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Sets which are not tube null and intersection properties
of random measures

Pablo Shmerkin and Ville Suomala

Abstract

We show that in R
d there are purely unrectifiable sets of Hausdorff (and even box counting)

dimension d − 1 which are not tube null, settling a question of Carbery, Soria and Vargas, and
improving a number of results by the same authors and by Carbery. Our method extends also
to ‘convex tube null sets’, establishing a contrast with a theorem of Alberti, Csörnyei and Preiss
on Lipschitz-null sets. The sets we construct are random, and the proofs depend on intersection
properties of certain random fractal measures with curves.

1. Introduction and main results

1.1. Non-tube null sets and localization of the Fourier transform

By a tube T of width w = w(T ) > 0, we mean the w-neighborhood of some line in R
d. We

recall that a set A ⊂ R
d is called tube null if for any δ > 0 it can be covered by countably

many tubes {Tj} with
∑

j w(Tj)d−1 � δ.
The class of tube null sets arises, perhaps surprisingly, in the localization problem for the

Fourier transform in dimension d � 2. Indeed, Carbery, Soria and Vargas [4, Theorem 4] have
shown (generalizing a result of Carbery and Soria in [3]) that if E is a tube null subset of the
unit ball of R

d (denoted by Bd), where d � 2, then there exists f ∈ L2(Rd) which is identically
zero on Bd, and such that the localizations

SRf(x) =
∫
|ξ|<R

f̂(ξ) exp(2πiξ · x) dξ

fail to converge as R → ∞ for all x ∈ E. It is an open problem whether, conversely, every set
of divergence for SR is tube null. Motivated by this connection, in [4, p. 155] (see also [2]) the
authors pose the problem of finding the infimum of the Hausdorff dimensions of sets in R

d,
which are not tube null, and show that this infimum lies between d − 1 and d − 1/2. We are
able to settle this question.

Theorem 1.1. There exists a purely unrectifiable set A ⊂ R
d which has Hausdorff and

box counting dimension d − 1 and is not tube null.

We remark that the non-tube null sets of fractional dimension constructed in [4] are unions
of spheres, and therefore fail to be purely unrectifiable.

We obtain a finer result in terms of gauge functions. Recall that a function h : (0,∞) →
(0,∞) is called a gauge function if it is non-decreasing, continuous and limt↓0 h(t) = 0
(sometimes continuity is not assumed). Given a gauge function h, the h-dimensional Hausdorff
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measure Hh is defined as

Hh(E) = lim
δ→0

inf

{ ∞∑
i=1

h(diam(Ei)) : E ⊂
⋃
i

Ei, diam(Ei) < δ

}
.

This is always a measure on the Borel σ-algebra. When h(t) = tβ , we recover the usual
β-dimensional Hausdorff measure Hβ . See, for example, [6, Section 2.5] for further details.

Theorem 1.2. Let h : (0,∞) → (0,∞) be a gauge function such that h(2t) � 2dh(t), and

∫1

0

t−1
√

t1−d| log(t)|h(t) dt < +∞. (1.1)

Then there exists a compact set A ⊂ R
d with the following properties:

(i) For each n, A can be covered by C/h(2−n) balls of radius 2−n, where C > 0 depends
only on d.

(ii) We have 0 < Hh(A) < ∞.
(iii) If B ⊂ A is a Borel set with Hh(B) > 0, then B is not tube null. In particular, A is not

tube null.

One obtains Theorem 1.1 by taking, for example, h(t) = td−1| log t log | log t||−3; see Section 4.
The condition h(2t) � 2dh(t) is very mild for a subset of R

d. The key assumption is (1.1);
it says that A is ‘larger than d − 1 dimensional by at least a logarithmic factor’. Theorem 1.2
fails if lim inft↓0 h(t)t1−d > 0, see [4, Proposition 7]. It remains an open problem to determine
the exact family of gauge functions for which non-tube null sets exist.

1.2. Tubes around more general curve families

When d = 2, we are also able to treat tubes around more general curves. Given a family of
curves F in R

2, we call the w-neighborhood of F ∈ F an F-tube of width w = w(T ). We say
that a set A ⊂ R

2 is F-tube null if, for every δ > 0, there is a countable covering {Tj} of A by
F-tubes, with

∑
j w(Tj) < δ.

Given k ∈ N, let Pk be the family of (real) algebraic curves of degree at most k. Observe
that P1-tube null is just tube null. By imposing a slightly stronger integrability condition for
h, we obtain the following generalization of Theorem 1.1 for Pk.

Theorem 1.3. For d = 2 and k ∈ N, Theorem 1.2 continues to hold if in (iii), ‘tube null’
is replaced by ‘Pk-tube null’ and if (1.1) is replaced by

∫1

0

t−1| log(t)|
√

t1−dh(t) dt < +∞. (1.2)

The family of algebraic curves of a bounded degree is ‘essentially finite-dimensional’, see
Lemma 5.3. These results pose the question of how large a family of curves F may be so
that there exist sets of less than full Hausdorff dimension which are non-F-tube null. The
family P =

⋃
k∈N

Pk does not have this property for trivial reasons: it is Hausdorff dense in the
compact subsets of the unit square. If we instead consider the family Q ⊂ P of algebraic curves
which are graphs of functions of either x or y with derivative at most 1, then the situation is
much more subtle. Indeed, Alberti, Csörnyei and Preiss (see [1, Theorem 2]) proved that for
the family L of 1-Lipschitz graphs in the coordinate directions, any Lebesgue-null set is L-tube
null. By approximation, the same can be deduced to hold for Q.
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One is then led to ask what the situation is for infinite-dimensional families of curves which
nonetheless carry more structure than just being Lipschitz. One of the most natural such
families is the following: let C be the family of curves which are graphs of a convex function
f : [0, 1] → R. It is not hard to see C is not doubling in the Hausdorff metric (see Section 6).
Nevertheless, in contrast with the result of Alberti, Csörnyei and Preiss, there are sets of
dimension less than 2 which are not C-tube null.

Theorem 1.4. For every 5
3 < β < 2, there exists a set A ⊂ R

2 with 0 < Hβ(A) < ∞ which
is not C-tube null.

It seems very likely that the method can be pushed to show that 5
3 can be replaced by 3

2
in the above theorem. We do not know what is the best possible value, and conjecture that
5
3 cannot be replaced by 1, that is, there is δ > 0 such that every set of Hausdorff dimension
1 + δ is C-tube null.

1.3. Further results

As a corollary of the proofs, we can extend [2, Theorem 1] to one of the endpoints and a wider
class of tubes.

Theorem 1.5. For any β > d − 1, there exists a set A ⊂ R
d with positive and finite

β-dimensional Hausdorff measure Hβ , such that

sup
T

Hβ(A ∩ T )
w(T )d−1

< +∞,

where the supremum is over all (linear) tubes. In dimension d = 2, the result also holds when
the supremum is taken over all Pk-tubes (for fixed k).

In [2, Theorem 1], this is proved, for standard tubes, with any exponent γ < min(β, d − 1)
in the denominator, and the question of finding all possible pairs (β, γ) is posed. Examples
satisfying this estimate at the other endpoint, corresponding to β = γ < d − 1, were constructed
by Orponen [11] (again, only in the case of standard tubes around lines).

Our final result concerns the dimension of intersections of fractals and lines (or, more
generally, algebraic curves). It is a general result of Marstrand (in the plane) and Mattila
(in arbitrary dimension) that a Borel set E ⊂ R

d of Hausdorff dimension β > 1 intersects
‘typical’ lines in Hausdorff dimension at most β − 1 (here ‘typical’ refers to an appropriate
natural measure space, see [9, Theorem 10.10]). It is of interest to sharpen this result for
specific classes of sets. For example, Furstenberg [7] conjectured that for certain fractals of
dynamical origin, there are no exceptional lines, and Manning and Simon [8] proved that
typical lines with rational slopes intersect the Sierpiński carpet in dimension strictly less than
β − 1, where β is the dimension of the carpet. It follows from our methods that there exist
sets for which there are no exceptional lines in the Marstrand–Mattila’s Theorem, in a strong
uniform quantitative way.

Theorem 1.6. Let h be a gauge function satisfying the assumptions of Theorem 1.2.
Then there exists a compact set A ⊂ R

d of positive and finite h-dimensional measure with the
following property: there exists C > 0 such that for any line γ ⊂ R

d and any r > 0, the fiber
A ∩ γ can be covered by Cr/h(r) intervals of length r.

If d = 2, then the same holds for all γ ∈ Pk, provided h satisfies the slightly stronger
assumption of Theorem 1.3.
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Figure 1. The first three steps in the construction of A in the plane, with a1 = 4, a2 = a3 = 1.

The proofs of all our main results rely on a random iterative construction described in the
next section. Thus, this paper can be seen as an application of the probabilistic method, based
on the insight that it is often easier to exhibit objects with certain properties by showing that
almost every object in a random family satisfies them. Although here we study the geometry of
random measures as a tool towards our results, many recent articles have studied projections of
random fractals for their own sake (see [12, 14, 15] and references therein). In particular, the
results in [12, 15] on projections of fractal percolation led us to believe that random tree-like
fractals were likely not tube null, and provided several of the ideas needed to prove it.

2. Notation and construction

We use O(·) notation: X = O(Y ) means X � CY for some constant 0 < C < +∞, X = Ω(Y )
means Y = O(X), and X = Θ(Y ) means X = O(Y ) and Y = O(X). When the implicit
constants depend on some other constant, this will be denoted by subscripts; so, for example,
Y = Ok(X) means that Y � C(k)X for some positive function C of k. Throughout the paper,
we let |A| denote the Lebesgue measure of a set A ⊂ R

d. We also let D denote the Hausdorff
metric in the space of compact subsets of the unit cube [0, 1]d.

We prove all our results for sets obtained as the limit of an iterative random construction
related to (although different from) fractal percolation. A somewhat related random construc-
tion was used by Peres and Solomyak [13] to obtain sets A such that Hh(A) > 0, yet almost
all orthogonal projections of A have zero Lebesgue measure. Such sets are necessarily tube
null, and it is thus not surprising that the results of [13] apply to completely different gauge
functions than the ones considered in the present work.

We now describe our random construction: Let Dn denote the collection of closed dyadic
sub-cubes of [0, 1]d of side length 2−n. Let {an} be a sequence satisfying

an ∈ {1, 2d} and Pn :=
n∏

i=1

ai = Θ(1/h(2−n)).

Such sequence exists because h(t) � h(2t) � 2dh(t).
Starting with the unit cube A0 = [0, 1]d, we inductively construct random sets An as follows.

If an = 2d, then set An+1 = An. Otherwise, if an = 1, then choose, for each D ∈ Dn such that
D ⊂ An, one of the 2d dyadic sub-cubes of D (which are in Dn+1), with all choices being
uniform and independent of each other and the previous steps. Let An+1 be the union of the
chosen sub-cubes. Then {An} is a decreasing sequence of non-empty compact sets, and we set
A =

⋂∞
n=1 An. See Figure 1 for an example.
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3. Proof of key result

Let μn be the normalized restrictions of Lebesgue measure to An, that is,

μn(B) = 2dnP−1
n |B ∩ An| (3.1)

for all B ⊂ R
d. Write Bn for the ring generated by the dyadic cubes in Dn. It is easy to

check that if m � n, then μm(B) = μn(B) for B ∈ Dn, so it follows from Carathéodory’s
extension theorem that there is a Borel probability measure μ on R

d (but supported on A) such
that μ(B) = μn(B) for any set E ∈ Bn, see, for example, [6, Proposition 1.7]. In particular,∫

fdμn → ∫
fdμ for any function f which is Bj-measurable for some j, and from here an

approximation argument shows that μn → μ weakly. Note that, even though A is random, this
convergence is deterministic for any realization of the sequence (An).

It is standard that μ(E) = Θd(Hh(E)) for any Borel set E ⊂ A; we give the proof for
completeness. Write

Hh
(E) = lim

n→∞ inf

{ ∞∑
i=1

h(2−ki) : E ⊂
⋃
i

Ei, Ei ∈ Dki
, ki � n

}
.

Since any set of diameter r ∈ [2−n, 21−n) can be covered by Od(1) cubes in Dn, and diam(Q) =
Θd(2−n) for Q ∈ Dn, we have Hh

(E) = Θd(Hh(E)) for any set E. Since, by construction,

μ(Q) = μn(Q) = Θ(h(2−n)) if Q ∈ Dn and Q ⊂ An,

the claim follows from the fact that dyadic cubes generate the Borel σ-algebra. In particular,
0 < Hh(A) < ∞ and, for any Borel set E ⊂ A, Hh(E) > 0 if and only if μ(E) > 0.

We now start the core of the proof of Theorem 1.2: showing that almost surely (a.s.), no
positive measure subset of A is tube null.

Let A denote the family of all lines which intersect the unit cube. Given � ∈ A and n ∈ N,
we define the random variable

Y �
n = 2dnP−1

n H1(An ∩ �) =
H1(An ∩ �)

|An| , (3.2)

where H1 denotes one-dimensional Hausdorff measure (length). Our proof will involve esti-
mating the Y �

n , and indeed showing that they are uniformly bounded. This is the content of
our key result.

Theorem 3.1. Almost surely, supn∈N,�∈A Y �
n < ∞.

Theorem 3.1 will follow from the next two lemmas. The first is a large deviation argument
that we adapt from [12]. Since we want Y �

n to be a martingale, we only consider non-dyadic
lines, for example, lines � ∈ A not contained in any dyadic hyperplane, {(x1, . . . , xd) ∈ R

d |
xj = k2−n}, k ∈ Z, n ∈ N. We denote the family of non-dyadic lines by A′. Observe that
supn∈N,�∈A Y �

n = Od(supn∈N,�∈A′ Y �
n).

Lemma 3.2. For any � ∈ A′, n ∈ N, and κ > 0 for which

κ22(1−d)nPn = Ω(1), (3.3)

we have

P(|Y �
n+1 − Y �

n | > κ
√

Y �
n) � O(1) exp(−Ω(1)κ22(1−d)nPn).

Proof. Fix n. If an = 2d, then Y �
n+1 = Y �

n , so we assume an = 1, whence Pn+1 = Pn. Write
D for the collection of cubes in Dn forming An that intersect � in a set of positive length.
In the following, we condition on D. Let νj = 2nH1|�∩Aj

, j ∈ {n, n + 1}. For each Q ∈ D, we
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let
XQ = 2dνn+1(Q) − νn(Q).

Since we are conditioning on D, the random variables {XQ : Q ∈ D} are independent, have
zero mean, and are bounded in modulus by O(1). For each j, we decompose D into the families

Dj = {Q ∈ D :
√

d · 2−j � νn(Q) <
√

d · 21−j}.
Then Dj is empty for all j < 0. Moreover, as Y �

n = 2(d−1)nP−1
n

∑
Q∈D νn(Q), we have

Y �
n � Ω(1)(#Dj)2(d−1)n−jP−1

n ,

for all j.
By Hoeffding’s inequality, for any λ > 0 we have the estimate

P

⎛⎝∣∣∣∣∣∣
∑

Q∈Dj

XQ

∣∣∣∣∣∣ > λ2(1−d)nPn

√
Y �

n

⎞⎠ � O(1) exp(−Ω(λ2)2j+(1−d)nPn),

recall |XQ| = O(2−j). Since Y �
n+1 − Y �

n = 2(d−1)nP−1
n

∑
Q∈D XQ, we conclude that

P(|Y �
n+1 − Y �

n | > κ
√

Y �
n) �

∞∑
j=1

P

⎛⎝∣∣∣∣∣∣
∑

Q∈Dj

XQ

∣∣∣∣∣∣ > Ω(j−2)2(1−d)nPnκ
√

Y �
n

⎞⎠
� O(1) exp(−Ω(1)2(1−d)nPnκ2),

where we use (3.3) to obtain the last estimate.

The second lemma shows that a finite set of lines of exponential size controls all lines, up to
an ultimately negligible error.

Lemma 3.3. For each n, there is a (deterministic) family of lines An ⊂ A′ such that
#An � O(1)n, and

sup
�∈A′

Y �
n � sup

�∈An

Y �
n + O(2−n),

for any realization of A.

Proof. We construct a family of lines An with O(1)n elements such that, given any line
� ∈ A′, there is �′ ∈ An such that

H1(� ∩ Q) � H1(�′ ∩ Q) + O(8−n) for any Q ∈ Dn. (3.4)

We first assume that d = 2. Recall that D is the Hausdorff distance between closed subsets
of the unit cube. By elementary geometry, there is A0

n ⊂ A′ with O(1)n elements which is
(64−n)-dense in the D metric. That is, for every �′ ∈ A′ there is � ∈ A0

n with D(�, �′) < 64−n.
For each horizontal dyadic line

�k = {(x, y) ∈ R
2 | y = k2−n}, k = 0, 1, . . . , 2n,

let A�k
denote the collection of lines forming an angle ±8−n with �k and crossing �k at any of

the points (m8−n, k2−n), m = 0, 1, . . . , 8n. Let A1
n be the union of all the A�k

, k = 0, . . . , 2n.
Observe that A1

n has only O(1)n elements. Finally, let A2
n be a similar family of lines constructed

around the vertical dyadic lines {(x, y) ∈ R
2 | x = k2−n} and define An = A0

n ∪ A1
n ∪ A2

n.
Now let � ∈ A′. If the angle between � and the coordinate directions is larger than 8−n or if

� is completely contained in a single row or column in Dn, then by elementary geometry, (3.4)
holds for any �′ ∈ A0

n, which is 64−n close to � in the D metric. Otherwise, we can find a line
�′ from A1

n or A2
n such that (3.4) is fulfilled.
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When d > 2, we also let A0
n be a (64−n)-dense family in A′ with O(1)n elements. As in

the d = 2 case, for any � ∈ A′ which forms an angle of at least 8−n with all the coordinate
hyperplanes, there is �′ ∈ A1

n so that (3.4) is satisfied. To deal with the lines forming a small
angle with at least one hyperplane

H = {(x1, . . . , xd) ∈ R
d | xj = k2−n},

which they intersect, we need to construct families A1
n, . . . ,Ad

n. This is done in a similar way
to the d = 2 case, by considering a dense enough subset YH ⊂ H with O(1)n elements and
choosing, for each z ∈ YH , suitable lines that cross H at z and are almost parallel to H. We
omit the details.

We can now finish the proof of the lemma. Since each line � hits at most O(2n) squares
in Dn, we conclude from (3.4) that H1(� ∩ An) � H1(�′ ∩ An) + O(4−n) and, combined with
the definition of Y �

n , this implies that Y �
n � Y �′

n + 2dnP−1
n O(4−n) = Y �′

n + O(2−n). Recall that
Pn = Ω(2(d−1)n). It follows that An is the desired family.

Proof of Theorem 3.1. Let Mn = sup�∈A′ Y �
n . It follows from (1.1) that

∞∑
n=1

√
n2(d−1)nh(2−n) < ∞. (3.5)

We claim that it is enough to find C < ∞ such that
∞∑

n=1

P(Mn+1 − Mn > C
√

n2(d−1)nh(2−n)Mn + O(2−n)) < ∞. (3.6)

Indeed, if this is true, then, by the Borel–Cantelli lemma there is n0 such that

Mn+1 � Mn + C
√

n2(d−1)nh(2−n)Mn + O(2−n)

for all n � n0. Hence, Mn � Mn for all n � n0, where Mn0 = Mn0 and

Mn+1 = Mn + C

√
n2(d−1)nh(2−n)Mn + O(2−n).

Dividing through by
√

Mn and using that Mn is increasing, we get√
Mn+1 �

√
Mn + C

√
n2(d−1)nh(2−n) + O(2−n)/

√
Mn0 .

In light of (3.5),
√

Mn is uniformly bounded, and hence so is Mn, giving the claim.
Hence, the task is to verify (3.6), and it is enough to do so if we fix n and condition on An

(so long as the constant C is independent of An). Pick � ∈ A. Recalling that P−1
n = Θ(h(2−n)),

it follows from Lemma 3.2 that

P

(
Y �

n+1 − Y �
n > C

√
n2(d−1)nh(2−n)Y �

n

)
� O(1) exp(−C2Ω(n)).

Observe that n2(d−1)nh(2−n)2(1−d)nPn = Ω(n) = Ω(1) so that (3.3) holds and we may apply
Lemma 3.2.

Let An+1 be the family given by Lemma 3.3. For C sufficiently large, it holds that

P

(
max

�∈An+1
Y �

n+1 − Mn � C
√

n2(d−1)nh(2−n)Mn

)
� O(1)n exp(−C2Ω(n)) (3.7)

= O(exp(−Ω(n))).

In light of Lemma 3.3, we see that (3.6) holds, completing the proof.



Page 8 of 18 PABLO SHMERKIN AND VILLE SUOMALA

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. The first two assertions in Theorem 1.2 are clear; we only need to
show that if B ⊂ A has positive μ-measure, then B is not tube null. By Theorem 3.1, a.s. there
is C > 0 such that Y �

n � C for all n and �. Let πH denote the orthogonal projection onto a
hyperplane H ⊂ R

d and μH
n (B) = μn(π−1

H (B)) for all B ⊂ H. Using Fubini’s theorem, μH
n has

density

lim
r↓0

μH
n (B(x, r))
|B(x, r)| � Y �(H,x)

n ,

where �(H,x) is the line passing through x ∈ H orthogonal to H and |B(x, r)| denotes the
(d − 1)-dimensional Lebesgue measure of the ball B(x, r) ⊂ H. This implies that for each n,
all orthogonal projections of μn onto hyperplanes have a density (with respect to (d − 1)-
dimensional Lebesgue measure) uniformly bounded by C. The same therefore holds for μ.

Now this implies that if {Tj} is a countable collection of tubes covering B, then

0 < μ(B) �
∑

j

μ(Tj) �
∑

j

Cw(Tj)d−1,

showing that B is not tube null.

Proof of Theorem 1.1. Take h(t) = td−1| log t log | log t||−3. Because limt↓0 log h(t)/ log t =
d − 1, A has Hausdorff and box dimension equal to d − 1, and is a.s. not tube null by
Theorem 1.2.

It remains to show that A is purely unrectifiable. For simplicity, we assume that d = 2.
Denote by N the collection of all n ∈ N for which an = an+1 = 1. Observe that an in (3.2)
can be selected so that N is infinite. Suppose on the contrary, that there is a continuously
differentiable curve Γ such that Γ ∩ A has positive length. By the Lebesgue density theorem,
H1-almost all x ∈ A ∩ Γ satisfy

lim
n→∞

H1(3Qn ∩ Γ ∩ A)
H1(3Qn ∩ Γ)

= 1, lim sup
n→∞

H1(3Qn ∩ Γ)
2−n

= O(1), (4.1)

where Qn ∈ Dn is a square that contains x and 3Qn is the union of Qn and its neighbors
in Dn. Fix x ∈ A ∩ Γ satisfying (4.1) and let n ∈ N . Since each of the neighboring squares of
Dn contain only at most one square from Dn+2, Γ ∩ 3Qn has to cross at least one column or row
S of squares in Dn+2 such that 3Qn ∩ A ∩ S = ∅. This implies that H1(3Qn ∩ Γ \ A) � Ω(2−n).
For large n, this yields a contradiction with (4.1).

The case d > 2 follows with the same argument, assuming that an = an+1 = · · · = an+Od(1) = 1
for infinitely many n.

5. Proof of Theorems 1.3, 1.5 and 1.6

The proof of Theorem 1.3 follows the same pattern of the proof of Theorem 1.2; the main
difference lies in establishing the analog of Lemma 3.3, which requires a more involved
argument. From now on, we assume that d = 2. Fix k ∈ N. As in the linear case, for any
curve γ and n ∈ N, we define the random variable

Y γ
n = 4nP−1

n H1(An ∩ γ). (5.1)

Lemma 3.2 continues to hold for γ ∈ Pk with the same proof, unless γ is a dyadic line of
the form {x = k2−n} or {y = k2−n}, k, n ∈ N. Indeed, in Lemma 3.2, the only time we used
the fact that we were dealing with lines was in the estimate H1(� ∩ Q) = O(diam(Q)) for all
squares Q, and it is clear that H1(γ ∩ Q) = Ok(diam(Q)) if γ ∈ Pk.
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Before discussing the needed analog of Lemma 3.3, we make a reduction that will be useful
also later. The following lemma should be well known, but we include a proof for completeness.

Lemma 5.1. Each γ ∈ Pk can covered by Ok(1) curves, each of which is, after a rotation
by π/2 and/or a reflection, the graph of a convex, increasing function f : [a, b] → [0, 1] with
derivative bounded by 1.

Proof. We may assume that γ = P−1(0) where P is irreducible (otherwise, apply the
argument to its Ok(1) irreducible factors). We also assume, as we may, that γ does not contain
(and therefore is not) a line. In particular, this implies that the partial derivatives Px, Py are
not identically zero. By Bezout’s Theorem, the set

S = P−1(0) ∩ (P−1
x (0) ∪ P−1

y (0))

has cardinality Ok(1). It is well known that γ has Ok(1) connected components, see, for
example, [5, Theorem 4.6]. It follows that γ \ S can be partitioned into Ok(1) curves which are
graphs of functions of either x or y, without critical points. If (x, y) is in the graph of one such
function, say y = f(x), then implicit differentiation gives f ′(x) = −Px(x, y)/Py(x, y), and one
more implicit differentiation yields

f ′′(x) = − (f ′(x))2Pyy(x, y) + 2f ′(x)Pxy(x, y) + Pxx(x, y)
Py(x, y)

.

Hence, if S′ = {x : f ′(x) = 1} and S′′ = {x : f ′′(x) = 0}, then the union S′ ∪ S′′ has cardinality
Ok(1) by another application of Bezout’s Theorem (since γ is not a line). The closures of the
connected components of γ \ (S ∪ S′ ∪ S′′) are the required curves; their union covers all of
γ except the isolated points (if any). Note that the isolated points lie in S, and can thus be
covered by Ok(1) curves of the required type.

The core of the proof of Theorem 1.3 is again to show that

C := sup
γ∈Pk, n∈N

Y γ
n < +∞.

By Lemma 5.1, it is enough to show this for the family Qk, which consists of those subsets of
the algebraic curves in Pk, which are graphs of convex increasing functions with right derivative
bounded from above by 1.

The following simple lemma is essential in the proof of Lemma 5.5. It should be well known,
but we have not been able to find a reference, so a proof is included for completeness.

Lemma 5.2. Let f1, f2 be convex increasing functions defined on [0, 1] with right derivative
bounded above by 1, and let γi, i = 1, 2, be their graphs. Then

|H1(γ1) −H1(γ2)| = O(|f1 − f2|∞),

where |h|∞ = supx∈[0,1] |h(x)|.

Proof. By approximation, we can assume that f1, f2 are twice continuously differentiable.
Then

H1(γ1) −H1(γ2) =
∫1

t=0

√
1 + f ′

1(t)2 −
√

1 + f ′
2(t)2 dt

=
∫1

t=0

a(t)(f ′
1(t) − f ′

2(t)) dt, (5.2)
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where

a(t) = (f ′
1(t) + f ′

2(t))(
√

1 + f ′
1(t)2 +

√
1 + f ′

2(t)2)
−1.

Then

a′(t) = b1(t)f ′′
1 (t) + b2(t)f ′′

2 (t),

where b1, b2 are continuous functions on [0, 1] bounded by O(1). Integrating by parts, we deduce
from (5.2) that

|H1(γ1) −H1(γ2)| � O(|f1 − f2|∞) +
∫1

t=0

|a′(t)||f1(t) − f2(t)| dt

� O(|f1 − f2|∞)(1 + |a′|1),
where | · |1 denotes the L1-norm on [0, 1]. But

|a′|1 � |b1|∞|f ′′
1 |1 + |b2|∞|f ′′

2 |1 = O(1),

using that |f ′′
i |1 = f ′

i(1) − f ′
i(0) � 1 for i = 1, 2, thanks to our assumptions.

We shall next provide a simple geometric argument implying a bound on the number of
δ-balls needed to cover Qk. Recall that D is the Hausdorff distance on the unit cube.

Lemma 5.3. For all 0 < δ < 1, Qk can be covered by exp(Ok(| log δ|2)) balls of radius δ in
the D-metric.

Proof. We prove that, given γ ∈ Qk and 0 < r < 1, we may cover the ball B(γ, r) by
Ok(r−Ok(1)) balls of radius r/2. It then follows by induction on n that Qk = B(γ0, O(1))
can be covered by 2Ok(n2) balls of radius 2−n. Given δ ∈ (0, 1], applying this to n such that
2−n � δ < 21−n yields the claim.

Fix γ ∈ Qk, and for γ̃ ∈ B(γ, r), let f̃ : [aγ̃ , cγ̃ ] → [0, 1] be the convex increasing function
with graph γ̃. Also, let γ be the graph of the corresponding function f : [aγ , cγ ] → [0, 1].

For notational convenience, we assume that 5/r ∈ N. For −8 � i � 8, let fi = f + ir/5. We
extend the functions fi to [aγ − r, cγ + r] by setting fi(t) = fi(aγ) for aγ − r � t < aγ and
fi(t) = fi(cγ) for cγ < t � cγ + r. To each γ̃ ∈ B(γ, r), we attach a sequence

p = p(γ̃) = (p0, p1, . . . , p5/r) ∈ {−∞,−8,−7, . . . , 7,+∞}5/r

such that

pj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if aγ̃ >
jr

5
,

i if fi

(
jr

5

)
� f̃

(
jr

5

)
< fi+1

(
jr

5

)
,

+∞ if cγ̃ <
jr

5
.

By Bezout’s theorem, for any i and γ̃ ∈ B(γ, r), γ̃ intersects the graph of fi at most Ok(1)
times (or otherwise f̃ = fi). This means that for each γ̃ ∈ B(γ, r), there are at most Ok(1)
values pj such that pj+1 
= pj . Thus, the number of all possible sequences p(γ̃) for γ̃ ∈ B(γ, r)
is at most O(r−O(1)). In addition, if p(γ̃) = p(γ̂), then it follows from the construction that
γ̂ ∈ B(γ̃, r/2), recall that the derivative of each f̃ ∈ Qk is between 0 and 1. Combining these
observations implies that B(γ, r) may be covered by O(r−O(1)) balls of radius r/2.

Remark 5.4. It seems likely that the bound exp(Ok(| log δ|2)) in Lemma 5.3 could be
improved to δ−Ok(1) (this is equivalent to Qk having finite box dimension in the D-metric).
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If this is the case, then (1.2) in Theorem 1.3 can be replaced by (1.1). However, we have not
been able to prove this nor could we track such a result in the literature. Recall that there is
only a mild difference between the conditions (1.1) and (1.2), and also that it is not known if
(1.1) is sharp for Theorem 1.2.

As earlier in the case of lines, we ignore the elements of Qk that contain a non-trivial line
segment of some dyadic line {y = k2−n}, k, n ∈ N. We denote the corresponding family by Q′

k.
Note that, trivially, Lemma 5.3 applies also for Q′

k.

Lemma 5.5. For each n, there is a family of curves Qn,k ⊂ Q′
k such that #Qn,k �

exp(Ok(n2)), and

sup
γ∈Q′

k

Y γ
n � sup

γ∈Qn,k

Y γ
n + Ok

((
4
5

)n)
,

for any realization of A.

Proof. To begin with, take δ = 25−n and let Γ′ ⊂ Q′
k be the δ-dense family of size

exp(O(n2)) given by Lemma 5.3. We will next modify Γ′ by adding a finite number of translates
of each γ ∈ Γ′: Let γ ∈ Γ′, and let γ be the graph of f : [a, c] → [0, 1]. Let (a, b) be the interval on
which f ′(x+) < 5−n. If there is k ∈ N such that |f(a) − k2−n| � 5−n, then we choose numbers
−O(5−n) < yi < O(5−n) for each a � i5−n � b, i ∈ N, such that the function fi(x) = f(x) + yi

crosses the dyadic line y = k2−n at xi = i5−n. Let Eγ consist of γ and all the graphs of fi. We
define

Γ =
⋃

γ∈Γ′
Eγ .

Since each Eγ contains at most O(5n) elements, it follows that the cardinality of Γ is
exp(O(n2)). Moreover, using Lemma 5.2 it can be checked that, for any γ ∈ Qk, there is γ̃ ∈ Γ
such that

H1(γ ∩ Q) � H1(γ̃ ∩ Q) + Ok(5−n) for all Q ∈ Dn.

We leave the verification of these several simple cases to the reader, or see Lemma 6.6 for a
similar but more complicated argument.

As in the proof of Lemma 3.3, the claim now follows by adding over all chosen Q, using the
trivial bound Pn = Ω(2n), and recalling the definition of Y γ

n (see (5.1)).

Proof of Theorem 1.3. Once we have analogs of Lemmas 3.2 and 3.3, the proof of
Theorem 3.1 works verbatim to yield that a.s.

C := sup
γ∈Qk, n∈N

Y γ
n < +∞.

(Replacing Lemma 3.3 by Lemma 5.5 and (1.1) by (1.2), the upper bound in (3.7) reads
exp(O(n2) − C2Ω(n2)).)

To conclude the proof, fix some γ ∈ Qk; suppose that γ is the graph of f : [a, b] → R. Then
for any δ > 0,

γ(δ) ⊂ B((a, f(a)), δ) ∪ B((b, f(b)), δ) ∪ {(x, y) : |y − f(x)| < 2δ}.
Comparing the definitions of μn and Y n

γ (see (3.1) and (5.1)), it then follows from Fubini’s
theorem that μn(γ(δ)) � O(Cδ), and hence the same bound holds for μ and all γ ∈ Pk. The
proof then finishes as in the case of lines.
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Proof of Theorem 1.5. Take h(t) = tβ with β > d − 1. Then the random measure μ satisfies
μ(T ) = Θ(Hβ(T ∩ A)) for any Borel set T . In the proof of Theorem 1.2, we observed that (as
an easy consequence of Theorem 3.1) supT μ(T )/w(T )d−1 < ∞ where the supremum is over
all tubes in R

d. Likewise, in the proof of Theorem 1.3, the same was proved for tubes around
algebraic curves in R

2. The theorem follows.

Proof of Theorem 1.6. We consider first the case of lines in R
d. By Theorem 3.1 and

Fubini, there exists C > 0 and a realization of the random set A such that μn(γ(δ)) � Cδ for
all δ > 0, n ∈ N and all lines γ. In particular, this holds for δ :=

√
d · 2−n. Since any chosen

cube in An which intersects γ is then contained in γ(δ), it follows from the definition of μn

that γ can intersect at most O(2−n/h(2−n)) such cubes. From here, the theorem follows easily.
The situation for algebraic curves is identical, using the proof of Theorem 1.3 instead.

6. Proof of Theorem 1.4

6.1. Initial reductions

The proof of Theorem 1.4 follows once again a similar pattern. However, bounding the number
of D-balls of radius δ needed to cover C is more delicate (and the bound is much larger than
for the case of Pk).

We start with some notation and reductions. Abusing notation slightly, we will sometimes
identify functions f : [0, 1] → [0, 1] with their graphs. We denote by C+ the subset of C consisting
of non-decreasing functions with right derivative bounded above by 1. We note that since every
curve in C is the union of at most four curves which are obtained from a curve in C+ by a
possible π/2 rotation and/or a reflection, it is enough to prove Theorem 1.4 for C+ instead
of C. (To be more precise, an arbitrary f ∈ C is the union of such four curves defined on some
interval [a, b] rather than [0, 1]; by continuing them linearly to the left of a and the right of b,
there is no harm in assuming they are defined on all of [0, 1].)

6.2. Bounding the size of C+

Proposition 6.1. For every 0 < δ < 1, C+ contains a δ-dense subset (in the Hausdorff
metric D) with exp(O(δ−1/2| log δ|)) elements.

The idea of the proof of Proposition 6.1 is to associate to each f ∈ C+ a finite collection of
numbers, in such a way that knowing each of these numbers with an error up to δ allows to
construct a piecewise affine approximation which is within distance O(δ) of f . The problem is
then reduced to a counting problem in a much more straightforward space. Of course, this can
be done with any continuous function; the trick is to exploit the convexity and monotonicity
of f to show that, in essence, exp(O(δ−1/2| log δ|)) numbers suffice to reconstruct f up to
error O(δ).

From now on, we assume that δ−1/2 is an integer N (for simplicity of notation). Let us
first define the parameter space. Let X = {0, 1/N2, . . . , (N2 − 1)/N2, 1} and let Λ be the
family of all increasing functions f : Y → X, where Y ⊂ X has at most 2N + 1 elements.
It is straightforward to check that #Λ � NO(N).

We reduce the proof of Proposition 6.1 to the following proposition.

Proposition 6.2. There is a mapping P : C+ → Λ such that if f, f̃ ∈ C+ and P (f) = P (f̃),
then D(f, f̃) = O(N−2).
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Figure 2 (color online). The graphs of f and p = P (f) for f(x) = x3/3, N = 5.

In this case, Yf =
{
0, 5

25
, 10

25
, 15

25
, 19

25
, 23

25
, 1

}
.

This indeed implies Proposition 6.1: the needed O(δ)-dense collection in C+ is obtained by
choosing one element from P−1(λ) for each λ ∈ P (C+).

To define the projection P , we fix f ∈ C+. We first construct Y = Yf inductively as follows:
Let x0 = 0. If xk < 1 is defined, let

xk+1 = min
{

1, xk +
1
N

, inf
{

x ∈ X : xk < x, f ′(x+) � f ′(x+
k ) +

1
N

}}
.

We stop the construction when xk = 1, and set Y = {x0, x1, x2, . . . , xk}.

Lemma 6.3. For each f ∈ C+, the set Yf satisfies

#Y � 2N + 1, (6.1)
1

N2
< xi − xi−1 � 1

N
for each 0 < xi ∈ Y. (6.2)

In addition, for each 0 < xi ∈ Y, we have∣∣∣∣f ′(t) − f(x̃i) − f(xi−1)
x̃i − xi−1

∣∣∣∣ = O(1/N) for xi−1 � t � x̃i, (6.3)

where x̃i = xi − N−2.

Proof. The first claim follows directly from the construction of Y since 0 � f ′(t+) � 1 is
non-decreasing by convexity. The claim (6.2) is also clear. The last claim follows from (6.2)
and the fact f ′(x+

i−1) � f ′(t+) � f ′(x̃+
i ) � f ′(x+

i−1) + N−1 for all xi−1 < t < x̃i.

We may now complete the definition of p = P (f). For each x ∈ Y , we let p(x) = (k − 1)/N2,
where k ∈ N and (k − 1)/N2 � f(x) < k/N2. Given f ∈ C+, we extend p = P (f) to [0, 1] by
interpolating it linearly between the points of Yf . For notational convenience, we denote the
extension also by p. See Figure 2 for an illustration.

The claims of the following lemma are simple consequences of the definitions.

Lemma 6.4. For f ∈ C+, p = P (f) and Y = Yf , it holds

|p(x) − f(x)| = O(N−2) for all x ∈ Y, (6.4)
p′(t) = O(1) for all 0 < t < 1, t /∈ Y. (6.5)
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Proof of Proposition 6.2. We claim that for each f ∈ C+, the (extended) projection
p = P (f) satisfies

|p − f |∞ = O(N−2). (6.6)

This implies the claim since, if f, f̃ ∈ C+ and p = P (f) = P (f̃), then

D(f, f̃) = O(|f − f̃ |∞) = O(|f − p|∞ + |f̃ − p|∞) = O(N−2).

In short, the estimate (6.6) holds because Y = Yf has been constructed so that the variance of
f ′ on each interval [xi−1, xi − O(N−2)] is at most O(N−1) and p|[xi−1,xi] is an affine map with
|p(xk) − f(xk)| = O(N−2) for k = i − 1, i. For the reader’s convenience, we provide a detailed
proof.

Let 0 � t � 1 and choose i such that xi−1 � t � xi. Set x̃i = xi − N−2. If t > x̃i, then
|t − xi| < N−2 and it follows using (6.4), (6.5) and 0 � f ′(x+) � 1, that

|p(t) − f(t)| � |p(t) − p(xi)| + |p(xi) − f(xi)| + |f(xi) − f(t)|
� 3 × O(N−2) = O(N−2).

It remains to consider the case xi−1 � t � x̃i. Write

p(t) = p(xi−1) + (t − xi−1)
p(xi) − p(xi−1)

xi − xi−1

= f(xi−1) + (p(xi−1) − f(xi−1))

+ (t − xi−1)
f(x̃i) − f(xi−1) + (p(xi) − f(x̃i) + f(xi−1) − p(xi−1))

x̃i − xi−1 + N−2
. (6.7)

Using (6.4), the definition of p, xi−1 � t � xi and 0 � f ′(x+) � 1, we estimate

|p(xi−1) − f(xi−1)| = O(N−2),

|p(xi) − f(x̃i)| = O(N−2),∣∣∣∣ t − xi−1

xi − xi−1

∣∣∣∣ � 1.

We deduce from (6.7) that∣∣∣∣p(t) − f(xi−1) − (t − xi−1)
f(x̃i) − f(xi−1)
x̃i − xi−1 + N−2

∣∣∣∣ = O(N−2). (6.8)

Also, using xi − xi−1 � 2N−2, xi � t � xi+1 and 0 � f ′(x+) � 1, we have∣∣∣∣ 1
x̃i − xi−1

− 1
xi − xi−1

∣∣∣∣ = O(N−2|xi − xi−1|−2), (6.9)

|(t − xi−1)(f(x̃i) − f(xi−1))| = O(|xi − xi−1|2). (6.10)

Combining the estimates (6.8)–(6.10), we conclude that∣∣∣∣p(t) − f(xi−1) − (t − xi−1)
f(x̃i) − f(xi−1)

x̃i − xi−1

∣∣∣∣ = O(N−2).

Since, on the other hand (6.2) and (6.3) yield that∣∣∣∣f(t) − f(xi−1) − (t − xi−1)
f(x̃i) − f(xi−1)

x̃i − xi−1

∣∣∣∣ = O(N−2),

we have shown that (6.6) holds.

Remark 6.5. It follows from the previous proposition that if N(δ) is the minimum number
of balls of radius δ needed to cover C+ in the Hausdorff metric, then log N(δ) = O(δ−1/2| log δ|).
This is close to being sharp: log N(δ) = Ω(δ−1/2). Indeed, suppose again N = δ−1/2 is an
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integer. Set

Δ =
{

(a1, . . . , aN ) : ai ∈
{

0,
1
N

, . . . , 1
}

, 0 � a1 � · · · � aN � N

}
.

Then log #Δ = Ω(N). Given a = (a1, . . . , aN ) ∈ Δ, let La be the piecewise affine function
satisfying La(0) = 0 and L′

a(t) = ai/N for (i − 1)/N < t < i/N . It is clear that La ∈ C+, and
if a 
= b ∈ Δ, then D(La, Lb) = Ω(1/N2).

In particular, (C+,D) has infinite box dimension, and is very far from being a doubling
metric space (recall that a metric space is doubling if each ball can be covered by a uniformly
bounded number of balls of half the radius).

6.3. Completion of the proof of Theorem 1.4

The proof of Theorem 1.4 now follows the usual pattern, with minor variations. We still use
the construction from Section 2, but we now assume that h(t) = tβ for some β ∈ ( 5

3 , 2). As
before, we ignore the elements of C+ whose graphs contain non-trivial dyadic line segments,
but for simplicity of notation, we still denote the new slightly smaller collection by C+.

Lemma 3.2 holds for curves γ ∈ C+, as there is a uniform upper bound for the ratio
H1(γ ∩ Q)/diam(Q) (namely 2) for all dyadic squares Q. The needed analog of Lemmas 3.3
and 5.5 is now the following.

Lemma 6.6. Let 1 < η < 4. For each n, there is a family of curves Cn ⊂ C+, such that
log #Cn = O(n2ηn/2) and, for any realization of A,

sup
γ∈C+

Y γ
n � sup

γ∈Cn

Y γ
n + O(2(3−β−η)n).

Proof. Let δ = 2−ηn. We apply Proposition 6.1 to obtain a δ-dense family C′
n ⊂ C+ such

that log #C′
n = O(n2ηn/2).

We will modify C′
n in the same fashion as in the argument of Lemma 5.5. If f ∈ C′

n, let (0, b]
be the interval on which f ′(x+) < 2−n−1. If there is k ∈ N such that |f(t) − k2−n| < 2−ηn+1

for some 0 � t � b, then we choose for each 0 � i2−nη � b, i ∈ N ∪ {0}, numbers yi such that
the function fi(x) = f(x) + yi crosses the horizontal line y = k2−n at xi = i2−nη. Let Ef be
the collection of all fi and set

Cn = C′
n ∪

⋃
f∈C′

n

Ef .

Since each Ef has at most O(2nη) elements, it follows that log #Cn = O(n2ηn/2). Let γ ∈ C+.
We claim that there is γ̃ ∈ Cn such that∑

Q∈Dn

H1(γ ∩ Q) � H1(γ̃ ∩ Q) + O(2n(1−η)). (6.11)

This implies the claim since then

Y γ
n = 4nP−1

n H1(γ ∩ An) � 4nP−1
n (H1(γ̃ ∩ An)) + O(2n(1−η))

= Y γ̃
n + P−1

n O(2n(3−η)) = Y γ̃
n + O(2n(3−β−η)),

recall that Pn = Θ(2nβ).
To prove (6.11), fix f ∈ C+ and let γ be the graph of f . We first choose f∗ ∈ C′

n, which is
δ-close to f . If Ef∗ = ∅, then we let f̃ = f∗. Otherwise, there is k ∈ N and 0 < t < b such that
|f∗(t) − k2−n| < 2−ηn+1, where b = sup{x : f∗(x+) < 2−n−1}. Denote

a = sup{x : f(x) � k2−n},
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with the convention a = 0 if f(0) > k2−n. It follows from the construction of Ef∗ that we may
choose f∗

i ∈ Ef∗ and 0 � xi = i2−nη � b with f∗
i (xi) = k2−n such that

|xi − a| �
{

O(2−nη) if a � b,

O(2n(1−η)) if a > b.
(6.12)

Let f̃ = f∗
i . We first assume that a > b. Let γ1, γ̃1, γ2 and γ̃2 be the graphs of f[0,xi], f̃[0,xi],

f[a,1] and f̃[a,1], respectively. It then follows that

H1(Q ∩ γ1) � H1(Q ∩ γ̃1) + O(2−ηn) for all Q ∈ Dn. (6.13)

Recall that by Lemma 5.2, it is enough to bound the Hausdorff distance of γi ∩ Q and γ̃i ∩ Q
in order to estimate the difference H1(γi ∩ Q) −H1(γ̃i ∩ Q). Let I ⊂ [a, 1] be the set where
the distance of γ̃ is at least 2−nη to all dyadic lines y = j2−n. Then

H1(γ2|I ∩ Q) � H1(γ̃2 ∩ Q) + O(2−nη) for all Q ∈ Dn. (6.14)

Since the derivative of f̃ is at least 2−n−1 on [a, 1], it follows that |[a, 1] \ I| = O(2n(1−η)).
Combining with (6.13), (6.12) and (6.14), and taking into account that each γ intersects at
most O(2n) squares in Dn yields (6.11) in the case a > b.

If a � b, then we can repeat the above argument with [0, xi] and [a, 1] replaced by [0, b] and
[b, 1].

Proof of Theorem 1.4. We follow the proof of Theorem 3.1. Let

Mn = sup
γ∈C+

Y γ
n .

Pick any η ∈ (3 − β, 2(β − 1)); note the interval in question is non-empty thanks to our
assumption that β > 5

3 . It will be enough to show that
∞∑

n=1

P(Mn+1 − Mn > n−2
√

Mn + 2(3−β−η)n) < ∞. (6.15)

Indeed, thanks to Borel–Cantelli this implies that supn∈N,γ∈C+ Y γ
n < ∞ a.s., and from here the

proof can be finished exactly as in the proof of Theorem 1.3.
From now on, fix n and condition on An. Pick γ ∈ C+. Recall that under our assumptions,

Pn = Θ(2nβ). Lemma 3.2 (applied to curves in C+) yields that

P(Y γ
n+1 − Y γ

n > n−2
√

Y γ
n ) � O(1) exp(−Ω(n−42(β−1)n)).

Let Cn be the family given by Lemma 6.6, with this η. Then

P

(
max
γ∈Cn

Y γ
n+1 − Mn �

√
Mn

n2

)
� O(1) exp(O(n2ηn/2) − Ω(n−42(β−1)n))

= O(1) exp(−Ω(2nη′
))

for any 0 < η′ < β − 1 (here we use that η < 2(β − 1)). This implies (6.15) and finishes the
proof.

7. Generalizations

We finish the paper by sketching some generalizations of the results in Section 1.
In R

d, d > 2, Theorem 1.1 can be generalized by considering tubes around planes rather than
lines. For k ∈ {1, . . . , d − 1}, denote the Grassmannian of k-planes in R

d by G(d, k). A G(d, k)-
tube T of width w = w(T ) is, as usual, a w-neighborhood of a plane V ∈ G(d, k). We say that
A ⊂ R

d is G(d, k)-tube null if for every δ > 0 one can find countably many G(d, k)-tubes Ti
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covering A with
∑

i w(Ti)d−k < δ. The proof of Theorem 1.2 extends to this setting to give the
following theorem.

Theorem 7.1. Let h : (0,∞) → (0,∞) be continuous and non-decreasing such that
h(2t) � 2dh(t), and ∫1

0

t−1
√

tk−d| log(t)|h(t) dt < +∞.

Then a.s. the set A constructed in Section 2 has no G(d, k)-tube null subsets of positive
Hh-measure.

In particular, there exist non-G(d, k)-tube null sets of Hausdorff and box counting dimension
d − k.

The latter claim is obtained by taking, for example,

h(t) = td−k| log t log | log t||−3.

Again, it is easy to see that the dimension threshold d − k is sharp: any set E ⊂ R
d of

dimension strictly less than d − k is necessarily G(d, k)-tube null, since any particular ortho-
gonal projection onto a (d − k)-dimensional subspace has zero (d − k)-dimensional Lebesgue
measure.

As our main goal was to prove the existence of sets of small dimension that are not tube null,
we focused on a simple model that achieved this purpose. But it is possible to prove that many
other sets arising from random models are not tube null (provided they are of sufficiently large
dimension). This is true for a large class of repeated subdivision fractals; the key feature that
must be present in the construction is that, conditioning on the nth level, each surviving point
has the same probability of surviving to the next level (and the partition elements should be
regular enough that the combinatorial Lemma 3.3 can be carried through; but this is a mild
condition). Thus, for example, classical fractal percolation limit sets with constant probabilities
(see, for example, [15]) are a.s., not tube null when they have dimension strictly larger than 1.

The main difference between the families C and Pk is their size: We have seen that the
number of δ-balls needed to cover C is exp(Ω(δ−1/2)), whereas for Pk only exp(O(| log δ|2))
such balls are needed. Theorem 1.3 can be generalized to many other curve families satisfying
such bounds. For instance, if F is a collection of curves in R

2 such that for 0 < δ < 1, it can be
covered by exp(O(| log δ|O(1))) balls of radius δ (in the D metric), and if each F is contained in
a union of O(1) curves in C, then the proofs of Theorem 1.3 and Lemma 6.6 can be combined
to show the existence of non-F-tube null sets of dimension 1.

Regarding higher dimensions, it seems likely that our methods can be used to prove results
for algebraic curves and surfaces in R

d in the spirit of Theorem 7.1.
We finish this discussion with a generalization in a different direction. Our proof of

Theorem 1.1 reveals that all orthogonal projections of the random measure μ onto lines
are absolutely continuous, with a density bounded by some uniform random constant. It is
natural to ask if the projections may enjoy any additional regularity. Away from the coordinate
projections, one may use the method of Peres and Rams in [12] to prove that projections have
a Hölder continuous density (Peres and Rams prove this fact for projections of the natural
measure on fractal percolation). However, the dyadic nature of the construction makes a
discontinuity in the coordinate projections unavoidable. In a forthcoming work [16], we address
this issue by studying intersection properties of a different class of random measures, generated
by removing a ‘random soup’ consisting of countably many shapes generated by a Poisson
point process, see, for example, [10] for the description of this model. In particular, we show
the existence of measures of dimension 1 in R

2, all of whose orthogonal projections onto lines
are absolutely continuous, with a continuous density.
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