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1 Introduction

Warped Anti-de Sitter (WAdS) spaces are examples of the so-called non-AdS holography;

that is, a proposal to generalize AdS/CFT holographic duality to cases in which the gravity

side is not given by an asymptotically Anti-de Sitter spaces (AdS) space, but rather by

a deformation of it. WAdS3 spaces are squashed or stretched deformations of AdS3 [1]

and have very interesting applications [2–4]. One of the most salient properties of these

spaces is the fact that they admit black holes [5]. This permits to explore the black hole

physics from the holographic point of view in a setup that goes beyond the asymptotically

AdS examples.

In the recent years, different proposals for a WAdS3/CFT2 correspondence have been

explored [6–8]. One of such proposals, dubbed WAdS/WCFT, states that asymptotically

WAdS3 geometries, including black holes, are dual to what has been called a warped con-

formal field theory (WCFT), i.e. a peculiar type of scale invariant two-dimensional theory

that lacks of Lorentz invariance. In [8], this realization was studied in the case of Topo-

logically Massive Gravity (TMG) and String Theory. Here, we will discuss WAdS3/CFT2

correspondence in a new setup, namely in the context of the parity-even three-dimensional

massive gravity known as New Massive Gravity (NMG). We will give strong evidence

supporting the dual description of quantum gravity about WAdS3 spaces in terms of the

WCFT2 description.

We will study the asymptotic symmetries of WAdS3 in NMG and we will find that

the asymptotic symmetry algebra is infinite-dimensional and coincides with the semidirect
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sum of Virasoro algebra with non-vanishing central charge and an affine û(1)k Kač-Moody

algebra. We will identify the Virasoro generators that organize the states associated to

the WAdS3 black hole configurations, and by applying the WCFT2 version of the Cardy

formula proposed in [8], we will prove that the microscopic WCFT2 computation exactly

reproduces the entropy of the WAdS3 black holes. In addition, we will present a succinct

derivation of such entropy formula from the CFT2 point of view.

The paper is organized as follows: in section 2, we briefly review NMG theory. In

section 3, we review the geometry of WAdS3 space and the properties of asymptotically

WAdS3 black holes. In section 4, we study the asymptotic isometries in WAdS3 spaces

and compute the algebra of charges associated to the asymptotic Killing vectors, which is

found to be the semidirect sum of Virasoro algebra and the affine û(1)k Kač-Moody algebra.

We also study the representations of this conformal algebra and identify the states that

correspond to the black hole configurations in the bulk. In section 5, we show how the

black hole entropy is reproduced by the WCFT dual computation. Section 6 contains our

conclusions.

2 New massive gravity

New Massive Gravity (NMG), proposed in ref. [9], is a parity-even theory of gravity in

three dimensions which, when linearized around maximally symmetric backgrounds, coin-

cides with massive spin-2 Fierz-Pauli action. Therefore, at a generic point of the space of

parameters, it propagates two local degrees of freedom.

NMG is defined by the action

I =
1

16πG

∫

d3x
√−g

(

R− 2Λ +
1

m2

(

RµνRµν −
3

8
R2

))

, (2.1)

where m represents the mass of the graviton. The relative coefficient 3/8 between the two

quadratic terms is essential for the theory to be free of ghosts about physically sensible

backgrounds.

The equations of motion derived from (2.1) take the form

Rµν −
1

2
Rgµν + Λgµν +

1

m2
Kµν = 0, (2.2)

where tensor Kµν contains four derivatives of the metric (see [9] for an explicit expression).

NMG equations of motion (2.2) admit a large set of interesting solutions, including

Schrödinger spaces, Lifshitz spaces, Warped AdS3, and AdS2×R spaces. Therefore, this is

a fruitful arena to explore different proposals of non-AdS holography. Among them, here

we will be concerned with the so-called WAdS3 spaces.

3 Warped AdS3 spaces

As said, WAdS3 spaces are solutions of NMG [10]. These geometries are squashed or

stretched deformations of AdS3 space [1]. We review these geometries below.

– 2 –
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3.1 Timelike WAdS3 space

To organize the discussion in a convenient way, let us begin by considering the timelike

WAdS3 space. This geometry is important for our discussion as it will be ultimately

associated to the vacuum of the WAdS3 black hole spectrum we are interested in.

The metric of timelike WAdS3 corresponds to the three-dimensional Gödel space-

time [11]. Its metric is given by

ds2 = −dt2 − 4ωrdtdφ+
ℓ2dr2

(2r2(ω2ℓ2 + 1) + 2ℓ2r)
−
(

2r2

ℓ2
(ω2ℓ2 − 1)− 2r

)

dφ2, (3.1)

and solves NMG equations of motion for the particular choice of parameters

m2 = −(19ω2ℓ2 − 2)

2ℓ2
, Λ = −(11ω4ℓ4 + 28ω2ℓ2 − 4)

2ℓ2(19ω2ℓ2 − 2)
. (3.2)

The mass of Gödel spacetime in NMG has been recently computed in [12], and the

result was found to be

MGöd = − 4ℓ2ω2

G(19ℓ2ω2 − 2)
. (3.3)

The isometry group of WAdS3 space (3.1) is SL(2,R)×U(1), which is generated by the

four Killing vectors that the three-dimensional section of four-dimensional Gödel solution

exhibits. In the particular case ω2ℓ2 = 1, solution (3.1) coincides with AdS3.

3.2 WAdS3 black holes

Now, let us move to the analysis of the spacelike WAdS3 spaces. In particular, we will be

interested in the black hole geometries found in [5, 10], which at large distance asymptote

squashed spacelike WAdS3 space. The metric of these black holes is

ds2

l2
= dt2 +

dr2

(ν2 + 3)(r − r+)(r − r−)
+ (2νr −

√

r+r−(ν2 + 3))dtdϕ

+
r

4

[

3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν
√

r+r−(ν2 + 3)
]

dϕ2,

(3.4)

and solves NMG equations of motion for the values of parameters

m2 = −(20ν2 − 3)

2l2
, Λ = −m2(4ν4 − 48ν2 + 9)

(400ν4 − 120ν2 + 9)
. (3.5)

The conserved charges of WAdS3 black holes have been computed by different meth-

ods [10, 13, 14]. The mass is given by

M = Q∂t =
ν(ν2 + 3)

Gl(20ν2 − 3)

(

(r− + r+)ν −
√

r+r−(ν2 + 3)
)

, (3.6)

while the angular momentum is given by

J = Q∂ϕ =
ν(ν2 + 3)

4Gl(20ν2 − 3)

(

(5ν2 + 3)r+r− − 2ν
√

r+r−(ν2 + 3)(r+ + r−)
)

. (3.7)
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Black holes (3.4) include extremal configurations, corresponding to r+ = r−. In those

cases, the angular momentum saturates the condition

J ≤ Gl(20ν2 − 3)

4ν(ν2 + 3)
M2, (3.8)

which is the necessary condition for the existence of horizons. Condition (3.8) is supple-

mented with M ≥ 0.

Black hole solutions (3.4) are obtained from the timelike WAdS3 space (3.1) by means

of global identifications [6], in the same way as BTZ black holes [15] are obtained from

AdS3 as discrete quotients [16].

This orbifold construction preserves a U(1)×U(1) subgroup of SL(2,R)×U(1) isome-

tries, which is generated by the two Killing vectors

ξ(1) = ∂t , ξ(2) =
2lν

(ν2 + 3)
∂t + ∂ϕ . (3.9)

The global identifications, generated by to Killing vectors (3.9), generate two periods

βR and βL. The inverse of these periods yield the two geometrical temperatures

TR = β−1
R =

(ν2 + 3)

8πl2
(r+ − r−), (3.10)

TL = β−1
L =

(ν2 + 3)

8πl2

(

r+ + r− − 1

ν

√

(ν2 + 3)r−r+

)

. (3.11)

The entropy is given by

SBH =
8πν3

(20ν2 − 3)G

(

r+ − 1

2ν

√

(ν2 + 3)r−r+

)

, (3.12)

and reads, in terms of the charges (3.6)–(3.7),

SBH =
4πlν

(ν2 + 3)

(

M+
√

M2 − kJ
)

, (3.13)

where k = 4ν(3 + ν2)/(Gl(20ν2 − 3)). This way of writing the entropy will be important

for our purpose.

4 Asymptotic symmetries

4.1 Asymptotic isometry algebra

In this section, we will study the notion of asymptotically WAdS3 spaces. To do this, first

we choose as a background metric, g, the solution (3.4) with r+ = 0 = r−; and then we

impose the same boundary conditions as in [17], namely1

gtt = l2 +O(r−1) gtr = O(r−2), gtϕ = l2νr +O(1), (4.1)

grr =
l2

(ν2 + 3)r2
+O(r−3), grϕ = O(r−1), gϕϕ =

3

4
r2l2(ν2 − 1) +O(r),

1In WAdS3 spaces, other sets of boundary conditions have been considered; see for instance [18, 19]. It

would be interesting to investigate other definitions of boundary conditions in the context of NMG as well.
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which include in particular the black hole solutions (3.4). The set of asymptotic diffeomor-

phisms allowed by these boundary conditions are

ℓn = (N1 einϕ +O(r−1))∂t + (−inreinϕ +O(1))∂r + (einϕ +O(r−2))∂ϕ,

tn = (N2 einϕ +O(r−1))∂t,
(4.2)

where n ∈ Z, and where N1, N2 are two arbitrary normalization constants. Indeed, acting

with ℓn, tn on a metric obeying (4.1) leads to a perturbation obeying the same falling-off

conditions.

The generators (4.2) satisfy the algebra

i[ℓm, ℓn] = (m− n)ℓm+n,

i[ℓm, tn] = −ntm+n,

i[tm, tn] = 0.

(4.3)

This is the semidirect sum of Witt algebra and the loop algebra of u(1).

4.2 Algebra of charges

In the covariant formalism [20, 21], conserved charges associated to an asymptotic Killing

vector ξ are given, in three spacetime dimensions, by the expression

δQξ[δg, g] =
1

16πG

∫ 2π

0

√−g ǫµνϕ kµνξ [δg, g]dϕ, (4.4)

with g a solution, δg a linearized metric perturbation around it, and kµνξ [δg, g] a one-form

potential of the linearized theory.

This potential depends of the theory considered and was computed for NMG in ref. [14]

for Killing vectors ξ using the so-called Abbott-Deser-Tekin formalism. The result takes

the form

kµνξ = Qµν
R +

1

2m2
Qµν

K , (4.5)

where the first contribution comes from the pure GR part of the equations of motion, while

Qµν
K = Qµν

R2
− 3

8Q
µν

R2 accounts for the contribution of the Kµν tensor. Explicit expressions

for Qµν
R , Qµν

R2 , and Qµν
R2

can be found in equations (13), (22) and (28) in [14], respectively.

As an example, the black hole mass and angular momentum (3.6)–(3.7) are obtained by

computing charges associated to the Killing vectors ∂t and ∂ϕ respectively.

In the case of asymptotic Killing vectors, the one-form potential to be considered

is given by kξ[δg, g] + kSξ [δg,Lξg], where the second term is a supplementary contribution

linear in the Killing equation and its derivatives. This term is at the origin of the difference

between the conserved charges in the Barnich-Brandt-Compère formalism [20, 21] and in

covariant phase space methods [22]. However, in most of the cases, this term does not

contribute to any charge. For instance, in the case of the WAdS black hole solution (3.4) and

with the asymptotic Killing vectors (4.2), this term has been shown to be of order O(r−1)

in Topologically Massive Gravity (TMG) [23]. A way to see that it will not contribute to

the asymptotic charge neither here is to notice that the piece coming from the Kµν tensor of

– 5 –
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NMG can only contain terms proportional to the second derivative of the Killing equation,

and therefore will be at most of order O(r−1), as it happens in TMG. The consistency of

the results confirms this a posteriori.

If we denote the charges differences between the black hole solution (3.4) and the

background g by Ln = Qℓn , Tn = Qtn , we find the following charge algebra2

i{Lm, Ln} = (m− n)Lm+n +
1

12
(cm3 + 6kN2

1m)δm+n,0,

i{Lm, Tn} = −nTm+n +
k

2
N1N2mδm+n,0,

i{Tm, Tn} =
k

2
N2

2mδm+n,0,

(4.6)

where

c = − 96lν3

G(20ν4 + 57ν2 − 9)
(4.7)

and

k =
4ν(3 + ν2)

Gl(20ν2 − 3)
. (4.8)

Algebra (4.6) is equivalent to the semidirect sum of Virasoro algebra with central

charge c and the affine û(1)k Kač-Moody algebra of level k.

Normalization N1 in (4.6) can be fixed by matching the asymptotic Killing vector ℓ0
with the vector ξ(2) in (3.9), which yields

N1 =
2lν

(ν2 + 3)
. (4.9)

Analogously, for t0 to match ξ(1) in (3.9), we fix N2 = 1 .

Defining the new generators

Pn ≡ Tn +
k

2
N1N2 , (4.10)

and realizing that c = −6kN2
1 , algebra (4.6) takes the familiar form

i{Lm, Ln} = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

i{Lm, Pn} = −nPm+n,

i{Pm, Pn} =
k

2
mδm+n,0.

(4.11)

Note that, the absolute value of (4.7) coincides with the value of the central charge

conjectured in [13], which leads to reproduce the entropy of WAdS3 black holes (3.4);

namely

S =
π2l

3
c(TR + TL). (4.12)

2Charges (4.4) are, indeed, finite and integrable on the black hole phase space. The finiteness of asymp-

totic charges of the most general configuration obeying the falling-off (4.1) is also guaranteed. About the

integrability of the most general configuration obeying the falling-off (4.1), proving this explicitly in the

case of NMG is remarkably involved due to the complexity of the covariant charges in this higher-derivative

theory.
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If ν/G > 0, then we find

c < 0 and k > 0. (4.13)

In the next section, we will discuss (4.13) in the context of the unitary highest-weight

representations of the algebra (4.11). However, let us mention here that, since L0 is not

bounded from below, one can freely reverse the sign of c by redefining the generators as

Ln → −L−n.

Before concluding this section, let us mention that the computation of asymptotic

charges can also be carried out in the case of timelike WAdS3 spaces. The algebra obtained

in that case is the same, with the central charge c and the level k given by

c =
48ℓ4ω3

G(19ℓ4ω4 + 17ℓ2ω2 − 2)
, k =

8ω(1 + ℓ2ω2)

G(19ℓ2ω2 − 2)
. (4.14)

respectively, where ω = ν/l and ω2ℓ2 + 2 = 3ℓ2/l2. As a consistency check of this result,

one can observe that the value of c tends to the AdS3 value cAdS = 3ℓ/(2G)(1+1/(2m2ℓ2))

in the limit ω2ℓ2 = 1.

4.3 Unitary highest-weight representations

Algebra (4.6) admits a simple automorphism, given by the spectral flow transformation

Pn → P̃n = Pn + p0δn,0, (4.15)

with p0 being an arbitrary complex number. This one-parameter transformation, which

in the case of û(1)k algebra merely amounts to shift the zero-mode of Pn, has to be taken

into account when building up the highest-weight representations.

We can now play the standard game and promote charges Ln and Pn to the rank of

operators acting on a vector space whose elements are represented by quantum states |v〉.
This amounts to replace the Poisson brackets in (4.11) by commutators, namely i{, } → [, ].

In addition, for these operators we have the hermiticity relations

P †
n = P−n, L†

n = L−n. (4.16)

Our informal style prevents us from using hats.

Since, in particular, [L0, P̃0] = 0, then one can construct the highest-weight representa-

tions starting with the primary states |v〉 = |h, p, p0〉, labeled by three complex parameters

h, p, p0 corresponding to the eigenvalues

L0|h, p, p0〉 = h |h, p, p0〉, P̃0|h, p, p0〉 = p |h, p, p0〉, (4.17)

and imposing

Ln|h, p, p0〉 = 0, P̃n|h, p, p0〉 = 0, ∀n > 0 (4.18)

where p0 refers to which spectrally flowed sector the state corresponds to. For instance,

the state of the p0 = 0 sector obeys P0|h, p, 0〉 = p|h, p, 0〉 and P̃0|h, p, 0〉 = (p+ p0)|h, p, 0〉,
where P̃0 is defined as in (4.15). This invites to identify states |h, p − p0, 0〉 with states

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
9

|h, p, p0〉 for all p0. This seems trivial in the case of û(1)k affine algebra, but spectral flow

acts in a non-trivial way on algebras such as ŝu(2)k or ŝl(2)k, of which û(1)k is a subalgebra,

mapping in the former cases Kač-Moody primary states to descendents and, in the case

ŝl(2)k, generating new representations.

Descendent states are then defined by acting on primaries |h, p, p0〉 with arrays of

positive modes P−n and L−n with n ≥ 0.

Unitarity constraints are derived from algebra (4.11) in the usual way. In particular,

this yields the conditions on c and k, together with the dimension h and momentum p0
of the states. More precisely, demanding ‖L−1|h, p, p0〉‖2 ≥ 0 yields h ≥ 0; analogously,

‖P0|h, p, p0〉‖2 ≥ 0 implies p ∈ R. Spectral flow symmetry (4.15) also implies p0 ∈ R. On

the other hand, positivity of ‖L−n|h, p, p0〉‖2 (for large n) and ‖P−1|h, p, p0〉‖2 yields

c > 0 and k ≥ 0, (4.19)

respectively. These conditions seem to be in contradiction with (4.13). A priori, this may

seen puzzling; however, this is not a problem at this point because L0 is not bounded

from below.3 Instead, the Virasoro operators associated to the black hole spectrum ((4.20)

and (4.23) below) will be bounded from below and have positive central charges (see (4.27)

below). To see this, let us first define

L−
n ≡ 1

k

∑

m

: P−n−mPm :, (4.20)

where : : stands for normal ordering. Operators L−
n obey Virasoro algebra4 with c− = 1;

namely

[L−
m, L−

n ] = (m− n)L−
m+n +

1

12
m(m2 − 1)δm+n,0, (4.21)

and satisfy

[L−
m, Pn] = −nP−m+n. (4.22)

This is nothing but the Sugawara construction in the case of û(1)k; see also [25].

Secondly, we define operators

L+
n ≡ L−

n − L−n, (4.23)

which also generate a Virasoro algebra.

Notice from (4.11) and (4.22) that operators L+
n commute with Pm and, consequently,

one finds two commuting Virasoro algebras; namely

[L+
n , L

−
m] = 0. (4.24)

3Here, it is probably convenient to be reminded that Virasoro algebra is invariant under the inversion

Ln → −L
−n and c → −c; see (4.23).

4Notice also that if one applies spectral flow transformation (4.15), one verifies that the zero mode

changes as follows L−

0
→ L

−

0
− 2p0

k
P

2

0 −
p2
0

k
.
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In addition, unlike what happens with Virasoro algebra generated by Ln, operators

L±
n evaluated on the black hole spectrum turn out to be bounded from below. To see this

explicitly, notice that the energy spectrum L±
0 is given by

h+ =
1

k
M2 − J − c

24
, h− =

1

k
(M+ kN1/2)

2, (4.25)

where h± refer to the eigenvalue of L±
0 , and where we have used that c = −6kN2

1 . On the

other hand, from (3.8) we observe that the black hole spectrum is such that both L+
0 and

L−
0 are bounded from below. In fact, from (3.8) we have

M2

k
− J =

ν2k

16
(r+ − r−)

2 ≥ 0, (4.26)

which implies the bounds

L±
0 ≥ − c

24
. (4.27)

In the next subsection we will see how the microstates representing black hole configu-

rations (3.4) seem to organize themselves in representations of Virasoro algebras generated

by L±
n . Strong evidence of that is the CFT2 rederivation of the black hole entropy (3.12).

5 WCFT2 and microscopic entropy

In ref. [8], a Cardy type formula for WCFT has been proposed. This formula is supposed

to give the asymptotic growth of states in the dual theory, which would lack of full Lorentz

invariance. We will describe below how such a formula actually comes from the two Virasoro

algebras generated by L±
n .

Following [8], we first shift the Virasoro operator L+
0 as follows

L+
0 → L̃+

0 = L+
0 +

c

24
, (5.1)

and perform the spectral flow operation

P0 → P̃0 = P0 −
kN1

2
. (5.2)

Notice that performing (5.1) and (5.2) corresponds to having chosen in (4.2) the gauge

N1 = 0; this is exactly what is done in [8] (see (77) therein, cf. (14), (19) and (20) in [24]).

Physically, it corresponds to associate the zero-energy state L̃±
0 = 0 to the zero-mass black

hole M = J = 0.

Now, we are ready to show how the Cardy formula associated to the new Virasoro

operators (5.1) and (5.2) actually reproduces the black hole entropy. First, we write the

standard CFT Cardy formula

SCFT = 2π

√

−4L̃
−(vac)
0 L̃−

0 + 2π

√

−4L̃
+(vac)
0 L̃+

0 , (5.3)

where L̃
±(vac)
0 correspond to the minimum values of L̃±

0 , i.e. the value of the vacuum

geometry. It is important to remark that the way of writing Cardy formula in (5.3) admits

– 9 –
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the possibility of the spectrum of L̃±
0 to exhibit a gap with respect to the value −c±/24.

More precisely, it takes into account that in theories with such a gap, the saddle point

approximation involved in the derivation of the Cardy formula yields an effective central

charge ceff given by ceff/6 = −4L
(vac)
0 .

Recalling that L̃−
0 = P̃ 2

0 /k, formula (5.3) reads

SWCFT =
4πi

k
P̃

(vac)
0 P̃0 + 4π

√

−L̃
+(vac)
0 L̃+

0 . (5.4)

In turn, the only remaining ingredient needed to apply this formula is to find out which

is the right vacuum geometry. Because the theory is parity even, we naturally expect the

vacuum geometry to be5 J (vac) = 0; that is to say,

P̃
(vac)
0 = M(vac), L̃

+(vac)
0 =

1

k
(M(vac))2. (5.5)

This yields

SCFT =
4πi

k
M(vac)(M+

√

M2 − kJ ). (5.6)

And, indeed, we verify that entropy (3.12) exactly matches formula (5.4) if one identifies

the vacuum geometry with the Gödel geometry (3.1); namely

M(vac) = iMGöd = −i
4ℓ2ω2

G(19ℓ2ω2 − 2)
. (5.7)

The identification of timelike WAdS3 (5.7) spacetime as the vacuum geometry of the

spacelike WAdS3 black hole spectrum is something that had been observed in [8] for the

case of TMG and String Theory. Here we obtain the similar result for the case of NMG. It

is natural, on the other hand, that the vacuum geometry preserves the full SL(2,R)×U(1).

Therefore, we have shown that

SBH = SCFT. (5.8)

6 Conclusions

In this paper, we have computed the asymptotic symmetry algebra corresponding to

Warped Anti-de Sitter (WAdS) spaces of three-dimensional New Massive Gravity (NMG).

We have shown that this is given by the semi-direct sum of one Virasoro algebra (with

non-vanishing central charge) and one affine û(1)k Kač-Moody algebra. We have identified

the precise Virasoro generators that organize the states associated to the WAdS3 black

hole configurations, which led us to rederive the WCFT entropy formula (5.4). Our result

then can be thought of as a consistency check supporting the WCFT proposal of ref. [8].

By applying the WCFT entropy formula, we have proved that the microscopic com-

putation in the dual WCFT exactly reproduces the entropy of the WAdS3 black holes.

Essential ingredients for the matching (5.8) to hold are: a) The definition of Virasoro al-

gebras generated by L̃±
n as in (4.20) and (4.23) with (5.1) and (5.2), b) the choice N1 = 0

5This is different from the case of TMG.
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in (4.2) that induces the shifting (5.1)–(5.2), c) the identification of the vacuum geometry

of the black hole spectrum as in (5.7). These ingredients agree with the recipe proposed

in [8] for the cases of Topologically Massive Gravity and String Theory.

As further directions, we can mention some open questions that deserve to be studied

further: i) The first one is whether new conformal structures appear for different sets of

asymptotic boundary conditions. It is well known that the properties of the boundary

theory depend on the different asymptotic behavior of the fields at infinity. Therefore,

the question arises as to whether asymptotically WAdS3 boundary conditions exist such

that, while being sufficiently restrictive for the dual theory not to have negative-norm

excitations, they still allow for a rich space of solutions in the bulk. Different proposals for

WAdS3 asymptotics were proposed in the literature [18, 19] and it would be interesting to

investigate their dynamical implications. ii) Another interesting future direction is to study

the applications of WAdS3/WCFT2 to Kerr4/CFT2 correspondence. In Kerr/CFT in four

(and higher) dimensions, the so-called Near Horizon Extremal Kerr (NHEK) geometry is

closely related to the WAdS3 spaces studied here [1, 6], and, therefore, the application

of the holographic ideas developed for WAdS3/WCFT2 to the more realistic case of four-

dimensional spinning black holes is of principal interest.
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[11] M. Bañados, G. Barnich, G. Compère and A. Gomberoff, Three dimensional origin of Godel

spacetimes and black holes, Phys. Rev. D 73 (2006) 044006 [hep-th/0512105] [INSPIRE].

[12] L. Donnay, J.J. Fernández-Melgarejo, G. Giribet, A. Goya and E. Lavia, Conserved charges

in timelike warped AdS3 spaces, Phys. Rev. D 91 (2015) 125006 [arXiv:1504.05212]

[INSPIRE].

[13] G. Giribet and A. Goya, The Brown-York mass of black holes in Warped Anti-de Sitter

space, JHEP 03 (2013) 130 [arXiv:1212.2100] [INSPIRE].

[14] S. Nam, J.-D. Park and S.-H. Yi, Mass and Angular momentum of Black Holes in New

Massive Gravity, Phys. Rev. D 82 (2010) 124049 [arXiv:1009.1962] [INSPIRE].
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