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Abstract
Integrin adhesome proteins bind each other in alternative manners, forming within the cell

diverse cell-matrix adhesion sites with distinct properties. An intriguing question is how

such modular assembly of adhesion sites is achieved correctly solely by self-organization

of their components. Here we address this question using high-throughput multiplexed

imaging of eight proteins and two phosphorylation sites in a large number of single focal

adhesions. We found that during the assembly of focal adhesions the variances of protein

densities decrease while the correlations between them increase, suggesting reduction in

the noise levels within these structures. These changes correlate independently with the

area and internal density of focal adhesions, but not with their age or shape. Artificial neu-

ral network analysis indicates that a joint consideration of multiple components improves

the predictability of paxillin and zyxin levels in internally dense focal adhesions. This sug-

gests that paxillin and zyxin densities in focal adhesions are fine-tuned by integrating the

levels of multiple other components, thus averaging-out stochastic fluctuations. Based on

these results we propose that increase in internal protein densities facilitates noise sup-

pression in focal adhesions, while noise suppression enables their stable growth and fur-

ther density increase—hence forming a feedback loop giving rise to a quality-controlled

assembly.

Introduction
Cell-matrix adhesion sites are heterogeneous structures that assemble by a rapid self-organiza-
tion of their components, collectively called the integrin adhesome [1–5]. Different types of
these sites, including focal complexes, focal adhesions and fibrillar adhesions, have distinct
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molecular compositions underlying their specific functions [3, 4]. Additionally, adhesion sites
of the same type can have different molecular compositions in response to different local cues
[6–9]. The molecular diversity of cell-matrix adhesion sites is enabled by the alternative man-
ners in which integrin adhesome proteins can bind each other [1, 5]. However, this also implies
that during the assembly and maintenance of focal adhesions noise can arise from the stochas-
tic realizations of alternative binding options between recruited and recruiting proteins. The
noise in the level of a protein in a focal adhesion is the stochastic deviation of this level from
the exact realization of all the binding probabilities in the system. Plausibly, such exact realiza-
tions reflect the evolutionarily tuned optimal levels of each component for the function of focal
adhesions. As the assembly of focal adhesions is a multistep process, stochastic deviation from
optimal molecular content might accumulate along the steps and lead to the formation of aber-
rant structures. Therefore, an intriguing question is how focal adhesions assemble correctly
solely by self-organization of their components, in spite of their alternative binding possibili-
ties. Here we address this question by assessing changes in noise levels in the molecular compo-
sition of assembling focal adhesions.

To monitor the molecular composition of focal adhesions, their components should be co-
imaged at a high spatial resolution [9, 10]. However, due to the fundamental trade-offs, the
number of proteins that can be co-imaged in the same sample at sufficient spatial resolution is
limited [11]. Mass-spectrometry imaging enables monitoring high number of proteins and
phosphorylation states [12, 13], but currently lacks a sufficient spatial resolution for analyzing
individual adhesion sites [14]. Fluorescence microscopy provides sufficient spatial resolution,
however the number of components that can be co-imaged is confined by the spectral overlap
between fluorophores [9, 11]. Cyclic immunofluorescence (CycIF; also termed toponome
imaging) bypasses this limitation by subjecting fixed cells to cycles of immunolabeling, imaging
and bleaching (or other labeling inactivation methods), hence enabling multiplex imaging
using the same fluorophore [11, 15–22]. Here we implemented high-throughput CycIF to
image ten different components in thousands of individual focal adhesions. Based on changes
in the variances of the densities of these components and in the correlations between them, we
inferred changes in noise levels in focal adhesions. Under certain assumptions, a reduction in
density variances accompanied with elevation in correlation strengths between them is indica-
tive of noise reduction, and vice versa. Accordingly, we infer that during the assembly of focal
adhesions the noise in their molecular content is reduced. This noise reduction correlates with
the area and internal density of focal adhesions, but neither with their age nor their eccentricity.
Using artificial neural networks analysis, we found that the levels of paxillin and zyxin in inter-
nally dense focal adhesions are better predicted if the densities of multiple other components
are jointly considered. This suggests that at high internal density, the levels of paxillin and
zyxin gain robustness to stochastic noise by integrating cues from multiple components in the
focal adhesions. Based on these results, we suggest a model in which a positive feedback
between internal density, noise suppression and growth of focal adhesions gives rise to compo-
sitional quality control in the assembly of these structures.

Materials and Methods

Cells and reagents
REF52 YFP-paxillin stable cell line (kindly provided by Benjamin Geiger and Joachim Spatz)
were cultured in DMEM (PAN Biotech, Aidenbach, Germany) supplemented with 1% glu-
cose, 10% fetal calf serum, 1% nonessential amino acids and 1% L-glutamine and maintained
at 37°Cand 5% CO2. The primary antibodies included anti-vinculin mouse IgG1, anti-zyxin
rabbit IgG, anti-α-actinin mouse IgM (V9264, Z4751, A5044; Sigma-Aldrich Chemie GmbH,
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Taufkirchen, Germany), anti-paxillin-pY118 rabbit IgG, anti-FAK-pY397 rabbit IgG
(44-722G, 44-624G; Invitrogen GmbH, Karlsruhe, Germany), anti-VASP rabbit IgG (3132,
Cell Signaling Technology, Frankfurt, Germany), Alexa Fluor 555 conjugated anti-FAK
mouse IgG1 (clone 4.47, 16-234, Merck Millipore, Darmstadt, Germany), TRITC conjugated
anti-paxillin mouse IgG1 and anti-Hic-5 mouse IgG1 (610055, 611164; BD Transduction Lab-
oratories). F-actin was labeled with Alexa Fluor 350 Phalloidin (A-22281, Invitrogen GmbH).
A secondary antibody for α-actinin staining was Alexa Fluor 350 goat anti-mouse IgM (A-
31552, Invitrogen GmbH). The other unconjugated primary antibodies were pre-labeled with
Zenon kit (Z-25041, Z-25306, Z-25006, Z-25308, Z-25008, Invitrogen GmbH) according to
manufacturer protocol.

Microscopy
REF52 YFP-paxillin cells were seeded at 70% confluence in 8-well Lab-Tek chamber slide
(Nunc, Thermo Fisher Scientific, MA, USA), grown for 12-14 hours, washed with pre-warmed
PBS and incubated in imaging medium (Pan Biotech, Aidenbach, Germany) supplemented
with 4.5 g/l glucose, 25 mM HEPES, 0.5 g/l NaHCO3 and 10% fetal calf serum. The chamber
slide was immobilized on the stage of an inverted wide-field microscope (Cell-R, Olympus,
Hamburg, Germany) equipped with CCD camera (Orca R2, Hamamatsu Photonics, Hama-
matsu, Japan), motorized stage, live-cell imaging chamber and controlled by an in-house soft-
ware based on LabView (National Instruments, Austin, TX, USA). In order to maintain
precise z-position of the objective, the CCD Laser Displacement Sensor (LK-3100, Keyence,
Neu-Isenburg, Germany) was mounted on the microscope objective revolver. A set of field of
views was selected and the corresponding microscope stage coordinates were stored. Time-
lapse image sequences of YFP-paxillin were acquired for the stored positions using a dry
40x/.90 NA objective (Olympus, Japan) with an interval of 3 minutes between frames for a
period of about 30 minutes, till fixation for CycIF. Following pre-CycIF, the cells were washed
with pre-warmed PBS, fixed with 3% paraformaldehyde in PBS for 10 minutes, washed with
PBS and permeabilized for 5 minutes with 0.2% Triton X-100 in PBS. CycIF imaging was
applied here for labeling intracellular proteins, which requires cell permeabilization and lon-
ger incubations during immunolabling. To avoid an excessively long duration of the whole
CycIF procedure, in each CycIF cycle two or three components where labeled and imaged,
rather than one (S1 Table). Each CycIF cycle consists of labeling, imaging and bleaching steps.
In the labeling step, the primary antibodies assigned for the given CycIF cycle were pre-lable-
led when needed, mixed and applied on the cells for 1 hour. The cells were then washed 3
times for 5 minutes each with washing buffer (0.02% Triton X-100 in PBS), incubated with a
secondary antibody for 1 hour when α-actinin antibody was used, washed 3 times for 5 min-
utes each with washing buffer and kept in PBS for imaging. In the imaging step, images were
taken for each stored position with excitation, beam splitter and emission filters of 350/50,
409, 447/60 (for Alexa 350 and Pacific Blue), 495/10, 505, 542/27 (for YFP), 545/20, 565,
597.5/55 (for Alexa 555 or Alexa 568) and 643/20, 660, 700/75 (for Alexa 647). At each CycIF
cycle, an image of the YFP-paxillin localization was also acquired to provide a common basis
for image registration and segmentation of adhesion sites. In the bleaching step, each position
was exposed to excitation wavelengths corresponding to the labeling fluorophores, beside
YFP, until no fluorescent signal was detected. To assess if potential steric hindrance between
the antibodies affects the results, equivalent cell populations were subjected to two opposite
orders of labeling cycles (S1 Table). Overall, 6 datasets of focal adhesions were acquired from
3 repeats (R1, R2 and R3) of the two labeling orders (O1 and O2), denoted accordingly R1O1,
R1O2, R2O1, R2O2, R3O1 and R3O2 (S1–S3 Figs).
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Image analysis
Images were registered using single-step discrete Fourier transform algorithm [23] and back-
ground-subtracted using high-pass filtration. Adhesion sites were segmented based on the
YFP-paxillin images using the watershed algorithm [3] implemented in Matlab (MathWorks,
Massachusetts, USA). Based on this segmentation, the levels of the labeled components in
each adhesion site were quantified in their corresponding images while the area and eccentric-
ity of these sites were derived from the YFP-paxillin image. Eccentricity was calculated as the
ratio of the distance between the foci of the ellipse and its major axis length. The identity of
the segmented adhesion sites as focal adhesions was verified based on their zyxin content [24,
25] and oval shape (S2 Fig). Noteworthy, the thickness of focal adhesions is rather indepen-
dent of their area [26], therefore the fluorescence intensity of a labeled protein in focal adhe-
sions reflects its density. To derive the dynamic history of each focal adhesion in the post-
fixation images, the last four pre-fixation YFP-paxillin images were segmented as abovemen-
tioned and focal adhesions were tracked backward semi-automatically using a custom-made
Matlab software. Focal adhesions in sequential images were automatically matched based on
maximum overlap of their area, or shortest distance between their center of mass within a
radius of 10 pixels if no area overlap was found. These matches were then inspected manually
and corrected where needed. Focal adhesions that were absent in the post-fixation images
were excluded from further analysis. The tracked focal adhesions were categorized primarily
based on how early they appeared prior fixation:>12’, 12’, 9’, 6’ and 3’ -old. The>12’-old
focal adhesions were further sub-categorized based on the change in their YFP-paxillin levels
along these frames: AS (assembling) for those exhibiting an increase, ST (stationary) for those
exhibiting no significant change and DS (disassembling) for those exhibiting a decrease in the
total levels of YFP-paxillin. This sub-categorization was done according to the Pearson corre-
lation coefficient between the total levels of YFP-paxillin and time, so that focal adhesions
with values below -0.7, between -0.7 and 0.7 or above 0.7 were classified as DS, ST and AS,
respectively.

Data processing
The density of a given component in a given focal adhesion was calculated as the sum of
the intensity in its corresponding pixels in the corresponding image divided by the
number of these pixels. Then, the Box-Cox transformation [27] was applied such that
x(λ1, λ2) = ((y + λ2)

λ1 − 1)/λ1 if λ1 6¼ 0, x(λ1,λ2) = log(y + λ2) if λ1 = 0, where the optimal
transformation parameter λ1 was calculated as the mean of individually determined transfor-
mation parameters for each labeled component within a single dataset using the maximum
likelihood approach [27]. The transformed data were then normalized by subtracting the
mean and dividing by the standard deviation and then outliers were removed from the
obtained z-scores using Tukey’s approach [28]: zout =2 [Q1 − 2IQR; Q3 + 2IQR] where Q1 is
the lower quartile, Q3 is the upper quartile and IRQ = Q3 − Q1. Where indicated, focal adhe-
sions were categorized according to their area and eccentricity using Otsu’s multilevel thresh-
olding [29] on combined parameter values from all 6 datasets. This yielded two threshold
levels for each classifying parameter: 2.71 μm2 and 6.17 μm2 for area and 0.86 and 0.92 for
eccentricity. To classify focal adhesions based on their internal density, the densities of each
labeled component in focal adhesions, besides that of FAK-pY397 and paxillin-pY118, were
normalized by subtracting their mean and dividing by their standard deviation per compo-
nent per dataset, and then averaged per focal adhesion. Based on these mean normalized den-
sities, focal adhesions were categorized using the above-mentioned Otsu’s method, which
yielded the thresholds of -0.42 and 0.282.
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Simulations
The statistical properties of proteins in focal adhesions were derived from stochastic simula-
tions (S1 Text and S4–S6 Figs). The number of recruited proteins for each focal adhesion was
obtained from realizations of the binomial distribution to bind to a number of identical sites
with a given probability. While enzymatic reactions and feedback loops are certainly present in
focal adhesions, the number of possible networks and the size of the parameter space hinders
the ability to explicitly consider them. Therefore we have followed another path in which these
topological motifs regulate effective parameters: (i) higher diversity among focal adhesions was
introduced by widening the distribution from which the number of binding sites was drawn,
(ii) higher noise was introduced by widening the distribution from which the binding probabil-
ity, related to the binding kinetics, was drawn. Thus, we simulated different variations of
assembly models, including: (i) competitive and non-competitive recruitment, (ii) multi-step
assembly, (iii) diversities generated from uniform, normal and Poisson distributions, (iv) dif-
ferent relations between the range of the diversity and its mean and (v) different stoichiometry
between the recruited proteins. For all cases, the r2 and CV were calculated and used to validate
the noise-inference approach (S1 Text).

Inferring changes in diversity and noise levels
For each data set and focal adhesions category (e.g. focal adhesions within a given size range),
the CV of the level of each component and the r2 between each pair combination, were calcu-
lated. The change in the CV between two compared focal adhesion categories (e.g. small versus
big focal adhesions) was calculated first for each component as log(CV2/CV1). The change in r2

was calculated first for each pair of components as their r22 � r21 . Then, these values were aver-
aged, first over all datasets having at least 5 focal adhesions in each compared group (S1 Fig)
and next over all components, to give the Δlog(CV1,CV2) and Dðr21 ; r22Þ, respectively. If Δlog
(CV1,CV2) is negative and Dðr21 ; r22Þ is positive it was concluded that the noise is lower in cate-
gory 2, while in the opposite case that noise is lower in category 1 (S1 Text). If the absolute
value of either Δlog(CV1,CV2) or Dðr21; r22Þ was smaller than the corresponding standard error
of the mean then the sign was considered insignificant and therefore the particular inference as
inconclusive.

Inferring high-order relations
Three-layer perceptrons applying Levenberg-Marquardt back-propagation learning (Neural
Networks Toolbox, Matlab 2010, Mathworks) were used to test if information about the densi-
ties of a given subset of labeled components (input components) is sufficient for predicting the
density of another given labeled component (target component) in focal adhesions. The analy-
sis included the following steps: in the first step, the input and target data for training and eval-
uating the artificial neural network were organized. A given component was considered as a
target protein, while all possible combinations of the remaining 9 components were used to
generate 511 separate inputs. In the second step, the network architecture was set to consist of
three hidden layers with number of neurons in each layer equals the number of input compo-
nents. In the third step, for each input-target combination, 500 independent sessions of train-
ing, validation and testing were performed, each session using the components densities of
randomly sampled 40%, 30% and 30% focal adhesions, respectively. In the fourth step, the per-
formance was evaluated based on the mean squared error between the target and predicted out-
put after training using the complete dataset. This analysis was performed on each of the six
datasets independently for evaluation of reproducibility. Random Forests analysis [30] was
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performed on the same input and target data used for the artificial neural networks analysis,
using the randomForest package in R statistical system version 3.0.1, with 500 trees to grow
and selecting all proteins in the respective input proteins combination as candidate at each
node. Based on the artificial neural networks analysis results, for each target component, a
directed acyclic graph (DAG) was constructed with 511 nodes corresponding to possible com-
binations of input components and edges between each two nodes that differ only due to the
presence or absence of one component. The directionality of each edge was set to point toward
the node that predicts significantly better the target protein, as determined using an F-test. The
position of a node within the DAG was then scored as L = L1/(L1 + L2), where L1 and L2 are
the number of edges to the closest single protein and null out-degree node respectively.
Accordingly, nodes that have high L value (> 0.7) in at least 4 data sets (at least 2 from of each
labeling order) were selected as indicating high-order relations. The construction of the graphs
was done using Matlab and the graph analysis calculations were written in Python 2.7.9 using
the package NetworkX 1.9.1.

Results

Multiplexed imaging of focal adhesions
In order to investigate the noise in the molecular composition of focal adhesions, it is required
to co-image the levels of a large number of components in a large number of individual focal
adhesions. We extended CycIF [15, 17] to enable multiplexed imaging of a large number of
proteins within small intracellular structures (see Materials and Methods). For this the follow-
ing aspects were addressed: (i) To facilitate the long incubation and washout durations
required for immunofluorescence labeling of intracellular proteins, three or two components
were labeled and imaged in each CycIF, hence reducing the total number of cycles. (ii) While
CycIF overcomes limitations due to spectral overlap between fluorophores, it still requires spe-
cific immuno-labeling of each component. Indirect immuno-fluorescence would strongly limit
the number of components that can be imaged by CycIF, since cross-talk between the second-
ary and primary antibodies has to be avoided. Direct immunofluorescence does not have this
limitation, but unlike for many cell surface proteins, fluorescently conjugated primary antibod-
ies for cytosolic adhesion site components are scarcely available. As a generic solution for fluo-
rescently labeling of primary antibodies, we pre-complexed them with fluorescently labeled
Fab fragments. (iii) To control for possible accessibility limitations of antibodies to their anti-
gens within focal adhesions, two different labeling cycle orders were applied and compared.

The above-mentioned solutions enabled CycIF imaging of ten different components of focal
adhesions in fixed REF52 cells. Eight of these components are proteins playing major roles in
the structural, mechanical, integrin signaling and actin modulation aspects of focal adhesions
—including actin, α-actinin, FAK, Hic-5, paxillin, VASP, vinculin and zyxin [1]. These pro-
teins are also located at different positions along the vertical axis of focal adhesions, spanning
together from the integrin layer to the actin layer [26]. Therefore, the selected proteins provide
collectively an informative and broad sampling of the molecular content of focal adhesions in
respect to their assembly and functions. The additional two components are the regulatory
phosphorylation sites Y397 of FAK [31] and Y118 of paxillin [32] (Fig 1a). Before the cell fixa-
tion and CycIF application, we imaged in a live cell mode the dynamics of all the analyzed focal
adhesions using YFP-paxillin as a marker (Fig 1a). Thus, the molecular content of focal adhe-
sions can be correlated with their age and past dynamics. By implementing these CycIF and
live cell imaging in a high-throughput manner, thousands of individual focal adhesions were
imaged (S1–S3 Figs), obtaining an unprecedented multiplexed quantification of the molecular
content of these structures.
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Correlations between components density in focal adhesions
We first evaluated how uniform is the components stoichiometry among focal adhesions. A
uniform stoichiometry should be reflected by a strong pair-wise linear correlation between the
densities of the components. Two-dimensional scatter plots of protein densities show that the
pair-wise relations between the densities of proteins in focal adhesions can be approximated to
be either linearly correlated or uncorrelated (S3 Fig). Therefore the strengths and signs of the
statistical relations between protein densities can be quantified by Pearson correlation coeffi-
cients. Accordingly, the densities of the analyzed components were found to be positively cor-
related with each other with different strengths (Fig 1b and S3 Fig). This indicates that the
instrumental noise is smaller than the biological variations in protein densities, as correlations
would be masked otherwise. Based on these results, for some of the analyzed components the
stoichiometry in focal adhesions is apparently unconfined, while for the other component
pairs the stoichiometry is partially constrained.

The network of pair-wise correlations between the ten components reveal differential
degrees of stoichiometry uniformity between the components (Fig 1b). The correlations
between the densities of FAK and FAK-pY397, as well as between paxillin and paxillin-pY118,
in focal adhesions are moderate, indicating that the relative extent of FAK and paxillin phos-
phorylation is heterogeneous among focal adhesions. The extent of stoichiometry conservation

Fig 1. High-throughput CycIF imaging of cell-matrix adhesion sites. (a) Imaging procedure and an example of the images obtained
for a cell. Scale bar, 10 μm. (b) Top, the mean Pearson correlation coefficients (r, n = 6 datasets; see S2 Table) between the densities of
the components. Bottom, superposition of these correlations with the reported vertical positions of the components across focal
adhesions [26] (left) and a comparison with their reported physical associations in the cytosol [33] (right).

doi:10.1371/journal.pone.0160591.g001

Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions

PLOS ONE | DOI:10.1371/journal.pone.0160591 August 12, 2016 7 / 18



between each two proteins across focal adhesion does not correlate with the extent of their
physical association in the cytosol [33] (Fig 1b). This indicates that the compositional stoichi-
ometry of focal adhesions is actively and locally shaped by them, rather than being a passive
reflection of the building blocks design in the cytosolic pool. Strikingly, the strongest correla-
tion is between the densities of zyxin and paxillin (Fig 1b), although these proteins do not inter-
act directly [1, 32] nor physically associate in the cytosol [33] and are located in distal vertical
layers across focal adhesions [26]. Zyxin and paxillin appear to form hubs of order within focal
adhesions, since proteins that are vertically adjacent to them—FAK, vinculin and VASP [26]—
exhibit relatively more conserved stoichiometric ratios among them but not with the distally
located α-actinin and actin (Fig 1b).

Changes in noise levels in assembling focal adhesions
The heterogeneity in the stoichiometry of proteins in focal adhesions can be generated by sev-
eral factors, including noise, diversity in local cues and distinct responses of the different com-
ponents to the same cue. Based on the positive linear correlations between the analyzed
components in focal adhesions (Fig 1b), we approximated the effective diversity within the
analyzed cells as a single parameter that has a common linear effect on the densities of all com-
ponents (S1 Text)). Noise arises from stochastic alternative recruitment of different proteins to
a given recruiting protein while diversity is caused by different levels of cues and maturation
phases of focal adhesions (Fig 2a). Both diversity and noise increase the variance of the density
of a protein among focal adhesions. However, while diversity-driven variance in the density of
a recruiting protein promotes correlations between the recruited proteins, noise-driven vari-
ance decreases these correlations (Fig 2a and 2b). As diversity and noise have the same qualita-
tive effect on the variance of protein densities but opposite effects on the correlations between
them, changes in noise levels can be untangled. Namely, if between two compared categories of
focal adhesions (e.g. small versus big focal adhesions) the coefficient of variation (CV) is
decreasing and the correlation strength (squared Pearson correlation coefficient, r2) is increas-
ing, it can be concluded that the noise level is reduced, and vice versa (Figs 2c, 2d, 3a, S4–S7
Figs and S1 Text).

The assembly of focal adhesions is a multistep process, in a sense that recruited proteins
often act as recruiters for additional proteins. In such a multistep assembly process, in which
each recruiting protein can alternatively recruit different proteins, stochastic noise is expected
to accumulate along sequential assembly steps of a structure (S6 Fig). Therefore, without sup-
pressing the effects of stochastic alternative bindings, noise accumulation could drift the assem-
bly of focal adhesions away from its correct paths, thus generating aberrant structures. To
assess this, we examined how noise levels change during focal adhesions assembly. First we
examined changes in noise levels between focal adhesions with different sizes, since the area of
focal adhesions increases during their assembly. The CV of the components density persistently
decreases as a function of focal adhesions area while the correlations between them increase
(Fig 3b and S8 Fig). These changes were observed also if focal adhesions were sampled with
equal number of pixels, as a control (S9 Fig). These results indicate that noise in the molecular
content of bigger focal adhesions is lower than that of smaller ones (Fig 3b).

We next asked how the noise levels in the molecular content of focal adhesions correlate
with their age. Using the live cell imaging data of the focal adhesions prior to the CycIF, focal
adhesions were categorized based on their age. Comparison between sequential age categories
indicated that during the first 9 minutes of focal adhesions assembly the components density
CV decreases while their correlations increase, indicating noise reduction (Fig 3c and S10 Fig).
In contrast, disassembling focal adhesions exhibit an increase in noise level (Fig 3c). Since the
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age and area of assembling focal adhesions are positively correlated (S10 Fig), we further exam-
ined if each of these parameters is coupled to noise reduction directly or indirectly via the other
parameter. For this we sub-categorized the focal adhesions according to both area and age,
inferring changes in noise levels along one parameter, keeping the other one fixed (Fig 3d and
S11 Fig). The results show that in focal adhesions of the same age category noise is still reduced
as a function of their area. In contrast, in focal adhesions of the same area category the noise is
not changing as a function of their age (Fig 3d and S11 Fig), indicating that noise reduction is
coupled with the area of focal adhesions but not with their age.

A simple model for the observed coupling between focal adhesion area and noise reduction
could be based on the reduction in the circumference-to-area ratio of a focal adhesion as it gets
bigger. Considering the internal dynamic nature of focal adhesions [34], a lower circumference-

Fig 2. Inferring changes in noise levels in the molecular content of focal adhesions. (a) An assembly process with competing binding
interactions. (b) Higher diversity in the local levels of a recruiting protein leads to a stronger correlation between the recruited proteins, while
higher noise causes the opposite. (c) SimulatedCV and r2 of the densities of the dark-blue and red components as a function of binding noise
and diversity in the density of the yellow component among focal adhesions. (d) Inferring changes in noise levels based on ΔCV and Δr2.
Changes between focal adhesion categories exemplified in (c) are indicated. The inference approach was validated by systematic screen of
diversity and noise levels for competitive and non-competitive assembly processes.

doi:10.1371/journal.pone.0160591.g002
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Fig 3. Noise decrease in focal adhesions is coupled to their size and internal density independently. (a) The workflow of inferring
changes in noise levels between two categories of focal adhesions (e.g. small versus big focal adhesions). (b) Changes in noise levels
as a function of focal adhesions area. (c) Changes in noise levels as a function of focal adhesions age. (d) Focal adhesions were sub-
categorized according to both their area and age. Changes in noise levels were inferred within each age category as a function of area
and vice versa. (e) Same as (d), using eccentricity instead of age. (f) Same as (d), using density instead of age. Error bars indicate
standard error of the mean between datasets (see S1 Fig and S2 Table).

doi:10.1371/journal.pone.0160591.g003
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to-area ratio would increase the relative frequency of internal interactions between proteins in
respect to the frequency of their interactions with soluble cytosolic components. To assess this
hypothesis, we examined changes in noise level as a function of the eccentricity of focal adhe-
sions, since a higher eccentricity implies a higher circumference-to-area ratio. However, we
found that for focal adhesions of the same area category noise does not change as a function of
their eccentricity Fig 3e and S11 Fig), indicating that circumference-to-area ratio is not an
important factor for noise reduction. This further raises the possibility that focal adhesions
growth is in fact unnecessary for noise suppression. Along this line, the observed correlations
between focal adhesions area and noise reduction could actually reflects a dependency of the
growth of a focal adhesion on a reduction of noise in its molecular content.

We next tested whether the coupling between focal adhesions area and noise reduction is
mediated via the increase in the internal density of focal adhesions as they grow (S12–S14
Figs). For this focal adhesions were sub-categorized based on both their area and internal den-
sity, and the CV and correlation strengths of protein densities were compared along each of
these parameters. Noise was found to decrease as a function of focal adhesions area regardless
of changes in their internal density (Fig 3f and S11 Fig). In contrast, in most cases noise was
not decreasing as a function of the density per se in focal adhesions of the same size category.
Interesting exceptions include the focal adhesions with small or medium area, showing a
reduction in noise level between high and medium density categories (Fig 3f, dark-blue vertical
arrows). Therefore, although internal density is not ubiquitously coupled with noise suppres-
sion in all focal adhesions, it can be coupled with it in subgroups of focal adhesions. Since in
these subgroups noise is suppressed as a function of density in focal adhesions of the same area
category, we conclude that area and internal density of focal adhesions are coupled with noise
reduction by two independent mechanisms.

High-order relations between components density
The assembly of a conserved multi-molecular structure can rely solely on the selectivity of the
interactions between its components. In contrast, for modular assembly of diverse structures
with the same components a higher-level of quality control is needed to ensure that the assem-
bly is progressing along the correct path. Considering that focal adhesions are assembled by
self-organization of their components without an external supervision of the process, an
intriguing question is how quality control is achieved. We hypothesize that a general mecha-
nism for such a quality control would be making the level of each component in a focal adhe-
sion dependent on cues from the levels of multiple other components in that focal adhesion.
This can provide robustness to noise, by averaging out stochastic fluctuations in the levels of
the cueing components. Moreover, it can guide the system to assemble in a specific path by
constraining the alternative interactions of a given protein, for example by generating steric
hindrances. Such mechanisms would generate high-order statistical relations between the com-
ponents, for which the level of a given protein could be statistically modeled better by the con-
sideration of multiple other proteins.

To reveal high-order statistical relations between the densities of components in focal adhe-
sions, we examined how well artificial neural networks can predict the densities of a target
component based on the densities of the other components in these structures (Fig 4a). As a
complementary approach, we applied Random Forests analysis [30] to test if hierarchical parti-
tioning of the data according to the densities of a subset of components can provide a good
prediction of the densities of a target component in focal adhesions. The coefficients of deter-
mination between the observed and predicated densities obtained from the two methods are
strongly correlated, with marginally better predictions by artificial neural networks (Fig 4b).
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A systematic screen of all combinations of input and target components revealed paxillin and
zyxin densities to be significantly better predicted upon integration of multiple input compo-
nents (Fig 4c). Of note, this is not a side effect of the strong pairwise correlation between paxil-
lin and zyxin (Fig 1b) but rather indicates a statistically significant incremental contribution of
each of the input components to the prediction of paxillin or zyxin densities (see Materials and
Methods). Interestingly, while these high-order relations of zyxin and paxillin are independent
of the area of focal adhesions they get more prominent in focal adhesions of higher internal
density (Fig 4c). Therefore, high-order relations are plausibly underlying the observed density-
coupled suppression of noise in small and medium size focal adhesions (Fig 3f, dark-blue verti-
cal arrows). These results support the hypothesis that the increasing internal density within

Fig 4. Density-dependent high-order statistical relations between components in focal adhesions. (a)
The artificial neural network architecture, exemplified for the case of four input proteins. (b) The coefficients of
determinations between the predicted and observed densities of the target component as obtained by artificial
neural networks versus Random Forests, shown for all possible combinations of input and target proteins. (c)
A scatter plot showing the extent of high-order relations identified for the indicated target components. The
horizontal axis indicates the average number of input components in the identified high-order relations. The
vertical axis indicates the average coefficient of determination between the predicted levels of the target
protein, based on the artificial neural network analysis, and its actual levels in the focal adhesions. High-order
relations with average coefficient of determination lower than 0.6 are omitted from the plot. The diameter of the
circles indicates the number of identified high-order relations (see Materials and Methods). (d) A positive
feedback model for the emergence of noise suppression in focal adhesions.

doi:10.1371/journal.pone.0160591.g004

Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions

PLOS ONE | DOI:10.1371/journal.pone.0160591 August 12, 2016 12 / 18



assembling focal adhesions promotes high-order integration of interactions that tunes the lev-
els of paxillin and zyxin and thus suppresses compositional noise (Fig 4d).

Discussion
The consideration of noise in the molecular content of adhesion sites assumes a designed opti-
mal level for each protein in each focal adhesion under a given condition. This assumption
implies that binding probabilities and protein expression levels are designed to lead, on aver-
age, to the optimal level of each protein in each focal adhesion while stochastic noise causes
deviations from these optimal levels. Therefore, in the absence of diversity, the effective noise
level of a protein in focal adhesions can be defined as the ratio between the amplitude of its sto-
chastic fluctuations over its mean level. According to this definition, noise might be reduced
merely due to the increase in the mean copy number of proteins in focal adhesions as they get
more dense. However our results show that beside two cases noise is not reduced as a function
of the internal density of focal adhesions (Fig 3f). Noise decreases as a function of density only
in focal adhesions with small or medium area and only when their internal density increases
from medium to high levels (Fig 3f, dark-blue vertical arrows). Although other processes may
counteract an existing effect of increase in the protein copy number, these results indicate that
such increases do not dominate the inference of changes in noise levels. In addition, image-pro-
cessing based controls indicate that inferred reductions in noise levels in bigger focal adhesions
are not due higher number of sampled pixels, hence also not due increase in the mean copy
number of the proteins per focal adhesion (S9 Fig). To further assess this, simulations of assem-
bly processes with stochastic fluctuations that are uncoupled to the mean show that changes in
noise levels are correctly inferred (S1 Text). Therefore the observed noise reduction cannot be
explained solely by the increase in proteins copy number in assembling focal adhesions, hence
pointing toward external processes affecting the noise levels.

Our results suggest that active regulatory processes within focal adhesions dictate their
internal molecular organization and reduce its noise. First indication for this is the relatively
low correlation between the physical associations of the components in the cytosol and the cor-
relation strengths between their densities in focal adhesions (Fig 1b). Given the combinatorial
diversity of the cytosolic building blocks for focal adhesions, many proteins may be recruited
to focal adhesions being embedded in different complexes [33]. In such a situation, controlling
the molecular content of focal adhesions requires selective recruitment of protein complexes or
integration of information within the structure. Most strikingly was the strong correlation
between the densities of paxillin and zyxin in focal adhesions (Fig 1b). From the functional per-
spective, a tight coupling between paxillin and zyxin densities is sensible, as paxillin is a major
signaling hub [32, 35] while zyxin modulates actin and is highly responsive to mechanical
forces [7, 8, 36, 37]. However, from the mechanistic perspective it is unclear how this coupling
is being achieved. Considering the facts that these proteins are not associated with each other
in the cytosol [33] and are located at distal vertical layers within the focal adhesion [26], the
coupling between them is plausibly mediated via the other proteins within the structure. This
hypothesis is supported by our finding that both zyxin and paxillin emerge as prominent target
proteins in the artificial neural network screen, suggesting that their densities are particularly
tuned by the other proteins in the focal adhesions.

This work suggests that assembling focal adhesions suppress noise in their molecular com-
position by two mechanisms which are coupled with their area and internal density. These cou-
plings can be mediated by (i) causal effects of focal adhesions area and density on noise
suppression, (ii) causal effects of noise suppression on focal adhesions area and internal den-
sity, (iii) another factor which affects together the density, area and noise. We excluded the
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possibility that area increase affects noise reduction via reducing the circumference-to-area
ratio. This suggests that the area-noise coupling is mediated by a different direction of causal-
ity. It is plausible that noise suppression promotes a stable increase in the area of focal adhe-
sions by configuring correctly cross-linking interactions and minimizing steric hindrances (Fig
4d). In regards to the density-noise coupling we found that high-order interactions, which can
facilitate noise suppression, get more prominent in focal adhesions with higher internal density
(Fig 4c). We suggest that coupling between internal density and noise suppression is generated
by a positive causal effect of the former one on the latter one (Fig 4d). These two causal rela-
tions form a feedback loop between the internal density, noise suppression and growth of a
focal adhesion which gives rise to a quality control of their assembly and maintenance (Fig 4d).
According to this model, as a focal adhesion assembles the increase in its internal density (S12–
S14 Figs) facilitates noise suppression, which in turn enables its further stable growth in area
and thereby a further increase in internal density.

Supporting Information
S1 Text. Simulation details and assessment of the inference method.
(PDF)

S1 Fig. The number of focal adhesions in the different datasets and focal adhesion catego-
ries. (a) The number of cells and focal adhesions in each dataset. (b) The number of focal adhe-
sions in each area and age category. (c) Tables showing the number of focal adhesions in each
sub-category, as indicated. The numbers within each rectangle correspond from top to bottom
to dataset R1O1, R1O2, R2O1, R2O2, R3O1 and R3O2.
(PDF)

S2 Fig. Identification of the analyzed adhesion sites as focal adhesions. (a) The percentage
of adhesion sites that do not contain detectable levels a given component (mean ± standard
error of the mean, n = 6 datasets). Note that almost all adhesion sites contain all of the compo-
nents, with negligible exceptions plausibly due to thresholding effects. The presence of zyxin
indicates that these sites are focal adhesions rather than focal-complexes. (b) The distribution
of the eccentricities of the adhesion sites indicates that they are oval, further supporting that
they are focal adhesions and not focal complexes. (c) The distribution of the eccentricities of
the adhesion sites with undetectable zyxin levels, showing that also most of those sites are oval.
(PDF)

S3 Fig. Scatterplots and histograms of the components normalized densities in the focal
adhesions. For clarity, each scatterplot shows a random sample of 0.1% from all focal adhe-
sions of the indicated dataset.
(TIF)

S4 Fig. Testing noise inference with simulated competitive assembly process. (a) The model
and its letter notation. The level of component A is varying among sites due to diversity in local
cues. (b) The total level, PT, of a given protein, P, in an adhesion site is the sum of its levels in
all its assemblies there. (c) The model was simulated with different noise and diversity levels, as
described. For each possible pair of simulated noise and diversity levels, the signs of changes in
these levels were inferred based on the Δr2 between the total levels of the indicated components
and ΔCV of the first one. Red bars show the fraction of observations in each category. Blue
stripes indicate the expected possible changes in noise and diversity based on the inference
rules (Fig 2d).
(PDF)
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S5 Fig. Testing noise inference with simulated non-competitive assembly process. (a) The
model and its letter notation. The level of component A is varying among sites due to diversity
in local cues. (b) The total level, PT, of a given protein, P, in an adhesion site is the sum of its
levels in all its assemblies there. (c) The model was simulated with different noise and diversity
levels, diversity mean/range ratios and equal or unequal binding sites for proteins B and C, as
described. For each possible pair of simulated noise and diversity levels, the signs of changes in
these levels were inferred based on the Δr2 between AT and BT and ΔCV of AT. Red bars show
the fraction of observations in each category. Blue stripes indicate the expected possible
changes in noise and diversity based on the inference rules (Fig 2d). (d) As (c), using different
diversity distributions as described.
(PDF)

S6 Fig. Noise increase along the steps of a sequential assembly process. (a) The simulated
model, consisting of two layers of non-competitive interactions. The level of component A is
varying from site to site due to diversity in local cues. (b) The noise inference scheme. (c)
Changes in Δlog(CV) and Δ(r2) between proteins recruited in the first assembly step (category
1) and those recruited in the second step (category 2). (d) Inferred changes in noise levels
between the sequential assembly steps.
(PDF)

S7 Fig. Comparison between the change in CV and the change the Fano factor (variance/
mean) between the sub-categories of focal adhesions that were compared in this study.
Note that beside few exceptions, the changes in these two measures have the same sign. Error
bars indicate standard error of the mean between the datasets (see S1 Fig and S2 Table).
(PDF)

S8 Fig. Changes in the components density, CV and r2 as a function of focal adhesions area.
(a) The mean densities (n = 6 datasets) of the labeled components and their CV as a function of
focal adhesions area. (b) Scatter plots comparing the r2 between the components in focal adhe-
sions between the area categories. Error bars indicate standard error of the mean (n = 6 datasets).
(c) Δlog(CV) and Δ(r2) as a function of focal adhesions area.
(PDF)

S9 Fig. The reduction in noise level in bigger focal adhesions is not due to the higher num-
ber of pixels per focal adhesion. (a) Inferring changes in noise levels as a function of focal
adhesions area based on Δlog(CV) and Δ(r2). However, here, the densities of proteins in each
focal adhesion in the medium and large size categories were calculated using only a randomly
sampled fraction of the pixels, such that the mean number of pixels sampled per focal adhesion
is equal among all area categories. (b) The same as (a), but with sampling an equal number of
pixels (10 pixels) from each focal adhesion in all area categories. Note that in both (a) and (b)
the number of pixels used for calculating the CV and r2 is equal for all compared area catego-
ries, yet without affecting the detection of the reduction in the noise level. Error bars indicate
standard error of the mean (n = 6 datasets).
(PDF)

S10 Fig. Changes in the components density, CV and r2 as a function of focal adhesions
age. (a) The total intensity of YFP-paxillin during the last 12 minutes before fixation in individ-
ual, randomly sampled, focal adhesions of the different age categories (b) The areas of focal
adhesions in each age category. Error bars denote standard deviation (n = 6 datasets). (c) The
mean densities and CV (n = 6 datasets) of the labeled components as a function of focal adhe-
sions age. (d) Scatter plots comparing r2 between the component densities in focal adhesions of
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sequential age categories. Error bars indicate standard error of the mean (n = 6 datasets). (e)
Δlog(CV) and Δ(r2) as a function of focal adhesions age.
(PDF)

S11 Fig. Changes in CV and r2 among sub-categorized focal adhesions. (a) Focal adhesions
were sub-categorized according to both their area and age. Δlog(CV) and Δ(r2) were calculated
between focal adhesions of the same age category as a function of area, as well as between focal
adhesions of the same area category as a function of age. (b) As (a), using density instead of
age. (c) As (a), using eccentricity instead of age.
(PDF)

S12 Fig. The average Pearson correlation coefficient (r) between the area of focal adhesions
and the corresponding densities of the components in these focal adhesions. Error bars indi-
cate standard error of the mean (n = 6 datasets).
(PDF)

S13 Fig. (a) The mean, variance and CV of the density of the various components in focal
adhesions of the different area categories and in the different datasets. S, M and L denote the
small, medium and large area categories, respectively. Error bars indicate standard error of the
mean (see S1 Fig for the number of analyzed focal adhesions for each dataset and area cate-
gory). (b) The mean Pearson correlation, r, (n = 6 datasets) between the densities of the compo-
nents in focal adhesions of the different area categories.
(PDF)

S14 Fig. (a) The mean, variance and CV of the density of the various components in focal
adhesions of the different age categories and in the different datasets. Error bars indicate stan-
dard error of the mean (see S1 Fig for the number of analyzed focal adhesions for each dataset
and age category). (b) The mean Pearson correlation, r, (n = 6 datasets) between the densities
of the components in focal adhesions of the different age categories.
(PDF)

S1 Table. The two labeling orders of the components in the CycIF cycles.
(PDF)

S2 Table. Supporting data for Figs 1 and 3 and S7 Fig.
(XLSX)
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