Università
 degli Studi
 di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

The effect of experience and of dots' density and duration on the detection of coherent motion in dogs

Original Citation:

Availability:
This version is available at: 11577/3271645 since: 2019-10-05T16:06:14Z

Publisher:
Springer

Published version:
DOI: 10.1007/s10071-018-1200-4

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Animal Cognition

The effect of experience and of dots' density and duration on the detection of coherent motion in dogs
 --Manuscript Draft--

Manuscript Number:	
Full Title:	The effect of experience and of dots' density and duration on the detection of coherent motion in dogs
Article Type:	Original Article
Corresponding Author:	Paolo Mongillo, DVM, PhD Università degli Studi di Padova Dipartimento di Biomedicina Comparata e Alimentazione ITALY
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Università degli Studi di Padova Dipartimento di Biomedicina Comparata e Alimentazione
Corresponding Author's Secondary Institution:	
First Author:	Orsolya Kanizsár, PhD
First Author Secondary Information:	
Order of Authors:	Orsolya Kanizsár, PhD
	Paolo Mongillo, DVM, PhD
	Luca Battaglini, PhD
	Gianluca Campana, PhD
	Miina Lõoke
	Lieta Marinelli, DVM, PhD
Order of Authors Secondary Information:	
Funding Information:	Università degli Studi di Padova (DOR1673431)\quad Prof. Lieta Marinelli
	Università degli Studi di Padova (PhD scholarship) Dr Orsolya Kanizsár
Abstract:	Knowledge about the mechanisms underlying canine vision is far from being exhaustive, especially that concerning post-retinal elaboration. One aspect that has received little attention is motion perception, and in spite of the common belief that dogs are extremely apt at detecting moving stimuli, there is no scientific support to such assumption. In fact, we recently showed that dogs have higher thresholds than humans for coherent motion detection (Kaniszar et al. 2017). This term refers to the ability of the visual system to perceive several units moving in the same direction, as one, coherently moving global unit. Coherent motion perception is commonly investigated using random dot displays, containing variable proportions of coherently moving dots. Here, we investigated the relative contribution of local and global integration mechanisms to coherent motion perception, and changes in detection thresholds as a result of repeat-ed exposure to the experimental stimuli. Dogs who had been involved in the previous study were administered a conditioned discrimination task, in which we systematically manipulated dot density and duration and, eventually, we re-assessed our subjects' threshold after extensive exposure to the stimuli. Decreasing dot duration impacted on dogs' ac-curacy in detecting coherent motion only at very low duration values, revealing the efficacy of local integration mechanisms. Density impacted on dogs' accuracy in a linear fashion, indicating less efficient global integration. There was limited evidence of improvement in the re-assessment but, with an average threshold at re-assessment of 29%, dogs' ability to detect coherent motion

Suggested Reviewers:	remains much poorer than that of humans.
	Kun Guo, BSc PhD Reader, University of Lincoln kguo@lincoln.ac.uk Expertise in cognitive neuroscience of vision, including dog motion perception.
Anna Kis, PhD Magyar Tudomanyos Akademia vargane.kis.anna@ttk.mta.hu The proposed reviewer has experience in dogs' cognition and visual perception	
George Mather, PhD Professor, University of Lincoln gmather@lincoln.ac.uk Professor of Vision Science	
Opposed Reviewers:	

The effect of experience and of dots' density and duration on the detection of coherent motion in dogs

Orsolya Kanizsárar , Paolo Mongilloa*, Luca Battaglinib, Gianluca Campana ${ }^{\text {b }}$, Miina Lõoke ${ }^{\text {c }}$, Lieta Marinelli ${ }^{\text {a }}$
${ }^{\text {a Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, }}$
Viale dell'Università 16, 35020, Legnaro (PD), Italy. ${ }^{\text {b }}$ Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padova, Italy ${ }^{\text {c Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, }}$ Tartu, Estonia
*Corresponding author's email: paolo.mongillo@unipd.it telephone number: +39 049641862

ORCID:
Orsolya Kanizsar: 0000-0001-7351-7359
Paolo Mongillo: 0000-0001-8599-4005
Luca Battaglini: 0000-0002-5187-9225
Gianluca Campana: 0000-0003-4019-085X
Miina Lõoke: 0000-0002-3981-1551
Lieta Marinelli: 0000-0003-0609-2172

Abstract

Knowledge about the mechanisms underlying canine vision is far from being exhaustive, especially that concerning post-retinal elaboration. One aspect that has received little attention is motion perception, and in spite of the common belief that dogs are extremely apt at detecting moving stimuli, there is no scientific support to such assumption. In fact, we recently showed that dogs have higher thresholds than humans for coherent motion detection (Kaniszar et al. 2017). This term refers to the ability of the visual system to perceive several units moving in the same direction, as one, coherently moving global unit. Coherent motion perception is commonly investigated using random dot displays, containing variable proportions of coherently moving dots. Here, we investigated the relative contribution of local and global integration mechanisms to coherent motion perception, and changes in detection thresholds as a result of repeated exposure to the experimental stimuli. Dogs who had been involved in the previous study were administered a conditioned discrimination task, in which we systematically manipulated dot density and duration and, eventually, we re-assessed our subjects' threshold after extensive exposure to the stimuli. Decreasing dot duration impacted on dogs' accuracy in detecting coherent motion only at very low duration values, revealing the efficacy of local integration mechanisms. Den-

sity impacted on dogs' accuracy in a linear fashion, indicating less efficient global integration. There was limited evidence of improvement in the re-assessment but, with an average threshold at re-assessment of 29%, dogs' ability to detect coherent motion remains much poorer than that of humans.
keywords: coherent motion, dot density, dot lifetime, perceptual learning, dog

ACKNOWLEDGMENTS

We are very grateful to the student Giulia Madumali Zotti for helping with experiments and to Dr. Carlo Poltronieri for his technical assistance. The study was funded by the University of Padova (to LM, 2016 - prot. DOR1673431). Dr. Orsolya Kanizár was supported by a PhD grant funded by the University of Padova.

INTRODUCTION

Dogs make extensive use of visual information, in tasks as simple as recognizing their owner (Mongillo et al. 2017b), to more cognitively complex activities, such as understanding human communicative signs (reviewed by Kaminsky and Nitzchener 2013), attentional states (Gácsi et al. 2004; Virányi et al. 2004) and emotions (Albuquerque et al. 2016; Nagasawa et al. 2011). Notwithstanding the demonstrated importance of such sensory modality, research on the mechanisms underlying canine vision is far from being exhaustive (Byosiere et al. 2017a). Most of the studies on the topic focused on the functional properties of eye structures, and their impact on basic characteristics of sight, like acuity, light sensitivity, and color discrimination. A much smaller number of studies looked at higher level (i.e. post-retinal) visual elaboration processes, like the perception and the discrimination of object shapes and sizes (e.g. Byosiere et al. 2017b; Milgram et al. 1994) or the spatial integration of local elements into a global percept (Mongillo et al. 2017a; Pitteri et al. 2014a, b).

One aspect that has received very little attention is dogs' perception of motion. However, the ability to detect and encode information about moving stimuli is likely to be involved in many aspects of the life of a dog. For instance, it could play a fundamental role in predatory behavior, with its desirable (e.g. for hunting dogs) or undesirable (for dogs expressing predation as a problematic behavior) consequences. In spite of common belief holding that dogs are extremely apt at detecting moving stimuli, there is no scientific data supporting such assumption. In fact, to date, the only study that dealt with dogs' ability to perceive motion, recently conducted by our research group, suggests that the opposite is the case (Kaniszar et al. 2017).

In such study, we specifically dealt with dogs' ability to detect coherent motion, that is the ability to perceive several local units moving with the same direction and speed as a single, coherently moving unit (Braddick 1993; Williams and Brannan 1994). According to a widely accepted theory, the perception of coherent motion represents the second of a two-stage motion processing mechanism, whereby higher order neurons integrate the local component of motion analyzed by neurons in the initial stage, providing a global percept (Rust et al. 2006). Such mechanism represents a crucial step to an organisms' ability to extrapolate complex information about relevant stimuli from motion cues (Berental and Pinto 1994; Blanke et al. 2007). The physiological boundaries of coherent motion perception are commonly investigated via discrimination tasks using random dot displays (Newsome and Pare, 1988), where a given number of dots moves in the same direction (signal dots), among a number of dots moving in random directions (noise). The smaller the proportion of signal dots that the subject needs in order to detect the coherent motion, the lower is the individual's threshold. Using this paradigm, we found that dogs have an average threshold of coherent motion detection of 42%, considerably higher than the 5% thresholds found in human subjects assessed in the same experimental condition (Kanizsar et al. 2017), and also higher than thresholds reported for other species, including monkeys (Newsome and

Pare 1988), seals (Weiffen et al. 2014) and cats (Huxlin and Pasternak 2004; Rudolph and Pasternak 1996). Thus, dogs’ coherent motion perception abilities seem to be rather poor, not just compared to primates, but even to phylogenetically closer species.

One factor that could have contributed to our dog's high thresholds, is their relatively little experience with the experimental stimuli. It has been widely demonstrated that the performance in many visual tasks improves after experience with the stimuli. Motion detection tasks make no exception, and improvement in detection thresholds through practice have been documented in humans, mice, monkeys and seals (Britten et al. 1992; Douglas et al. 2006; Watanabe et al. 2001; Weiffen et al. 2014). The dogs who took part in our previous study were privately owned, and, although they had received extensive training, their overall exposure to the experimental stimuli was limited if compared to studies employing animals housed in experimental facilities. It therefore remains a viable hypothesis that thresholds observed in our dogs did not represent their lower asymptote, and that such thresholds could be improved by giving dogs additional experience with the stimuli.

The thresholds of motion detection are also greatly influenced by the characteristics of the experimental stimuli. For instance, both a shorter duration (i.e. the amount of a dot remains visible before disappearing and being replaced by another dot elsewhere in the display) ${ }^{1}$ and a lower density of dots in the display result in higher thresholds of coherent motion detection in both human and non-human subjects (Snowden and Kavanagh 2006; Talcott et al. 2000; Weiffen et al. 2014). It is unlikely that changing the duration or dot density used in our previous experiment (Kanizsar et al. 2017) would improve our dogs' thresholds, since stimuli were designed in order to maximize the dogs' performance and both parameters were set around the upper range end, in comparison with those used in other studies. Nonetheless, manipulating these parameters would still be useful in the attempt to clarify the relative contribution of different mechanisms to coherent motion perception (e.g. Bischof et al. 1999). Indeed, there are at least two basic processes through which coherent motion detection can be attained, that is the integration of single motion units moving in the same direction across multiple time frames (local integration), which would be more greatly affected by shorter dots' duration, and the integration of multiple motion units moving in the same direction, across as few as two subsequent frames (global integration), which would be more greatly affected by lower dot densities. Although the role of local and global integration, and their neurophysiological substrates, have been largely addressed in the primate literature, there are substantial differences between primates and carnivoran (Aguirre et al. 2007; Djavadian and Harutiunian-Kozak 1983), to suggest that the mechanisms leading to te detection of coherent motion may differ between these taxa.

The experiments described in this paper represent an extension of our previous study (Kanizsar et al. 2017) and were aimed at investigating the relative contribution of local and global integration mechanisms and the role of experience in

[^0]determining dogs' coherent motion detection thresholds. To these aims, the same dogs who took part in our previous experiment underwent a two-alternative forced choice discrimination task using random dot displays, in which we systematically varied the dot density or duration. After the dogs completed these tasks we re-assessed the subjects' thresholds using the same testing procedure and parameters as described in Kanizsar et al. (2017), to investigate the effects of extensive stimulus exposure on dogs' coherent motion detection thresholds.

MATERIALS AND METHODS

Subjects

Our sample included five mesocephalic pet dogs, three females (1 Mongrel, 1 Mudi, 1 Siberian Husky) and two males (1 Cocker Spaniel, 1 Labrador-Poodle Mix), between 3 and 11 years of age. All of these dogs had participated in the previous study that investigated dogs' thresholds of coherent motion detection (Kanizsar et al. 2017). Dogs belonged to private owners who participated in the experiments on a voluntary basis. The subjects underwent a veterinary examination before the enrollment in the experiments to exclude health conditions that would prevent them from participation. Dogs were selected upon the requirement that they were highly motivated for food and willing to cooperate, while feeling comfortable with being in the laboratory.

Experimental setting

All the experiments took place in the Laboratory of Applied Ethology of the Department of Biomedicine and Food Science (University of Padova, Italy). A testing area of $2.5 \times 3 \mathrm{~m}$ was established in a laboratory room. Stimuli were presented on two identical monitors (VG248QE, ASUSTeK Computer Inc., Taipei, Taiwan). Their refresh rate was set at 100 Hz , to prevent possible biases on motion detection, due to dogs' higher flicker fusion frequency (Miller and Murphy 1995). Monitors were connected to a PC (Optiplex 960, Dell Inc., Round Rock, Texas, USA). They were placed side by side at 25 cm from each other. During presentations, the dog viewed the monitors from a distance of 70 cm . Monitors were attached to height-adjustable stands, so that their height could be set at eye level for each subject. Presentations were controlled by the experimenter with a Bluetooth $®$ keyboard (K400 Plus, Logitech International S.A., Lausanne, Switzerland).

Stimuli

All experimental stimuli were created with MATLAB (MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc., 2010), using features of the Psychtoolbox (Brainard 1997; Pelli 1997). The stimuli were displayed on a black area of $31.1 \mathrm{~cm} \times 31.1 \mathrm{~cm}(24.0 \times 24.0$ deg, from the viewing distance 70 cm), where white dots with a diameter of 0.16 cm moved towards the left side of the monitor at a speed of $19.4 \mathrm{~cm} / \mathrm{s}(15.0 \mathrm{deg} / \mathrm{s})$. For all the training trials (including those used in the test phases), the positive stimulus was set at a coherence of 80%, i.e. 80% of the dots moved in the same direction, whereas the remaining 20% moved in random directions. In all test and training trials, the negative stimulus had a coherence level of 0%, that is all of the dots moved in random directions. In training trials, there was a total of 5000 dots moving in the display, for a density of 5.9 dots $/ \mathrm{cm}^{2}\left(8.7\right.$ dots $\left./ \mathrm{deg}^{2}\right)$ and dots had a duration of 1000 ms . Dot density, dot duration and the percentage of coherence of the display were manipulated in the test trials of the respective experiments, for which a detailed description of the stimuli is given below.

Training phase and general test procedure

Each dog underwent three tests, aimed at assessing respectively the effect of dot duration, dot density and experience on their coherent motion detection threshold. The latter was defined as the percentage of coherently moving dots in the positive stimulus at which dogs' accuracy in discriminating such stimulus reached an estimated value of 75%. Prior to each test, dogs underwent a training phase, identical in all respects to the one they had already undergone in the previous study (Kanizsar et al. 2017). Briefly, such phase consisted in a two-alternative forced choice discrimination task, where dogs had to discriminate a random dot display with a coherence of 80% (positive stimulus), from one with a coherence of 0%. Training sessions were composed of 20 trials, in each of which dogs were presented with the positive and negative stimuli, and, after an inspection time of 4 s , they had to choose one of the two stimuli by approaching and touching one of the two monitors with their snout. The side of presentation of negative and positive stimuli were randomly determined by the software, with the constraint that they were counterbalanced within a session. After touching one of the two monitors, the stimuli disappeared, and dogs were reinforced with food (pieces of sausage of about $1 \mathrm{~cm}^{3}$) if they chose the positive stimulus; immediately after finishing eating, dogs were called to the starting position and the next trial began. If dogs chose the negative stimulus, they received no reward and after an interval of approximately 7 s they were called back to the starting position for the next trial. Training was completed when dogs reached a criterion of 90% or better accuracy (i.e. at least 18 correct choices out of 20 trials), in 6 consecutive sessions. In this phase, as well in the tests, dogs underwent a maximum of 4 sessions per day.

In the tests dogs underwent several sessions composed of a certain number of 'training' trials, in which the two stimuli were identical to those presented in the training phase, and 'test' trials, where the characteristics of the stimuli were ma-
nipulated, according to the specifics of each test (described below in detail). The first 4 trials of every session were always of the training type, serving as a 'warm-up', whereas in rest of the session a set number of training and test trials were intermingled in random order. The side of presentation of the positive stimulus was also randomized and counterbalanced within each session. In test trials, dogs were never reinforced regardless of their choice. The inclusion of training trials in test sessions was meant to maintain dogs' motivation throughout, and to allow an assessment of subjects' discriminative performance during tests; if a dog failed to maintain a criterion of 85% correct responses in the training trials of the test phase (e.g. more than 2 errors in the 14 training trials), it was sent back to the training phase.

Dot density test

This test was meant to investigate whether the manipulation of dots density in the presented displays affected individual thresholds of coherent motion detection. The test comprised 10 test sessions, each including 14 training trials and 6 test trials. In the latter, the density of dots in both the positive and negative stimuli was set to one of 3 different levels (8.7 dots $/ \mathrm{deg}^{2}, 1.74$ dots $/ \mathrm{deg}^{2}$ and 0.17 dots $/ \mathrm{deg}^{2}$), so that every density level was shown twice per session, and 20 times in the entire test. The choice of the density levels was based on the comparative literature and on pilot testing, with the aim of maximizing the sensitivity of the assay. In test trials, the level of coherence of signal dots in the positive stimulus was set for each dog to its individual threshold, as resulting from the previous study, where dot density was set to 8.7 dots $/ \mathrm{deg}^{2}$, (Kaniszar et al. 2017); the dots' duration was the same as in the training stimuli (1000 ms).

Dot duration test

This test was meant to investigate whether the manipulation of dots' duration affected individual thresholds of coherent motion detection. The test comprised 10 test sessions, each including 14 training trials and 6 test trials. In the latter, the duration of dots in both the positive and negative stimuli was set to one of 3 different levels ($1000 \mathrm{~ms}, 200 \mathrm{~ms}$, and 50 ms), so that every duration level was shown twice per session, and 20 times in the entire test. The choice of the duration levels was based on the comparative literature and on pilot testing, with the aim of maximizing the sensitivity of the assay. In test trials, the level of coherence of signal dots in the positive stimulus was set for each dog to its individual threshold, as resulting from the previous study, where dot duration was set to 1 s (Kaniszar et al. 2017); the dots' density was the same as in the training stimuli (8.7 dots $/ \mathrm{deg}^{2}$).

Re-assessment of coherent motion detection thresholds

This test was meant to assess the effects of experience on the thresholds of coherent motion detection of dogs, by repeating the assessment procedure that the same dogs had previously undergone (Kanizsar et al. 2017), after having being exposed to the positive training stimulus in (at least) additional 640 trials since the first threshold assessment. The interval between the two assessments was on average 2 months.

The test consisted of 10 sessions, each composed of 14 training trials and 10 test trials. In the latter, the coherence of the positive stimulus was varied across 5 different levels (i.e. $60 \%, 50 \%, 40 \%, 30 \%$, and 20% coherently moving signal dots); each of these levels was shown twice within the same session, and 20 times in the entire test.

Data collection and statistical Analysis

Linear regression analyses were run to find the best model for describing the relationships between the dots density and duration and the proportion of correct responses, respectively in the dot duration and in the dot density tests. Choice of the best fitting model was based on visual inspection of the data and on the comparison of the R^{2}. After that, a two-tail one sample t-test was run to determine whether the mean slope of the functions was significantly different from zero, indicating better (>0) or worse (<0) performance when the independent variable increases.

For the re-assessment of coherent motion detection thresholds, data of each dog were fitted with a logistic function by using the routines provided by Palamedes (Prins and Kingdom 2009), which consider a proportion of correct response for the level of coherence given by as:

$$
P(C ; \alpha, \beta, \gamma, \lambda)=\gamma+\frac{1-\gamma-\lambda}{1+e^{-\beta(c-a)}}
$$

As the task was a 2-alternative forced-choice, the lower asymptote for guess (Gamma) was set to 0.5 , while the upper asymptote (Lambda) was fixed by setting the lapse rate (probability of an incorrect response, independent of stimulus intensity) to 0.02 . The parameters Alpha and Beta were left free. Alpha refers to the threshold, i.e. the value along the abscissa corresponding to the coherence level at which the function attains its steepest point. Beta is a discrimination parameter often referred to as the 'slope'. Then, a one-tail paired t-test was run for threshold, slope and upper asymptote, regardless the small sample size, in order to investigate whether the parameters differed between the thresholds assessment performed in Kaniszar et al. (2107) and the re-assessment of the current study.

Finally, to determine whether improvements in thresholds after experience depended on the initial performance level, an analysis of correlations was run between the thresholds reported for each dog by Kaniszar et al. (2017), and the difference between such threshold and that observed for the same dog in the re-assessment test of the current study.

RESULTS

All dogs rapidly reached the learning criterion in the training phases preceding each test phase (median N of sessions needed to reach the learning criterion $=6 ; \min =6, \max =8$). In test sessions, all dogs maintained the criterion of 85% accuracy in the training trials, thus no dog was retroceded to training once started any of the test phases.

Effect of dot density

Figure 1 shows the proportion of correct choices as a function of dot density. An optimum way to fit these data is a simple linear model (see Table 1 for individual slopes, intercepts and R^{2}). A two-tailed, one-sample t-test showed that the slope of the linear regression was significantly higher than zero ($t_{4}=3.58, P=0.023$, Cohen's $\mathrm{d}=2.58$), indicating that dog's performance linearly improves with increasing dot density.

Effect of dot duration

Figure 2 shows the proportion of individual correct choices as a function of dot's duration. The dog's performance increases rapidly as the dot duration increases. In four out of five dogs, R^{2} is higher than 0.7 (see Table 3). Furthermore, a two-tails one-sample t-test showed that the slope of the logarithmic regression was significantly higher than zero $\left(t_{4}=\right.$ 4.68, $P=0.008$, Cohen's $\mathrm{d}=3.3$). This indicates that dog's performance increases rapidly as the dot duration increases, but then it stabilizes for duration above 200 ms .

Effect of repeated exposition to the stimuli

Figure 3 shows the individual psychometric functions and the proportion of correct choices as a function of coherence, comparing the results reported in Kanizsar et al. (2017) with those of the re-assessment performed on the same dogs in the current study. Table 3 shows the Alpha (threshold) and Beta (slope) parameters for each dog. The mean threshold of coherent motion detection in dogs in the re-assessment was 29.3%, while the mean slope was 0.06 ; comparatively, the mean threshold assessed by Kanizsar et al. (2017) in the same dogs was 42.2%, whereas the mean slope was 0.08 . The difference in thresholds between the two assessments approached significance ($t_{4}=2.08, P=0.104$, Cohen's $\mathrm{d}=1.53$) as well as the difference in slope $\left(t_{4}=1.85, P=0.12\right.$, Cohen's $\mathrm{d}=0.97$). There was a significant correlation between the threshold observed in the first assessment, and the degree of improvement in the re-assessment ($r=0.94, P=0.014$), so that larger improvement was seen in dogs who had initially shown the higher thresholds.

DISCUSSION

In this study, we assessed dogs' threshold of coherent motion detection as a function of dot density, dot duration and of the dogs' experience with the experimental stimuli. The results show that dogs' ability to detect coherent motion is negatively affected by dots' duration only at very short duration values, while changes in density impact on dogs' thresholds of motion detection in a linear fashion. Finally, re-assessment of the dogs' thresholds of motion detection after extensive practice with the experimental stimuli produced variable results within our sample, with indications of improvement.

The dogs' ability to detect coherent motion as a function of dots' duration decreased according to a logarithmic curve: dogs' performance showed only a trivial, if any, decrement when duration was lowered from 1000 to 200 ms , with four out of five dogs still performing with an accuracy at or above 70%; however, when duration was further reduced to 50 ms , dogs' performance clearly dropped, with accuracy falling below 60% for all dogs. A short duration affects the possibility to rely on local integration, that is to detect the direction of movement of few, closely-spaced dots, which is a prerequisite to detect coherent motion. The mechanism has been found to contribute to coherent motion detection in humans as well as in other animal species, although to a different extent (e.g. Bischof et al. 1999; Talcott et al. 2000; Weiffen et al. 2014). How do dogs compare to humans or other animal species? Talcott et al. (2000) found that humans’ motion detection improved when duration was increased from 200 ms up to about 900 ms , and remained unchanged above such values. This would suggest a higher efficiency of local motion integration mechanism in dogs' than in humans, as our dogs' performance had already reached its asymptote with a dots' duration of 200 ms . However, when stimuli are presented on a monitor, where the sensation of movement is provided by discrete image changes, the possibility to determine a dot's displacement also depends on the number of frames displayed. In this respect, in Talcott et al. (2000), the 200 ms and 900 ms conditions contained 4 and 18 frames, values that are respectively much more similar to our 50 ms (5 frames) and 200 ms (20 frames) conditions than to the 200 and 1000 ms . Thus, if frame number rather than time is considered, the improvement in performance of our dogs as a function of dots' duration is very similar to that of humans. Regardless of which of the two parameters is considered, the results indicate that dogs' local integration mechanisms are at least as efficient as they are in humans, and are therefore unlikely to play a major role in determining dogs' higher threshold of coherent motion detection. In addition, the efficiency in local integration mechanisms is in line with dogs' alleged skillfulness in detecting locally moving stimuli, such as a prey moving in the distance (Miller and Murphy 1995).

Our results on local motion integration are less directly comparable to those obtained in other animal species, due to relevant methodological differences. For instance, Weiffen et al. (2014) assessed a seal's motion detection sensitivity to varying duration at 125,250 , and 500 ms (frame rates were not provided); across these values, the seals' decrement in
threshold appeared to be linear, with no indication of a stabilization. This may suggest that seal's local motion integration still had space for improvement (i.e. it is less efficient than that of our dogs) but without an assessment of the animals' sensitivity in a wider range, and considered other differences in the characteristics of the presented stimuli between the two studies, this remains only a speculative hypothesis.

Dogs' ability to detect coherent motion decreased in a linear fashion when dot density was reduced from 8.7 to 0.17 dots/ deg^{2}, with four of the five dogs performing with $<60 \%$ accuracy at the lowest density level. The dependency of coherent motion detection from dot density is thought to reflect mechanisms of global integration: the higher total number of dots moving in a consistent direction determines the recruitment of a higher number of low-level motion detectors sensitive to that specific direction, while inhibiting those sensitive to other directions, thereby increasing the possibility to identify a set of coherently moving stimuli as a single entity. Our results indicate progressive improvement in dogs' reliance on such global integration mechanisms as density increases, at least within the range of densities that we investigated. By way of comparison, adult humans tested across a range of densities roughly spanning our two highest levels showed very little improvement in their detection threshold (Talcott et al. 2000) and the seal in the study of Weiffen et al. (2014) only showed improvement when density was increased up to $0.77 \mathrm{dots} / \mathrm{deg}^{2}$, but no further improvement with higher density values. Although proper comparisons are hindered by methodological differences, the results suggest that dogs' global integration mechanisms for motion detection are less efficient than in humans and also other species; in turn, such lower efficiency in global motion detection may be responsible for the higher thresholds of coherent motion detection found in dogs.

As far as nervous structures are concerned, local integration is thought to rely on low-level direction-sensitive detectors, found in the primary visual cortex. The sensitivity to a specific direction of local motion units emerges at this level in both primates (Wurtz and Kandel 2000) and cats (Humphrey and Saul 2002). By contrast, global integration occurs at a higher level, in specialized areas of the extra-striate cortex. As opposed to primary visual cortex, there is substantial difference in the neuro-functional organization of these areas between primates, where global motion detection occurs in the middle-temporal area (Newsome and Pare 1988), and other mammals, such as the cat, where the same processes occur in the lateral suprasylvian area (Gizzi et al. 1990; Rudolph and Pasternak 1996); although dogs' visual cortex has not been studied as thoroughly as that of the cat, and no data directly comparable to our results exists in the cat literature, there seems to be a good degree of correspondence in the neuro-functional organization of these areas between the two species (Aguirre et al. 2007). Thus, the difference in the functions and organization of these areas between dogs and primates could be responsible for the different abilities of global integration between dogs and humans. The larger variability observed in the effect of dot density than duration is also in agreement with the higher-level origin (i.e. further from sensory origin) of processes that affect dogs' performance.

After the extensive exposure to random dots motion displays, dogs' thresholds of coherent motion perception were reassessed using the same procedure they underwent earlier (Kanizsar et al. 2017) and dogs' average thresholds passed from 42% of the first study, to about 29%. The analysis did not result in a significant difference; however, for three out of the five dogs the improvement seemed to be very clear (>10\%); the remaining two dogs showed little change from the first assessment.

This suggests that some of the dogs had not reached their lower asymptote in threshold in the course of the first experiment, but needed further exposition to the stimuli in order to optimize their performance. Similar effects of experience in improving coherent motion detection have been reported in many other species, including rodents (Douglas et al. 2006), seals (Weiffen et al. 2014), monkeys (Britten et al. 1992) and humans (Sagi 2011). Most likely, such improvement is the result of perceptual learning, a well-known effect often observed in visual tasks, which is believed to reflect improvement in low-level cortical processes, consequent to extensive exposure to specific stimuli. In the context of global motion detection, the neurobiological substrate of such improvement has been localized in the middle-temporal area of primates' brain (Thomson and Liu 2006). The improvement in threshold in our dogs showed some inter-individual variability, and their degree of improvement was correlated to the threshold observed in the first test, so that dogs with the highest detection thresholds, also showed the largest improvement in the present study. Both variability in the degree of perceptual learning and its dependency on the initial performance have been observed before in visual tasks in humans and are consistent with perceptual learning processes (Dosher and Lu 2005; Fahle and Henke-Fahle 1996). The difference in average threshold between the first assessment and that done in the present did not reach statistical significance; however, considered the small number of subjects and the extent of the improvement observed in some of them, it seems sensible to conclude that experience had an effect in improving detection thresholds. In spite of such improvement, final thresholds for all dogs were still markedly higher than those observed in humans in our first experiment.

Conclusions

This study confirms our previous findings that dogs coherent motion perception is less efficient than that of humans, and suggests that the source of such differences is to be found in dogs' less efficient global integration mechanisms. By contrast, dogs' local motion integration seems to be highly efficient, possibly more than the corresponding mechanism in humans. These findings bear on some relevant practical aspects. For instance, it would be important to determine how the mechanisms of motion detection contribute to prey drive, or whether the efficiency of dogs' local motion integration mechanisms allows them to be particularly good at spotting movements in the distance, as it was earlier suggested.

The study also shows that the performance of dogs in motion detection tasks can be improved through perceptual learning, although the presence and the extent of such improvement are variable, with larger improvements seen in subjects with the worst initial performance. In any case, such improvement is not sufficient to bring dogs' thresholds near the level of human ones. Whether dogs' poor ability to detect coherent motion extends to other aspects of motion detection (for instance, the ability to detect minimum amounts of global motion) remains an aspect to be addressed by future studies.

COMPLIANCE WITH ETHICAL STANDARDS

None of the authors of this paper has any financial or personal relationship with other people or organizations which might inappropriately influence or bias its content.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

1. Albuquerque N, Guo K, Wilkinson A, Savalli C, Otta E, Mills D (2016) Dogs recognize dog and human emotions. Biol Lett 12: 20150883. https://doi.org/ 10.1098/rsbl.2015.0883
2. Aguirre GK, Komáromy AM, Cideciyan AV, Brainard DH, Aleman TS, Roman AJ, Avants BB, Gee JC, Korczykowski M, Hauswirth WW, Acland GM (2007) Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation. Plos Med 4:e230. https://doi.org/10.1371/journal.pmed. 0040230
3. Bertenthal BI, Pinto J. (1994). Global processing of biological motions. Psychol Sci 5:221-225. doi: 10.1111/j.1467-9280.1994.tb00504.x
4. Bischof WF, Reid SL, Wylie DR, Spetch ML (1999) Perception of coherent motion in random dot displays by pigeons and humans. Percept Psychophys 61:1089-1101. https://doi.org/10.3758/BF03207616
5. Blanke O, Brooks A, Mercier M, Spinelli L, Adriani M, Lavanchy L, Safran AB, Landis T (2007) Distinct mechanisms of form-from-motion perception in human extrastriate cortex. Neuropsychol 45:644-653. https://doi.org/10.1016/j.neuropsychologia.2006.07.019.
6. Braddick O (1993) Segmentation vs integration in visual motion processing. Trends Neorosci 16:263-268. https://doi.org/10.1016/0166-2236(93)90179-P
7. Brainard DH (1997) The psychophysics toolbox. Spat Vision 10:433-436.
8. Britten KH, Shadlen MN, Newsome WT, Movshon J (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745-4765.
9. Byosiere SE, Chouinard PA, Howell TJ, Bennett PC (2017a) What do dogs (Canis familiaris) see? A review of vision in dogs and implications for cognition research. Psychon Bull Rev 1-16. https://doi.org/10.3758/s13423-017-1404-7
10. Byosiere SE, Feng LC, Chouinard PA, Howell TJ, Bennett PC (2017b) Relational concept learning in domestic dogs: Performance on a two-choice size discrimination task generalises to novel stimuli. Behav Process 145:93-101. https://doi.org/10.1016/j.beproc.2017.10.009
11. Djavadian RL, Harutiunian-Kozak BA (1987) Retinotopic organization of the lateral suprasylvian area of the cat. Acta Neurobiol Exp 43:251-262.
12. Dosher BA, Lu ZL (2005) Perceptual learning in clear displays optimizes perceptual expertise: Learning the limiting process. Proc Natl Acad Sci USA 102:5286-5290. https://doi.org/10.1073/pnas. 0500492102
13. Douglas RM, Neve A, Quittenbaum JP, Alam NM, Prusky GT (2006) Perception of visual motion coherence by rats and mice. Vision Res 46:2842-2847. https://doi.org/10.1016/j.visres.2006.02.025
14. Fahle M, Henkle-Fahle S (1996) Interobserver variance in perceptual performance and learning. Invest Ophth Vis Sci 37:869-877.
15. Gácsi M, Miklósi Á, Varga O, Topál J, Csányi V (2004) Are readers of our face readers of our minds? Dogs (Canis familiaris) show situation-dependent recognition of human's attention. Anim Cogn 7:144-153. https://doi.org/10.1007/s10071-003-0205-8
16. Gizzi MS, Katz E, Movshon JA (1990) Spatial and temporal analysis by neurons in the representation of the central visual field in the cat's lateral suprasylvian visual cortex. Visual Neurosci 5:463-468. https://doi.org/10.1017/S09525238000000584
17. Humphrey AL, Saul AB (2002) The emergence of direction selectivity in cat primary visual cortex. In: Payne B, Peters A (ed) The Cat Primary Visual Cortex. Academic Press, London, pp 343-386
18. Huxlin KR, Pasternak T (2004) Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cereb Cortex 14:81-90. https://doi.org/10.1093/cercor/bhg106
19. Kaminski J, Nitzschner M (2013) Do dogs get the point? A review of dog-human communication ability. Learn Motiv 44:294-302. https://doi.org/10.1016/j.lmot.2013.05.001
20. Kanizsar O, Mongillo P, Battaglini L, Campagna G, Marinelli L (2017) Dogs are not better than humans at detecting coherent motion. Sci Rep-UK 7:11259. https://doi.org/10.1038/s41598-017-11864-z
21. Milgram NW, Head E, Weiner E, Thomas E (1994) Cognitive functions and aging in the dog: acquisition of nonspatial visual tasks. Behav Neorosci 108:57. http://dx.doi.org/10.1037/0735-7044.108.1.57
22. Miller PE, Murphy CJ (1995) Vision in dogs. J Am Vet Med Assoc 15:1623-1634.
23. Mongillo P, Pitteri E, Sambugaro P, Carnier P, Marinelli L (2017a) Global bias reliability in dogs (Canis familiaris). Anim Cogn 20:257-265. https://doi.org/10.1007/s10071-016-1044-8
24. Mongillo P, Scandurra A, Kramer RSS, Marinelli L (2017b) Recognition of human faces by dogs (Canis familiaris) requires visibility of head contour. Anim Cogn 20:881-890. https://doi.org/10.1007/s10071-017-1108-4
25. Nagasawa M, Murai K, Mogi K, Kikusui T (2011) Dogs can discriminate human smiling faces from blank expressions. Anim Cogn 14:525-533. https://doi.org/10.1007/s10071-011-0386-5
26. Newsome WT, Pare BT (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201-2211.
27. Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat Vis 10:437-442. https://doi.org/10.1163/156856897X00366
28. Pitteri E, Mongillo P, Carnier P, Marinelli L (2014a) Hierarchical stimulus processing by dogs (Canis familiaris). Anim Cogn 17:869-877. https://doi.org/10.1007/s10071-013-0720-1
29. Pitteri E, Mongillo P, Carnier P, Marinelli L, Huber L (2014b) Part-based and configural processing of owner's face in dogs. PlosONE 9:e108176. https://doi.org/10.1371/journal.pone. 0108176
30. Prins N, Kingdom FAA (2009) Palamedes: Matlab routines for analyzing psychophysical data. http://www.palamedestoolbox.org.
31. Rudolph KK, Pasternak T (1996) Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb Cortex 6:814-822. https://doi.org/10.1093/cercor/6.6.814
32. Rust NC, Mante V, Simoncelli EP, Movshon JA (2006). How MT cells analyze the motion of visual patterns. Nat Neurosci 9:1421.
33. Sagi D (2011) Perceptual learning in vision research. Vision Res 51:1552-1566. https://doi.org/10.1016/j.visres.2010.10.019
34. Snowden RJ, Kavanagh E (2006) Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception 35:9-24. https://doi.org/10.1068/p5399
35. Talcott JB, Hansen PC, Assoku EL, Stein JF (2000) Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits. Neuropsychologia 38:935-943. https://doi.org/10.1016/S0028-3932(00)00020-8
36. Thompson B, Liu Z (2006) Learning motion discrimination with suppressed and un-suppressed MT. Vision Res 46:2110-2121. https://doi.org/10.1016/j.visres.2006.01.005
37. Virányi Z, Topál J, Gácsi M, Miklósi Á, Csányi V (2004) Dogs respond appropriately to cues of humans’ attentional focus. Behav Process 66:161-172. https://doi.org/10.1016/j.beproc.2004.01.012
38. Watanabe T, Nanez JE, Sasaki Y (2001) Perceptual learning without perception. Nature 413:844-847. https://doi.org/10.1038/35101601
39. Weiffen M, Mauck B, Dehnhardt G, Hanke FD (2014) Sensitivity of a harbor seal (Phoca vitulina) to coherent visual motion in random dot displays. Springerplus. 3:688. https://doi.org/10.1186/2193-1801-3-688
40. Williams D, Brannan, J (1994) Spatial integration of local motion signals. In: Smith A, Snowden R (ed) Visual Detection of Motion. Academic Press, London, pp 291-303
41. Wurtz RH, Kandel ER (2000) Perception of motion, depth and form. In: Kandel ER, Schwarts JH, Jessel TM (ed) Principles of Neural Science, 4th edn. McGraw-Hill, New York, pp 548-571.

Figure 1. Dot density test: proportion of correct choices performed by each dog as a function of dot density. Symbols indicate the proportion of correct choices; lines represent the linear regression of the data of each subject.

Figure 2. Dot duration test: proportion of correct choices performed by each dog as a function of dot's duration. Symbols are indicating the proportion of correct choices while lines represent the linear regression of the data of each subject.

Figure 3. Psychometric curves and proportion of correct choices as a function of coherence, assessed in Kanizsar et al. (2017) (dotted line, empty circles) and in present study (black line, filled circles) on the same five dogs.

1 Table 1. Dot density test: values of slope, intercept and R^{2} of the linear regression of the data of each of the 2 five dogs.

	Slope	Intercept	R^{2}
Dog 1	0.046	0.46	0.92
Dog 2	0.023	0.57	0.92
Dog 3	0.023	0.56	0.83
Dog 4	0.006	0.69	0.97
Dog 5	0.018	0.54	0.81

1
Table 2. Dot lifetime test: values of slope, intercept and R^{2} of the linear regression of the data of each of the five dogs.

3

	Slope	intercept	R^{2}
Dog 1	0.14	0.91	0.75
Dog 2	0.08	0.76	0.97
Dog 3	0.09	0.88	0.84
Dog 4	0.06	0.81	0.71
Dog 5	0.03	0.66	0.28

Table 3. Values of the Alpha (threshold) and Beta (slope) parameters for each of the five dogs in the first

3

4

	Alpha $I^{s t}$ assessment	Beta $I^{s t}$ assessment	Alpha re-assessment	re-assessment
Dog 1	37.6	0.095	33.72	0.058
$\operatorname{Dog} 2$	37.4	0.048	39.42	0.048
$\operatorname{Dog} 3$	40.5	0.068	24.19	0.069
$\operatorname{Dog} 4$	41.8	0.086	29.42	0.075
Dog 5	53.9	0.104	19.63	0.05

Click here to access/download Supplementary Material Response to reviewers.docx

Click here to access/download Supplementary Material
Cover Letter_200518.docx

[^0]: ${ }^{1}$ In the vision literature this parameter is also called lifetime

