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ABSTRACT: The copper paddle-wheel is the building unit of many metal
organic frameworks. Because of the ability of the copper cations to attract polar
molecules, copper paddle-wheels are promising for carbon dioxide adsorption
and separation. They have therefore been studied extensively, both
experimentally and computationally. In this work we investigate the copper−
CO2 interaction in HKUST-1 and in two different cluster models of HKUST-1:
monocopper Cu(formate)2 and dicopper Cu2(formate)4. We show that density
functional theory methods severely underestimate the interaction energy
between copper paddle-wheels and CO2, even including corrections for the
dispersion forces. In contrast, a multireference wave function followed by
perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell
Møller−Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and
used to develop a novel force field. Our parametrization is able to predict the experimental CO2 adsorption isotherms in
HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.

1. INTRODUCTION

Metal organic frameworks (MOFs) are a class of three-
dimensional nanoporous materials composed of metal nodes
connected by organic ligands. The oriented coordination bond
between these two components is responsible for the structure
of the crystal. The possibility of combining different metals with
different ligands provides a large variety of MOF structures.
More than 10 000 structures have already been synthesized,1

but this is only a small fraction of the hundreds of thousands of
structures that have been predicted computationally.2

MOFs have attracted considerable attention in the past
decade for various applications, including gas adsorption and
storage,3 gas separation,4 fuel production,5 chemical sensing,6

and catalysis.7

Computational modeling is extensively used to investigate
the properties of synthesized materials for a given application
and to predict the performance of hypothetical structures. In
the case of gas adsorption, the quality of the model directly
derives from the accuracy with which one can describe the
microscopic interactions between the guest molecules and the
framework. Density functional theory (DFT) calculations are
routinely used for this purpose.8−10 However, weak inter-
actions, due to dispersion forces arising from electron
correlation, are poorly described by standard DFT methods.
Corrections need to be introduced for this purpose (see the
recent review of Grimme et al.11 and references therein).
Alternatively, post-Hartree−Fock methods can be employed to
evaluate interaction energies with high accuracy. However,

because of the unfavorable scaling with the size of the system,
they can hardly be used directly to compute interaction
energies in MOFs, whose unit cells typically contains hundreds
of atoms.10

This work focuses on the interaction between the carbon
dioxide molecule and the copper(II) paddle-wheel, which is a
metal organic structure composed of two copper cations
connected to four carboxylates anions in a square planar
coordination geometry. The smallest example of this structure
is the Cu2(formate)4 molecule (Figure 1, left).
The copper paddle-wheel is the building unit of many MOFs,

including HKUST-1 (Cu3(BTC)2), as shown in Figure 1, right.
The structure of HKUST-1 presents three pores (Figure 2, left)
and several characteristic adsorption sites for CO2 (Figure 2,
right). The biggest pore is characterized by the presence of 12
open metal sites (OMSs), i.e., unsaturated copper cations
which are obtained after solvent removal and which are able to
attract polar molecules through electrostatic interaction.
HKUST-1 is one of the earlier reported MOFs.12 It is among

the best performers for natural gas storage,13 and it has also
attracted interest for gas separation14−16 and heterogeneous
catalysis.17−19 Because of its popularity, much experimental
data is available for this framework. Wu et al.20 conducted in
situ neutron diffraction studies for CO2 adsorption in HKUST-
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1 which show that at low loading of CO2 and low temperature
(20 K) the open metal site is the strongest adsorption site
because it is the only one to be occupied at a 1:1 CO2:Cu ratio
of loading. They were also able to rank the strength of the
secondary sites by increasing the amount of CO2 and observing
the filling in each site: small pore windows sites and center sites
are the second and the third, respectively, and large pore corner
sites are the fourth in terms of order of filling and therefore
interaction energy strength.
In recent work, Grajciar et al.21 showed that DFT dispersion-

corrected methods, e.g., Grimme’s pairwise correction for
dispersions (D222 and D323) and van der Waals density
functionals (vdW-DF24 and vdW-DF225), underestimate the
strength of the open metal site and are not able to reproduce
the experimental adsorption data obtained by Wu et al.
The van der Waals density functional methods, in particular,

were used previously by our group to compute the CO2 binding
energy in MOF-74 for different metals8,26−28 and to para-
metrize the associated force field.29,30 A good agreement with
experiment was always observed, giving rise to the question of
why the same ab initio methods are not able to model correctly
the CO2 interaction with the open metal site in a copper
paddle-wheel framework. This underestimation of the inter-
actions in HKUST-1 motivated Grajciar et al. to employ a
DFT-coupled clusters corrected (DFT/CC) method31 to study
this system and obtain a tailormade correction for the CO2
interaction with HKUST-1. In DFT/CC, the error associated
with the PBE density functional is corrected by a term

dependent on the pairwise distance between the CO2 atoms
and the atoms of the framework. This term was estimated from
the difference between the DFT and the CCSD(T)-computed
one-dimensional potential energy curves of CO2 interacting
with some other reference molecules, i.e., H2, benzene, CO2,
and Cu(formate)2.
It is known that a copper−copper magnetic interaction is

present in HKUST-1,32 and consequently, the correlation
between the electrons of the two coppers can affect the
interaction with the CO2. Because of this we investigated the
legitimacy of transferring the DFT error for CO2 interaction
from the monocopper system Cu(formate)2 to the dicopper
paddle-wheel structure (and to the HKUST-1 framework) by
using multireference wave function methods. These methods
are critical for accurately modeling systems with a relevant
magnetic coupling such as the Cu paddle-wheel.33−35

Accordingly, we explored in this work the adequacy of different
quantum methods for describing the electronic structure of the
system and the interaction between the metal cation and
carbon dioxide.
Furthermore, we used our insights to develop a classical force

field that is able to accurately describe the Cu paddle-wheel
interaction with CO2 and model the adsorption in MOFs
containing this building unit. It was estimated36 that among
4764 three-dimensional MOF structures from the Cambridge
Structural Database37 (as refined in the CoRE MOF data-
base),38 4.2% of them contains the Cu paddle-wheel and
another 3.5% contains the paddle-wheel motif formed by other
cations. Cu paddle-wheels are a recurrent building unit among
the different MOFs, and with a reliable and transferable force
field it would be possible to also screen these frameworks and
identify their performance for CO2 adsorption.

2. COMPUTATIONAL METHODS
The periodic calculations were performed using the Perdew−
Burke−Ernzerhof GGA method PBEsol39 to optimize the
framework and the second version of van der Waals dispersion-
corrected density functional vdW-DF225 to compute the
interactions. The plane wave Quantum Espresso 5.4 package40

was employed. We adopted the projector augmented wave
(PAW) method41,42 with a cutoff energy of 60 Ry for the wave
function and 300 Ry for the electron density. Due to the
dimension of the unit cell of HKUST-1 a Γ-point sampling of
the Brillouin zone integration was used with a smearing
occupation of 0.02 Ry.
For the cluster calculations, geometry optimizations were

performed using the unrestricted M06-L/cc-pVDZ43 level of
theory, and subsequent single-point energy difference calcu-
lations were performed using restricted open-shell MP244

(ROS-MP2) and unrestricted M06-L and M06.43 The Gaussian
09 package45 was employed. We tested the convergence of the
basis set using cc-pVDZ, AUG-cc-pVDZ, cc-pVTZ, and AUG-
cc-pVTZ.46−49 A spin multiplicity of three was used to model
the magnetic state of the copper paddle-wheel clusters. To
account for the error in computing the interaction due to the
basis set superposition, the counterpoise method by Boys and
Bernardi was employed.50 For the ROS-MP2 calculations the
frozen orbitals are the 1s for C and O and 1s, 2s, 2p, 3s, and 3p
for Cu.
Multireference calculations were performed on the cluster

models using the complete active space self-consistent field
method (CASSCF)51 followed by second-order perturbation
theory (CASPT2)52 using Molcas 8.2.53 All CASSCF/CASPT2

Figure 1. Copper paddle-wheel structure is composed of two coppers
atoms bridged though four dicarboxilate anions. Cu2(formate)4 (left)
represents the simplest paddle-wheel geometry possible. Dicopper
benzyl-1,2,3-trimetylcarboxylate, Cu2(BTC)4 (right), is the building
unit of the HKUST-1 framework: each BTC has three caboxylate
groups that allow creation of a three-dimensional network.

Figure 2. Three different pores in HKUST-1 (left): big pore (blue),
medium pore with open metal sites (green), and small pore (yellow).
Characteristic sites of adsorption for CO2 (right): open metal site
(blue), small pore window (green), small pore center (yellow), and
large pore corner (purple).
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calculations were performed without symmetry. Relativistic
basis sets of atomic natural orbital type (ANO-RCC)54 were
employed for all atoms. To explore basis set convergence, three
different basis sets of increasing size were tested. The first one,
BS1, is of double-ζ quality plus polarization; the second one,
BS2, is of triple-ζ quality plus polarization on Cu, O, and C
atoms and double-ζ quality plus polarization on H atoms; the
third one, BS3, is of quadruple-ζ quality plus polarization for
Cu and CO2, triple-ζ quality plus polarization on the remaining
C and O atoms, and double-ζ quality plus polarization on H
atoms. Scalar relativistic effects were included using the
Douglas−Kroll−Hess Hamiltonian.55 The computational cost
arising from the two-electron integrals was drastically reduced
by employing the Cholesky decomposition technique.56 The
decomposition threshold was chosen to be 10−4, as this should
correspond to an accuracy in total energies of the order of
mHartree or higher. In the CASPT2 calculations, in order to
prevent possible intruder states, an imaginary shift of 0.1 au was
added to the zero-order Hamiltonian. The default IPEA shift of
0.25 au was used. The default choices of the program were
employed for freezing orbitals, resulting in the 1s orbitals of C
and O being frozen, along with the 1s, 2s, 2p, and 3s orbitals of
Cu.
For the cluster models the interaction energy between the

framework and the CO2 molecule was computed as the
difference between the energy of the supersystem, the
framework plus CO2, and the energies of the two isolated
components, namely, CO2 and the framework.
The Raspa 2.0 package57 was employed for the force field

calculations. In all simulations TraPPE58 Lennard−Jones
parameters and charges were used to model CO2−CO2
interactions, while different sets of parameters were used to
model the framework−CO2 interaction, as discussed within the
results. The details of the simulations are provided in the
Supporting Information.

3. RESULTS AND DISCUSSION
3.1. Comparison of Simulated and Experimental

Isotherms in HKUST-1. The CO2 isotherms computed with
the standard force field, i.e., UFF,59 DREIDING,60 and
TraPPE,58 are found to be in strong disagreement with the
experimental data in the range of pressure from 0 to 1 bar.
Figure 3 shows the simulated isotherms computed using the
Grand Canonical Monte Carlo (GCMC) technique with
different sets of parameters for the dispersion forces and the
corresponding experimental isotherms.
All simulations underestimate the uptake of CO2, which

means that the force field underestimates the adsorbate−host
interactions. The force field interaction energies for specific
sites are compared to those obtained by DFT calculations in
Table 1. The binding energy for each site, corresponding to the
optimized position of a CO2 molecule in the open metal site, in
the small pore window site, and in the small pore center site,
are reported.
From neutron diffraction in situ experiments by Wu et al. we

know that OMSs are the first filled sites; then windows and
cage sites get populated by CO2. This observation proves that
OMSs have the strongest binding energy. Despite the fact that
UFF/UFF, UFF/TraPPE, and DREIDING/TraPPE force
fields are giving similar results to the vdW-DF2 method and
this could in principle validate the force fields, we clearly see
from Table 1 that in all four of these cases the OMS is
predicted to be the weakest site. As a consequence, these

standard methods erroneously predict that the OMS is poorly
occupied, as its interaction energies with CO2 are ∼4kbT and
∼60kbT weaker than other sites at 303 and 20K, respectively.
Standard force fields are known to incorrectly model the strong
interaction of adsorbate molecules with OMSs in MOFs,63 but
vdW-DF2 is also showing the same problem in the case of
copper paddle-wheel, while it was found to model accurately
the open metal site interaction with CO2 for other
MOFs.26,29,30

There are different assumptions in these calculations that
may not hold for this system; therefore, the interaction energy
between carbon dioxide and the copper atom in HKUST-1 was
also computed using other approaches. We considered
introduction of the Hubbard correction64 to model the d
orbitals of copper, because it was shown to influence the CO2
interaction with the OMS in MOF-74.26,65 The value of U = 3.8
eV, which can reproduce the experimental oxidation energy of
copper,66 was used. Also, different versions of the van der Waals

Figure 3. Comparison of experimental (29514 and 303 K31) and
simulated adsorption isotherms. TraPPE58 Lennard−Jones parameters
and charges are used for CO2−CO2 interactions. To compute the
dispersion forces acting between CO2 guest molecules and the crystal,
three commonly used approaches are compared. First, we used
Lennard−Jones parameters from UFF59 (Lorentz−Berthelot mixing
rules). Then we used UFF/TraPPE and DREIDING/TraPPE
parameters60 (notation FFframework/FFadsorbate). The point charges for
the framework atoms are extracted from a PBEsol DFT calculation
using the REPEAT scheme;61 in the Supporting Information we report
the charges’ values and compare them with the values obtained by
using Bader’s method.62 The framework is assumed to be rigid in all
simulations.

Table 1. Interaction Energy (kJ/mol) between CO2 and
HKUST-1 for Different Adsorption Sitesa

method open metal window center

FF (UFF/UFF) −19.3 −25.7 −26.3
FF (UFF/TraPPE) −19.0 −27.5 −29.0
FF (DREIDING/TraPPE) −19.4 −27.2 −28.5
DFT (vdW-DF2) −22.1 −30.2 −26.3
DFT (PBEsol) −12.1 −6.7 −0.8
DFT/CC (Grajciar et al.31) −28.2 −23.1 −23.2

aThe open metal site in the apical position of the copper paddle-
wheel, the window, and the center of small octahedral pores. Force
field and periodic DFT calculations are compared. Results obtained
with PBEsol show the evident inadequacy of pure DFT methods to
model noncovalent interactions.
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density functional were compared to the vdw-DF2 method, i.e.,
vdW-DF67 and revised-vdW-DF2.68 In all cases the geometry of
CO2 was optimized keeping the framework rigid, as obtained
from the PBEsol calculation. The results are reported in Table
2. No significant deviations in the interaction energy were

found, the only slightly increased value being obtained with
vdW-DF, which is known to systematically overestimate
dispersion interactions.69

Finally, the rigid framework assumption was neglected,
performing a full optimization of the framework’s atoms with
the adsorbed molecule in the OMS, using vdW-DF2. No
significant deviation in the binding energy was found: −1.6 kJ/
mol of difference from the rigid calculation. Moreover, we
noticed an exaggerated distortion of the copper paddle-wheel
structure which has not been reported experimentally,
suggesting the inadequacy of the vdW-DF2 method to optimize
the crystal geometry. The rigidity of the adsorbent was
therefore assumed as reasonable.
3.2. Interactions Computed in the Cluster Models. To

understand why the vdW-DF2 method underestimates the
CO2−Cu interaction in HKUST-1, we analyzed two smaller
representative clusters, Cu(formate)2 and Cu2(formate)4. The
interaction energy with carbon dioxide was scanned at different
distances by keeping the CO2 molecule perpendicular to the
CuO4 plane, as shown in Figure 4.

This configuration, referred here as “linear”, was chosen to
decrease the number of degrees of freedom for the CO2
position to just one, i.e., the copper−oxygen distance in the
axial direction. This configuration also minimizes all pairwise
contributions of the interaction but the copper−oxygen one,
which is the one vdW-DF2 is failing to model properly. Within
HKUST-1, the optimal linear configuration corresponds to a
distance of 2.65 Å and a binding energy of −13.4 kJ/mol,

computed using vdW-DF2. Figures 5 and 6 show the
interaction energy of CO2 as a function of the Cu−O distance
computed with different methods in Cu(formate)2 and
Cu2(formate)4, respectively.

Inspection of the energy profiles reported in Figure 5 for
Cu(formate)2 shows that the CO2−copper binding energies
differ within 4 kJ/mol among the various methods, ranging
between −8.0 (vdW-DF2) and −13.1 kJ/mol (MP2). The
minimum energy distance for vdW-DF2 is longer than with the
other methods, 2.9 Å instead of 2.5−2.6 Å. The M06 and M06-
L functionals produce similar energy profiles. Hence, inclusion
of the semilocal contribution with Hartree−Fock exchange
present in M06 has a minor effect. It is also interesting to note
the overall good agreement with the UFF force field. The
attraction computed by the force field is mainly due to the
Coulombic (REPEAT-TraPPE) interaction, with only a small
influence of dispersion forces: the electrostatic contributions
represent 96% of the interaction at the optimal distance of 2.5
Å.
In the Cu2(formate)4 case, vdW-DF2, M06, and M06-L

underestimate the interaction energy compared with ROS-MP2
by 9.1, 6.4, and 5.8 kJ/mol, respectively. Moreover, if compared
to the monocopper system, the ROS-MP2 calculation leads to a

Table 2. CO2 Open Metal Site Interaction Energies in
HKUST-1 Computed with Different Dispersion-Corrected
DFT Methods

method open metal site interaction

vdW-DF −24.9 kJ/mol
vdW-DF2 −22.1 kJ/mol
vdW-DF2+U −21.4 kJ/mol
vdW-DF2-rev −20.2 kJ/mol

Figure 4. Path representation of linear scans of CO2 interacting with
Cu(formate)2 (left) and Cu2(formate)4 (right). Dotted line, along
which the CO2 molecule is displaced, is perpendicular to the CuO4
plane.

Figure 5. Interaction energy profile for the CO2−Cu(formate)2 linear
scan: interaction energy is plotted as a function of the distance
between the copper atom and the CO2 molecule’s oxygen.

Figure 6. Interaction energy profile for the CO2−Cu2(formate)4 linear
scan: interaction energy is plotted as a function of the distance
between the CO2 molecule’s oxygen and the closest copper.
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binding energy which is 8.5 kJ/mol more stable in this dicopper
system.
In a second series of calculations we optimized the position

of the CO2 molecule, keeping the Cu2(formate)4 cluster rigid.
The CO2 molecule creates an angle with the copper−copper
line from 109° (vdW-DF2) to 116° (M06-L) due to both the
interaction of the lone pair of CO2 oxygen with the copper and
the partially positive CO2 carbon with partially negative oxygen
from the paddle-wheel. This optimized configuration is referred
here as the “tilted” position, because of the CO2 inclination
with respect to the CuO4 plane. The interaction energies
between Cu2(formate)4 and the linear and tilted configurations
of CO2 computed with different methods are reported in Table
3.
On the basis of quantum calculations, the tilted conformation

binding energy is ca. 5.5−7.5 kJ/mol larger than the linear
conformation binding energy. The force field model, based on
pairwise interactions, underestimates this difference at only 1.3
kJ/mol.
Finally, we tested the possible additive effect on the CO2

binding energy by adding a second CO2 molecule bonded
symmetrically on the other copper of Cu2(formate)4. The
binding energies computed with ROS-MP2 for this system do
not show any significant deviation (−21.0 and −26.9 kJ/mol
for the linear and tilted conformations, respectively), and
therefore, any additive effect can reasonably be neglected.
To summarize, vdW-DF2 underestimates the CO2−

Cu2(formate)4 binding energy by 9.1 and 8.8 kJ/mol,
respectively, for the linear and tilted configurations, if compared
to the ROS-MP2/aug-cc-pVTZ calculations. Considering the
ROS-MP2 results, we are now able to improve our model for
HKUST-1 and similar copper paddle-wheel MOFs.
3.3. Multireference Calculations. To have more insight

into the interaction between CO2 and Cu2(formate)4, we
performed wave function-based multireference complete active
space calculations, followed by second-order perturbation
theory.
A variety of active spaces were explored, including an active

space with 2 electrons in 2 orbitals (2,2) and one with 10
electrons in 10 orbitals (10,10). The (2,2) CASSCF calculation
is equivalent to a restricted open-shell (ROS)-HF calculation,
while the (2,2) CASPT2 calculation is equivalent to the ROS-
MP2 calculation. Notice that a singlet CASSCF (2,2) active
space indeed corresponds to a multireference calculation in the
sense that it generates a wave function that is the combination
of two configuration state functions (or Slater determinants).
Both the singlet and the triplet lowest spin states were explored.

In all cases the singlet state is the ground state and lies 3 kJ/mol
lower than the triplet state. This result is in good agreement
with the experimental values obtained for MOF-11: 3.4 and 5.3
kJ/mol, respectively, for the water bound and the anhydrous
structure.71 It is also in good agreement with the 3.2 kJ/mol
value Maurice et al. calculated with DDCI3 on a similar system,
copper acetate monohydrate.72

In the following we will discuss the energetics and electronic
structure configurations of the singlet. However, as discussed
above and also in the literature,33−35 it is reasonable to expect
that the open-shell singlet and the triplet potential energy
surfaces have a parallel shape. The singlet state is a linear
combination of two electronic configurations with 50% weight
each (See Table S1). The first configuration corresponds to
orbital MO1 doubly occupied (MO1

2, Figure 7a) and the second

to orbital MO2 doubly occupied (MO2
2, Figure 7b). In the (2,2)

calculations these orbitals are the only ones included in the
active space. They have an average occupation number of about
1 each (because each of them has only a 50% probability of
being doubly occupied). In the (10,10) calculation, the other
orbitals included in the active space are π and π* orbitals on the
O and C atoms of the paddles. They have occupations of 2 and
0, respectively, within each pair. Additional details regarding the
active space orbitals, including visual plots of the (10,10)
orbitals, are presented in the Supporting Information.
The binding energies are reported in Table 4. In the dicopper

system, the binding energy of CO2 to Cu is significantly larger
than in the monocopper case, as already discussed in section
3.2. This behavior can be explained by inspection of the
electronic configuration of the Cu2 system. The two Cu atoms
are close enough to have electronic communication, and the

Table 3. Energy of Interaction (kJ/mol) between Cu2(formate)4 and CO2 in Linear and Tilted Conformationa

method
linear CO2 interaction energy

(kJ/mol)
Cu−O distance

(Å)
tilted CO2 interaction energy

(kJ/mol)
Cu−O distance

(Å)
Cu−O−O angle

(deg)

FF(UFF/UFF) −13.0 2.5 −14.3 2.5 127.4°
ROS-MP2/cc-pVTZ −18.2 (−24.5) 2.4 −22.9 (−31.3) (M06-L opt) (M06-L opt)
ROS-MP2/ANO-RCC(BS2) −20.4 (−38.0) 2.4 −24.8 (−43.3) (M06-L opt) (M06-L opt)
ROS-MP2/aug-cc-pVTZ −21.6 (−27.1) 2.4 −27.2 (−33.1) (M06-L opt) (M06-L opt)
M06/aug-cc-pVTZ −15.2 (−17.7) 2.4 −21.9 (−25.3) 2.4 114.5°
M06-L/aug-cc-pVTZ −15.8 (−18.6) 2.4 −23.3 (−26.0) 2.4 115.9°
vdW-DF2/cutoff = 60 Ry −12.5 2.6 −18.4 2.6 109.9°

aFor all calculations that employ Gaussian basis functions, the energies obtained without counterpoise correction are reported in parentheses. ROS-
MP2 calculations without augmented basis function are included to show the variability due to their exclusion in computing interactions.70 ROS-
MP2/ANO-RCC calculations are also compared with CASPT2 results in section 3.3: for consistency we used the same basis set as BS2, with triple-ζ
quality plus polarization on Cu, O, and C atoms and double-ζ quality plus polarization on H atoms.

Figure 7. Two molecular orbitals MO1 (a) and MO2 (b), in the tilted
dicopper system at equilibrium, with their occupation number in
parentheses. In the linear system they look similar. Their occupation
number is 1. They correspond to an overall configuration of 0.51 MO1

2

+ 0.49 MO2
2.
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overall wave function is a superposition of two electronic
configurations. A multiconfigurational method is therefore
needed to correctly describe this system in the singlet ground
state. The monocopper system, on the other hand, has a single
configuration, which is reasonably well described by MP2. The
triplet state of the Cu2 system is also single configurational.
The interaction energies for the singlet and triplet states are

very similar (within 1 kJ/mol), and only the singlet energies are
reported in Table 4. Our results show that an active space of
(2,2) followed by PT2, equivalent to ROS-MP2, is sufficient to
describe the binding of this system, as the binding energy does
not change by more than 2 kJ/mol when increasing the active
space to (10,10).
Basis set effects were explored for the CASPT2 calculations.

Table 4 shows that on going from BS1 to BS2 the uncorrected
binding energy decreases by about 10 kJ/mol, while it remains
almost unchanged on going from BS2 to BS3. The counter-
poise-corrected binding energies change by 3−6 kJ/mol going
from BS1 to BS2 while again undergoing little change when
going from BS2 to BS3. The CASPT2 results with the (2,2)
active space reported in Table 4 should be compared to the
ROS-MP2/ANO-RCC (BS2) results reported in Table 3. The
only difference between these two sets of results is that those in
Table 3 are obtained for the triplet, while those in Table 4 are
obtained for the open-shell singlet and with unfrozen 3p
orbitals for Cu. The two sets of values including counterpoise
corrections differ by less than 2 kJ/mol, and more generally the
most accurate CASPT2/BS3 energies agrees well with the
ROS-MP2/aug-cc-pVTZ values, especially in the linear
conformation (difference of 1.5 kJ/mol).
3.4. Correction of the Force Field. In order to model

properly the interaction of carbon dioxide with the open metal
site in a classical force field, we needed to correct the potential
energy curve based on our first-principle calculations. The most
representative path for different CO2−Cu distances is the one
where the energy is mainly influenced by the interaction with
the cation rather than the interaction with other atoms of the
cluster (or framework). Hence, we fitted the linear CO2−
Cu2(formate)4 curve obtained with the ROS-MP2/aug-cc-
pVTZ method to obtain the new parameters for the force field.
Only the Cu−O van der Waals potential was tuned while
keeping the standard UFF parameters for all other atoms pairs
and REPEAT (PBEsol derived) point charges to model
electrostatic interactions. For the Cu−O interaction, a
Buckingham potential was adopted to correctly represent the
repulsion at short distance, and an r−8 attractive term was added
to account for the stabilization observed in the ROS-MP2
calculations. The details about the fitting and the coefficient for
the Cu−O potential are reported in the Supporting
Information. The optimal CO2 interaction with Cu2(formate)4,
which corresponds to the tilted conformation, computed with
the fitted force field parameters has a value of −23.2 kJ/mol.

This result is consistent with the UFF difference between the
linear and the tilted configurations of −1.3 kJ/mol. We notice
that by applying this relatively simple but effective correction,
obtained without modifying the pairwise interaction with other
atoms and without introducing a specific contribution based on
the Cu−CO2 angle, the minimum interaction energy obtained
for Cu2(formate)4 is in fair agreement with the ROS-MP2
result of −27.2 kJ/mol.
Finally, we replicated the GCMC simulations in HKUST-1

using our UFF parameters with the corrected Cu−O potential.
The comparison with experimental data is reported in Figure 8.

The simulations are still slightly underestimating the measured
uptake, and this is reflecting the previously mentioned
underestimation of ca. 4 kJ/mol for the interaction energy in
the optimal tilted configuration. However, the assumptions
made for the force field are sufficient to obtain a good
representation of the uptake around ambient temperature and a
significant improvement with respect to the standard force
fields.
The minimum energy of interaction computed with our new

force field in the three main adsorption sites of HKUST-1, i.e.,
open metal, small pore window, and small pore center sites, are
now ranked correctly, −27.3, −26.8, and −26.8 kJ/mol,
respectively, and the OMS stability is not underestimated any
longer compared to the in situ experimental results.
As a starting point for our correction, we used UFF/UFF

mixed parameters instead of UFF/TraPPE or DREIDING/
TraPPE, because from the simulated isotherm (Figure 8) we
can observe that these last force fields are already predicting the
experimental uptake at very low pressure (below 0.1 bar), even

Table 4. CASPT2 Interaction Energies (kJ/mol) between Cu2(formate)4 and CO2 in Linear and Tilted Conformations for
Different Active Spaces and Different Basis Sets for the Singlet Ground Statea

configuration active space BS1 BS2 BS3

linear (2,2) −15.0 (−43.2) −18.7 (−33.5) −20.2 (−31.7)
linear (10,10) −14.8 (−46.6) −18.6 (−36.8) −20.1 (−35.0)
tilted (2,2) −17.7 (−49.3) −23.5 (−40.0) −25.8 (−39.6)
tilted (10,10) −15.8 (−51.1) −21.8 (−41.7) −23.9 (−41.1)

aThe distance between CO2 and copper is 2.4 Å for both the linear and the tilted conformations. Values include counterpoise correction. Values
without counterpoise correction are in parentheses.

Figure 8. Comparison between the experimental31 and the simulated
isotherms for CO2 inside HKUST-1 at 303 K. Modified UFF force
field is obtained by fitting the Cu−O potential on ROS-MP2
calculations.
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if the open metal site interaction is strongly underestimated.
This is an artifact due to a fortuitous error cancellation with the
overestimation of the interaction in other sites, i.e., the small
pores centers (see Table 1), which are already saturated at 0.82
mmol/g, as clearly shown by the deviation of the simulated
isotherm from the experimental one. Therefore, employing the
conventionally used UFF/UFF, UFF/TraPPE, or DREIDING/
TraPPE mixed parameters to describe the guest−host
interaction in an analysis of the site occupancy would lead to
wrong conclusions, i.e., that in HKUST-1 the open metal sites
are very poorly occupied at low uptake.73 Ulterior comparisons
with experimental data is provided in the Supporting
Information: CO2 uptake at higher pressure and different
temperatures74 and the heat of desorption as a function of the
uptake.31,75,76

3.5. Investigation of the “Double” Open Metal Site
Interaction in Cu−TDPAT. To further test the reliability of
our force field, we investigated another interesting copper
paddle-wheel metal organic framework, Cu−TDPAT, first
synthesized by Li et al.77 The crystalline structure is
characterized by the presence of strong adsorption sites for
CO2, where both oxygens of the guest molecule are attracted to
two different copper cations (Figure 9), leading to an
interaction energy which is roughly double with respect to
the conventional single open metal site of copper paddle-wheel.

Because of this reason, Cu−TDPAT is one of the top
performing MOFs for both gravimetric and volumetric CO2
uptake at ambient pressure.78 The conventional unit cell of
Cu−TDPAT contains 48 copper cations: 24 of them compose
12 double open metal sites, while the remaining 24 atoms
compose 24 single open metal sites, with a conformation very
similar to the OMS of HKUST-1. Due to the large dimension
of the unit cell (960 atoms), the crystal is too big to perform a
DFT calculation with an accuracy comparable with our
previous calculation on HKUST-1. Consequently, we employed
the extended charge equilibration (EQeq) method79 to
compute the partial charges of the framework. This method
is able to self-consistently compute point charges for MOFs,
with results very similar to the charges obtained by fitting the
electrostatic potential from a quantum calculation, e.g.,
REPEAT. HKUST-1 itself was successfully tested in the

original paper presenting the EQeq method.79 Compared to
the quantum electrostatic potential fitting, this method is
drastically faster (a few minutes instead of hours for HKUST-1)
and applicable to a unit cell containing a large number of atoms,
which is practically forbidden to DFT calculations. The result
obtained for the copper paddle-wheel is consistent with our
PBEsol calculation in HKUST-1. Using the EQeq method the
average point charges for Cu−TDPAT are 0.905 and −0.398
for the copper and the carboxylic oxygen, respectively, versus
0.914 and −0.57 for HKUST-1 computed using REPEAT. With
the new set of parameters, we compared the results of the
GCMC simulations to experimental data (Figure 10).
This comparison shows good agreement, as for HKUST-1,

which gives us some confidence in the transferability of our
force field to model CO2 adsorption. Moreover, it becomes
more evident how UFF/UFF and UFF/TraPPE parametriza-
tions do not capture the strong interaction between CO2’s
oxygen and copper.

4. CONCLUSIONS

In this work we have shown that the Cu−Cu interaction in
copper paddle-wheel systems is the reason why DFT methods,
even when they include dispersion corrections, systematically
underestimate the interaction between CO2 and copper paddle-
wheel motif. Our calculations confirm the presence of the
copper−copper coupling, influencing the attraction of the CO2,
and suggest that the monocopper cluster Cu(formate)2 is not a
realistic model to describe this interaction.
One thus needs an electronic structure theory that properly

describes the Cu−Cu interaction, such as the ROS-MP2 wave
function. We show that if this interaction is included in our
calculations, the prediction of the binding energies is in better
agreement with the experimental data. To justify the choice of
ROS-MP2 method, which is equivalent to a (2,2) CASPT2
calculation, we performed a number of multireference
calculations over a variety of active spaces, basis sets, and
spin states. We concluded that the ROS-MP2 level of theory is
good enough to model the Cu2(formate)4−CO2 interaction.
Using the ROS-MP2 results, we reparametrized the UFF

pairwise potential to correctly model the interaction of CO2

with the open metal site in HKUST-1, which was severely
underestimated by conventional force fields. The results
obtained from our new force field agree with experimental
isotherms as well as with in situ PXRD studies, which found the
open metal site to be the strongest adsorption site for CO2

rather than the small pore center site. The correction proposed
in this work acts in proximity of the open metal site, and this
local character of the correction terms allows us to transfer the
same parameters to other MOFs containing the copper paddle-
wheel motif.
To test this transferability, we employed our force field to

model the CO2 interaction with the “double” open metal sites
of Cu−TDPAT framework, and we showed a significant
improvement with respect to conventional UFF parameters in
this case as well. The modified set of parameters proposed
makes it possible now to accurately describe the adsorption
behavior for this class of MOFs. In this study we focused on
CO2, but similar effects can be expected for other polar
molecules.

Figure 9. CO2 molecule adsorbed in the double open metal site of
Cu−TDPAT.
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