈Minv(X) :
∫

Φdµ⊗r = α

}
,

and let

GΦ (α) =
{

x : there is {nk} such that w∗ − lim
k→∞

Enk
(x) = µ ∈MΦ (α)

}
,

here w∗− means weak star convergence.

For α1 6= α2 ∈ R, we shall find a set G ⊂ GΦ (α1) ∩GΦ (α2) .

Before proving the theorem we give some lemmas.

Lemma 1: If α1 6= α2 then GΦ (α1) ∩GΦ (α2) ⊂ E∞
Φ .

Proof: In [5] was established, as a consequence of the Stone-Weierstrass theorem,

that for any Φ ∈ C(Xr) and for any ε > 0 there is a map Φ̃ :Xr → R of the form

Φ̃ =
∑

j

ϕ
(1)
j ⊗ ...⊗ ϕ

(r)
j ,

with ϕ
(i)
j ∈ C(X) such that

∥∥∥Φ− Φ̃
∥∥∥
∞

< ε. Let x ∈ GΦ (α1) ∩ GΦ (α2), so there

are sequences {nk} , {mk} such that

µ = w∗ − lim
k→∞

Enk
(x) ; µ ∈MΦ ( α1)(3)

ν = w∗ − lim
k→∞

Emk
(x) ; ν ∈MΦ ( α2) ,

We have

(4) VΦ̃ (n, x) =
∑

j

r∏

i=1

1
n

Sn

(
ϕ

(i)
j (x)

)
,

where Sn

(
ϕ

(i)
j (x)

)
=

n−1∑
k=0

ϕ
(i)
j

(
fk(x

)
). Therefore, by Eqs.(3-4)
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lim
k→∞

VΦ̃ (nk, x) =
∫

Φ̃dµ⊗r

lim
k→∞

VΦ̃ (mk, x) =
∫

Φ̃dν⊗r.

By the above argument of approximation we get in the same way of [5] that

lim
k→∞

VΦ (nk, x) =
∫

Φdµ⊗r = α1 and lim
k→∞

VΦ (mk, x)
∫

Φdν⊗r = α2, with α1 6= α2.

Then x ∈ E∞
Φ .

¥

We have that

GΦ (α) ⊂
{

x : ∃ µ ∈ V (x), such that hµ (f) ≤ sup
{

hµ (f) :
∫

Φdµ⊗r = α

}}
,

and so, by the Bowen lemma

htop(GΦ (α)) ≤ sup
{

hµ (f) :
∫

Φdµ⊗r = α

}

For ρ1, ρ2, ..., ρk ∈M(X) and positive numbers R1, R2, ..., Rk, let x1, x2, ..., xk ∈
X, n1, n2, ..., nk ∈ N such that Enj (xj) ∈ BRj (ρj) , j = 1, 2, ..., k., for a given

ρ1, ρ2, ..., ρk ∈ M(X) and R1, R2, ..., Rk. Let ε1 > 0, ε2 > 0, ..., εk > 0 , if ni >

M (εi) (the number of specification), i = 1, 2, ..., k, then by specification property

k⋂

j=1

f−Mj−1
(
Bnj ,εj (xj)

) 6= ∅, with Mj = n1 + n2 + ... + nj .

Lemma 2: Let z ∈
k⋂

j=1

f−Mj−1
(
Bnj ,εj (xj)

)
, then for any ρ ∈M(X) holds

D (EMk
(z) , ρ) ≤ 1

Mk

k∑

j=1

nj

(
Rj + D (ρj , ρ)

)
,

where Rj = Rj + εj , j = 1, 2, ..., k..,

Remark: It can replace an uniform ε for all balls Bnj ,ε (xj), by the ε1, ε2, ..., εk,

following a trick used in the proof of the proposition 2.1 in [10].

Proof: We have
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EMk
(z) =

1
Mk

k∑

j=1

njEnj

(
fMj−1(z)

)
,

and

D(Enj (xj) , Enj

(
fMj−1(z)

)
) ≤ 1

nj

nj−1∑

l=0

d
(
f l (xj) , f−Mj−1−l (z)

)
.

Therefore

D (EMk
(z) , ρ)

≤ 1
Mk

k∑

j=1

[
D(Enj (xj) ,j , Enj

(
fMj−1(z)

)
) + D(Enj (xj) , ρj) + D(ρj , ρ)

]

≤ 1
Mk

k∑

j=1

[Rj + εj + D(ρj , ρ)]

¥.

Lemma 3: Let α1 6= α2 with MΦ (α1) 6= ∅, MΦ (α2) 6= ∅ then

htop(GΦ (α1) ∩GΦ (α2)) = min {htop(GΦ (α1)), htop(GΦ (α2))} .

Proof: Since GΦ (α1) ∩GΦ (α2) ⊂ GΦ (α1) and GΦ (α1) ∩GΦ (α2) ⊂ GΦ (α2) ,

by the monotonicity of the entropy we have

htop(GΦ (α1) ∩GΦ (α2)) ≤ min {htop(GΦ (α1)), htop(GΦ (α2))}

. To prove the other inequality we shall find a set G ⊂ GΦ (α1) ∩ GΦ (α2) with

htop(G) ≥ min {htop(GΦ (α1)), htop(GΦ (α2))} .

To construct G, let us choose sequences {nk} , {Rk} , {εk} with Rk ↘ 0 and

εk ↘ 0 and, for a given sequence {ρ1, ρ2, ..., ρk} ⊂ M(X), for , ε > ε1.let us

consider (nk, ε)−sets Γk ⊂ {x : Enk
(x) ∈ BRk

(ρk)} , so that (by the Lemma 2)

x ∈ Γk, z ∈ Bnk,εk
(x) =⇒ Enk

(z) ∈ BRk+εk
(ρk) .

Let us choose now a strictly increasing sequence {Nk} such that
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nk+1 ≤ Rk

k∑

j=1

njNj

and
k−1∑

j=1

njNj ≤ Rk

k∑

j=1

njNj .

We consider stretched sequences
{

n
′
j

}
,
{

ε
′
j

}
,
{

Γ
′
j

}
such that if j = N1 + ... +

Nk−1 + q with 1 ≤ q ≤ Nk then n
′
j = nk, ε

′
j = εk and Γ

′
j = Γk.

Finally, we can define

(5) Gk :=
k⋂

j=1




⋃

xj∈Γ
′
j

f−Mj−1

(
Bn

′
j ,ε

′
j
(xj)

)

 ,

with Mj = n
′
1 + n

′
2 + ... + n

′
j and

(6) G :=
⋂

k≥1

Gk.

Any element of G can be labelled by a sequence x1 x2..., with xj ∈ Γ́j . According

to Pfister and Sullivan [10] the following holds: Let xj , yj ∈ Γ́j , xj 6= yj , if x ∈
Bnj ,εj (xj) , y ∈ Bnj ,εj (yj) then max

{
d

(
fk(x), fk(y)

)
: k = 0, ..., nj − 1

}
> 2ε,

with ε > ε1/4.

We see that G ⊂ GΦ (α1) ∩ GΦ (α2) . Let z ∈ G, and let µ0 ∈ MΦ (α1) , ν0 ∈
MΦ (α2) , it can be considered sequences[13] {µk} , {νk} such thatD (µ0, µk) < Rk

and D (ν0, νk) < Rk, then form the sequence

{ρk} = {µ1, µ1, ν1, ν1, µ2, µ2, ν2, ν2, ...} .

Let ρ ∈ {µ0, ν0} , and
∑j

l=1 nlNl ≤ Mk ≤
∑j+1

l=1 nlNl, thus

D (EMk
(z) , ρ) ≤ 1

Mk

j−1∑

l=1

nlNlD


Ej−1∑

l=1
nlNl

(z) , ρ


 +

njNj

Mk
D

(EnjNj (z), ρ
)
+

Mk −
∑j

l=1 nlNlj

Mk
D

(Enj+1Nj+1(z), ρ
)
.

Therefore
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D (EMk
(z) , ρ)

≤ Rj + D
(EnjNj

(z), ρj

)
+ D (ρj , ρ) + D

(Enj+1Nj+1(z), ρ
)

+ D (ρj+1, ρ)

≤ 2Rj + εj + D (ρj , ρ) + D (ρj+1, ρ) .

Thus, choosing subsequences tk = 4k + 1 and sk = 4k + 3, we get

µ0 = w∗ − lim
k→∞

EMtk
(z)

ν0 = w∗ − lim
k→∞

EMsk
(z) ,

so that z ∈ GΦ (α1) ∩GΦ (α2) .

To complete the proof it must be proved that

htop(G) ≥ min {htop(GΦ (α1)), htop(GΦ (α2))} .

For this, we follow [10]. Let s < h := min {htop(GΦ (α1)), htop(GΦ (α2))} , the set

G is closed, and so it is compact, let us consider a finite covering U by balls Bm,ε (x)

having non-empty intersection with G. Now

M (G, s, N, ε) = inf
U∈C(n,ε,G)

∑

Bm,ε(x)∈U
exp (−sm) .

For any finite covering U of G, we can construct a covering U0 in the following

way: each ball Bm,ε (x) is replaced by a ball BMrr,ε (x) with Mr ≤ m ≤ Mr+1.

Thus

M (G, s, N, ε) = inf
U∈C(n,ε,G)

∑

Bm,ε(x)∈U
exp (−sm) ≥ inf

U∈C(N,ε,G)

∑

BMr,ε∈U0

exp (−sMr+1) .

Now we can consider a covering U0 in which

m = max {r : there is a ball BMr,ε (x) ∈ U0} .

We set

Wk :=
k∏

i=1

Γi, Wm =
m⋃

k=1

Wk.
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Let xj , yj ∈ Γ́j , xj 6= yj , as we pointed out earlier, if x ∈ BŃj ,έj (xj) , y ∈
BŃj ,έj (yj) then d

(
f l(x), f l(y)

)
> 2ε

for any l = 0, ..., Nj − 1, and with ε > ε1/4. Now for any x ∈ BMr,ε (z)∩G there

is a, uniquely determined z = z(x) ∈ Wr. A word w ∈ Wj , with j = 1, 2, ..., k, is

a called a prefix of a word w ∈ Wk if the first j−letters of w agree with the first

j−letters of w.The number of times that each w ∈ Wk is a prefix of a word in Wm

is

cardWm/cardWk, thus if W is a subset of Wm then

m∑

k=1

card (W ∩Wk)
card (Wk)

≥ card (Wm) .

If each word in Wm has a prefix contained in a W ⊂ Wm then

m∑

k=1

card (W ∩Wk)
card (Wk)

≥ 1,

and since U0 is a covering each point of Wm has a prefix associated to a ball in U0.

By this and because cardWk ≥ exp
(
hMr

)
, we obtain

∑

BMr,ε∈U0

exp (−sMr) ≥ 1.

Thus if r is taken such that k ≥ r then sMk+1 ≤ hMk, for N ≥ Mr, U ∈ G (N, ε, G) .

Therefore

∑

Bm,ε(x)∈U
exp (−sm) ≥ 1,

and so

M (G, s, N, ε) ≥ 1.

By this htop(G) ≥ h .

¥

We are now in condition of giving the proof of the theorem. Let
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Ψ = Ψr,Φ : M(X) → R

Ψ(µ) =
∫

Φdµ⊗r

and let

h = htop(X) be the topological entropy of the whole space X. By the classical

variational principle and by the variational principle of [5]

h = sup {hµ (f) : µ ∈Minv(X, f)} = sup
α∈Im(Ψ)

{hµ (f) : µ ∈MΦ (α) } =

sup
α∈Im(Ψ)

{htop(EΦ (α)) } .

We must show that htop(E∞
Φ ) ≥ h. For any γ > 0, there is an α1 ∈ ImΨ such that

htop(EΦ (α1)) > h− γ, let α2 ∈ ImΨ and let µ1, µ2 ∈ M(X, f) with Ψ (µ1) = α1,

Ψ (µ2) = α2. The map λ 7−→ Ψ ((1− λ)µ1 + λµ2) is continuous.Recall that

htop(GΦ (α1) ∩ GΦ ((1− λ) α1 + λα2))

= min {htop(GΦ (α1) , htop ( GΦ ((1− λ)α1 + λα2))} ,

then, by the continuity of Ψ as a function of λ, we have

htop(E∞
Φ ) ≥ lim

λ→0
htop(GΦ (α1) ∩GΦ ((1− λ)α1 + λα2)) ≥

htop(GΦ (α1) ≥ htop(EΦ (α1)) > h− γ.

Since γ is arbitrary the result follows.

¥
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