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Abstract. We present a tree–code for integrating the
equations of the motion of collisionless systems, which
has been fully parallelized and adapted to run in several
PC–based processors simultaneously, using the well–
known PVM message passing library software. SPH
algorithms, not yet included, may be easily incorporated
to the code. The code is written in ANSI C; it can be
freely downloaded from a public ftp site. Simulations
of collisions of galaxies are presented, with which the
performance of the code is tested.
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1. Introduction and motivations

In recent years, personal computers (PCs) became very ef-
ficient computational devices. Processors of the last gen-
eration PCs can rival nowadays with those of the more
traditional workstations, with the additional advantage of
being cheaper. As a consequence, clusters of PCs with
their processors connected in parallel turn out to be a rel-
atively economical way to reach a very high performance
of computation. (In particular, this becomes the only ac-
cessible tool in those places with limited access to compu-
tational resources). Obviously, such a parallel arrangement
is not suitable to the running of a classic sequential code;
thus, from the appearance of clusters of PCs has arisen
the necessity of developing strategies for programming in
parallel.

Besides this, it is well known that discretization prob-
lems arise when simulating a large system such as a typical
galaxy (' 1011 stars) with sets of 104 or even 105 parti-
cles, see for example Hernquist & Barnes (1990): whereas
a typical star moves within a smooth potential in a real
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galaxy, a typical particle suffers multiple collisions dur-
ing the simulation, thus resulting in spurious relaxation
effects. Thus, a large number of particles is needed in or-
der to properly simulate such systems. As the number of
particles grows, so does the computational time involved,
and fast machines and efficient algorithms become vital.
Clusters of PCs and parallel algorithms come to satisfy
these needs.

The paper is organized as follows: Sect. 2 describes
the sequential features of the code, whereas Sect. 3 deals
with those aspects concerning parallel programming.
Some tests and simulations are presented in Sect. 4. The
conclusions are considered in Sect. 5.

2. Description of the code

We have adopted the basic algorithm of the tree code de-
scribed by Barnes & Hut (1986, 1989), Hernquist (1987),
and Barnes (1995).

2.1. Computing accelerations

The first step in computing the acceleration of a parti-
cle in a tree code is the construction of the tree struc-
ture. Following the foregoing authors, we have adopted
the octal–tree scheme. The construction itself begins iden-
tifying the largest cell (the root) of the tree with a cube
containing the entire system of particles. This cell is sub-
divided into eight equal subcells; these subcells are in turn
recursively subdivided into eight cells each, and so on un-
til the ending cells (the leaves) contain either one or none
particles.

Next, total masses, center of mass coordinates, critical
radii, and quadrupole moments are calculated for each cell
by recursively descending the tree. A fundamental aspect
in this phase is the use of the so–called “parallel axis the-
orem” (Hernquist 1987), which allows the computation of
quadrupole moments in a recursive way.
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The last step in computing the acceleration of a par-
ticle starts traversing the tree from root to leaves. A cell
will contribute as a whole to this acceleration if it is far
enough from the particle. Otherwise, the cell is discarded
and the proccess is repeated with its children. The walk
ends when all subdivided cells contain either one or zero
particles. To decide whether or not a cell must be sub-
divided, a multipole acceptance criterion (MAC) is used
(Salmon & Warren 1994). The original MAC (Barnes &
Hut 1986) is based on the aperture angle θ, i.e. the ra-
tio between the size of the cell and its distance from the
particle being accelerated: a cell is subdivided whenever
θ is greater than certain threshold. We have incorporated
in our code the three MACs commonly in use: the origi-
nal proposed by Barnes & Hut (1986), the bmax criterion
(Salmon & Warren 1994), and the modified Barnes crite-
rion (Barnes 1994).

2.2. Time integration

On most tree codes, the second–order symplectic leap–frog
algorithm is the common choice for integrating the equa-
tions of motion. However, we have also tried other meth-
ods, namely symplectic integrators of fourth and sixth
order e.g., Kinoshita et al. (1991), by integrating an
N–body system modelling a King’s sphere (King 1966;
Binney & Tremaine 1987) with N = 10000 particles and
central relative potential W0 = 5. No better conservation
of the energy nor angular momentum was achieved when
using the latter integrators. Moreover, for each integra-
tion step, the acceleration had to be computed several
more times than with the leap–frog. Thus, no advantage
was observed in raising the order of the integrator. In ad-
dition, the leap–frog is very simple to code and does not
require large amounts of memory, as other methods do.

3. Description of the parallelized code

A computational problem is traditionally solved step by
step, by means of a unique processor; we say in this case
that the problem is solved sequentially. In contrast, when a
set of processors are connected (e.g., through a network)
in order to solve a problem collectively, we talk about
distributed or parallel computation. The development of
a program which operates under distributed computation
comprise three basic steps.

The first one consists in examining minutely the prob-
lem at hand, searching for and separating those (generally
small) parts suitable for simultaneous processing. The spe-
cific way this is worked out is intimately related not only
to the physical problem to be solved, but also to the kind
of numerical algorithms to be used. In the case of an N–
body problem, the splitting may be made quite simply.
Each processor is given the data of the entire set of par-
ticles, so they can each generate the whole tree structure.

However, each processor computes the accelerations and
updates the positions and velocities of only a subset of
particles. At the end of each time–step, the processors
interchange information, receive the new data of all the
particles, construct the new tree structure, and continue
the integration of the fresh set of particles each one was
assigned to work with. This way of parallelization may
not seem optimal (in fact, it is not); however, the CPU
time wasted generating a new whole tree is a small frac-
tion of the CPU time invested in the computation of the
accelerations. For example, for N = 100 000, this frac-
tion is approximately 1/120. It is worth to note that, if a
leap–frog integration algorithm is used, the time needed
for updating the positions and velocities is also negligible
with respect to the computation of the accelerations.

Besides that, the environment in which our proces-
sors work does not conform an ideal situation, indeed: a
few PC–ix86’s, not dedicated exclusively to the integra-
tion, and connected by a 10 Mbits/s ethernet net shared
with more than 100 other PCs. Therefore, the load over
each machine shifts continuously. Unfortunately, there is
no easy way to improve the distribution of tasks under
such circumstances; refined algorithms trying to balance
the load based solely on the dynamics of the problem will
not benefit the overall performance. However, to get the
best, our program does a dynamical balancing of the dis-
tribution of particles based on the actual load of each pro-
cessor, trying to reach an even distribution of real times
(as opposed to CPU times) on each one.

The second step in developing a parallel program is the
choice of the programming methodology, which in turn
determines the logical structure of the program. There
are two basic models: the master–slave and the fork–join
schemes (Geist et al. 1994). In the first one, a master pro-
gram supervises the running of a group of slave programs,
controlling also their interchange of information; the slaves
do the actual computation. Thus, two essentially distinct
programs must be maintained. On the other hand, the
fork–join scheme makes use of a unique program, repli-
cated on each processor. Depending on how it was first
called, this program acts as a parent program on one of
the processors, or as a child in the others. The children
receive data from the parent and compute; the parent not
only distributes tasks, but may also compute if desired.
We have chosen the latter alternative, mainly because it
allows to maintain and upgrade the software more effi-
ciently than with the former method.

The third step is to select the tool with which the pro-
cessors will comunicate themselves. Up to now, there are
two paradigms: the Parallel Virtual Machine (PVM), and
the Message Passing Interface (MPI) (Geist et al. 1996).
Although the MPI is recognized as a future standard, at
the time our program started to be assembled there were
several versions of it at hand, differing appreciably with re-
spect to installation procedures and operation. The PVM,
on the other hand, had a unique version, permanently
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mantained and upgraded until now. Moreover, its oper-
ation is simple and flexible, allowing a more comfortable
implementation and use. Thus the PVM was our choice.

3.1. Implementation details

Here we describe the logical structure of our program poct-
grav, pointing out those aspects concerning the parallel
features.

When running over one processor only, poctgrav works
fine as a normal sequential program. However, the PVM
sofware must be installed properly even in this case for
the program to run, because the user might want to add
other processors later.

When running over more than one processor, poctgrav
is launched from one of them: the mainhost. This task,
having contacted the PVM daemon, learns it is the par-
ent. Once the parent is running, the PVM searches for the
presence of any other processor requested by the parent,
and launches on each of them a previously stored copy of
poctgrav, i.e., the children. Should a processor fail to be
contacted at this starting phase, the PVM sends a warning
and everything is stopped. Next, each child communicates
with its local PVM daemon to recognize whether it is the
parent or a child (learning, of course, they are children).
Thus, every task knows whether it has to give orders or
it has to wait and execute orders. Once the integration
has begun, the failure of a processor other than the par-
ent (e.g., a machine breaks down), does not stop the pro-
gram. Instead, poctgrav resumes execution from the last
time step, taking into account which child was lost.

The following is a pseudo–code skeleton of the main
loop of the program.

int main(int argc, char* argv[])
{
/*——Initialisation————*/

/* Contact the local PVM (mytid is an
internal variable) */

mytid=pvm mytid();

/* Stop if the PVM is not running */
if(mytid< 0)return -1;

/* Learn whether it is the parent
(mygid= 0) or a child (mygid> 0).
The string GROUPNAME is defined by
poctgrav, and it is the same for
all the tasks involved. */

mygid=pvm joingroup(GROUPNAME);

/* if this task is the parent */
if(mygid==0){

/* Read control parameters for the

simulation. Also, instruct the
task whether it is a parallel
run and which processors will
be its children. */

read params();

/* Verify that a PVM daemon is alive
in each host. Start any which
is not. Then start children
processes. */

activate hosts and task();

/* Read initial conditions. */
read bodies();

/* If in parallel mode, transmit
data to the children. */

if(childrenactive){
/* control parameters */
send params();
/* initial conditions */
send bodies();
}
}
/* if this task is a child */
else{

/* receive control parameters */
receive params();
/* receive initial conditions */
receive bodies();
}
/*——-End initialisation——–*/
/*——-Begin integration———*/
/*—of the equations of motion—*/

/* Create and go over the tree;
compute potential and accel.
only for particles assigned to
this processor. */

calculate phi();

/* If operating in parallel mode,
interchange data */

if(childrenactive){

/* if parent... */
if(mygid==0)

/* ...collect information. */
receive bodies();

/* If child... */
else

/* ...send information.
send bodies();

}
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/* Print data */
if(mygid==0) print statistic();

/* Do the actual integration */
leapfrog();
}

The leapfrog routine deserves a little more inspection:

int leapfrog()
{
time=initialtime;
/* Procceed until integration is

complete */
while(time<=finaltime){

/* Update positions and velocities.
If in parallel mode, do it
only for the local particles. */

new vel(deltatime/2);
new pos(deltatime);

/* Each processor needs to know
the new coordinates of all the
particles,in order to update
its own tree */

if(childrenactive){
/* The parent... */
if(mygid==0){

/* ...receives lists from
each child, */

receive bodies(); */
/* and sends the complete list

to every child. */
send bodies();
/* Here is where bodies are

distributed according to
the actual load on each
processor. */

}
/* Each child... */
else{

/* ...sends its list to the
parent, */
send bodies();
/* and receives the complete
list. */
receive bodies();
}
}

/* Rebuild the tree, and compute
potential and acceleration for
the local particles */

calculate phi();

/* Synchronize positions and
velocities. The parent does all
the statistics, so interchange
information for this purpose */

new vel(deltatime/2);
if(childrenactive){

if(mygid==0)
receive bodies();

else
send bodies();

}

/* Print statistics and
update time */

if(mygid==0) print statistic();
time+=deltatime;
}
}

4. Simulations

4.1. Performance of the code

It is a common practice to test a new N–body code by
integrating the equations of motion of a simple system
of particles known to be in a steady state, and studying
such things as relaxation effects and conservation laws.
Thus, we set up several N–body systems following King’s
phase–space distribution function. We set the central den-
sity parameter W0 = 5 in all cases. The units were chosen
so that the total mass M = 1, the dispersion parameter
σ = 0.762, and the gravitational constant G = 1; with this
set of units, the total energy of the system is E = −1/2,
and the global dynamical time tD = 1, so we are able
to compare our results with those of Hernquist & Barnes
(1990) and Huang et al. (1993). Only three runs are com-
mented here, namely those with N = 4096, N = 15000,
and N = 100000.

All the runs lasted 10 dynamical times. In particular,
we ran the N = 105 model over seven PCs, with the fol-
lowing processors: four Pentium/166 MHz, one Pentium
Pro/200 MHz, one Pentium II/233 MHz and one Pentium
II/266 MHz. To compute the CPU time demanded by
the whole integration, we took the maximum among the
CPU times of the processors in each cycle of integration,
and summed up all these maxima to get the total. (If
the program were perfectly balanced, all processors would
finish simultaneously their respective tasks in each cy-
cle; unfortunately, this could not be accomplished at all
times, mainly due to the fact that our machines were not
entirely dedicated to the integration. However, the per-
formance was always near the ideal, since the program
continually compensates the different third–party loads of
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Table 1. CPU times used to integrate King’s spheres, in hours

N θ ∆t PII 266 HP 735 HP 735 (H)

4626 1.0 0.0039 1.0 1.9 1.9
4626 0.1 0.0034 11.8 22.0 32.1

15238 1.0 0.0063 2.7 5.0 9.4

Fig. 1. Standard deviation of relative particle energies σ vs.
time, for different number of particles. The straight lines have
a slope of 0.5

the machines by redistributing adequately the number of
particles assigned to each processor.) The integration of
the ten dynamical times of the N = 105 run consumed
9.5 hours of CPU; it involved 1000 time steps (100 time
steps per dynamical time).

Table 1 compares the speed of our code with that
used by Hultman & Källander (1997). In all these experi-
ments, only one processor was used. The fourth and fifth
columns give the CPU times when using a Pentium II–266
MHz processor running a Linux operating system, and a
HP 735 Workstation, respectively. The last column shows
the times reported by Hultman & Källander (1997), whose
code was also run on a HP 735 Workstation. The (fixed)
time steps in our simulations (third column) were equal
to the shortest individual time steps of the experiments of
Hultman & Källander (1997). We can see that, despite this
last disadvantage, the performance of our code increases
with N , and with decreasing θ. This is probably due to a
better run over the tree when computing accelerations.

In these preliminary simulations, all the standard tests
were satisfactory (e.g., energy was conserved better than
3 10−4 in all cases). However, a test we found not to agree
with previous results (Hernquist & Barnes 1990; Hultman
& Källander 1997). This can be seen in Fig. 1, which shows
the temporal behaviour of the standard deviation σ of rel-
ative particle energies

Ei =
Efi −E0i

E0i
, (1)

where Efi and E0i are the final and initial energies of par-
ticle i, respectively. If the changes in energy were driven
merely by a random walk diffusion process, the slope of
log σ vs. log t would be 0.5 (Hernquist & Barnes 1990;
Hultman & Källander 1997). However, as can be seen from
the figure, the slope depends on the number of particles
N , so relaxation is playing a role aside the diffusion due to
the random accelerations. No dependence on the aperture
angle θ or the time step ∆t was found.

4.2. Colliding galaxies

Taking advantage of the speed of computation, we set up
a pair of experiments in which two galaxies collide one
another.

The first experiment was built with the aim of repro-
ducing the Antennæ (NGC 4038/4039), a classical model
to simulate since the pioneer work of Toomre & Toomre
(1972). We therefore needed a model for spiral galaxies
which remains stable at least during one dynamical time
tD, i.e., a period which suffices to obtain only those fea-
tures caused by the collision, and not those caused by in-
trinsic evolution. To this end, we first followed Hernquist’s
(1993) recipe for building compound galaxies. However,
this model proved not to be sufficiently stable to our ex-
periment: when isolated, it evolves significantly well be-
fore the time at which the collision would begin. In most
of our runs, a χ2 test of this model yields P (χ2) ' 1 at
only t ' 0.2tD.

Therefore, we shifted to Barnes’ (1992) model of com-
pound galaxy. We used an exponential disc with Nd =
3072 particles, mass Md = 0.1875, radial scaleRd = 0.083,
vertical scale z0 = 0.005, and radial and vertical velocity
dispersions in the ratio σR/σz = 2. For the bulge, we set
up a King’s sphere with Nb = 1024 particles, central po-
tential W0 = 3, total mass Mb = 0.0625, and the scale of
velocities σ = 1. Finally, for the halo, we used a similar
King’s sphere but with Nh = 16384 particles, and total
mass Mb = 4. Thus, the halo, disc and bulge masses are
in the relation 16:3:1, respectively, and their total mass is
Mt = 4.5. Fortunately, this compound galaxy proved to
be stable at least during 1.75tD.

Once obtained a satisfactory model for the galaxy, we
set up the initial conditions for the encounter leading to
the Antennæ. We built a galaxy with 20480 particles as
before, replicated it, and put both copies on the apocenter
of a binary elliptical orbit with eccentricity e = 0.5 and
pericentric distance rp = 0.5, with the standard Antennæ
inclinations for their angular momenta e.g., Barnes (1988).
We set the softening parameter ε = 0.015, the tree aper-
ture angle θ = 0.7, and a time step of ∆ = 10−3. Figure 2
shows the initial conditions (t = 0) and the snapshot for
which the experiment best resembles the sky–view of NGC
4038/39 (t = 2.9tD). This simulation was run over six PCs
(all the abovementioned machines, except one of those
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Fig. 2. Model of NGC 4038/39, the Antennæ. Top: initial configuration of the experiment. Bottom: intermediate (t = 2.9) state.
The time and orientation were chosen in order to show the Antennæ as seen in the sky
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Fig. 3. Model of the Cartwheel galaxy

with the Pentium 166 MHz processor). The final time
t = 3.38tD was achieved after 5.47 hours of CPU time. In
terms of speed of the code (Dubinsky 1996), i.e., the num-
ber of particles which could be evaluated per second, this
simulation attained 2078 particles/s. (We disagree with
the nomenclature here, because this is not really a mea-
sure of the speed of the code itself, but it depends on the
number of processors involved. If we divide the speed of
the code by the number of processors, we get for our code
346 particles per second per processor; Dubinski’s (1996)
example, as a comparison, attains 375 particles per second
per processor when using 16 processors.)

As a second simulation, we built up a King sphere with
W0 = 12, total mass M = 2, King radius r0 = 10−3, and
N = 512, and threw it against one of the above (initial)
compound galaxies, with N = 6144, in order to simulate
the Cartwheel galaxy. The King’s sphere was initially at
10 units away from the galaxy, i.e. at the outskirts of the
halo. The relative velocity was V = 2 units, along the
symmetry axis of the compound galaxy. Before choosing
these parameters, a series of toy experiments with differ-
ent masses, distances and velocities were run in order to
achieve a good resemblance to the Cartwheel.

Figure 3 shows the final outcome of the simulation,
from a point of view similar to that of the Earth. The ex-
periment was run on one Pentium Pro/200 MHz and one
Pentium II/266 MHz, and required 7.56 hours of CPU.

5. Conclusions

We have developed a PC–based parallel tree code, power-
ful and easy to use. It requires only the message passing
library PVM installed, and a ANSI C compiler. The struc-
ture of the code was kept as simple as possible. Its power

lies not only in its easy implementation and modularity
—which allows the incorporation of, e.g., SPH–like hydro-
dynamics, but, more important, in that it was designed to
work fine under hard conditions, i.e., on non–dedicated
machines and through non–dedicated nets.

Thus, our program is able to determine the number
of particles each processor should integrate based on its
actual load. The differing loads may be due either to the
features of the system being integrated, or, in the case
of non–dedicated processors, to the sharing of CPU time
with other processes. Thus, this optimization is of utmost
importance for those places which cannot afford dedicated
machines.

The program was tested by performing a number
of standard experiments and simulations of collisions
of galaxies, yielding satisfactory results in all cases.
The complete ANSI C code, as well as an animation of
the Antennæ experiment, is freely available via anony-
mous ftp to ftp.fcaglp.unlp.edu.ar in the subdirectory
/pub/hviturro/poctgrav.
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