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ABSTRACT
Streaming over the wireless channel is challenging due to rapid fluc-
tuations in available throughput. Encouraged by recent advances
in cellular throughput prediction based on radio link metrics, we
examine the impact on Quality of Experience (QoE) when using
prediction within existing algorithms based on the DASH stan-
dard. By design, DASH algorithms estimate available throughput
at the application level from chunk rates and then apply some av-
eraging function. We investigate alternatives for modifying these
algorithms, by providing the algorithms direct predictions in place
of estimates or feeding predictions in place of measurement samples.
In addition, we explore different prediction horizons going from
one to three chunk durations. Furthermore, we induce different
levels of error to ideal prediction values to analyse deterioration in
user QoE as a function of average error.

We find that by applying accurate prediction to three algorithms,
user QoE can improve up to 55% depending on the algorithm in use.
Furthermore having longer horizon positively affects QoE metrics.
Accurate predictions have the most significant impact on stall per-
formance by completely eliminating them. Prediction also improves
switching behaviour significantly and longer prediction horizons
enable a client to promptly reduce quality and avoid stalls when
the throughput drops for a relatively long time that can deplete
the buffer. For all algorithms, a 3-chunk horizon strikes the best
balance between different QoE metrics and, as a result, achieving
highest user QoE. While error-induced predictions significantly
lower user QoE in certain situations, on average, they provide 15%
improvement over DASH algorithms without any prediction.
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1 INTRODUCTION & BACKGROUND
Traffic analytics indicate a continuous increase of video consump-
tion inmobile networks. By 2020, 75% of all mobile trafficwill have a
video element1. Streaming video content over mobile is challenged
by frequent throughput fluctuations caused by rapid changes in
channel conditions and network load. Hence, video streaming users
are more prone to experiencing problems, such as poor quality and
stalls.

Most popular video streaming providers (Youtube, Netflix, Ama-
zon Prime, Hulu) use Dynamic Adaptive Streaming over HTTP
(DASH) [12] to deliver video content. In DASH systems, or more
generally HTTP adaptive streaming (HAS), video content is split
into multiple chunks, with chunk duration varying from 2 to 20
seconds. Every chunk is encoded in different bitrates going from
low to high quality. This splitting allows the video player to dy-
namically adapt the video quality to the network conditions, with
the goal to maximize the user experience.

In the literature [4, 11], many video quality adaptation algorithms
exist for HAS. These algorithms usually consider combinations of
network and/or application states in their quality selection decision.
By its nature, quality adaptation algorithms have a modular design.
The bandwidth estimation module captures the network state, while
the application monitoring module captures the video player state by
monitoring playback buffer and streamed video quality. Finally, the
bitrate adaptation module combines information from the previous
modules to decide the quality of the chunks to be requested. The
reader is referred to [4, 11] and the references therein for a detailed
view of the adaptation strategies.
1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
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The main goal of HAS algorithms is to maximize overall user
experience (QoE). To achieve this goal, algorithms focus on max-
imizing video quality while minimizing quality switches and re-
buffering events. Finding a right balance between these conflicting
requirements is challenging in cellular networks. HAS algorithms
use different throughput estimation techniques (arithmetic, har-
monic, exponential moving average, median) as a step towards
quality selection. This estimate is usually integrated with advanced
decision mechanisms to select the quality of the next chunk. Even
with these sophisticated mechanisms in place, inaccurate band-
width estimations can lead to incorrect incorrect quality selections,
potentially leading to video stalls, poor video quality, or frequent
quality switches.

In Section 3, we show, that state of the art bandwidth estimators
exhibit noticeable errors due to inherent throughput fluctuations in
mobile networks. We further show that their performance is signifi-
cantly lower than what can be attained by leveraging radio KPIs and
network-related information as done in [10, 14]. Additionally, [16]
and [6] propose prediction-based HAS algorithms and demonstrate
that they can improve the streaming performance in comparison
to typical HAS algorithms. However, neither of these (or other)
studies considered fusing prediction to existing adaptation algo-
rithms. We believe this step is natural due to modular design of
HAS algorithms. This modularity enables integrating throughput
prediction in adaptation algorithms to reap the benefits of novel
accurate throughput estimation techniques.

In this paper, we explore integrating throughput prediction in
three HAS adaptation algorithms and quantify its impact on overall
user QoE. More specifically, this study focuses on addressing the
following research questions:

(1) How the predicted throughput should be integrated in the adap-
tation algorithm? Should it be used as a throughput sample or
replace the estimate?

(2) How the predicted throughput horizon may influence QoE?
(3) How inaccurate prediction may impact the streaming perfor-

mance and user QoE?
We investigate these questions in an experimental testbed that

uses real 4G cellular traces and real video content. In our experi-
ments, we use two video QoE models developed for HAS [5, 13]
to evaluate QoE performance. Our results indicate that assisting
adaptation algorithms with accurate predictions can improve user
QoE by up to 55% for all tested algorithms. We additionally found
that extending prediction horizon helps in eliminating stall events
and improving overall switching behavior. Furthermore, inaccurate
throughput prediction reduces the QoE benefit but users would still
enjoy on average a 15% QoE improvement in the presence of 30%
error in the predicted throughput.

2 EXPERIMENTAL TESTBED &
METHODOLOGY

In this section, we describe our experimental testbed (Section 2.1),
followed by a summary of HAS algorithms under test. Trace classi-
fication and selection is described in Section 2.3. For performance
evaluation, we examine different QoE metrics and models, which
we describe in Section 2.4. Finally, Section 2.5 describes few ways
to feed prediction to the HAS player.

Figure 1: Testbed Architecture

2.1 Experimental Testbed
Figure 1 depicts our testbed architecture which consists of a mobile
device (Nexus 6 running Android OS version 7.1.1), a wireless access
point (WAP), and a server (PC running Ubuntu 16.04 equipped
with 16GB of RAM and Intel i7 CPU). The mobile device streams
video content from the server through WAP. The server also acts
as a traffic shaper by inserting bandwidth profiles from 4G traces
between itself and the WAP. This is achieved using Linux traffic
control (tc2). Finally, Android Debug Bridge (ADB) is used to feed
throughput prediction values to the mobile device.

The mobile device runs a full-fledged video player we have built
using ExoPlayer,3 a media player platform for Android developed
by Google. ExoPlayer supports the DASH standard via a stand-alone
library, and also provides a (default) adaptive streaming algorithm.
In addition to ExoPlayer’s default adaptation algorithm, we have
also implemented Elastic [1] and Arbiter+ [15].

For video sources, we use publicly available dataset [8]. Videos
are split in 4-second chunks and encoded with ten representative
rates (kbps): 231, 369, 553, 744, 1044, 1748, 2349, 3006, 3856, 4310.
For bandwidth profiles, we use dataset with over 150 4G traces
collected from an operational cellular network [9]. The collected
bandwidth profiles are a mixture of different mobility patterns:
static, pedestrian, bus, car and train.

2.2 Video Streaming Algorithms
Many HAS algorithms can be found in the literature [11]. For our
evaluation, we select three algorithms: Arbiter+, Elastic and Exo
(ExoPlayer’s default adaptive streaming algorithm). Selected algo-
rithms use information from both bandwidth estimators, as well
as from buffer occupancy when deciding on the rate of the next
chunk.

As a bandwidth estimator, Arbiter+ uses the exponential moving
average (EWMA) of the last ten chunk download rates. Alongside
EWMA Arbiter+ employs two additional rate scale factors, to track
variation in throughput samples and buffer occupancy. Unlike Ar-
biter+, Elastic uses the harmonic average of the last five chunk
download rates. However, in addition to the harmonic estimator,
Elastic tracks buffer levels and uses a control-theory approach to
decide chunk quality. By its nature, harmonic mean is a conserva-
tive estimate. Finally, Exo calculates the median throughput from
the last N chunk download rates, where N is derived such that the
square root of that last N chunk sizes is smaller than 2000bytes

1
2 .

Intuitively, the median is (more) resistant to outliers and also repre-
sents a slightly less conservative estimate compared to the harmonic
mean. Also, Exo uses safety factor by taking only 75% of bandwidth
estimate. In addition, it tracks buffer occupancy as well, triggering
2https://wiki.debian.org/TrafficControl
3https://github.com/google/ExoPlayer

https://wiki.debian.org/TrafficControl
https://github.com/google/ExoPlayer
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Figure 2: Performance analysis of traditional bandwidth es-
timators

chunk replacement function (a function that re-downloads same
chunks with higher quality) if buffer level gets close to saturation.

For buffer length, we use recommended values for each algorithm
(60 seconds for Arbiter+ and 30 seconds for Elastic and Exo). Initial
delay is set to two chunks. After stall event, playing is resumed
after one chunk is downloaded.

To further confirm our above assumptions, Fig 2a shows time-
series of instantaneous throughput (blue line) for a highly-variable
trace (see Section 2.3). In addition to actual throughput, we addi-
tionally plot throughput estimates from the bandwidth estimator
used by each algorithm, i.e., Arbiter+, Exo, and Elastic (red, green,
and yellow line, respectively).

EWMA shows the highest average throughput among all band-
width estimators. Compared to the actual throughput, EWMA tends
to overestimate throughput (58% of the times) while harmonic and
median show neutral bias, and overall lower values compared to
EWMA. Trend-wise, EWMA follows actual throughput closely with
resistance to small variations due to smoothing effect. Instead, har-
monic reacts to throughput changes slower than both EWMA and
median.

To further showcase the limitation of current throughput estima-
tion mechanisms, we analyze the absolute value of residual error
between throughput estimates and the actual download rate of a
chunk. Figure 2b shows boxplots of the residual error for EWMA,
median, and harmonic, measured while experimenting with a ran-
domly selected 4G trace. Figure 2b shows that EWMA achieves,
overall, the lowest residual error while median and harmonic per-
form comparable. Nevertheless, EWMA’s average residual error is
still 50% (green dot) which is way higher than what obtained in
recent works [10, 14], e.g., 10% in [14]. Such low residual error is
achieved by predicting future throughput, e.g., by using machine
learning models coupled with network and device data, rather than
using historical throughput information. Hence, we are interested
in exploiting the impact of novel, accurate throughput prediction
methods on the streaming performance.

2.3 Trace Classification
Based on Mangla et. al [6] result, we consider the standard devia-
tion of throughput within a trace as discriminant of (potentially)
good or bad input traces. The rationale is that we hypothesize that
prediction will be mostly effective in presence of traces with high
throughput standard deviation (in particular when the standard
deviation is higher than highest representation rate resulting in
bandwidth fluctuations spanning across all available rates). From

dataset, we select highly variable traces with a standard deviation
in the range [4.2, 6.3] Mbps, and low variable traces with a standard
deviation in the range of [0.6, 1.2] Mbps. We further filter out traces
with very high average throughput (6 Mbps), i.e., average through-
put larger than the highest video quality (4.3 Mbps). The rationale
here is to avoid testing scenarios where all algorithms converge
to the highest quality level regardless of throughput variation (as
fluctuations will get averaged out by throughput estimator). Finally,
for every trace, we repeat experiment ten times to get statistically
significant results. Out of 130 traces we ended up with 26 traces
satisfying the latter constraint. As expected, the majority of high-
variable traces are collected in the highly mobile environment (car),
while low-variable traces where collected while devices have been
static or moving with low velocity (pedestrian).

2.4 Video QoE Models
To evaluate the performance of HAS algorithms, we analyze stan-
dardized QoE metrics, such as average representation rate, switch-
ing behavior (e.g., instability), stall frequency and duration. How-
ever, in order to compare algorithms performance these metrics
cannot be studied independently. For example, an algorithm achiev-
ing highest average throughput but frequent stalls is inferior to a
more cautious algorithm with no stalls, as it provides better end-
user experience.

We thus resort to using two video QoE models developed for
HAS [5, 13]. These models blend individual QoE metrics to compute
a score aiming at representing user QoE. Both models are derived
from subjective testing of users grading video clips with various
induced impairments. The first model (Yao QoE) was derived from
data collected in a lab environment [5] and it is limited to five
minutes. Such limitation does not apply to the second model which
relies on data crowdsourced from users watching videos posted
on a website [13] (Clay QoE). The score derived from these QoE
models can be summed up by the following equation:

QoEscore = ν ×QoEmax − (κTQ × ITQ + κVQ × IVQ ) (1)
+ϒ(ITQ , IVQ ) (2)

Where ITQ , and IVQ , represent temporal and visual quality im-
pairment factors, respectively. Similarly, κTQ and κVQ represent
their respective weights. Temporal quality impairments refer to
degradation due to initial delay and stall events (stall number and
stall duration). Analogously, visual quality impairments take into
account average rate and switching behavior. QoEmax indicates
the maximum value (score) of QoE or growth factor depending
on QoE model. Similar to impairment weights, ν is weight for
the QoEmax score. Finally, ϒ(ITQ , IVQ ) represents a cross-effect
function of impairment factors occurring simultaneously. When
multiple impairments happen, their cumulative subjective effect is
not simply the sum of each impairment separately [13]. Function ϒ
compensates for this effect.

The Yao QoE score starts at 100, and it is reduced by its impair-
ments, compensated by ϒ function of the stall, switching and initial
delay impairments. The Clay QoE initial score is based on average
rate, deducted by impairments capturing stall and switching de-
terioration. Clay QoE doesn’t include cross-effect compensation
function ϒ.
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Figure 3: Two approaches in feeding prediction to HAS algo-
rithm

We analyse both QoE models across different traces allowing
us to make the following observations: both models perceive stall
impairments similarly with high correlation (0.9); models calculate
switching impairment differently (Clay uses standard deviation
between rates, while Yao relies on difference in Video Quality Met-
ric [7] (VQM) between chunks); unlike Clay, Yao uses cross-effect
compensation function which limits negative impact of multiple
impairments.

Because of the aforementioned observations, we decided to use
an average of two models to represent an overall QoE score. For
the type of average, we select geometric mean as the model scores
are on a different scale. Table 1 summarize QoE metrics and their
notation.

Table 1: QoE Metrics Notation
Metric Summary
ravд Average representation rate
iavд Average instability as defined in [2]
snum Average number of stalls
sdur Average stall duration
QoE Geometric mean of Clay and Yao QoE

2.5 HAS Algorithm Modification
The predicted throughput can be integrated into the adaptation
logic in two different ways. First, the predicted throughput may
replace the entire throughput estimation in the algorithm (E-type).
Alternatively, the predicted throughput may be used to replace the
estimated throughput samples (S-type). Fig. 3 shows both E-type
and S-type approaches. The prediction engine is responsible for
obtaining throughput prediction. This prediction can come from the
network [3] or from the device itself (by leveraging radio KPIs and
machine learning techniques [10, 14]). For each of these approaches,
we further investigate the impact of the throughput horizon on the
performance.

3 EVALUATION
3.1 Accurate Predictions
In the following, we explore the impact of integrating error-free
throughput predictions with different horizons on video QoE. We
consider three prediction horizons as multiples of chunk duration,
i.e., 4, 8, and 12 seconds. In the following plots, prediction horizons
are associated with red, blue, and green color, respectively. As a
notation mark, we use S to denote usage of prediction as a sample
(S-type) and E for prediction as an estimate (E-type). We further
visually separate sample and estimate results using a diagonal pat-
tern. Finally, note that each metric is normalized with respect to the

original algorithm performance (referred to as no-prediction setup),
whose actual metric values are offered in the figure.

3.1.1 Traces with High Variability. We start by focusing on re-
sults obtained when considering traces with high variability, i.e.,
traces characterized by a high value of throughput standard devia-
tion. Figure 4 shows that integrating prediction noticeably improves
the QoE metrics of all adaptation algorithms. Specifically, predic-
tion enables all algorithms to reduce/eliminate stalls. Additionally,
prediction enables the algorithms to reduce the switching instabil-
ity. In particular, average instability can be reduced by 12%-37%.
Furthermore, improving the accuracy of bandwidth estimation en-
ables the algorithm to enhance their selected chunk quality. For
example, integrating prediction fixes throughput underestimation
with Elastic and Exo leading to a higher chunk quality. On the other
hand, integrating the prediction with Arbiter results in a lower
average representation rate. All these improvements add up thus
boosting the overall user QoE by 23%-55%.

Increasing horizon duration has a positive impact on stall perfor-
mance and switching behavior. Extending the horizon results in av-
eraging over a longer period and thus reducing variability between
subsequent prediction values. This leads to improved switching
performance. Longer horizon enables a client to promptly reduce
quality and avoid stalls when the throughput drops for a relatively
long time that can deplete the buffer. For all algorithms, 3-chunk
horizon shows the highest gain.

Our results illustrates that the favored prediction integration ap-
proach varies among different HAS algorithms. Our results shows
that Arbiter favors S-type integration while Elastic and Exo favor
E-type integration. This is attributed to the nature of EWMA that
features a memory element in the throughput estimation. This
feature introduces temporal correlation to subsequent estimates
leading to improving both stability and quality rate. By passing
the throughput as a direct estimate, these benefits are invalidated
leading to a degraded streaming performance. On the contrary,
conservative estimators (e.g., harmonic mean and median) tend
to suppress temporal improvement in network conditions. Note
that the median would overlook high throughput samples until
they dominate and harmonic mean would deem them outliers. By
supplying the throughput directly to the adaptation logic, the adap-
tation logics would have a better vision of the underlying network
changes. However, such benefit becomemore noticeable with larger
prediction horizons.

3.1.2 Traces with Low Variability. Next we focus on results ob-
tained when considering traces with low variability, i.e., traces char-
acterised by a low value of throughput standard deviation. Figure 5
shows that HAS algorithms achieve stall-free session due to rela-
tively low variation in available throughput. HAS algorithms can
counter small variance in bandwidth throughput, as averaging
smooth out variations. However, even with the absence of stalls, in-
tegrating prediction helps in improving QoEmetrics across different
algorithms. In particular, prediction improves average instability
by 5%-38%. Average representation rate shows similar trend for
HAS algorithms as for the high-variable case. Accurate bandwidth
estimates corrects throughput underestimation with Elastic and
Exo, while reducing overestimation for Arbiter+. As a result, overall
user QoE improves by 7%-11%.
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Figure 4: Performance evaluation of QoE metrics for high-variable bandwidth traces across different HAS algorithms
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Figure 5: Performance evaluation of QoE metrics for low-variable bandwidth traces across different HAS algorithms

Similar to the previous scenario, increasing horizon improves
switching stability. Overall, 3-chunk horizon gives the best perfor-
mance across all algorithms.

Our findings confirm observation from the previous section,
with Arbiter+ algorithm showing the highest boost with S-type
prediction, while Elastic and Exo prefer E-type prediction.

3.2 Inaccurate Predictions
In practice, obtaining ideal prediction is unattainable. To evaluate
the impact of prediction errors, we induce errors in our throughput
values for different horizons. Similar analysis has been carried out
in [6], where authors induce errors to their prediction values. How-
ever, their approach is not applicable to existing HAS algorithms
as they assumed having multiple disjoint prediction values for a
future horizon, with error increasing as the horizon increases. On
the other hand, we only consider having one prediction value for
next x seconds. We model the actual predicted throughput sample
REHki

as:

REHki
= RHki + RHki × N (0,σ 2) (3)

where RHki is sample i of ideal average throughput over next
k seconds (horizon k), N (0,σ 2) represents a Gaussian (normal)
distribution with zero mean and σ 2 variance.

Let’s define absolute value of residual error (ARE) as a difference
between actual predicted value and error-induced values. We use
different values of σ 2 (5, 10, 20, 30) that induce an ARE of (5%, 10%,
20%, 30%), respectively.

We analyse the impact of adding errors to our prediction values.
Due to space constraints, we conduct our experiments for the traces
with high variability only. We use 3-chunk horizon as it shows the
highest improvement across all HAS algorithms. For Arbiter+ we
incorporate S-type prediction, while direct estimate is used for
Elastic and Exo.

Fig. 6 shows performance across different QoEmetrics. Similar to
previous sections, we show normalized values against performance
of each algorithm without prediction as the reference point (black
dotted line). We use red color to mark ideal prediction, while pre-
dictions with 5%, 10%, 20%, and 30% are coloured with blue, green,
yellow and gray, respectively. There are no significant differences
in average rate quality across different error levels for all HAS algo-
rithms. In particular, even with the 30% included prediction errors
difference to (ideal) rate quality is less than 2% for Arbiter+ and Exo,
and less than 6% for Elastic. On the other hand, switching behavior
and stall performance worsen with the error increase. On average,
average instability increases by 60%. This result in higher instability
than in no-prediction case when the error reaches 30%. Intuitively,
overall user QoE drops with the increase in error levels. However,
5% prediction error lowers QoE by 20% and 4% compared to the
ideal prediction for Exo and Arbiter+, respectively, while the loss in
QoE is negligible with Elastic. Overall, this limits prediction impact.
This result is intuitive, as Elastic and Arbiter+ employ additional
functions limiting bandwidth estimation effects (e.g., Elastic uses
more cautious approach by insisting on minimizing stall events).
On the other hand, Exo relies heavily on rate estimation as the
additional module that monitors buffer occupancy is only activated
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Figure 6: Performance evaluation of QoE metrics for high-variable bandwidth traces across different HAS algorithms using
error-induced predictions

for chunk replacement function. As a consequence, error-induced
prediction doesn’t cause high QoE drop. Still, applying prediction
with the significantly high errors (30%) provides overall higher QoE
than in no-prediction case. The average increase in QoE across all
algorithms with the 30% prediction error is 15%.

4 CONCLUSIONS & FUTUREWORK
In this paper, we investigate how to integrate throughput prediction
with state-of-the-art HTTP adaptive streaming (HAS) algorithms
and quantify its impact on overall user QoE. We explore different
ways prediction can be delivered to the player’s bandwidth estima-
tor, either as a direct estimate or a sample. Furthermore, we look at
prediction horizons beyond one chunk duration and examine how
different levels of error-induced predictions negatively impact user
experience.

We find that, regardless of the algorithm in use, user QoE im-
proves by a significant 23% in presence of accurate throughput pre-
diction. Furthermore, highest QoE is observed in presence of longer
throughput prediction horizons. Most notably, accurate prediction
eliminates stall events in an environment with highly fluctuating
throughput. While error-induced predictions lower significantly
the user QoE in some instances, it still provides a clear 15% gap on
average, compared to HAS algorithms with no prediction.

Our results are very encouraging and motivate future explo-
ration. First, we plan to extend our analysis beyond the current 4
second chunk duration. Second, using a 4K video dataset will allow
us to extend our experiments to 4G traces with high throughput. Fi-
nally, in our evaluation we use pre-calculated values for prediction
horizon. The next challenge is moving from “offline” analysis to
real-time prediction in the wild. Influenced by [10, 14] we plan to
leverage the Android API to obtain necessary channel information
and combine it with a Machine Learning library (e.g., TensorFlow)
to provide accurate predictions to HAS algorithms in real time.
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