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Abstract: We prove the generalized Covariant Entropy Bound, ∆S ≤ (A−A′)/4G~,

for light-sheets with initial area A and final area A′. The entropy ∆S is defined as a

difference of von Neumann entropies of an arbitrary state and the vacuum, with both

states restricted to the light-sheet under consideration. The proof applies to free fields,

in the limit where gravitational backreaction is small. We do not assume the null energy

condition. In regions where it is violated, we find that the bound is protected by the

defining property of light-sheets: that their null generators are nowhere expanding.
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1 Introduction

The study of black hole thermodynamics has led to some interesting entropy bounds

that should be obeyed for the consistency of the theory. The simplest one is the

Bekenstein bound, which does not involve Newton’s constant [1]. This bound, when

properly formulated, [2] (see also [3]), is a simple consequence of relativistic quantum

field theory.

A different kind of bound involves bounding entropies by areas in Planck units.

These bounds are inspired by the black hole entropy formula. The most general bound

of this type is the Bousso bound [4] or Covariant Entropy Bound. It can be applied not

only to matter crossing black hole horizons, but also to rapidly expanding or collaps-

ing regions that cannot be converted to black holes. Thus it transcends the original

motivation from black hole thermodynamics.1

The Covariant Entropy Bound states that the entropy ∆S on a light-sheet cannot

exceed its initial area A:
A

4G~
≥ ∆S , (1.1)

1A key motivation was the holographic principle [5, 6]. Fischler and Susskind [7] pioneered the

search for a holographic entropy bound in cosmology.
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A light-sheet is a null hypersurface whose cross-sectional area is decreasing or staying

constant, in the direction away from A.

A light-sheet can be constructed by starting with any surface A,2 in any spacetime.

There are four orthogonal null directions, past- and future-directed to either side of A.

A light-sheet is generated by null geodesics that have nonpositive expansion, θ ≤ 0,

away from A. This is a local condition and it is required to hold at every point on

the light-sheet. When it breaks down, e.g. at caustics where neighboring generators

intersect, the corresponding generator must be terminated. If A has more than one

light-sheet, the bound can be applied to each individually.

If any generators are terminated before a caustic is reached, then the cross-sectional

area A′ of the endpoints of the light-sheet will not vanish. In this case the conjecture

can be strengthened [8]:
∆A

4G~
≥ ∆S . (1.2)

The difference between the initial and final area, ∆A = A−A′, is nonnegative because

the expansion θ ≤ 0 is the logarithmic derivative of the area transverse to the null

generators, with respect to an affine parameter that increases away from A [9].

Fundamentally, the Covariant Entropy Bound is a conjecture. It might capture

aspects of how spacetime and matter arise from a more fundamental theory [10, 11]. A

general proof may not become available until such a theory is found. Nevertheless, it

is of interest to prove the bound at least in certain regimes, or subject to assumptions

that hold in a large class of examples.

In this spirit, the bound (1.2) has been shown to hold in settings where the entropy

∆S can be approximated hydrodynamically, as the integral of an entropy flux over the

light-sheet; and where suitable relations constrain the entropy and energy fluxes [8, 12].

These assumptions apply to a large class of spacetimes, such as cosmology or the

gravitational collapse of a star. Thus they establish the broad validity of the bound.

But the underlying assumptions have no fundamental status, for two reasons that we

will now describe.

Unlike the stress tensor, entropy is not local, so the hydrodynamic approximation

breaks down if the light-sheet is shorter than the modes that dominate the entropy. In

this regime, it is not clear how to define the entropy at all. Consider a single photon

wavepacket with a Gaussian profile propagating through otherwise empty flat space. In

order to obtain the tightest bound, we may take the light-sheet to have initially vanish-

ing expansion. ∆A is easily computed from the stress tensor and Einstein’s equations.

For a finite light-sheet that captures all but the exponential tails of the wavepacket,

2A must be spacelike and of codimension two in the spacetime. It need not be closed. We use A

to denote both the surface and its area.
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one finds that the packet focuses the geodesics just enough to lose about one Planck

area, ∆A/G~ ∼ O(1) [13]. For smaller light-sheets, ∆A tends to 0 quadratically with

the affine length. For larger light-sheets, ∆A can grow without bound. To check if the

bound is satisfied for all choices of light-sheet, one would need a formula for the entropy

on any finite light-sheet. Globally, the entropy is log n ∼ O(1), where n is the number

of polarization states. Intuitively this should also be the answer when nearly all of the

wavepacket is captured on the light-sheet, but how can this be quantified? (In field

theory, the entropy in a finite region would be dominated by vacuum entanglement

entropy across the initial and final surface, and hence largely unrelated to the photon.)

Worse, for short light-sheets, there is no intuitive notion of entropy at all. What is the

entropy of, say, a tenth of a wavepacket?3

A second limitation of the sufficient conditions identified in Refs. [8, 12] is that the

assumed inequalities between entropy and energy flux imply the null energy condition.

This condition on the stress tensor does not hold in all regions for all quantum states.

Hence, independently of the validity of the hydrodynamic limit, the sufficient conditions

of Refs. [8, 12] need not hold. An example of a region where the null energy condition is

violated is the horizon of an evaporating black hole. Indeed, it has been argued [14, 15]

that by critically illuminating a black hole so as to keep its horizon area constant,

an arbitrary amount of entropy can be passed through a light-sheet. This violates

the bound (1.1) only over a timescale on which quantum corrections to the geometry

become dominant. However, the stronger bound (1.2) becomes violated immediately,

and thus in a regime where the gravitational backreaction from both Hawking radiation

and infalling matter is small.

In this article we will address the above difficulties for the case that matter consists

of free fields, and in the limit of weak gravitational backreaction. We will provide a

sharp definition of the entropy on a finite light-sheet in terms of differences of von

Neumann entropies. Our definition does not rely on a hydrodynamic approximation.

It reduces to the expected entropy flux in obvious settings. Using this definition, we

will prove the covariant bound. We will not assume the null energy condition.

Outline In Sec. 2 we provide a definition of the entropy on a weakly focused light-

sheet. We define ∆S as the difference between the entropy of the matter state and the

entropy of the vacuum, as seen by the algebra of operators defined on the light-sheet.

The proof of the bound then has two steps. In Sec. 3, we note that ∆S ≤ ∆K,

where ∆K is the difference in expectation values for the vacuum modular Hamilto-

3Similar limitations apply to the Bekenstein bound [1], which can be recovered as a special case

of the generalized covariant bound in the weak-gravity limit [13]: precisely in the regime where the

bound becomes tight, one lacks a sharp definition of entropy.
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nian. This property holds for general quantum theories [2]. In Sec. 4, we show that

∆K ≤ ∆A/4G~. We first compute an explicit expression for the modular Hamilto-

nian, in Sec. 4.1. For general regions, the modular Hamiltonian is complicated and

non-local. However, the special properties of free fields on light-like surfaces enable

us to derive explicitly the modular Hamiltonian in terms of the stress tensor. The

expression is essentially the same as the result we would obtain for a null interval in

a 1+1 dimensional CFT. Finally, in Sec. 4.2, we use the Raychaudhuri equation to

compute the area difference ∆A. The area difference comes from two contributions:

focusing of light-rays by matter, and potentially, a strictly negative initial expansion.

Usually one may choose the initial expansion to vanish. If this choice is possible, it will

minimize ∆A and provide the tightest bound. However, if the null energy condition

is violated, it can become necessary to choose a negative initial expansion, in order to

keep the expansion nonpositive along the entire interval in question and evade prema-

ture termination of the light-sheet. We find that the two contributions together ensure

that ∆A/4G~ ≥ ∆K. Combining the two inequalities, we obtain the covariant bound,

∆A/4G~ ≥ ∆S.

In Sec. 5, we discuss possible generalizations of our result to the cases of interacting

fields and large backreaction. We comment on the relation of our work to Casini’s proof

of Bekenstein’s bound from the positivity of relative entropy [2], to Wall’s proof of the

generalized second law [16], and to an earlier proposal for incorporating quantum effects

in the Bousso bound [15].

In the Appendix, we prove monotonicity of ∆A/(4G~) − ∆S under inclusion, a

result stronger than that obtained in the main body of the paper.

2 Regulated Entropy ∆S

We will consider matter in asymptotically flat space, perturbatively in G. Since

Minkowski space is a good approximation to any spacetime at sufficiently short dis-

tances, our final result should apply in arbitrary spacetimes, if the transverse and

longitudinal size of the lightsheet is small compared to curvature invariants. For defi-

niteness, we work in 3+1 spacetime dimensions; the generalization to d+ 1 dimensions

is trivial.

At zeroth order in G, the metric is that of Minkowski space:

ds2 = −dx+dx− + dx2
⊥ , (2.1)

where dx2
⊥ = dy2 + dz2. Without loss of generality, we will consider a partial light-

sheet L that is a subset of the null hypersurface H given by x− = 0. Any such light-

sheet can be characterized by two piecewise continuous functions b(x⊥) and c(x⊥) with
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−∞ < b ≤ c < ∞ everywhere: L is the set of points that satisfy x− = 0, b < x+ < c.

See figure 1.

A

H

L

A’

x

x

λ=
+

b(x )

c(x )

(a) 

x

x

λ=
+

(b) 

Ai

A1

A2

Figure 1. The light-sheet L is a subset of the light-front x− = 0, consisting of points

with b(x⊥) ≤ x+ ≤ c(x⊥) (a). The light-sheet can be viewed as the disjoint union of small

transverse neighborhoods of its null generators (b).

We begin by giving an intrinsic definition of the vacuum state on H in free field

theory. The generator of a null translation x+ → x+ + a(x⊥) along H is given by

p+[a] =

∫
dx2
⊥

∫ ∞
−∞

dx+T++ a(x⊥) , (2.2)

where T++ = Tabk
akb and ka = ∂+ is the tangent vector to H. Given any choice of

a(x⊥), one can define a vacuum state |0〉a by the condition p+[a]|0〉a = 0.

In fact, all nowhere vanishing functions a(x⊥) define the same vacuum, |0〉H , be-

cause of the following important result [16]: there are neither interactions nor corre-

lations4 between different null generators of H. When restricted to H, the algebra of

observables A becomes ultralocal in the transverse direction. For any partition {Hi} of

4These statements hold for correlators that have at least one derivative along the plus direction

∂+φ. Correlators of φ with no derivatives are non-zero at spacelike distances. However, they do not

lead to well defined operators along the light front since we cannot control the UV divergences by

smearing it along the light front directions. For this reason we do not consider φ as part of the algebra

A(H). The canonical stress tensor component T++ ∝ (∂+φ)2 depends only on such derivatives of the

field in the null direction. For further details, see Ref. [16].
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the null generators of H, the algebra can be written as a tensor product

A(H) =
∏
i

A(Hi) . (2.3)

In the limit where the translation is localized to one ray, a(x′⊥) = δ(x′⊥−x⊥), Eq. (2.2)

reduces to the generator

p+(x⊥) =

∫ ∞
−∞

dx+T++ , (2.4)

and p+(x⊥)|0〉x⊥ = 0 defines a vacuum state independently for each generator. By

ultralocality, the vacuum state on H is a tensor product of these states. (In terms of

small transverse neighborhoods of each generator, Hi, one can write |0〉H =
∏

i |0〉i.)
It will be convenient to write the vacuum state on H as a density operator,

σH ≡ |0〉HH〈0| . (2.5)

Let the actual state of matter on H be ρH ; this state may be mixed or pure. Let σL and

ρL be the restriction, respectively, of the vacuum and the actual state to the lightsheet

L:

σL ≡ TrH−L σH (2.6)

ρL ≡ TrH−L ρH (2.7)

The von Neumann entropy of either of these density matrices diverges in proportion to

the sum of the areas of the two boundaries of L (in units of a UV cutoff). However, we

may define a regulated entropy as the difference between the von Neumann entropies

of the actual state and the vacuum [2, 17, 18]:

∆S ≡ S(ρL)− S(σL) = −Tr ρL log ρL + TrσL log σL . (2.8)

For finite energy global states ρH , this expression will be finite and independent of the

regularization scheme. It reduces to the global entropy, ∆S → −Tr ρH log ρH , in the

limit where the latter is dominated by modes that are well-localized to L. Examples

include large thermodynamic systems such as a bucket of water or a star, but also a

single particle wavepacket that is well-localized to the interior of L.

An important feature is that we are computing these entropies for null segments.

It is more common to consider entropies for spatial segments, see figure 2. In that case,

the algebra of operators includes all the local operators in the domain of dependence

of the segment, see figure 2(a). We can also consider a boosted the interval as in figure

2(b). The domain of dependence changes accordingly. In the limit of a null interval

– 6 –



(a) (c)(b) 

Figure 2. Operator algebras associated to various regions. (a) Operator algebra associated

to the domain of dependence (yellow) of a spacelike interval. (b) The domain of dependence

of a boosted interval. (c) In the null limit, the domain of dependence degenerates to the

interval itself.

the domain of dependence becomes just a null segment. This is a singular limit of the

standard spacelike case: the proper length of the null interval vanishes and the domain

of dependence degenerates. Despite these issues, we find that the entropy difference

between any state and the vacuum, (2.8), is finite and well defined. In the free theory

case, the limiting operator algebra has the ultralocal structure described above.

3 Proof that ∆S ≤ ∆K

The vacuum state on the light-sheet L defines a modular Hamiltonian operator KL, via

σL =
e−KL

Tr e−KL
, (3.1)

up to a constant shift that drops out below. Expectation values such as TrKLσL and

TrKLρL will diverge, but we may define a regulated (or vacuum-subtracted) modular

energy of ρL:

∆K ≡ TrKLρL − TrKLσL . (3.2)

For any two quantum states ρ, σ, in an arbitrary setting, one can show that the

relative entropy,

S(ρ|σ) ≡ Tr ρ log ρ− Tr ρ log σ , (3.3)

is nonnegative [19].5 With the above definitions, this immediately implies the inequal-

5Moreover, the relative entropy decreases monotonically under restrictions of ρ, σ to a subalge-

bra [20]. With the help of this stronger property, our conclusion can be strengthened to the statement

that ∆A(c,b)
4G~ −∆S decreases monotonically to zero if the boundaries b and c are moved towards each

other. This is shown in the Appendix.
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ity [2]

∆S ≤ ∆K . (3.4)

To prove the generalized Covariant Entropy Bound, we will now show that ∆K ≤
∆A/4G~, where ∆A is the area difference between the two boundaries of the light-

sheet.

4 Proof that ∆K ≤ ∆A/4G~

We can think of the null hypersurface H as the disjoint union of small neighborhoods

Hi of a large discrete set of null generators; see figure 1(b). By ultralocality of the oper-

ator algebra, Eq. (2.3), we have for the vacuum state σH =
∏

i σL,i, σL =
∏

i σL,i, where

the density operators for neighborhood i are defined by tracing over all other neigh-

borhoods [16]. Using σi in Eqs. (3.1) and (3.2), a modular energy ∆Ki can be defined

for each neighborhood, which is additive by ultralocality: ∆K =
∑

i ∆Ki. Strictly,

we should take the limit as the cross-sectional area of each neighborhood becomes the

infinitesimal area element orthogonal to each light-ray, Ai → d2x⊥. However, we find

it more convenient to think of Ai as finite but small, compared to the scale on which

the light-sheet boundaries b and c vary.

Since both the modular energy and the area are additive,6 it will be sufficient to

show that ∆Ki ≤ ∆Ai/4G~, where ∆Ai is the change in the cross-sectional area Ai
produced at first order in G~ by gravitational focusing. We will demonstrate this by

evaluating ∆Ki and bounding ∆Ai. For any given neighborhood Hi, we may take the

affine parameter λi to run from 0 to 1 on the light-sheet Li, as x+ runs from bi = b(x⊥)

to ci = c(x⊥).

For notational simplicity we will drop the index i in the remainder of this section.

4.1 Ultralocality and Conformal Symmetry Determine ∆K

We compute the modular Hamiltonian KL on the null interval 0 < λ < 1 in two steps.

First, we review the modular Hamiltonian for the semi-infinite interval 1 < λ′ < ∞.

Then we use the special conformal symmetry of the algebra of observables A to obtain

KL by inversion.

We can regard the interval 1 < λ′ < ∞ as the upper boundary of a right Rindler

wedge with bifurcation surface λ′ = 1. By tracing the global vacuum σ over the left

6By contrast, the entropy ∆S is subadditive over the transverse neighborhoods. In Eq. (2.8),

the vacuum state σL factorizes, but the general state ρL can have entanglement across different

neighborhoods Hi. This does not affect our argument since we have already shown directly that

∆S ≤ ∆K.
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Rindler wedge, one finds that the state on the right is given by the thermal density

operator

σRW =
e−KRW

Tr e−KRW
, (4.1)

where the modular Hamiltonian

KRW =
2π

~

∫
d2x⊥

∫ ∞
1

dλ′ (λ′ − 1)Tλ′λ′ (4.2)

coincides with the well-known Rindler Hamiltonian.

Wall [16] has shown that the horizon algebra on each generator of H is that of

the left-moving modes of a 1+1 dimensional conformal field theory. General states

transform nontrivially, but the vacuum σ is invariant under special conformal transfor-

mations. Hence, the modular Hamiltonian on the interval 0 < λ < 1 can be obtained

by applying an inversion λ′ → λ = 1/λ′ to the Rindler Hamiltonian. Using

Tλ′λ′ = Tλλ

(
dλ

dλ′

)2

, (4.3)

one finds for the modular Hamiltonian of the light-sheet L:

KL =
2π

~

∫
d2x⊥

∫ 1

0

dλ λ(1− λ)Tλλ . (4.4)

Let us make some comments. If we were dealing with a two dimensional CFT

the formula (4.4) would be familiar. If instead we had a massive free field in two

dimensions, then we note that a null interval is conceptually similar to a very small

interval. Therefore we are exploring the UV properties of the theory, which are the same

as those for a massless free field. When we go to higher dimensions we can understand

(4.4) as the result of thinking of the free field in terms of a two dimensional massive

fields with masses given by a Kaluza Klein reduction along the transverse dimensions.

4.2 Focusing and Nonexpansion Bound ∆A

Generally, the expansion of a null congruence is defined as [9]

θ(λ) ≡ ∇̂aka =
d log δA

dλ
(4.5)

where δA is an infinitesimal cross-sectional area element. Recall that in the present

context we consider the transverse neighborhood of one null geodesic, with small cross

section Ai, so we may replace δA ≈ Ai. Our task is to compute the change ∆Ai of this

small cross-section, from one end of Li to the other, by integrating Eq. (4.5). We will

drop the index i, as it suffices to consider any one neighborhood.
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At zeroth order in G~, the light-sheet of interest is a subset of the null plane

x− = 0 in Minkowski space, and so has vanishing expansion θ and vanishing shear σab
everywhere. One may compute the expansion at first order in G~ by integrating the

Raychaudhuri equation

dθ

dλ
= −1

2
θ2 − σabσab − 8πGTλλ , (4.6)

The twist ωab vanishes identically for a surface-orthogonal congruence.

We will pick λ = 0 as the initial surface and integrate up to λ = 1. The choice of

direction is nontrivial, since we must ensure that the defining condition of light-sheets

is everywhere satisfied: the cross-sectional area must be nonexpanding away from the

initial surface, everywhere on L. As we shall see, this implies that at first order in

G~, we must allow for a nonzero initial expansion θ0 at λ = 0. The required initial

expansion can be accomplished by a small deformation of the initial surface [13], whose

effects on ∆K and ∆S only appear at higher order. (Of course, we could also start

at λ = 1 and integrate in the opposite direction. For any given state, both ∆A and

the initial expansion will depend on the choice of direction. But we will demonstrate

that ∆K ≤ ∆A for all states on future-directed light-sheets beginning at λ = 0. By

symmetry of KL under λ→ 1−λ, the same result immediately follows for past-directed

light-sheets beginning at λ = 1.)

From Eq. (4.6) we obtain at first order in G~:

θ(λ) = θ0 − 8πG

∫ λ

0

Tλ̂λ̂dλ̂ . (4.7)

The nonexpansion condition is

θ(λ) ≤ 0, for all λ ∈ [0, 1] . (4.8)

If the null energy condition holds, Tλλ ≥ 0, then this condition reduces to θ0 ≤ 0. More

generally, however, we may have to choose θ0 < 0 to ensure that antifocusing due to

negative energy densities does not cause the expansion to become positive, and thus

the light-sheet to terminate, before λ = 1 is reached. However, it is always sufficient to

take θ0 to be of order G~, so it was self-consistent to drop the quadratic terms ∝ θ2,

σabσ
ab, in the focusing equation. Note that, in the semiclassical quantization scheme,

the σ2 term can be viewed as arising from the stress tensor of the gravitons and can

be explicitly included as part of the total stress tensor by separating the gravitational

field into long and short distance modes.

From the definition of the expansion, Eq. (4.6), one obtains the difference between

initial and final cross-sectional area:

∆A

A
= −

∫ 1

0

dλθ(λ) = −θ0 + 8πG

∫ 1

0

dλ(1− λ)Tλλ , (4.9)
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where we have used Eq. (4.7) and exchanged the order of integration. In order to

eliminate θ0 we now use the nonexpansion condition: let F (λ) be a function obeying

F (0) = 0, F (1) = 1 and F ′(λ) ≥ 0 for 0 ≤ λ ≤ 1. From Eq. (4.8), we have 0 ≥∫ 1

0
F ′θdλ, and thus from (4.7) and integration by parts we find

θ0 ≤ 8πG

∫
dλ[1− F (λ)]Tλλ . (4.10)

With the specific choice F (λ) = 2λ − λ2 we find from Eqs. (4.9) and (4.10) that the

area difference is bounded from below by the modular Hamiltonian:

∆A ≥ A× 8πG

∫ 1

0

dλ λ(1− λ)Tλλ . (4.11)

Comparison with Eq. (4.4) shows that ∆K ≤ ∆A/4G~, as claimed.

Combined with the earlier result ∆S ≤ ∆K, this completes the proof of the Co-

variant Entropy Bound, ∆S ≤ ∆A/4G~, for free fields in the weak gravity limit.

5 Discussion

An interesting aspect of this argument is that we did not need to assume any micro-

scopic relation between energy and entropy. We did have to assume that we had a local

quantum field theory at short distances. Therefore the necessary relation between en-

tropy and energy is the one automatically present in quantum field theory, i.e., given

by the explicit expression of the modular Hamiltonian in terms of the stress tensor.

Our discussion required a careful definition of the entropy that appeared in the bound.

In that sense it is very similar to the Casini version [2] of the Bekenstein bound (see

also [17, 18]), and also to Wall’s proof of the generalized second law [16, 21].

All these developments underscore the interesting interplay between local Lorentz

invariance of the quantum field theory, Einstein’s equations, and information. It has

often been speculated that the validity of these entropy bounds would require extra

constraints on the matter that is coupled to Einstein’s equations. Here we see that

the only constraint is that matter obeys the standard rules of local quantum field

theory. (Conversely, it may be possible to view these rules as a consequence of entropy

bounds [22].)

Relation to other work In [14] a possible counterexample to the Covariant Entropy

Bound was proposed. The idea is to feed matter so slowly into an evaporating black

hole that the horizon area remains static or slowly decreases during the process. Hence

the horizon is a future-directed light-sheet, to which the bound applies. Yet, it would
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appear that one can pass a very large amount of entropy through the horizon in this

way. How is this consistent with our proof?

To understand this, consider the simplest case where the stress tensor component

T++ is constant on the light-sheet. For the horizon area to stay constant or shrink,

one must have T++ ≤ 0. By Eq. (4.4), this implies ∆K ≤ 0,7 and positivity of the

relative entropy requires ∆S ≤ ∆K. Hence, in this case, ∆S ≤ 0. Thus we find that

with our definitions, the entropy is negative for an evaporating black hole, even with

the addition of some positive, partially compensating flux; and the entropy is at least

nonpositive in the static case. Since ∆A ≥ 0 by the nonexpansion condition, the bound

is safe.

Strominger and Thompson [15] have also proposed a quantum version of the Co-

variant Entropy Bound. Their proposal is analogous to the definition of generalized

entropy, in that one adds to the area the entanglement entropy of quantum fields that

are outside the horizon and distinct from the matter crossing the light-sheet. In con-

trast, we have given a definition which only involves properties of the quantum fields

on the light-sheet L, i.e., on the relevant portion of the horizon.

A similar distinction must be made when comparing our result to Wall’s proof of

the generalized second law [16, 21]. Wall considers the generalized entropy Sgen(A) =

Sm(A) + A/4G~ on semi-infinite horizon regions, where A the area of a horizon cross-

section, and Sm(A) is the matter entropy on the portion the horizon to the future

of A (which is closely related to the matter entropy on spatial slices exterior to A).

Given two horizon slices with A2 to the future of A1, monotonicity of the relative

entropy under restriction of the semi-infinite null hypersurface starting at A1 to the

semi-infinite subset starting at A2 implies the GSL:

0 ≤ Sgen(A1)− Sgen(A2) . (5.1)

The argument applies to causal horizons, such as Rindler and black hole horizons.

Unlike our proof of the covariant bound, Wall’s proof (like that of [15]) does not

assume the nonexpansion condition. This is as it should be, since the GSL does not

require any such condition. Suppose, for example, that the expansion is not monotonic

between A1 and A2, because the black hole is evaporating but there is also matter

entering the black hole. Then the horizon interval from A1 to A2 is not a light-sheet

7We have considered the case where the light-sheet L is a portion of a null plane H in Minkowski

space, whereas we are now discussing the case where L is a portion of the horizon H of a black hole.

In general, application of our flat space results to general spacetimes would require that the transverse

size of L be small compared to the curvature scale. This is not the case for the horizon of a black

hole. However, the vacuum states σH and σL can be defined directly on the black hole background;

σH is the Hartle-Hawking vacuum.
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with respect to either past- or future-directed light-rays. Yet, the GSL must hold. On

the other hand, our proof applies to all weakly focussed null hypersurfaces, whereas

the GSL applies only to causal horizons.

Now suppose we consider a case where both the GSL and the covariant bound

should apply, such as a monotonically shrinking or growing portion of a black hole

horizon. In this case, it should be noted that our proof and Wall’s proof [16, 21] refer

to different entropies. In general the difference in the matter entropy outside A1 and

A2 is distinct from the entropy that we have defined directly on the interval stretching

from A1 to A2:

DS ≡ Sm(A1)− Sm(A2) 6= ∆S . (5.2)

Because DS − ∆S is not of definite sign (and because of the different assumptions

about nonexpansion), our result does not imply Wall’s, and his does not imply ours

even in the special case where a horizon segment coincides with a light-sheet. Instead,

this case gives rise to two nontrivial constraints on two different entropies: one from

the GSL and one from the covariant bound.

Our result allows us to connect a number of older works concerning Bekenstein’s

bound [1]. It was shown long ago [13] that this bound follows from the covariant

bound in the weak gravity regime. At the time, a sharp definition of entropy for either

bound was lacking [23, 24]. A differential definition of entropy was later applied to the

right Rindler wedge, and positivity of the relative entropy was shown to reduce to the

Bekenstein bound on this differential entropy, in settings where the linear size and the

energy of an object are approximately well-defined [2].

Our present work offers two additional routes to the Bekenstein bound, in the sense

of providing precise statements that reduce to Bekenstein’s bound in the special settings

where the entropy, energy, and radius of a system are intuitively well-defined. Combin-

ing our result with [13] proves a Bekenstein bound, while supplementing a definition of

entropy for both the covariant bound and Bekenstein’s bound as the differential entropy

on a light-sheet. The bound is in terms of the product of longitudinal momentum and

affine width, but this reduces to the standard form 2πER/~, for spherical systems that

are well-localized to the light-sheet. Alternatively, we may regard our Sec. 3 alone as

a direct proof of Bekenstein’s bound. Again the bound is on the differential entropy,

but now in terms of the modular energy ∆K on a finite light-sheet. For a system of

rest energy E that is well localized to the center of a light-sheet of width 2R in the rest

frame, one has ∆K ≈ 2πER, so [1] is recovered.

Extensions An interesting problem is the extension of our proof to interacting theo-

ries. For interacting theories the quantization of fields on the light front is notoriously

tricky. One could still try to define the entropy as the difference in von Neumann
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entropies for spatial intervals, in the limit where the spatial interval becomes null. In

order to explore the properties of the entropy defined in this way one can consider

strongly coupled field theories that have a holographic gravity dual. We have followed

the recipe of [25] to obtain the modular Hamiltonian in terms of entropy perturbations.

However, we find that ∆S = ∆K holds exactly, and not just to first order in an ex-

pansion for states close to the vacuum. That is, the relative entropy for every state is

zero. This means that in the light-like limit, the operator algebra on the null interval

becomes trivial, and all states on the null interval become indistinguishable.

We expect that this property should extend to interacting theories without a gravity

dual. One can intuitively understand this as follows. Concentrating on a null interval

is equivalent to exploring the theories at large energies, since we want to localize the

measurements at x− = 0. In an interacting theory this produces parton evolution

as in the DGLAP equation [26–28]. This evolution leads to states that all look the

same at high energies. We expect the same equation ∆S = ∆K to hold for non-

superrenormalizable theories because, in contrast to the free theories we have discussed

in this paper, these do not have operators localizable on a finite null surface [29, 30].

We plan to discuss these issues further in a separate publication.

Here we only note that we again find a local form for the modular Hamiltonian for

the null surface:

KL = 2π

∫
dd−2x⊥

∫ 1

0

dx+ ḡ(x+)T++(x+, x⊥) . (5.3)

Here ḡ(x+) is not given by the same function, x+(1− x+), as in the free case (4.4), but

it still satisfies all properties stated in the Appendix. Hence the present proof of the

covariant bound also applies in this interacting case.

Another question is how to extend our definition of entropy, and our proof, to the

more general situation of a rapidly evolving light-sheet in a general spacetime. One

approach is to divide the light-sheet into small segments along the affine direction in

such a way that the change in area is small and then do an approximately flat space

analysis for each piece. This is shown in figure 3. Here the initial expansion could be

large and negative, but this just helps in obeying the bound. Thus, for each segment

we obtain a constraint ∆Ai/(4G~) ≥ ∆Si. To make this argument we need to have a

notion of local vacuum in the QFT in order to define the modular Hamiltonian and to

compute ∆S. We assume that this is possible. Then, for the original region we end up

with a bound of the type

∆A

4G~
=

∑
i ∆Ai

4G~
≥
∑
i

∆Si (5.4)
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matterA

∆Si

∆Ai

initial

Afinal

Figure 3. A possible approach to defining the entropy on a light-sheet beyond the weak-

gravity limit. One divides the light-sheet into pieces which are small compared to the affine

distance over which the area changes by a factor of order unity. The entropy is defined as the

sum of the differential entropies on each segment.

where ∆Si are the entropies differences, as in (2.8), for each of the consecutive null

segments. We can take the right hand side of (5.4) as the definition of the total entropy

flux.8 It would be desirable to have a definition of the right hand side which involves

the whole null interval. Nevertheless, already (5.4) is a nontrivial bound. In the regime

where we have a clear entropy flux, such as a star or a bucket of water, it reduces to

the expected entropy flux if one takes the intervals to be large enough to capture many

of the infalling particles.
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A Monotonicity of ∆A(c,b)
4G~ −∆S

In Secs. 3 and 4, we showed that 0 ≤ ∆A(c, b)/4G~ − ∆S. In fact, this difference

decreases monotonically to zero as the boundaries b and c are moved together. To

establish this stronger result, it suffices to consider variations of c. We may set b = 0.

We first note that ∆K − ∆S is monotonically decreasing when the lightsheet is

restricted. This follows immediately from the monotonicity property of relative entropy

S(ρ|σ) = ∆K −∆S under restriction to a subspace (via a partial trace operation), or

more generally under any completely positive trace-preserving map [20].

Thus it only remains to be shown that ~δ(c) ≡ ∆A(c, 0)/4G−∆K(c, 0) will decrease

monotonically under restriction. We will prove this for the modular Hamiltonian of a

free scalar field in first subsection. In the second subsection, with a view to future

investigations of the interacting case, we will establish simple sufficient conditions on

the modular Hamiltonian from which monotonicity follows.

A.1 Free scalar field

Eq. (4.9) for the area difference and Eq. (4.4) for the modular Hamiltonian can easily

be generalized to an interval of length c. Their difference is

δ(c) =

∫
d2x⊥

[
−θ0(c)

4G
+ 2π

∫ c

0

dλ
(c− λ)2

c
Tkk(λ)

]
. (A.1)

As we vary c, we always choose the initial expansion to be the largest value compatible

with the light-sheet condition:

θ0 = 8πG inf
0≤λ≤c

∫ λ

0

dλTkk(λ) . (A.2)

The monotonicity of δ(c) is established by

dδ

dc
=

∫
d2x⊥

[
− c

4G

∂θ0

∂c
− θ0

4G
+ 2π

∫ c

0

dλ

(
1− λ2

c2

)
Tkk(λ)

]
. (A.3)

The first term is non-negative, since increasing c broadens the range of the inf in

Eq. (A.2). The latter two terms are together non-negative. This follows from the non-

expansion condition by integrating
∫ c

0
dη ηθ(η) ≤ 0. It follows that δ is monotonically

decreasing under restriction (and monotonically increasing under extension) of the light-

sheet. This proves our claim.
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A.2 Sufficient Conditions For Monotonicity

Now consider a more general modular Hamiltonian9

∆K =
2π

~

∫
d2x⊥

∫ c

0

dλ g(λ, c)Tλλ(λ) . (A.4)

We may set 2π/~ = 4G = 1 in what follows. Symmetry under time reversal implies

g(λ, c) = g(c− λ, c), and boost symmetry implies that

g(λ, c) = cḡ(λ̄) , (A.5)

where λ̄ = λ/c. We will now show that monotonicity of ∆A −∆K is guaranteed if g

satisfies a small number of other simple properties of g, including concavity.

We have
dδ

dc
= −cdθ0

dc
+

[
−θ0 +

∫ c

0

dλ

(
1− ∂g

∂c

)
Tλλ(λ)

]
(A.6)

The first term is nonnegative independently of g. The second term is nonnegative if the

function ∂g/∂c (viewed as a function of λ, at fixed c) satisfies the following properties:

∂g

∂c
(0) = 0 , (A.7)

∂g

∂c
(1) = 1 , (A.8)

d

dλ

(
∂g

∂c

)
≥ 0 . (A.9)

This follows from the nonexpansion condition, via 0 ≥
∫ c

0
dλ θ d

dλ
(∂g
∂c

).

By Eq. (A.5) we have
∂g

∂c
= ḡ(λ̄)− λ̄ ∂g

∂λ̄
. (A.10)

Hence the above three sufficient conditions for monotonicity are equivalent to the fol-

lowing conditions

ḡ(0) = ḡ(1) = 0 , (A.11)

ḡ′(0) = −ḡ′(1) = 1 , (A.12)

ḡ′′ ≤ 0 , (A.13)

where we have also used the symmetry λ̄→ 1− λ̄.

9As will be discussed in a future publication, we expect that an interacting field theory would

have a modular Hamiltonian of this type for null intevals. (By contrast, the modular Hamiltonian for

spatial regions need not be an integral over local operators.)
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The first two of these conditions are satisfied because the modular Hamiltonian

must reduce to the Rindler Hamiltonian near any two-dimensional spatial boundary.

The last condition is concavity; it might be related to strong subadditivity. Subject to

these conditions, the GCEB will be satisfied for any state, with monotonically increasing

room to spare as the size of the light-sheet is increased.
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