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Abstract

This paper proposes a new method for blind inversion of a monotonic nonlinear map

applied to a sum of random variables. Such kinds of mixtures of random variables are

found in source separation and Wiener system inversion problems, for example. The impor-

tance of our proposed method is based on the fact that it permits to decouple the estimation

of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source

separation matrix or deconvolution filter), which can be solved by applying any convenient

linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, gener-

alizes the idea of Gaussianization of the observation by maximizing its entropy instead. We

developed two versions of our algorithm based either in a polynomial or a neural network

parameterization of the nonlinear function. We provide a sufficient condition on the nonlin-

ear function and the probability distribution that gives a guarantee for the MaxEnt method to

succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is

compared with existing algorithms for blind approximation of nonlinear maps. Experiments

show that MaxEnt is able to successfully compensate monotonic distortions outperforming

other methods in terms of the obtained Signal to Noise Ratio in many important cases, for

example when the number of variables in a mixture is small. Besides its ability for compen-

sating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.

1. Introduction

Nonlinear models are powerful tools for modelling practical situations when linear models fail.
This is the case of post-nonlinear (PNL) source separation problems and nonlinear blind
deconvolution scenarios. In real world situations, usually we do not have access to the distor-
tion input. Hence we cannot use traditional methods, which assume that both the input and
the output of the distortion are available [1]. Examples of such traditional methods are those
based on higher-order input/output cross-correlation [2], bispectrumestimation [3, 4] or on
the application of the Bussgang and Prices theorems [5, 6] for nonlinear systems with Gaussian
inputs. In this work, we will focus only on blind identificationmethods.
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Blind source separation with PNL mixtures (see Fig 1a), requires estimating the inverses of
the nonlinear maps f n and the inverse of the mixingmatrixA(linear part). This can be done by
minimizing the Mutual Information (MI) of the inversion structure output, i.e. by solving an
optimization problem over the parameters of the linear and nonlinear parts together, as
detailed in [7]. However, this leads to complex and slow algorithms.
On the other hand, in a single channel scenario, there is a particular class of nonlinear sys-

tems composed by a linear filter followed by a memoryless nonlinear distortion (Fig 1b). This
class of nonlinear systems, also known as a Wiener system, is not only a nice and mathemati-
cally attracting model, but also a realistic model used in various areas, such as biology [8],
industry [9], sociologyand psychology (see also [10] and the references therein). A fully blind
procedure for finding the inverse system (Hammerstein system), when the (unknown) input
signal s(t) is a non-Gaussian i.i.d. process, is detailed in [11, 12]. If the input process is not i.i.d.
but is a linear filtered version of an i.i.d. noise (the so-called innovation), the output y(t) pro-
vides the innovation instead of the input signal. The restitution of the input then requires the
prior knowledge (or the estimation) of the filter generating the signal s(t), as detailed in [12].
A simple and very fast method for roughly estimating the inverse of a nonlinear map has

been proposed in [11] and used in [12], which will be referenced here as the Gaussianization
algorithm (see Section 2.1). This method is very attractive because it focuses only on the non-
linear compensation estimation. After the nonlinear compensation is found, we can solve the
linear part (inverse matrix or deconvolution filter) by applying any available linear algorithm.
This nonlinear-linear decoupling approach allows one to obtain simpler and faster algorithms
compared to global algorithms that estimate the linear and nonlinear parts together [7,11,12].

Fig 1. Typical applications where nonlinear compensation is required: (a) the mixing—separating system for the source separation problem with

PNL mixtures and (b) the Wiener-Hammerstein system for deconvolution problem with PNL distortion.

doi:10.1371/journal.pone.0165288.g001
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The basic idea for the Gaussianization algorithm is to notice that signals xn(t) in Fig 1a and
x(t) in Fig 1b, i.e. just before the nonlinear map, are a weighted sum of random variables,
which in the case of variables with finite second order moments, is more Gaussian than the
individual inputs. In fact, according to the Central Limit Theorem, the random variable Xn
tends toward a Gaussian variable as N!1 (for finite second order moments). Note that we
use capital letters to refer to a random variable associated to a signal. For example, a signal x(t)
is considered as a time series (realizations) obtained from a random variable X. The nonlinear
mapping function f n changes the distribution, and consequently we can assume that the ran-
dom variable En = f n(Xn) is more distant from a Gaussian than Xn. Then, the algorithm esti-
mates the inverse of f n as the nonlinear mapping function gn which enforces the random
variable Zn = gn(En) to be exactly Gaussian.
In this paper we will focus only on the nonlinear compensation, assuming a monotonic

(unknown) distortion, generalizing the idea of Gaussianization for estimating the inverse
of the nonlinear map by using maximization of entropy strategy instead. We provide a
sufficient condition under which the output of a nonlinear transform has smaller entropy
compared with its input, thus giving a guarantee for the MaxEnt method to succeed invert-
ing the nonlinear distortion. The new algorithm consists in adjusting a nonlinear mapping
function gn, through an appropriate parameterization, so that the entropy of Zn = gn(En) is
maximum under the constraint of unit variance. Although the idea is similar to that used in
[13], it differs since the recovered random variable z (after nonlinear inversion) has not nec-
essarily a Gaussian distribution, but maximum entropy. In Section 2 we explain the theoreti-
cal principles of the Gaussianization and Uniformization algorithms and introduce the
equations for our new proposed method: the MaxEnt algorithm. In Section 3, we present
extensive experimental results showing the robustness and performance of our newmethod
compared to the Gaussianization and Uniformization methods and we compare MaxEnt
against a state-of-the-art global optimization basedmethod. In Section 4, our main conclu-
sions are outlined.

2. Materials and Methods

In this article we denote random variables by capital letters and their realizations by the corre-
sponding lower case letter. For example, X and x, correspond to a random variable and its reali-
zation (value), respectively.
Under the assumption that a random variable X is close to a Gaussian, if we let E = f (X),

then we may estimate the inverse g = f−1 by enforcing Z = g(E) to be Gaussian [13]. We can
generalize this idea by observing that entropy at the output of the linear system X is always
higher than the entropy of each independent input Sn, under the constant variance constraint
(see Fig 1a). Additionally, if we assume that the nonlinear distortion has the effect to decrease
the entropy, then we can estimate the inverse g = f−1 searching, over the space of plausible non-
linear maps, the one that makes the entropy of Z = g(E) to be maximum under the unit-vari-
ance constraint. We call this newmethod as the MaxEnt nonlinear compensation method and
it is described in detail in Section 2.2.
It is well known that the maximum entropy distribution for unbounded support under

mean and variance constraints is the Gaussian distribution, whereas for bounded supports
under no (but adding-up) constraint is the uniform distribution. However, it is important to
note that, by using a Maximum Entropy algorithm (MaxEnt) we are not enforcing directly to
obtain a Gaussian or uniform distribution for Z. However, our extensive experimental results
(see Section 3) confirm the fact that for most important cases, MaxEnt outperforms Gaussiani-
zation and Uniformization strategies and gives also more robust results.
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In the following sections, the theoretical foundations are presented and the algorithms are
derived for the Gaussianization, Uniformization and MaxEnt methods.

2.1. Gaussianization and Uniformization

The simplest approach for computing the inverse system g by Gaussianization [13] is based on
the property of the cumulative density function (cdf).Consider the random variable E, and
denote its cdf FE(u) = Pr(E< u) where Pr denotes the probability. The random variable
U = FE(E) is then uniformly distributed in [0, 1]. Denoting by F(u) the Gaussian cdf, which
transforms a unit variance Gaussian variable into a uniform random variable in [0, 1], it is
clear that F−1(U)is a unit variance Gaussian random variable. Then, a simple approximation of
the inverse g of the nonlinear mapping function f is ĝ ¼ F� 1 � FE [13,14].
In the case of variables with bounded support and no constraints, the maximum entropy is

achieved by the uniform distribution. Therefore, we also consider Uniformization as a possible
way to compute the inverse g. The same strategy explained for Gaussianization, but using the
cdf for the uniform distribution is then used for computing the monotonous nonlinear map-
ping g.

2.2. Entropy maximization (MaxEnt)

We assume that the nonlinear transformation E = f (X), has the effect to decrease the normal-
ized (unit-norm) entropy of the input, i.e.H(E)<H(X), so the transform can be blindly esti-
mated by MaxEnt. We know this is true when the input variable X is of maximum entropy, e.g.
Gaussian, but it is not clear a priori, under which conditions on the distribution of X and the
nonlinearity f (�) the MaxEnt method is well posed. The following theorem states a sufficient
condition for the decrease of entropy under a nonlinear transformation. As we demonstrate in
Section 3.7, through experimental validation, this condition holds true in most practical cases.

Theorem 1 (sufficient condition for entropy decrease under a nonlinear transform):Given
a zero-mean and unit-variance variable X and a monotonic and antisymmetric nonlinear func-
tion f (�), if the following condition holds true:

E2½ f 0ðxÞ� < E½ f 2ðxÞ� ð1Þ

then the entropy of the normalized output variable E = f (X) is smaller than the input variable X.
Proof: seeAppendix
In order to understand the consequences of this result, the following corollary, provides the

theoretical justification of the MaxEnt method for a particular family of nonlinearities, found
in many practical applications [15].

Corollary 1:(particular case f (x) = x3 + βx with β� 0):
For any probability density function (pdf) pX(x) and the parameterized nonlinear function f

(x) = x3 + βx, the entropy of the normalized output variable E = f (X) is smaller than the input
variable X in the following cases:

1. Super-Gaussian or zero excess kurtosis (μ4� 3), μ6> 9 and any β� 0;

2. Super-Gaussian (μ4> 3), μ6< 9 and β> 0.5(9 − μ6)/(μ4 −3);

3. Sub-Gaussian (μ4< 3), μ6> 9 and β< 0.5(μ6 − 9)/(3 −μ4);

where μp is the moment of order p. It is noted that, in our case with standardized variables
(E(X) = 0 and E[X2]), μ4 and μ6 correspond to the kurtosis and the hyper-flatness statistical mea-
sures, respectively.

Proof: seeAppendix
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It is important to highlight that this corollary gives us a guarantee for the MaxEnt method
to work for the case of for super-Gaussian or zero excess kurtosis variables when μ6> 9 and
give us clear conditions on the sixth order moment μ6 and parameter β for the case of sub-
Gaussian variables.
2.2.1. Derivation of theMaxEnt algorithm. Consider the entropy of the continuous unit

variance random variable Z = g(E):

HðZÞ ¼ � E½logðpZðzÞÞ� ð2Þ

where pZ(z) denotes the pdf of random variable Z = g(E). By using a well-known basic property
of the entropy, H(Z) can be written as follows:

HðZÞ ¼ HðEÞ þ E½logjg0ðeÞj� ð3Þ

We can consider different ways to parameterize the nonlinearity g(e) and maximize eq (3)
in terms of the used parameterization. In the following sections, two different parameteriza-
tions are proposed: polynomial and neural network parameterizations.
2.2.2. Polynomial parameterization. One of the simplest parameterization options con-

sists in using a polynomial. This will give us a very simple algorithm, with very few parameters.
Let us consider a K degree polynomial for g(e):

gðeÞ ¼
XK

k¼0
ake

k: ð4Þ

Then, its derivative with respect to e is:

g 0ðeÞ ¼
XK

k¼0
akke

k� 1 ¼ aTe ; ð5Þ

where a = (a1, a2, . . ., aK)T and e = (1,2e, . . ., KeK−1)T. By using eq (5) into eq (3) we arrive at
the following expression for the entropy:

HðZÞ ¼ HðEÞ þ E½logðjaTejÞ� ð6Þ

And the gradient of this expression with respect to the vector of parameters a (polynomial
coefficients) is:

raH ¼ E
e

aTe

h i
; ð7Þ

where, by assuming that underlying random processes are wide-sense stationary and ergodic,
the expectation can be computed by averaging over time, i.e. by a sample mean estimator.
Finally, we propose an iterative constrained gradient algorithm to estimate the inverse map-

ping g by repeating the following steps until a convergence criterion or maximum number of
iterations is reached:

a aþ mraH ; steepest ascend step

a a=
sZ

; enforce unit � variance;
ð8Þ

where μ is the stepsize parameter and σZ is the standard deviation of the compensated signal
Z = g(E).
Polynomial parameterization is very simple, but may have problems when is used for invert-

ing functions whose inverses are not well approximated by a low order polynomial. To avoid
working with high order polynomials, in the following section, we propose a nonlinearity
parameterization based on a neural network.
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2.2.3. Neural network parameterization. Another interesting possibility is to use neural
networks, and specificallymulti-layer perceptrons (MLP) [16]. As MLP is well known for
approximating any continuous and bounded function, it is a good candidate for estimating the
inverse function of f , if it exists.
The model of g(e) using a multilayer perceptron with one hidden layer of K units can be

written as follows:

gðeÞ ¼
XK

k¼1
aksðcke � bkÞ; ð9Þ

where ak, bk and ck are the weight of the output, the bias and the weight of the input parameters
for each unit of the neural network, respectively, and σ(t) = (1 + e−t)−1 is a sigmoid function
[16]. Then, its derivative with respect to e is:

g0ðeÞ ¼
XK

k¼1
akcks0ðcke � bkÞ ¼ ða � cÞ

Tθ; ð10Þ

Where a = (a1, a2, . . ., aK)T, b = (b1, b2, . . ., bK)T, c = (c1, c2, . . ., cK)T, θ = (θ1, θ2, . . ., θK)T with,
θk = σ0(cke − bk) and ‘�’ stands for the entry-wise (Hadamard) product of vectors. By using
eq (10) in eq (3) we obtain the following expression of the entropy:

HðZÞ ¼ HðEÞ þ E½logðjða � cÞ
TθjÞ�; ð11Þ

whose gradients with respect to a, b and c are:

raH ¼ E
c � θ
ða � cÞ

Tθ

" #

;

rbH ¼ E
a � c � φ
ða � cÞ

Tθ

" #

;

rcH ¼ E
a � θþ a � c � φ e
ða � cÞ

Tθ

" #

;

ð12Þ

where φ = (φ1, φ2, . . ., φK)Twith φk = σ00(cke − bk). Finally, we propose to use a constrained gra-
dient ascend algorithm as follows:

a aþ maraH ; steepest ascend step for vectora

b bþ mbrbH ; steepest ascend step for vectorb

c cþ mcrcH ; steepest ascend step for vectorc

a a=
sZ

; enforce unit � variance;

ð13Þ

where μa, μb and μc are the stepsize parameters and σZ is the standard deviation of the compen-
sated signal Z = g(E).

3. Experimental Results and Discussion

In order to evaluate the results obtained with the new proposedmethod, in this sectionwe
compute the performances obtained with the Gaussianization method [13], the Uniformization
method (similar to [13] but enforcing uniform distribution for Z) and MaxEnt (the new pro-
posed algorithm). The inversion performance for all the methods is calculated as the Signal to
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Noise Ratio (SNR), which is defined as follows:

SNR ¼ 10 log
E½z2�

E½ðz � xÞ2�

 !

: ð14Þ

It is noted that our gradient search optimization method with both types of parameteriza-
tions, i.e. polynomial and neural network, may suffer from stacking at local minima. To allevi-
ate the local minima problem, the initialization for vector a (polynomial case) and vectors a,b,c
(neural network case) are chosen such that the initial guess of the inversion function is the
identity, i.e. ĝðxÞ ¼ x. For example, the initialization in the polynomial parameterization case
is as follows: a1 = 1, and ak = 0 8 k 6¼ 1.
Taking into account that we can deal with many different scenarios, in the following sec-

tions we explore how different conditions and/or values of the parameters can affect the results
of the nonlinear compensation.We analyze the effect of the number of samples (T), the mixing
matrix (A), the number of sources (N) and the nonlinearity type. For the sake of simplicity,
MaxEnt only with polynomial parameterization along with Gaussianization and Uniformiza-
tion are used in Sections 3.1–3.4. In all these experiments, the maximum number of iterations
for the MaxEnt algorithm is Niter_max = 100. In Section 3.5, we present a detailed analysis of
the performance obtained by the MaxEnt algorithmwith polynomial and neural network
parameterizations. In Section 3.6, we compare MaxEnt against a state-of-the-art methods and,
in Section 3.7, we experimentally evaluate the sufficient condition of Theorem 1 for different
source distributions and nonlinearities.

3.1. Effect of the number of samples (T)

In order to evaluate the effect of the number of available samples T, we make experiments by fix-
ing the order of the polynomial to K = 10 and by using a randommatrixAϵℝ2×2. Sources were
generated using zero-mean and unit-variance continuous uniformly distributed random vari-
ables, which determines the ½�

ffiffiffi
3
p

;þ
ffiffiffi
3
p
� support. Nonlinearities f 1(x) = f 2(x) = tanh(3x) + 0.1x

are used.When we use a mixingmatrixA the support is increased, therefore there is a strong
effect of the nonlinearities. The number of samples ranged from T = 10 to T = 1,000. The experi-
ments were repeated 100 times and the mean and standard deviation of SNRs were computed. In
terms of mean values, as we can see in Fig 2a, theMaxEnt algorithm outperforms the Gaussiani-
zation (approx. +3dB) and the Uniformization (approx. +6dB) methods.Moreover, MaxEnt
algorithm reaches the maximum SNR value (approx. 23dB) quicker than the other two algo-
rithms. It is noted that the variance decreases with large T for all methods. Interestingly, for a
very small number of samples T< 100, Gaussianization has lower variance than MaxEnt.
In the following experiments we fix the number of samples to T = 500.

3.2 Effect of the mixing matrix (A)

Another important parameter is the (unknown)mixing matrixA. In order to analyze how the
mixingmatrix affects the performance of the nonlinear compensation, we parameterize a gen-
eral mixingmatrixA, for the case of two sources/observations, as follows:

A ¼
1 r

r 1

" #

ð15Þ

We did experiments by tuning the parameter ρ from −0.6< ρ< +0.6, for a fixed number
of samples T = 500, using uniformly distributed continuous random variables as source
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signals, setting the order of the polynomial to K = 10 and fixing the nonlinearities as
f 1(x) = f 2(x) = tanh(3x) + 0.1x. The obtained averaged SNRs in channel 1, over 100 repeated
experiments, are shown in Fig 2b. It is noted that for ρ = 0 there is no mixing process, thus
the observed signals are directly the distorted (through f (x)) original sources. We observe
that MaxEnt is stable along the changes on the matrixA. On the other hand, it is also interest-
ing to notice the performance of the Gaussianization and Uniformization algorithms: when
there is (almost) no mixture (|ρ| close or equal to 0), Gaussianization does not work but

Fig 2. Experimental results with MaxEnt algorithm with polynomial (Poly.) and neural network (N.N.) parameterizations, Gaussianization and

Uniformization methods, for different scenarios over a set of 100 experiments: (a) Mean ± std SNR evolution (channel 1) when the number of

samples T changes from 10 to 1000 for a fixed random matrix A. (b) Mean SNR evolution (channel 1) when the 2 × 2 mixing matrix A changes according

to parameter ρ as in eq (14). (c) Top: Boxplot of SNR for each channel with a fixed 4 × 4 random mixing matrix. Bottom: SNR as a function of the number

of mixing sources for a fixed polynomial order K = 10 (left) and for adaptively chosen polynomial order K. (d) Mean SNR versus nonlinearity parameter α
as in eq (15). (e) Mean ± std SNR of MaxEnt (Poly.) as a function of the polynomial degree (K) compared against the SNRs obtained with the

Gaussianization algorithm.

doi:10.1371/journal.pone.0165288.g002
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Uniformization does because sources have an exact uniform distribution. However, it is
important to note that in practice sources are not uniform, hence for practical situations Uni-
formization would not give such perfect solutions.

3.3 Results with N� 4 sources

Until now and for the sake of simplicity, we have presented results of the inversion of nonline-
arities for the case of mixtures with only two sources. If we have more mixing sources, we tend
to a better situation according to the Central Limit Theorem, therefore we should expect good
results for Gaussianization algorithm. First, we performed experimentsmixingN = 4 random
uniformly distributed continuous sources and using 100 different (random) mixing matricesA
(with ones in the main diagonal).We fixed the order of the polynomial to K = 10 and nonline-
arities as f (x) = tanh(3x) + 0.1x. Fig 2c (top) presents the obtained SNRs (dB) for all 100 exper-
iments in each channel as a box plot. We can see that Gaussianization algorithm obtains best-
averaged results (about 23 dB in channel 1) but with a very high variance (about 2.5 dB), while
MaxEnt provides an average performance a little bit lower (< 1 dB less), with a very small vari-
ance (about 1 dB). So, the MaxEnt algorithm is the best compromise. It is highlighted that, by
using the Gaussianization and Uniformization methods, the results have a considerably larger
variance compared to the MaxEnt algorithm. In other words, MaxEnt is more robust because
the algorithmmaximizes entropy independently of the distribution of the mixture. The Unifor-
mization method gives the worst results becausemixing more sources makes the mixture to be
farther away from the uniform distribution.
Finally, we analyzed the performance of MaxEnt and Gaussianization as a function of the

number of mixing sources, with the nonlinearity f (x) = tanh(3x) + 0.1x. and using 100 different
(random) mixingmatricesA (with ones in the main diagonal). Fig 2c (bottom-left) shows the
obtained SNRs (dB) for the case of using a fixed degree of the polynomial to K = 10, whereas in
Fig 2c (bottom-right) the adaptive strategy for setting the polynomial degreeK was used (see
section 3.4). It is noted that there is a trade-off betweenGaussianization and MaxEnt. For more
input sources, Gaussianization is better since polynomial limit the accuracy of Maxent and, for
less and non-Gaussian input sources, Gaussianization is less precise.

3.4 Effect of the nonlinearities

The type of nonlinearity plays also an important role. Using polynomials, it is expected that
our method will be successful only when the inverse of the monotonic nonlinear function is
well approximated by a finite degree polynomial. Here, we explore how the polynomial param-
eterization deals with a family of functions of the form

f ðxÞ ¼ tanhða � xÞ þ 0:1x ; a ¼ 1; 2; . . . ; 10: ð16Þ

For α = 1 the nonlinear function is almost linear, while for α� 5 the nonlinear function is
highly saturating the input signal (see Fig 3). Therefore, the inverse will be a polynomial of low
degree in the first case and a polynomial of higher degree in the second case. To deal with this
optimal selection of the polynomial, we have computed the objective function E[log(|aTe|)] (eq
(6)) for a wide range, e.g. degree 2 to degree 15, and selected the best degree value K for the
polynomial i.e. the one that provides largest entropy. In Fig 2c (bottom), we compare the
results of using a fixed polynomial degree (K = 10, left) against using the dynamic selection of
polynomial degree (right) as a function of the number of mixing sources.
Fig 2d shows the results for MaxEnt, Gaussianization and Uniformization for all types of

nonlinearities of eq (16). It is noted that MaxEnt outperforms the rest of algorithms for 2� α
� 4. When α = 1 the performance of MaxEnt (mean SNR = 19.21dB, std = 0.26) is comparable
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with Gaussianization (mean SNR = 19.56, std = 0.97). However, when α> 4 it the performance
of MaxEnt drops because the polynomial parameterization is not able to adapt to the high-sat-
urating shape of the distortion. It is noted also that the degree of the polynomial selected by the
algorithm changes according to the complexity of the function to be inverted: for smooth func-
tions (α = 1) the selected degree is small (K = 4), while for a harder distortion (α = 5) the
selected degree is higher (K = 12). According to these results, in the following sections, we fix
the parameter α = 3 and the degree of the polynomial to K = 10.

3.5. Effect of sources distributions and nonlinearities on the MaxEnt

performance with polynomial and neural network parameterization

In this set of experiments we explore the performance obtained by MaxEnt algorithmwith
polynomial and neural network parameterizations for two different types of nonlinearities:
f (x) = tanh(3x) + 0.1x and f (x) = x3 + 0.1x (see Fig 2). More specifically, we compare our
approach against the Gaussianization and Uniformization methods using two types of sources:
uniformly distributed continuous random noise and (3-level) discrete random noise (–0.4, 0,
+0.4). Based on the analysis of the previous set of experiments, we fix the parameters according
to Table 1.

Fig 3. Family of nonlinearities used in the experiments.

doi:10.1371/journal.pone.0165288.g003
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We have repeated the experiments 100 times for the polynomial parameterization and 20
times for the neural network parameterization. Fig 4 shows statistics of SNR improvement in
dB obtained with all the methods in all the situations. In this figure we observe that MaxEnt
with polynomial parameterization gives always the best SNR (dB) (Fig 4a) having smaller vari-
ance in the case of continuous sources compared to the rest of the methods. On the other hand,
neural network parameterization gives similar results as Gaussianization and Uniformization
for the case of continuous sources but it outperforms those methods for the case of discrete
sources (Fig 4a and 4b), especially for when f (x) = x3 + 0.1x. It is noted that discrete sources do
not work as well as continuous sources under the Gaussianization because a summation of two
3-state random variables results in a 7- to 9-state random variable, and this will hardly approxi-
mate a Gaussian random variable when only two variables are summed. It is a mere conse-
quence of the asymptotic character of the central limit theorem that is not met in this setting;
hence maximal entropy methods should succeed better.

Table 1. Parameter selection for experiments with polynomial parameterization (1 case) and with neural network parameterization (2 cases).

Polynomial Neural network (I) Neural network (II)

Mixing matrix
A ¼

1 0:6

0:7 1

" #

A ¼
1 0:6

0:7 1

" #

A ¼
1 0:6

0:7 1

" #

Nonlinear functions f (x) = tanh(3x) + 0.1x f (x) = tanh(3x) + 0.1x f (x) = x3 + 0.1x

Sample size T = 500 T = 500 T = 500

Model order K = 10 K = 7 K = 7

Maximum number of

iterations

Niter_max = 100 Niter_max = 50,000 Niter_max = 50,000

Adaptation step μ = 0.1 μ = 10 μ = 0.001

Sources type Discrete or continuous (uniformly

distributed)

Discrete or continuous (uniformly

distributed)

Discrete or continuous (uniformly

distributed)

Number of experiments Nexp = 100 Nexp = 20 Nexp = 20

doi:10.1371/journal.pone.0165288.t001

Fig 4. SNR (dB) boxplots obtained in channel 1 for MaxEnt algorithm with polynomial (Poly.) and neural network (N.N.) parameterizations,

Gaussianization and Uniformization methods, for continuous (uniformly distributed) and (3-level) discrete sources (–0.4, 0, +0.4). (a) Results

for the nonlinearity f (x) = tanh(3x) + 0.1x. (b) Results for the nonlinearity f (x) = x3 + 0.1x (polynomial parameterization is not included here because

MaxEnt was not able to well approximate the nonlinearity showing convergence problems).

doi:10.1371/journal.pone.0165288.g004
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It is important to note that the polynomial parameterization cannot approximate well the
inverse of the nonlinear function f (x) = x3 + 0.1x, so the MaxEnt algorithm didn’t converge
resulting in erroneous solutions. For this reason, MaxEnt (Poly) was not included in Fig 4b. On
the other hand, neural network parameterization works very well for this nonlinearity outper-
forming the Uniformization and Gaussianization methods.
Examples of the nonlinear compensations obtained by all the methods in these experiments

are shown in Fig 5 in the form of x(t) versus z(t) scatter-plot. In order to visually compare the
performance, the identity function is superimposed to each curve. It is interesting to note that

Fig 5. Examples of obtained nonlinear compensation for each of the tested algorithms for continuous (uniformly distributed) and (3-level)

discrete sources (–0.4, 0, +0.4). (a) Results for the nonlinearity f (x) = tanh(3x) + 0.1x. (b) Results for the nonlinearity f (x) = x3 + 0.1x.

doi:10.1371/journal.pone.0165288.g005
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Gaussianization, Uniformization and MaxEnt with neural networks provide less accurate com-
pensations at the edges, whileMaxEnt with polynomial parameterization does in the central
region.

3.6 Comparison of MaxEnt against a state-of-the-art global optimization

based algorithm

In order to demonstrate the validity of our algorithm, we present here some simulation results
comparing our method combined with the classical JADE algorithm [17], the MaxEnt+JADE
algorithm (JADE Matlab code available in the author’s webpage: http://perso.telecom-
paristech.fr/~cardoso/Algo/Jade/jadeR.m), against Mutual Information Minimization (MIM)
algorithm proposed in [7] (MIMMatlab code provided by Prof. Christian Jutten, GIPSA Lab.),
which implements a global optimization, i.e. by inverting at the same time the nonlinear and
linear parts.We used the same parameters as in section 3.5 (see Table 1, Polynomial case), for
uniformly distributed continuous sources.
Numerical SNR (dB) results as (mean±std) are shown in Table 2. We can observe that both

strategies are very similar in terms of the obtained global mean SNR, but our newmethod is
more robust (smaller variance). Also, it is interesting to note that our algorithm is much better
than MIM regarding the inversion of non-linear part, so we suspect that the global perfor-
mance could be further improved by using other algorithm for the linear part, for which there
are a bunch of alternatives in the literature.
Regarding the associated computational cost, we obtained an improvement of one order of

magnitude. More specifically, in this example, our method requires 0.28 seconds in average for
inverting the global system, whileMIMmethod spent 2.86 seconds in average. MIM computa-
tional time increases exponentially with T while our algorithm has a linear dependency on T,
so the difference will be higher with longer signals.
In Fig 6 we present an example of nonlinear compensation using our MaxEnt method (blue

line) and MIM (red line), for channel 1 (left) and channel 2 (right).

Table 2. SNR (dB) as mean±std obtained in 100 experiments. Nonlinear part and global system inversion results are presented, for MaxEnt+JADE and

MIM algorithms.

Non-linear part inversion Non-linear part inversion Global system inversion Global system inversion

New method MIM method New method MIM method

Channel 1 24.30±0.32 21.48±1.57 17.22±0.39 16.85±1.99

Channel 2 24.00±0.37 20.74±1.37 16.29±0.61 15.91±2.40

doi:10.1371/journal.pone.0165288.t002

Fig 6. Nonlinear compensation of nonlinearities for MaxEnt algorithm (blue line) and MIM algorithm

(red line). Channel 1 is depicted in the left part, channel 2 in the right part.

doi:10.1371/journal.pone.0165288.g006
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Finally, it is important to note also that our nonlinear inversion strategy allow us to use any
linear BSS algorithm.We have only tried with JADE but any other algorithm can be used, and
this could potentially increase the final performance.

3.7 Experimental evaluation of the sufficient condition in Theorem 1

In Table 3, we evaluated experimentally the condition of eq (1) by averaging f 2(x) and f 0(x)
over T = 10,000 samples, using several probability distributions pX(x) and various nonlineari-
ties. As expected, the condition holds true for the case of a Gaussian distribution (second col-
umn). Also, as expected the condition does not hold true for the case of a variable X being the
sum of two uniformly distributed variables (third column) and f (x) = x3 + βx, because in this
case μ4< 3 and μ9< 9 (see Corollary 1. Case II). However, our experimental results in section
3.5, shows that even when the condition does not hold true in this case, the MaxEnt method
successfully invert the nonlinear transform.
Besides, we generated also samples for a variable X being the sum of squared and cubic uni-

formly distributed variables in order to have a wider range of fourth and sixth order moments
(fourth and fifth columns). In all these cases the sufficient condition held true, which gives us a
guarantee that the MaxEnt works in these cases.

Conclusions

In this paper, we proposed a generalization of the Gaussianization/Uniformization method for
blind estimation of a nonlinear map. The method is based on the entropy maximization of the
nonlinear outputs in order to approximate the unknown nonlinear function.We provide a suf-
ficient condition on the probability distribution and the nonlinear distortion that gives a guar-
antee for the MaxEnt method to succeed inverting the nonlinearity and analyze it in detail for a
particular case of nonlinear distortion.
In order to maximize the entropy of the observations, we introduced two different parame-

terization strategies based on polynomial and neural network parameterizations, respectively,
and we developed constrained gradient steepest ascendMaxEnt algorithms.
By an extensive experimental set, we explored several possible scenarios, analysing the effect

of the type of the sources (uniform or discrete random noise), the length of the sources (T), the
mixingmatrixA, the nonlinearities and the number of sources (N). We also performed experi-
ments comparing both types of proposed parameterizations, i.e. polynomial and neural net-
work, in order to show pros and cons for each one.

Table 3. Experimental evaluation of the sufficient condition in Theorem 1. T = 10,000 samples where

used and experiments where repeated N = 500 times. The significance p value (H0: E2[f0(X) > E[f2(X)]) in all

the cases where p�0.0001. The fourth and sixth order moments were computed also experimentally. Cases

for which the sufficient condition does not hold true are displayed in bold type (< 0).

Gauss x1 + x2, xp unif. x2
1‘
þ x2

2‘
, xp unif. x3

1‘
þ x3

2‘
, xp unif.

μ4 3.0 2.4 2.5 2.8

μ6 14.9 7.5 10.4 15.3

f (x) E[f 2(X)]−E2[f 0(X)]

tanh(x) + 0.1x > 0 > 0 > 0 > 0

tanh(3x) + 0.1x > 0 > 0 > 0 > 0

tanh(5x) + 0.1x > 0 > 0 > 0 > 0

x3 + 0.1x > 0 < 0 > 0 > 0

x3 + 0.3x > 0 < 0 > 0 > 0

x3 + 0.5x > 0 < 0 > 0 > 0

doi:10.1371/journal.pone.0165288.t003
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Polynomial parameterization is a very good option when the function to be compensated
can be inverted with a polynomial of low order (less than K = 12). In this case, the method is
extremely fast and converges in a very few number of iterations. Moreover, the order of the
inverse function (polynomial) can be adjusted automatically by evaluating the objective func-
tion E[log(|aTe|)], as detailed in eq (6). This allows overcoming the problem of tuning parame-
ters, making the method easier to use. On the other hand, neural network parameterization
obtains similar results as Gaussianization or Uniformization for continuous uniform random
noise, and overcomes those methods for discrete random noise sources. The main advantage of
this parameterization is that it can deal with nonlinear functions that are not invertible with a
polynomial, obtaining in this case better results than Gaussianization or Uniformization (see
Fig 4b). The main drawback of neural network parameterization is that the inversion of nonlin-
earities is much slower than the polynomial case, about 1000 times slower.
If the number of sources is high, or one source is known to be Gaussian in the case of 2

sources, Gaussianization method works equal or better than MaxEnt because the linear mix-
ture is Gaussian. But in practical situations we do not have access to prior information about
the sources, therefore MaxEnt with polynomial parameterization is a good option.
As demonstrated by the experiments,maximizing entropy allow us to decouple estimations

of the nonlinear part from the linear one. Therefore, in the PNL source separation scenario, we
can apply this strategy to linearize the system and revert the problem to a (linear) blind source
separation scenario. As the nonlinearities are inverted independently in each channel, this part
can be solved in parallel. Then, any source separation algorithm for linear mixture can be used
in order to recover the original observations. This procedure can also be applied for solving
Wiener systems that, as it has been explained above, are equivalent to PNL mixtures and there-
fore can be processed with similar techniques.
Further work can be done, especially concerning the choice of the parametric form for the

nonlinear functions. Polynomials are interesting for their simplicity and the linearity with
respect to the parameters. For many monotonic functions only a few parameters are required,
but the number of parameters can increase dramatically for functions with very large slopes.
Then, splines or radial basis functions (RBF) could be a good alternative to consider.

Appendix: Proofs

Proof of Theorem 1

We need to prove that, under the condition of eq (1), the following equation holds true:

Hð�EÞ < HðXÞ ð17Þ

where �E is the normalized version of variable E, i.e. �E ¼ E=sE, with sE ¼
ffiffiffiffiffiffiffiffiffiffi
E½E2�

p
is the standard

deviation of the output variable E. By using a property of the entropy we obtain

Hð�EÞ ¼ HðXÞ þ E½logðf 0ðXÞÞ� � logðsEÞ: ð18Þ

Thus, by proving that E[log(f 0(X))]< log(σE) will suffice to prove this theorem.
The condition of eq (1) implies that

E½ f 0ðXÞ� < sE

logðE½ f 0ðXÞ�Þ < logðsEÞ;
ð19Þ
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and, by applying the Jensen inequality to the last line in eq (19), we arrive at:

E½logðf 0ðXÞÞ� < logðsEÞ ð20Þ

which implies that E[log(f 0(X))]< log(σE) and completes the proof.

Proof of Corollary 1

Here, we study the conditions under which eq (1) holds true, f or the particular case of having the
nonlinear transform f(x) = x3 + βx. In this case, it is straightforward to evaluate the left and right
hands of eq (1) as follows:

E2½f 0ðXÞ� ¼ E2½3X2 þ b� ¼ ð3þ bÞ
2

ð21Þ

and

E½f 2ðXÞ� ¼ E½X6 þ 2bX4 þ b
2X2� ¼ m6 þ 2bm4 þ b

2
: ð22Þ

By putting together the above two equations into eq (1), we obtain the following general con-
dition:

2bðm4 � 3Þ þ ðm6 � 9Þ > 0: ð23Þ

This equation states the conditions on the moments μ4, μ6 and the parameter β that make the
sufficient condition of eq (1) holds true.
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