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SUMMARY

During aging, the brain undergoes changes that
impair cognitive capacity and circuit plasticity,
including a marked decrease in production of adult-
born hippocampal neurons. It is unclear whether
development and integration of those new neurons
are also affected by age. Here, we show that adult-
born granule cells (GCs) in aging mice are scarce
and exhibit slow development, but they display
a remarkable potential for structural plasticity.
Retrovirally labeled 3-week-old GCs in middle-aged
mice were small, underdeveloped, and discon-
nected. Neuronal development and integration were
accelerated by voluntary exercise or environmental
enrichment. Similar effects were observed via knock-
down of Lrig1, an endogenous negative modulator of
neurotrophin receptors. Consistently, blocking neu-
rotrophin signaling by Lrig1 overexpression abol-
ished the positive effects of exercise. These results
demonstrate an unparalleled degree of plasticity in
the aging brain mediated by neurotrophins, whereby
new GCs remain immature until becoming rapidly
recruited to the network by activity.

INTRODUCTION

Aging is a multifaceted process that affects the physiological

integrity of cells, tissues, and organs, ultimately deteriorating

the quality of life (Guarente, 2014; López-Otı́n et al., 2013). Age

constitutes a primary risk factor for major human pathologies,

including neurodegenerative disorders such as Alzheimer’s

and Parkinson’s diseases, characterized by the progressive

loss of specific neuronal populations (Irwin et al., 2013; Mattson,

2012). Even in the healthy brain, aging typically impairs cognitive

abilities, the speed of information processing, and the capacity

for memory formation and retention. These changes are associ-

ated with decreased connectivity rather than neuronal loss. Neu-

ral circuits become affected by senescence at the molecular,

cellular, and network levels, displaying decreased synapse

numbers, synaptic proteins, and neurotransmitter receptors,
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with concomitant alterations in transmission and plasticity

(Burke and Barnes, 2010; Fan et al., 2017). Plasticity is what al-

lows the brain to adapt to novel stimuli to produce an adaptive

behavior. In the dentate gyrus of the hippocampus, plasticity is

not limited to synaptic remodeling, but it also includes the pro-

duction of new granule cells (GCs) that develop and integrate

in the preexisting circuits, producing substantial modifications

in local networks that contribute to the capacity for the discrim-

ination of subtle contextual differences (Kropff et al., 2015; Lep-

ousez et al., 2015).

In the aging hippocampus, numbers of excitatory synapses

decrease, and contacts lose their ability to undergo activity-

dependent, long-term potentiation required for proper memory

formation and for the establishment of spatial maps. Thus, the

capacity of neural circuits to respond and adapt to challenges

from the external world by modifying specific synaptic connec-

tions becomes impaired (Burke andBarnes, 2010). Hippocampal

neurogenesis is also greatly diminished by age (Kempermann

et al., 1998; Kuhn et al., 1996; Kuipers et al., 2015), and multiple

mechanisms seem to be responsible for loss of plasticity. Aging

affects cell-intrinsic pathways that reduce self-renewal of neural

stem cells, their neurogenic capacity, and the survival of newly

generated neurons both in the dentate gyrus and the subventric-

ular zone (Beckervordersandforth et al., 2017; Corenblum et al.,

2016; Encinas et al., 2011; Knobloch et al., 2013; Kuipers et al.,

2015; Moore et al., 2015). Extrinsic signals also play critical roles

in the decline of adult neurogenesis observed in the aging brain

(Fan et al., 2017; Villeda et al., 2011). The age-dependent decline

in hippocampal neurogenesis has been proposed as a possible

mechanism contributing to cognitive impairment.

Among the several remaining questions about the regulation of

adult neurogenesis, it is unclear whether newly generated GCs

integrate properly in the context of the aging hippocampus

(Burke and Barnes, 2010; Fan et al., 2017; Mattson, 2012). Not

only does integration depend on proper neuronal differentiation

of stem cells, migration, and growth, but it also demands the

establishment of synaptic connections and the possibility to

refine those connections in an activity-dependent manner, which

highlights the complexity of the neurogenic process in the adult

brain. Thus, new GCs might serve as suitable probes to interro-

gate the capacity of the aging brain to undergo all of these steps

successfully. Because development and integration of adult-

born GCs are sensitive to subtle modifications that impinge on
orts 21, 1129–1139, October 31, 2017 ª 2017 The Author(s). 1129
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the activity of the local niche (Alvarez et al., 2016; Piatti et al.,

2011), here, we have hypothesized that the multiple alterations

found in the aging brain affect not only the quantity but also

the quality and functionality of the neurogenic process. We

have also tested whether GCs born in aging mice are responsive

to conditions that are known to enhance brain health and

plasticity.

RESULTS

Delayed Development of Adult-Born Neurons in the
Aging Dentate Gyrus
As a first approach to investigate the impact of age, we analyzed

morphological development of new GCs generated in the septal

hippocampus of young adult, adult, and middle-aged mice

(2, 5, and 8 months old; 2M, 5M, and 8M mice, respectively).

Adult-born GCs were labeled using a retroviral construct ex-

pressing GFP and analyzed by confocal imaging at different

days post-injection (dpi), which accurately represents the devel-

opmental age of the labeled neuron (Figures 1A–1C). Besides the

well-known fact that the number of new GCs decreases in aging

animals, we noted that GCs generated in 5M and 8M mice dis-

played shorter and simpler dendrites than those generated in

2Mmice, particularly at early stages of development (<4 weeks).

These features were reflected in the shorter dendritic length and

reduced number of branches (Figure 1D). Notably, 21-dpi GCs

had reached an almost mature morphology in 2M mice but

looked incipient in 8M mice. Overall, dendritic growth curves

were shifted to the right in older mice, but eventually, GCs

born at all ages showed similar dendritic features upon reaching

the plateau phase (Figures 1C and 1D).

Synaptic integration of developing GCs follows a stereotyped

sequence that has been widely validated, starting with the for-

mation of GABAergic dendritic inputs and followed by glutama-

tergic synaptogenesis several days later, which is accompanied

by the formation of dendritic spines (Chancey et al., 2013; Espó-

sito et al., 2005; Ge et al., 2006; Piatti et al., 2011; Zhao et al.,

2006). In the young adult brain, dendritic spine density in new

GCs increased abruptly by the third week and showed a peak

at 28 dpi that decreased with neuronal age until reaching a

plateau (Figures 1E and 1F). Such an increase in spine number

was delayed in older mice. In particular, while 21-dpi GCs from

2M mice displayed �1.5 spines per micrometer, those in 8M

mice displayed no spines along their dendritic shafts, suggesting

a complete lack of glutamatergic connectivity. At all ages,

a sharp increase in spine formation was observed from 21- to

28-dpi GCs, and similar spine density values were reached

upon maturation. Together, these observations suggest that

age induces a developmental delay in adult born GCs.

Physical Exercise Promotes the Rapid Functional
Integration of New GCs
Physical exercise exerts positive effects at multiple levels in the

aging brain, improving metabolic parameters and, ultimately,

memory and cognitive performance (Duzel et al., 2016; Mattson,

2012). In mice exposed to a running wheel, these effects corre-

late with an increase in the production of new GCs (Marlatt

et al., 2012; van Praag et al., 1999, 2005). In young adult mice,
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the development and integration of adult-born GCs are also

shaped by physical exercise and experience, which adds addi-

tional levels of activity-dependent plasticity to network remodel-

ing by neurogenesis (Alvarez et al., 2016; Bergami et al., 2015;

Piatti et al., 2011). To test whether developing GCs in the aging

brain respond to physiological stimuli, we analyzed the effects

of voluntary exercise (running) in 8M mice. Surprisingly, running

increased the proportion of GCs expressing the mature neuronal

marker calbindin (Cb) by more than 3-fold in 21-dpi GCs, reflect-

ing an accelerated development (Figures 2A–2C). In addition,

GCs in running mice displayed morphological properties typical

of mature neurons, with complex dendritic trees bearing long

and ramified dendrites, about 4-fold longer than those of the

largely immature GCs in sedentary mice (Figures 2D–2F). Den-

drites in runningmicewere now coatedwith spines at a high den-

sity both in themiddle and outer molecular layers (�2/mm), which

suggests that neurons have already established connections

with the host network (Figure 2G). Overall, 21-dpi GCs in running

mice at 8M acquired similar structural features as new neurons in

young adult mice (2M; Figure S1). It is interesting to note that,

even though the degree of maturation reached at 21 dpi under

sedentary conditions was different at each age studied, all

GCs in running mice achieved similar morphology regardless

of the mouse’s age (2M, 5M, and 8M) (Figure S1).

To monitor possible changes in functional connectivity that

may accompany the structural remodeling triggered by voluntary

exercise, electrophysiological recordings were carried out in

21-dpi GCs in acute slices obtained from sedentary and running

middle-aged (12M) mice. GCs from sedentary mice displayed

high membrane resistance, a lack of action potentials, and an

absence of spontaneous excitatory postsynaptic currents

(sEPSCs), indicative of an incipient neuronal phenotype lacking

functional glutamatergic synaptic inputs (Figures 2H–2J). In

striking contrast, new GCs from running mice fired repetitively

and showed spontaneous glutamatergic postsynaptic currents,

which demonstrates that they have been integrated in the local

circuits. Despite being more connected, new GCs from running

mice still displayed high input resistance, few spikes, and low

sEPSC frequency, which indicate that they have not yet reached

functional maturity (Espósito et al., 2005; Mongiat et al., 2009).

Together, these data demonstrate that GCs developing in older

mice exhibit a remarkable sensitivity to hippocampal activation

by voluntary exercise, which elicits structural and functional

changes needed to recruit new neurons to the network.

Because exploration of an enriched environment (EE) gener-

ates reliable local activity that promotes synaptic plasticity and

the integration of newGCs in the temporal hippocampus in young

adultmice (Alvarez et al., 2016; Chancey et al., 2013), we decided

to test itsmodulatory effects inmiddle-agedmice (Figures 3Aand

3B). An EE produced substantial acceleration of newGC integra-

tion in 8M mice (Figures 3C–3F). GCs from stimulated mice dis-

played longer andmore complexdendritic trees,with variable ex-

tents of responsiveness in all analyzed mice. When examined in

detail, they presented dendritic spines reflecting connections to

glutamatergic afferents from the perforant path. Although this

modulation was somewhat weaker than the one elicited by

running, these results indicate that new GCs can also respond

to exploratory experience with accelerated integration.
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Figure 1. Age-Dependent Delay in Morphological Development of Adult-Born GCs

(A) Experimental design. RV-GFP was infused in the right dentate gyrus of 2M, 5M, and 8M mice. Neuronal morphology was analyzed at different times after

immunofluorescence and confocal imaging.

(B) Representative images of 21 dpi GCs expressing GFP (white) taken at the indicated mouse age. NeuN (blue) labels the granule cell layer (ML, molecular layer;

GCL, granule cell layer). Scale bar, 40 mm.

(C) Representative images of new GCs at different developmental ages obtained from 2M, 5M, and 8Mmice. Individual neurons have been cropped from original

images. Scale bar, 20 mm.

(D) Quantification of dendritic complexity (length and branching points) versus neuronal age for the indicated mouse ages. Data were obtained from 10 to 28

neurons (3 to 5mice per point). Statistical significance for 21 dpi; dendritic length: 2M versus 5M and 2M versus 8M, p < 0.001; 5M versus 8M, p < 0.01; branching

points: 2M versus 5M, p < 0.05; 2M versus 8M, p < 0.001; 5M versus 8M, p < 0.01.

(E) Dendritic segments from newborn GCs at the indicated times. Scale bar, 2 mm.

(F) Spine density measured from 10 to 24 neurons (3 to 5 mice per point). Statistical significance for 21 dpi; 2M versus 8M p < 0.001, 5M versus 8M, p < 0.01.

In (D) and (F), dots connected by straight lines denote means, and error bars denote SEM.
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Figure 2. Voluntary Exercise Promotes the Rapid Integration of New GCs Born in 8M mice

(A–G) Morphological analysis. (A) RV-GFP was infused in the right dentate gyrus of 8M mice. Mice were housed with (Run) or without a running wheel (Ctrl) for

21 days (blue segment). Morphological analysis was done on GFP-GCs at 21 dpi. (B) Single optical planes for example GCs (green, indicated by the arrow) from a

sedentary mouse and a running mouse, displaying the expression of NeuN (blue) and Cb (red). Scale bar, 20 mm. (C) Cb expression in new GCs from control and

running mice. *p < 0.05 after t test with Welch’s correction, with n = 29 (Ctrl) and 20 neurons (Run) from 3–4 mice. (D) Representative images of 21-dpi GFP-GCs.

(legend continued on next page)
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Mechanisms Responsible for Running-Mediated
Neuronal Integration in the Aging Brain
In young adult mice, dendritic development of adult-born GCs

has been shown to rely on neurotrophin signaling through a

mechanism that involves autocrine secretion (Bergami et al.,

2008; Wang et al., 2015; Waterhouse et al., 2012). Each step of

the neurotrophin signaling pathway—including synthesis, secre-

tion, and action—is optimized by neuronal activity (McAllister

et al., 1996; Meyer-Franke et al., 1998; Park and Poo, 2013). In

the aging hippocampus, the delayed development of new GCs

correlated with a decrease in the activity of the granule cell layer

and a decline in the levels of brain-derived neurotrophic factor

(BDNF) protein (Figure S2). Moreover, running increased activity

in the granule cell layer and enhanced hippocampal BDNF levels

in 8M mice (Figure S3) (Adlard et al., 2005; Marlatt et al., 2012;

Oliff et al., 1998; Piatti et al., 2011). We hypothesized that the ef-

fect of running observed heremight involve the combined effects

of neurotrophin release enhanced by overall activity and down-

stream effects boosted by intrinsic neuronal depolarization. We

thus tested their individual contributions.

To enhance the activity of developing GCs in a cell-intrinsic

manner, we used a retrovirus to express the synthetic G-pro-

tein-coupled receptor hM3Dq together with a fluorescent re-

porter (RV-EGFP-hM3Dq), which elicits neuronal depolarization

upon binding to the synthetic ligand clozapine-N-oxide (CNO)

(Alexander et al., 2009; Alvarez et al., 2016; Sternson and

Roth, 2014; Temprana et al., 2015). Chronic activation of

hM3Dq-expressing GCs from 8M mice resulted in significant

dendritic growth (Figures 3G–3J). Consistent with the notion

that increased intrinsic activity might counteract the age-

dependent reduction in the activation of the granule cell layer,

the accelerated growth observed after chronic stimulation

of hM3Dq-expressing GCs was also age dependent, with

the largest effect occurring in new GCs of 8M mice (Figures

S4A–S4F).

To modulate neurotrophin signaling in a cell-intrinsic manner,

we aimed to knockdown Lrig1, an endogenous negative modu-

lator of tyrosine kinase receptors—including neurotrophin re-

ceptors—which controls dendritic morphogenesis in the devel-

oping and adult hippocampus (Alsina et al., 2016; Bergami

et al., 2008; Cheung et al., 2007). We used a retrovirus (RV) to

express a short hairpin RNA (shRNA) for Lrig1 together with

GFP (RV-shLrig1-EGFP) in new GCs of 8M mice and analyzed

their morphology after 3 weeks (Figures 4A–4D). Lrig1 down-

regulation mimicked the effects observed by activity and
Scale bar, 20 mm. Individual neurons have been cropped from original images. (E a

and ***p < 0.001 after t test with Welch’s correction, with n = 11 (Ctrl) and 12 GCs

Scale bar, 2 mm. ***p < 0.001 after t test with Welch’s correction, with n = 10 se

segments. In (F), dots denote means, and error bars denote SEM. In (H)–(J), th

indicated.

(H) Experimental design. Ascl1CreERT2;CAGfloxStopTom mice received TAM to label

cell recordings were carried out at 21 dpi in Tom-GCs in acute slices.

(I) Top: representative membrane potential responses to depolarizing current ste

60 ms. Bottom: representative current traces depicting sEPSCs obtained from T

(J) Left: input resistance in Tom-GCs. *p < 0.05 after Mann-Whitney’s test with n =

depolarizing current steps. Right: sEPSC frequency. ***p < 0.001 after Mann-Whit

correspond to example traces shown in (I).

In (C), (E)–(G) and (J) central horizontal bars denote means and error bars denote
experience in developing GCs, favoring neuronal maturation in

a manner that is enhanced at older ages (Figures 4C, 4D, and

S4). The results presented thus far show that the aging hippo-

campus progresses toward a reduction in overall neuronal activ-

ity and neurotrophin availability, and both factors influence when

and how newly generated GCs mature and integrate.

The striking growth induced by running in 21-dpi GCs (8M

mice) suggested a ceiling effect over dendritogenesis, probably

due to the cumulative influence of prolonged exercise on devel-

oping cells. To better understand the interaction between exer-

cise and neurotrophin signaling, we searched for experimental

conditions that would allow positive modulation. Cumulative ef-

fects would be limited in younger neurons. Consistent with this

notion, GCs at 14 dpi were not affected by running or by Lrig1

knockdown (Figures 4E–4G). In contrast, the simultaneous com-

bination of both stimuli duplicated the extension of dendritic

processes. Thus, 14-dpi GCs in 8M mice that received these

combined stimuli showed longer dendrites (204 mm ± 33 mm)

than same-age neurons in 2M mice (149 mm ± 30 mm; compare

to Figures 1C and 1D). This was the only condition where GCs

from middle-aged mice displayed more mature features than

neurons of the same age in young mice. Taken together, these

results suggest that neurotrophin signaling might be a key medi-

ator linking activity and cell growth in aging mice.

To confirm this hypothesis, we investigated whether attenu-

ating neurotrophin function in a cell-intrinsic manner would

modify the responsiveness of developing GCs to voluntary exer-

cise. It was recently shown that Lrig1 overexpression can reduce

dendritic growth induced by BDNF in developing hippocampal

neurons (Alsina et al., 2016). We used a retrovirus to overexpress

Lrig1 (RV-GFP-oeLrig1) in newly generated GCs in middle-aged

mice and analyzed the effects of running (Figures 5A–5C).

Notably, oeLrig1 completely abolished dendritic growth in

running mice. These results demonstrate that neurotrophins

mediate the accelerated integration of new neurons induced

by exercise in the aging brain.

DISCUSSION

Theagingbrainexhibitsamarked reduction in the rateof adult hip-

pocampal neurogenesis (Kempermann et al., 1998; Kuhn et al.,

1996; Kuipers et al., 2015;Morgenstern et al., 2008). Such decline

hasbeen attributed to adecrease in the size of theneural stemcell

pool, but its causes continue to be investigated (Bonaguidi et al.,

2011; Encinas et al., 2011; Sierra et al., 2015). We now report that
nd F) Dendritic measurements (E) and Sholl analysis (F) of GFP-GCs. **p < 0.01

(Run) from 4 mice. (G) Spines observed in dendritic segments from GFP-GCs.

gments from 5 mice for each condition. Orange dots correspond to displayed

e functional properties of new GCs from control and running 12M mice are

new GCs and were housed with (Run) or without (Ctrl) a running wheel. Whole-

ps (10 pA, 200 ms) for control (Ctrl) and running (Run) mice. Scale bars, 25 mV,

om-GCs held at �70 mV. Scale bars, 20 pA, 5 s.

14 (Ctrl) and 27 neurons (Run). Center: maximum number of spikes elicited by

ney test with n = 24 (Ctrl) and 23 neurons (Run) from 4 to 5 mice. Orange circles

SEM.
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(A–F) Effects of EE in 21 dpi GFP-GCs. (A) RV-GFP was infused in 8M mice housed in control or EE conditions for 21 days (red segment). GC morphology was

analyzed by immunofluorescence and confocal microscopy. (B) Example of EE. (C) Representative images of 21-dpi GCs obtained from control and EE mice.

Scale bar, 20 mm. Individual neurons have been cropped from original images. (D and E) Dendritic measurements (D) and Sholl analysis (E) of GFP-GCs. **p < 0.01

and ***p < 0.001 after t test withWelch’s correction, with n = 19 neurons from 4mice for each condition. (F) Segments fromGFP-GCs highlighting dendritic spines

and their corresponding quantifications. Scale bar, 2 mm. ***p < 0.001 after t test with Welch’s correction, with n = 20 (Ctrl) and 11 dendritic segments (EE) from 5

mice.

(G–J) Chemogenetic intrinsic activation of new GCs. (G) Experimental design. RV-hM3D-EGFP or RV-GFP (Ctrl) was used to transduce new GCs (hM3D-GCs) in

8M mice. Mice received CNO (purple segment) or vehicle for 21 days to stimulate hM3D-GCs. Morphological analysis was done at 21 dpi. (H) Representative

images of 21-dpi GCs at the indicated conditions. Individual neurons have been cropped from original images. Scale bar, 20 mm. (I) Dendritic measurements.

**p < 0.01 and ***p < 0.001 after ANOVA followed by Bonferroni post hoc test, with n = 10 (Ctrl), 17 (hM3D), and 8GCs (hM3D +CNO) from 4mice. Orange symbols

correspond to example neurons shown in (G). (J) Sholl analysis for the data shown in (H) and (I), where **p < 0.01 and ***p < 0.001 after Kruskal-Wallis test followed

by Dunn post hoc test.

Horizontal and error bars denote mean ± SEM.
development and functional integration of new GCs occur at a

much slower pace in middle-aged than in young adult mice. The

data shown here reveal incipient dendritogenesis and complete

absence of glutamatergic inputs in 21-dpi GCs generated in mid-
1134 Cell Reports 21, 1129–1139, October 31, 2017
dle-aged mice (Figures 1 and 2). This is in striking contrast to

previous studies in young adult mice showing that GCs receive

glutamatergic inputs by 14 dpi and already engage in information

processing before 28dpi (Espósito et al., 2005;Geet al., 2006;Gu
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to transduce new GCs. Morphological analysis was done at 21 dpi. (B) Representative confocal images of 21-dpi GCs. Scale bar, 20 mm. Individual neurons have

been cropped from original images. (C and D) Dendritic measurements (C) and Sholl analysis (D) of GFP-GCs. *p < 0.05 and **p < 0.01 after t test with Welch’s

correction, with n = 12 (Ctrl) and 15 GCs (shLrig1) from 3 and 4 mice.

(E–G) Increased availability of TrkB potentiates the effect of running. (E) Experimental design. RV-shLrig1-GFP or GFP was used to transduce new GCs. Mice

were housed in control cages or with a running wheel. Analysis was done on GFP-GCs at 14 dpi. (F) Confocal images of 21-dpi GCs at the indicated conditions.

Scale bar, 20 mm. (G) Dendritic measurements. **p < 0.01 and ***p < 0.001 after Kruskal-Wallis followed by Dunn’s post hoc test, with n = 17 (Ctrl), 23 (shLrig1), 17

(Run) and 13 GCs (Run + shLrig1) from 3 to 4 mice.

Horizontal and error bars denote mean ± SEM.
et al., 2012; Marı́n-Burgin et al., 2012; Mongiat et al., 2009; Over-

street-Wadiche et al., 2006).

The protracted integration described earlier was only

observed in sedentary mice, where neurons are kept at a state

of enhanced sensitivity to activity due to the high electrical input

resistance. Voluntary exercise unearthed a remarkable potential

for plasticity in new GCs, which displayed dendritic length and

spine density similar to the plateau levels found in mature GCs

of young adult mice (compare Figures 2E and 2G with Figures

1D and 1F). We also found that intrinsic electrical activity and

neurotrophins play fundamental roles in exposing the latent ac-

tivity-dependent structural plasticity enclosed in young imma-

ture GCs in the aging brain. This is consistent with the observa-

tions that chronic exercise training increases serum levels of
neurotrophic factors, improves memory, and prevents the age-

dependent reduction in the volume of the human hippocampus

(Duzel et al., 2016; Erickson et al., 2011; Mattson, 2012).

While activity and neurotrophins ‘‘rejuvenate’’ the behavior of

new GCs in middle-aged mice, the mechanisms underlying the

extended duration of immature neuronal stages remain to be

further investigated. It is likely, though, that decreased neuronal

activity, oxidative stress, inflammatory niche, and reduced

neurotrophic support already described in the aging brain all

contribute to the slow development observed in the aging brain

(Bishop et al., 2010; Guarente, 2014; Hattiangady et al., 2005;

Lee et al., 2000; Verbitsky et al., 2004).

The extended duration of morpho-functional development

might be one additional factor contributing to the overall decline
Cell Reports 21, 1129–1139, October 31, 2017 1135
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Figure 5. Attenuation of Neurotrophin Signaling by Lrig1 Over-

expression Precludes the Effects of Running on Developing GCs

(A) Experimental design. RV-GFP-oeLrig1 or RV-GFP (Ctrl) was delivered to

the dentate gyrus of 8M mice. Mice were housed in control cages or with a

running wheel. Morphological analysis was done at 21 dpi.

(B) Confocal images. Scale bar, 20 mm.

(C) Dendritic measurements. *p < 0.05 and **p < 0.01 after Kruskal-Wallis

followed by Dunn’s post hoc test, with n = 12 (Ctrl), 21 (oeLrig1), 14 (Running),

and 23 GCs (Run + oeLrig1) from 3–4 mice. Horizontal and error bars denote

mean ± SEM.
of the aging brain. Alternatively, prolonged immature stages dur-

ing which neurons remain highly sensitive to activity-dependent

integration (Alvarez et al., 2016; Bergami et al., 2015; Chancey

et al., 2013; Ge et al., 2007; Piatti et al., 2011; Tashiro et al.,

2007) might provide additional adaptive value to each newly

generated cell: because survival seems to depend on activity-

dependent competition (Tashiro et al., 2006), extending the

period of high plasticity would increase the chance for survival.

Thus, new GCs might remain dormant, and immature until bouts

of activity occur (recruitment by demand); then, fast integration

and synaptic remodeling would contribute to their integration

in a manner that is relevant to information processing.
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The trophic effect that exercise exerted on new GCs in aging

mice can be dissected as the combination of external signals

and their intrinsic mediators, which allow the neuron to respond

to them. We found that 2-week-old GCs do not respond to

running, unless such response is allowed by increasing Trk re-

ceptor availability using Lrig1 knockdown. Thus, availability of

Lrig1 targets act in a permissive manner for the actions of phys-

ical exercise, linking activity to neuronal growth. By the third

week, new GCs respond to exercise, revealing an acquired

sensitivity to neurotrophic signaling. The involvement of neuro-

trophinswas demonstrated by the observation that Lrig1 overex-

pression abolishes the acceleration of neuronal development

induced by running.

Whether this mechanism of plasticity contributes to the

improved performance in spatial learning reported after exercise

in the aging brain is yet to be demonstrated (Duzel et al., 2016;

Marlatt et al., 2012; van Praag et al., 2005; Xu et al., 2017).

Because adult-born neurons are thought to contribute to spatial

tasks involving thediscriminationof subtle differences rather than

general processing of spatial information, testing their role in the

aging brain becomes particularly challenging (Clelland et al.,

2009; Drew et al., 2013; McAvoy et al., 2016; Sahay et al.,

2011). Finally, given that aging renders the brain vulnerable, un-

derstanding the dynamics of activity-dependent network remod-

eling throughout life is critical for tackling cognitive decline during

aging and age-related neurodegeneration (Mattson, 2012).
EXPERIMENTAL PROCEDURES

Production of Viral Vectors

A replication-deficient retroviral vector based on the Moloney murine leukemia

virus was used to specifically transduce adult-born GCs as done previously

(Temprana et al., 2015). Retroviral particles were assembled using three sepa-

rate plasmids containing the capside (CMV-vsvg), viral proteins (CMV-gag/

pol), and the transgenes: CAG-RFP, CAG-GFP, and EGFP fused to channelr-

hodopsin-2 (ChR2; Ubi-ChR2-EGFP retroviral plasmid, kindly provided by

S. Ge, SUNY at Stony Brook), mouse Lrig1-shRNA-GFP expression vector

(Alsina et al., 2016), or the synthetic G-coupled receptor hM3Dq (CAG-

EGFP-2A-hM3D) (Alexander et al., 2009), kindly provided by B. Roth (Univer-

sity of North Carolina at Chapel Hill). Plasmids were transfected onto HEK293T

cells using deacylated polyethylenimine. HEK293T cells were cultured in

DMEM with high glucose, supplemented with 10% fetal calf serum and

2mMglutamine. Virus-containing supernatant was harvested 48 hr after trans-

fection and concentrated by two rounds of ultracentrifugation. Virus titer was

typically �105 particles per microliter.

Mice and Stereotaxic Surgery for Retroviral Delivery

Female C57BL/6J (2, 5, or 8 months of age) and genetically modified

mice (12 months of age) were housed at four to five mice per cage in standard

conditions. Middle-aged mice were selected because, beyond this age,

there is a strong decline in dentate neurogenesis that prevents the study

of retrovirally labeled neurons (Morgenstern et al., 2008). Ascl1CreERT2

(Ascl1tm1(Cre/ERT2)Jejo/J) mice (Kim et al., 2007) were crossed to a

CAGfloxStop-tdTomato (Ai14) (B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J)

conditional reporter line (Madisen et al., 2010) to generate Ascl1CreERT2;

CAGfloxStopTom mice, which can be used to reliably target adult-born

GCs (Yang et al., 2015). Tamoxifen (TAM) administration (120 mg/g, three injec-

tions in 3 days) was carried out in 12M mice to achieve indelible expression

of tdTomato (Tom) in the progeny of Ascl1+ progenitor cells. Two to 3 days

before TAM induction or retroviral injection, running mice were provided with

running wheels (one for every two mice) to maximize the number of labeled

adult-born GCs.



Mice were anesthetized (150 mg ketamine/15 mg xylazine in 10 mL saline per

gram), and retrovirus was infused into the septal region of the right dentate gy-

rus (1.5 mL at 0.15 mL/min) using sterile calibrated microcapillary pipettes

through stereotaxic surgery coordinates from bregma (in millimeters): �2 an-

teroposterior, �1.5 lateral, and �1.9 ventral. Brain sections were obtained at

the indicated times for confocal imaging. Only neurons in the septal dentate

gyrus were included in the analysis, corresponding to sections containing

the septal region of the hippocampus (�0.96 to �2.30 mm from the bregma)

according to Paxinos and Franklin’s mouse brain atlas (Paxinos and Franklin,

2001). Experimental protocols were approved by the Institutional Animal Care

and Use Committee of the Fundación Instituto Leloir according to the Princi-

ples for Biomedical Research involving animals of the Council for International

Organizations for Medical Sciences and provisions stated in the Guide for the

Care and Use of Laboratory Animals.

In Vivo Assays

Running

Mice received a stereotaxic injection in the dentate gyrus and were housed

with a running wheel for 14 or 21 days (as indicated), where they ran about

10–20 km/night. Mice were then perfused for immunofluorescence analysis.

Control mice were left in a regular cage without a running wheel.

EE Exposure

After stereotaxic injection, mice were exposed to an EE consisting of a larger

cage (75 cm 3 40 cm 3 15 cm) with several tunnels and toys (but no running

wheel) for 21 days. EE was changed once a week to maintain novelty. Animals

were then perfused for immunofluorescence analysis. Control mice were left in

the regular cage.

Chemogenetic Activation of New GCs

Mice received the RV-hM3D-EGFP in the right dentate gyrus. CNO administra-

tion (1–5 g/g) was done for 21 days in the drinking water.

Immunofluorescence

Immunostaining was done on 60-mm free-floating coronal sections. Antibodies

were applied in Tris-buffered saline (TBS) with 3% donkey serum and 0.25%

Triton X-100. Double- or triple-labeling immunofluorescence was performed

using the following primary antibodies: Arc (rabbit polyclonal; 1:500; Synaptic

Systems), calbindin D-28k (rabbit polyclonal; 1:1,000; Swant), GFP (chicken

polyclonal; 1:500; Aves), GFP (rabbit polyclonal; 1:500; Invitrogen), NeuN

(mouse monoclonal; 1:50; a gift from F.H. Gage, Salk Institute for Biological

Studies, La Jolla, CA), and RFP (rabbit polyclonal; 1:500; Rockland Immuno-

chemicals). The following corresponding secondary antibodies were used:

donkey anti-mouse Cy5, donkey anti-rabbit Cy3, and donkey anti-chicken

Cy2 (1:250; Jackson ImmunoResearch Laboratories).

Confocal Microscopy

Images were acquired using confocal microscopes. For analysis of Arc

expression, images were acquired (403; NA, 1.3; oil immersion), and colocal-

ization was assessed in Z stacks using multiple planes for each cell. For den-

dritic length measurements, images were acquired (403; NA, 1.3; oil-immer-

sion) from 60-mm-thick sections taking Z stacks including 35–50 optical

slices, Airy unit = 1 at 0.8-mm intervals. For chemogenetic experiments carried

out in 2M and 5M mice, dendritic trees of EGFP-hM3D-GCs were character-

ized after coinfection with a RV-RFP in a 2:1 ratio to optimize fluorescence

detection. Only GCs expressing both EGFP and RFP in their soma were

analyzed. For 8M mice, RV-EGFP-hM3 was injected, and dendritic length

was measured in GFP+ neurons. Dendritic length was then measured from

projections of three-dimensional reconstructions onto a single plane in

GCs expressing both RFP and EGFP in their soma. For Sholl analysis, the

ImageJ/Fiji plugin was applied on the same 2D grayscale images used to

quantify dendritic length. Total number of intersections was calculated for sta-

tistical analyses. For spine counts, images were acquired (633; NA, 1.4; oil im-

mersion) from 60-mm-thick sections taking Z stacks including 50–140 optical

slices, Airy unit = 1 at 0.1-mm intervals. Three-dimensional reconstruction of

dendritic segments was performed as previously described (Morgenstern

et al., 2008). Spines were counted manually from dendritic fragments of

>40 mm located in the middle third of the molecular layer. Spine counts were

not performed in shLrig1-GCs or HM3D-GCs due to theweak fluorescence ex-
pressed by those viral constructs. For image capture and analysis of morpho-

logical properties, all experimental groups under study were blind to the

operator.

Western Blots

Western blot analysis was performed as previously described (Paratcha et al.,

2003). Briefly, hippocampal tissue from 2M, 5M, and 8M sedentary and

running mice was dissected and homogenized (10% w/v) in ice-cold 25 mM

Tris-HCl (pH 7.4) containing 0.32 M sucrose, 1 mM EDTA, and protease inhib-

itors. Tissue homogenization was performed by 40 strokes in a glass homog-

enizer. After centrifugation at 1,000 3 g for 10 min, the supernatant was

analyzed by western blot to evaluate the protein levels of BDNF with anti-

BDNF antibody (1:1,000, Santa Cruz) and anti-bIII tubulin (1:5,000, Promega).

Immunoblots were examined and analyzed using a fluorescence scanner.

Electrophysiology

Slice Preparation

12M Ascl1CreERT2;CAGfloxStop-tdTomato mice were anesthetized and decapi-

tated at 19 to 21 days after TAM induction, as indicated, and transverse slices

were prepared as described previously (Alvarez et al., 2016). Briefly, brains

were removed into a chilled solution containing (in millimolar): 110 choline-

Cl, 2.5 KCl, 2.0 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 20 dextrose, 1.3

Na+-ascorbate, 3.1 Na+-pyruvate, and 4 kynurenic acid (kyn). Coronal slices

(400 mm thick) from the septal pole containing both hippocampi were cut

with a vibratome and transferred to a chamber containing (in millimolar): 125

NaCl, 2.5 KCl, 2 NaH2PO4, 25 NaHCO3, 2 CaCl2, 1.3 MgCl2, 1.3 Na+-ascor-

bate, 3.1 Na+-pyruvate, and 10 dextrose (315 mOsm). Slices were bubbled

with 95% O2/5% CO2 and maintained at 30�C for >45 min before experiments

started.

Recordings

Whole-cell recordings were performed using microelectrodes (4–6 MU) filled

with (in millimolar): 150 K-gluconate, 1 NaCl, 4 MgCl2, 0.1 EGTA, 10 HEPES,

4ATP-Tris, 0.3GTP-Tris, and10phosphocreatine, in thepresenceof picrotoxin

(PTX; 100mM).Criteria to includecells in theanalysiswere visual confirmation of

Tom in the pipette tip, attachment of the labeled soma to the pipette when

suction was performed, and absolute leak current <100 pA at holding potential

(Vh). Spontaneous EPSCs were recorded in voltage clamp at �70 mV. Input

resistance was assessed by the application of voltage steps of 10 mV in

voltage-clamp mode, and spiking by the injection of current steps (10 pA) in

current-clamp configuration after taking the membrane potential to �70 mV.

All recordings were performed at room temperature (23�C ± 2�C), digitized,
and acquired at 10 KHz on a personal computer. Detection and analysis of

spontaneous EPSCs was done using a dedicated software package.

Statistical Analysis

Statistics used throughout the paper are described in the figure legends and

in the text. Unless otherwise specified, data are presented as mean ± SEM.

Normality was assessed using the Shapiro-Wilks test, D’Agostino-Pearson

omnibus test, and Kolmogorov-Smirnov test, with a P value of 0.05. When

data met normality tests (Gaussian distribution and equal variance), an

unpaired t test with Welch’s correction or an ANOVA with Bonferroni’s

post hoc test was used as indicated. In cases in which data did not meet

normality criteria, nonparametric tests were used as follows: Mann-Whitney

test for independent comparisons, and Kruskal-Wallis test for multiple

comparisons.
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Moore, D.L., Pilz, G.A., Araúzo-Bravo, M.J., Barral, Y., and Jessberger, S.

(2015). A mechanism for the segregation of age in mammalian neural stem

cells. Science 349, 1334–1338.

Morgenstern, N.A., Lombardi, G., and Schinder, A.F. (2008). Newborn granule

cells in the ageing dentate gyrus. J. Physiol. 586, 3751–3757.

Oliff, H.S., Berchtold, N.C., Isackson, P., and Cotman, C.W. (1998). Exercise-

induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in

the rat hippocampus. Brain Res. Mol. Brain Res. 61, 147–153.

Overstreet-Wadiche, L.S., Bensen, A.L., and Westbrook, G.L. (2006). Delayed

development of adult-generated granule cells in dentate gyrus. J. Neurosci.

26, 2326–2334.
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