
Iterated Local Search with Trellis-Neighborhood for the
Partial Latin Square Extension Proble1n*

Kazuya Haraguchi

Faculty of Commerce, Otaru University of Commerce, Japan
haraguchi@res.otaru-uc.ac.jp

Abstract

A partial Latin square (PLS) is a partial assignment of n symbols to an n x n grid such
that, in each row and in each column, each symbol appears at most once. The partial Latin
square extension problem is an NP-hard problem that asks for a largest extension of a given
PLS. We consider the local search such that the neighborhood is defined by (p, q)-swap, i.e.,
the operation of dropping exactly p symbols and then assigning symbols to at most q empty
cells. As a fundamental result, we provide an efficient (p, oo)-neighborhood search algorithm
that finds an improved solution or concludes that no such solution exists for p E {1, 2, 3}. The
running time of the algorithm is O(nP+1

). We then propose a novel swap operation, Trellis
swap, which is a generalization of (p, q)-swap with p ~ 2. The proposed Trellis-neighborhood
search algorithm runs in O(n3

·
5

) time. The iterated local search (ILS) algorithm with Trellis
neighborhood is more likely to deliver a high-quality solution than not only ILSs with (p, oo)
neighborhood but also state-of-the-art optimization solvers such as IBM ILOG CPLEX and
LOCALSOLVER.

1 Introduction

We address the partial Latin square extension (PLSE) problem. Let n :::0: 2 be a natural number.
Suppose that we are given an n x n grid of cells. A partial Latin square (PLS) is a partial
assignment of n symbols to the grid so that the Latin square condition is satisfied. The Latin
square condition requires that, in each row and in each column, every symbol should appear at
most once. Given a PLS, the PLSE problem asks to fill as many empty cells with symbols as
possible so that the Latin square condition is not violated. The problem is NP-hard (Colbourn,
1984) and has various applications such as combinatorial design, scheduling, optical routers, and
combinatorial puzzles (Barry and Humblet, 1993; Colbourn and Dinitz, 2006; Gomes and Shmoys,
2002).

In this paper, we propose an effective iterated local search (ILS) algorithm for the PLSE problem.
Being a well-known algorithmic framework, local search starts with an appropriate initial solution
and then repeats moving to an improved solution as long as the neighborhood of the current solution
contains one. The neighborhood in general is a set of solutions that are obtained by making "slight"
modification on the current solution. Then local search is realized by repetition of a neighborhood
search algorithm, which finds an improved solution in the neighborhood or concludes that no such
solution exists.

For the modification on the current solution, we focus on swap operations throughout the paper.
Given a solution PLS and non-negative integers p, q (p < q), (JJ, q)-swap is an operation of dropping
exactly p symbols from the solution and then inserting at most q symbols into empty cells. The
(JJ, q)-neighborhood is the set of all possible solutions that are obtained by performing a (JJ, q)-swap
on the current solution.

*The preliminary version of this paper appears in the proceedings of CPAIOR 2015 (Haraguchi, 2015). This
work is partially supported by JSPS KAKENHI Grant Number 25870661.

1

First, as a fundamental result, we provide efficient (p, oo)-neighborhood search algorithms for
p E {1, 2, 3}. By q = oo, we mean that we insert as many symbols into the solution as possible
after p symbols are dropped. The running time is O(nPH) time and we regard this time bound as
efficient; when p = 1, the time bound is linear with respect to the solution size.

We then invent a novel type of swap operation, Trellis-swap, which is a generalization of (p, q)
swap with p :c; 2 and contains certain cases of 3 ::; p :c; n. The proposed Trellis-neighborhood
search algorithm runs in O(n3·5) time.

For randomly generated instances, the ILS algorithm with Trellis-neighborhood is much more
likely to deliver a better solution than not only ILS variants with (p, oo)-neighborhoods (p E

{1, 2, 3}) but also such state-of-the-art optimization softwares as IP and CP · solvers from IBM
ILOG CPLEX and a general heuristic solver from LOCALSOLVER.

To achieve these results, we reduce the PLSE problem to the maximum independent set (MIS)
problem, a well-known NP-hard problem (Garey and Johnson, 1979). We then utilize Andrade
et al.'s local search methodology (Andrade et al., 2012). Our approach is not merely a simple
application of their strategy; we improve the efficiency by utilizing the problem structure peculiar
to the PLSE problem.

The PLSE problem was first studied by Kumar et al. (1999). It has been studied especially in
the context of constant-ratio approximation algorithms (Gomes et al., 2004b; Hajirasouliha et al.,
2007; Haraguchi and Ono, 2014; Kumar et al., 1999). Currently the best approximation factor is
achieved by a local search algorithm based on the (p, q)-neighborhood (Cygan, 2013; Furer and
Yu, 2014; Hajirasouliha et al., 2007). To the best of the author's knowledge, there is no literature
that investigates efficient implementations of local search.

The decision problem version of the PLSE problem is known as the quasigroup completion
(QC) problem in AI, CP and SAT communities (Ans6tegui et al., 2004;'Gomes and Selman, 1997;
Gomes and Shmoys, 2002). The QC problem has been one of the most frequently used benchmark
problems in these areas and variant problems are studied intensively, e.g., Sudoku (Crawford et al.,
2008, 2009; Lambert et al., 2006; Lewis, 2007; Simonis; Soto et al., 2013), mutually orthogonal Latin
squares (Appa et al., 2006a; Ma and Zhang, 2013; Vieira Jr. et al., 2011), and spatially balanced
Latin squares (Gomes et al., 2004a; Le Bras et al., 2012; Smith et al., 2005). Our local search may
be helpful for those who develop exact solvers for the QC problem since the local search itself or
metaheuristic algorithms employing it would deliver a good initial solution or a tight lower estimate
of the optimal solution size quickly.

The paper is organized as follows. Preparing terminologies and notations in Sect. 2, we explain
efficient implementations of (p, oo)-neighborhood search algorithms for p E {1, 2, 3} in Sect. 3.
We introduce the definition of Trellis-swap and present a Trellis-neighborhood search algorithm in
Sect. 4. Then we show the ILS algorithm in Sect. 5 and present experimental results in Sect. 6.
Finally, we conclude the paper in Sect. 7.

2 Preliminaries

Let us begin with formulating the PLSE problem. Suppose an n x n grid of cells. We denote
[n] = {1, 2, ... , n}. For any i, j E [n], we denote the cell in the row i and in the column j by (i, j).
We consider a partial assignment of n symbols to the grid. The n symbols to be assigned are n
integers in [n].

We represent a PLS by means of an orthogonal array (Colbourn and Dinitz, 2006). Let us repre
sent a partial assignment by a set of triples, say T ~ [n]3, such that the membership (v1, v2, v3) ET
indicates that the symbol v3 is assigned to (v1, v2). To avoid a duplicate assignment, we assume
that, for any two triples v = (v1,v2,v3) and w = (w1,w2,w3) in T (v I= w), (v1,v2) I= (w1,w2)
holds. Thus ITI ::; n 2 holds. For any two triples v, w E [n] 3 , we denote the Hamming distance
between v and w by o(v,w), i.e., o(v,w) = l{k E [3] I vk I= wk}!. We call a partial assignment
T ~ [n] 3 a PLS set if, for any two triples v,w ET (v I= w), o(v,w) is at least two. One easily sees
that T is a PLS set iff it satisfies the Latin square condition. We say that two disjoint PLS sets S
and S' are compatible if, for any v E S and v' E S', the distance 8(v, v') is at least two. Obviously,
the union of such S and S' is a PLS set. The PLSE problem is then formulated as follows; given a

2

~
tftj

1~2

3

(3,2,3)

Figure 1: A PLS set L = {(1, 1, 1), (2, 2, 2)} and the graph G constructed for it: a line segment
between vertices does not indicate an edge but so does a grid line. We do not draw all grid lines
in order to prevent the figure from being mess. 1

\

PLS set L ~ [n]3, we are asked to construct a PLS set S of maximum cardinality such that S and
L are compatible.

We review the MIS problem. An undirected graph (or simply a graph) G = (V, E) consists of
a set V of vertices and a set E of unordered pairs of vertices, where each element in E is called
an edge. When two vertices are joined by an edge, we say that they are adjacent, or equivalently,
that one of them is a neighbor of the other. For any vertex, the number of its neighbors is called
the degree. An independent set is a subset V' ~ V of vertices such that no two vertices in V' are
adjacent. Given a graph, the MIS problem asks for a largest independent set.

Suppose a graph G* = (V*,E*) with vertex set V* = [n]3 and edge set E* = {(v,w) E
V* x V* I o(v,w) = 1}. The G* is called the intersection graph in (Appa et al., 2006b). The
following propositions are obvious.

Proposition 1 A set S ~ [n] 3 of triples is a PLS set iff S, as a vertex set, is an independent set
in G*.

Proposition 2 Two PLS sets L and S are compatible with each other iff LU S is an independent
set in G*.

For a vertex v E V* , we denote by N* (v) the set of vertices adjacent to v, i.e., N* (v) = { w E
V* I o(v,w) = 1}. Clearly, we have IN*(v)I = 3(n 1). For a triple set L ~ [n]3, we denote by
N*(L) the union UvEL N*(v) over L. Then we see that the PLSE problem on a PLS set L ~ [n] 3 is
equivalent to the MIS problem on a subgraph G = (V, E) of G* induced by V = V* \ (LUN*(L)).
We hereafter consider solving the PLSE problem by means of solving the MIS problem.

For v EV, we denote by N(v) ~ N*(v) the set of its neighbors in G. Since IN(v)I ::S'. IN*(v)I =
3(n-1) and IVI = O(n3), we have IEI = O(n4). A vertex v corresponds to a triple (vi, v2, v3) and
is regarded as a grid point in the 3D integral space, which is the intersection of three grid lines that
are orthogonal to each other. Two vertices are adjacent iff there is a grid line that passes both of
them. Hence, any independent set should contain at most one vertex among those on a grid line.
A grid line is in the direction d E [3] if it is parallel to the d-th axis and perpendicular to the 2D
plane that is generated by the other two axes. We denote by f!.v,d the grid line in the direction d
that passes v.

In Fig. 1, we give an example of the graph G that is constructed for L = {(1, 1, 1), (2, 2, 2)}. In
this figure, a line segment between vertices does not indicate an edge but so does a grid line. For
example, the vertex v = (3, 2, 1) has two neighbors: (3, 3, 1) and (3, 2, 3).

We call any independent set simply a solution. Given a solution S ~ V, we call any vertex
x E S a solution vertex and any vertex v 1 S a non-solution vertex. For a non-solution vertex
v, we call any solution vertex in N(v) a solution neighbor of v. We denote the set of solution

3

neighbors by Ns(v), i.e., Ns(v) = N(v) nS. We have INs(v)I:::; 3 since v has at most one solution
neighbor on one grid line and three grid lines pass v. We call the number INs(v)I the tightness of
v. We call v t-tight if INs(v)I = t. In particular, a 0-tight vertex is called free. We say that vis a
t-tight neighbor of x if it is t-tight and a neighbor of x.

For each t E {O, 1, 2, 3}, let Vt(S) denote the set of t-tight vertices with respect to S. The
vertex set Vis partitioned into V = SUV0 (S)U ... UVi(S). We expect by the following proposition
that, the better the solution Sis, the smaller V1 (S) should be. We will utilize this expectation to
improve the empirical efficiency of the local search.

Proposition 3 For a given PLS set L, let S denote an independent set in the graph G = (V, E).
Then we have;

3n 2 1Vi(S)l:::; 2 (n -ILUSI).

PROOF: We defined the tightness on G, but extend the notion to G* here. The union LU Sis an
independent set in G*. The sum of tightness with respect to LU S over all vertices in V* \(LU S)
is exactly 3(n - l)IL U SI since every x EL US has exactly 3(n -1) neighbors and contributes one
to each neighbor's tightness. Let Vt (LU S) c:;; V* denote the set of 1-tight vertices in G*. The
tightness sum should be bounded above by IVt(L U S)I + 3(n3 - IL U SI - IVj_*(L U S)I) since the
tightness of each v ¢:. L U S is at most three;

3(n l)IL U SI :::; IVi*(L U S)I + 3(n3
- IL U SI - IVt(L U S)I),

IVt(LuS)I:::;
3
;(n2

- ILUSI).

Any vertex v in V1 (S) belongs to Vt (LU S) since, in G*, v is not adjacent to any vertex in L due
to v EV= V* \(LU N*(L)) but is adjacent to exactly one vertex in S due to v E V1 (S). Then
we have IV1(S)I:::; IVt(L U S)I, D D

Given a solution S, a swap operation in general drops a subset D c:;; S from Sand then inserts
a subset I into S so that (S \ D) U I continues to be a solution: Dropping D from S makes certain
vertices free: all vertices in D and non-solution vertices whose solution neighbors are completely
contained in D. The inserted I should be an independent set among these free vertices. If there
are D and I with IDI < III, then (S \ D) U I is an improved solution.

For two integers p, q with O :::; p < q, (p, q)-swap refers to a swap operation with IDI = p and
III :::; q. The (p, q)-neighborhood of a solution Sis defined as the set of all possible solutions that ru·e
obtained by performing a (p, q)-swap on S. A solution is (p, q)-ma:1.,imal if its (p, q)-neighborhood
does not contain an improved solution. When p :::; p' and q :::; q', the (p, q)-neighborhood is a
subset of the (p', q1)-neighborhood. Hence, the (p, co)-neighborhood is the largest neighborhood
for a fixed p. We call a solution p-maximal if it is (p, co)-maximal. In particular, we call a 0-
maximal solution simply a maximal solution. Being p-maximal implies that S is also p'-maximal
for any p' < p. Thus, p'-maximality is necessary for p-maximality.

A (p, q)-neighborhood search algorithm is one that finds an improved solution in the (p, q)
neighborhood of the input solution or decides that no such solution exists. Once a (p, q)-neighborhood
search algorithm is established, it is immediate to design a local search algorithm that computes a
(p, q)-maximal solution; starting with an initial solution, we repeat moving to an improved solution
as long as the neighborhood search algorithm delivers one.

3 Efficient (p, oo)-Neighborhood Search Algorithms

In this section, we present efficient (p,co)-neighborhood search algorithms for p E {1,2,3}. We
borrow the data structure from Andrade et al.'s local search on the MIS problem (Andrade et al.,
2012), and improve the efficiency by introducing additional ideas. We explain the data structure
in Sect. 3.1 and the algorithms in Sect. 3. 2.

The time complexity of the algorithms is O(nP+l). We claim that it should be far from trivial
to achieve this time bound. Concerning previous local search algorithms for the MIS problem,

4

their direct usage would require more computation time. Andrade et al.'s (1, 2)-neighborhood
search algorithm (resp., (2, 3)-neighborhood search algorithm) requires O(IEI) = O(n4

) time (resp.,
O(~JEI) = O(n5) time, where ~ denotes the maximum degree in the graph). Itoyanagi et al.
(2011) extended Andrade et al.'s work to the maximum weighted independent set problem. Their
(3, 4)-neighborhood search algorithm runs in 0(~21EI) = O(n6) time.

3.1 Data Structure

The data structure mainly consists of an ordering of vertices and a 3D array of vertices. The
ordering is motivated by Andrade et al. (2012) and used to store the solution structure. We can
scan vertices of a particular type (e.g., solution vertices, free vertices) in linear time with respect
to the number. We introduce the 3D array to store the graph G = ("V, E). We can access the
vertex in a specified coordinate if it exists or decide that no such vertex exists in 0(1) time.

We denote an ordering of vertices by a bijection 1r : V --+ [IVIJ. In 1r, every solution vertex
is ordered ahead of all the non-solution vertices. Among the non-solution vertices, every free
vertex is ordered ahead of all the non-free vertices, and among the non-free vertices, every 1-tight
vertex is ordered ahead of all 2-tight and 3-tight vertices. That is, 1r(x) ::; 1r(v) holds whenever
x ES and v t/. S, 1r(v) ::; 1r(v') holds whenever v E Vo(S) and v' E V1(S) U Vi(S) U Vs(S), and
1r(v') ::; 1r(v") holds whenever v' E Vi (S) and v" E Vi (S) U Vs (S). In each of the four sections (i.e.,
solution vertices, free vertices, 1-tight vertices and other non-free vertices), the vertices are ordered
arbitrarily. We maintain not only 1r but also the inverse function 1r-1 so that the i-th vertex, i.e.,
1r-1(i), can be accessed in 0(1) time.

We denote a 3D n x n x n array by C. For each triple (vi, v2, v3) E [n]3, if (v1, v2, v3) E V, then
we let C[v1l[v2l[v3] have a pointer to the vertex object, and otherwise, we let it have a null pointer.
The 3D array stores the edge set E implicitly; the neighbors of (vi, v2, V3) are among C[vrnv2l[v3]'
s, C[v1J[vWv3J '~s and C[v1][v2][v~]'-s for every Vi, v;, v~ E [n] such that Vi =f v1, v; =f v2 and
V~ =f V3.

We list the maintained parameters as follows.

#sol, #o and #1: These are counters of the solution size ISi, the number IVo(S)I of free vertices
and the number 11f1(S)I of 1-tight vertices, respectively. Using them, we can access the head
of each section of the vertex ordering in 0(1) time.

Ad(x) for (x, d) E S x [3]: This is a counter of the number of 1-tight neighbors of x that are in
the direction d. Thus Ad(x) is defined as;

Ad(x) = l{v E N(x) J Ns(v) = {x}, vd =f xd}I,

T(v) for v EV\ S: This is a counter of the tightness INs(v)I of a non-solution vertex v.

Pd(v) for (v, d) E (V \ S) x [3]: This is a pointer to the solution neighbor of v in the direction d;
when v has no such solution neighbor, we let Pd(v) have a null pointer.

Clearly, the size of the data structure is O(n3). We can construct it in O(n3) time, as prepro
cessing of local search. In Fig. 2, we illustrate how solution vertices and non-solution vertices are
distributed in the 3D space. In the vertex ordering 1r, the solution vertices (e.g., x, y, z) are ordered
ahead of non-solution vertices. There is no free vertex. Among the non-solution vertices, the 1-tight
vertices (e.g., u, v, w, b) are ordered ahead of 2-tight and 3-tight vertices (e.g., a). Concerning the
parameters above, we have #sol= 5, #o = 0 and #1 = 5. We have (>-1(x), >-2(x), A3(x)) = (1, 1, 1)
and (>-1(Y),>-2(y),>-3(y)) = (0,1,0). The tightness T of a non-solution vertex is indicated within
the corresponding circle o. For the pointer p, we have (p1(it),p2 (u),p3 (u)) = (NuLL,x,NuLL), for
example.

We show time complexities of some elementary operations.

Maximality check: We can check whether Sis maximal or not in 0(1) time since it suffices to
see whether #o = 0 or #o > 0.

5

1~2

3

Figure 2: A solution S = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (3, 1, 2), (3, 3, 1)} and how vertices are dis
tributed in the 3D space: A square D indicates a solution vertex and a circle o indicates a non
solution vertex, where the number in o indicates the tightness.

Neighbor search: We can search all neighbors of a vertex in O(n) time by using the 3D array
C.

Drop: We can drop a solution vertex x from Sin O(n) time as follows. We set its tightness r(x)
to zero and update 7r so that x falls into the free vertex section. For each neighbor v E N(x),
we decrease the tightness r(v) by one.· If r(v) becomes zero (resp., one), then we update 7r

so that v falls into the free vertex (resp., 1-tight vertex) section. We also update the other
parameters accordingly.

The procedure is summarized as DROP in Algorithm 1. First, in line 2, we set the tightness
r(x) to zero and the pointers p1(x),p2(x),p3(x) to solution neighbors to a null value as
it has no solution neighbors. By lines 3 and 4, x falls into the free vertex section. The
procedure ExCHANGE(p, q) updates 7r so that the p-th and q-th vertices are exchanged. For
each neighbor v E N(x), we decrease the tightness r(v) by one (line 6). Let d denote the
direction of the grid line that passes both x and .v. We release its pointer Pd (v) to x since x
is no longer a solution vertex (line 8).

• If r(v) is decreased to zero, then v falls into the free vertex section (lines 9 to 11).

• If r(v) is decreased to one, then v falls into the 1-tight vertex section. Note that v has
a unique solution neighbor in a certain direction d' i d, which is stored as Pd' (v). Let
x' = Pd'(v). Now that x' has a new 1-tight neighbor, we increase the number .\d,(x') by
one (lines 12 to 16).

The total time complexity is O(n). Let us introduce a brief example. In Fig. 2, if y is
dropped, then y becomes free, and T(a) and T(b) are decreased to one and zero, respectively.
Then a and b fall into the 1-tight vertex section and the free vertex section, respectively. The
1-tight a has the unique solution neighbor in the direction 3, that is z. We increase >dz) by
one.

Insertion: We can insert a free vertex into S in O(n) time in a manner analogous to the drop
operation.

3.2 Algorithms

The (p, oo)-neighborhood search algorithms have the similar structure among p = l, 2 and 3. In
principle, we need to search all subsets D of S of size p. We do this by means of scanning "trigger"
vertex sets. Based on what we call a trigger, we generate a subset D to be dropped from S. For
example, when p = l, a trigger is a solution vertex x, and Dis {x} itself. When p = 2, it is a

6

Algorithm 1 A procedure for dropping a solution vertex x from a solution

global variables: parameters 1r, #sol, #o, #1, T, Al, A2, .,\3, Pl, p2, p3.
1: procedure DROP(x)
2: T(x) +- 0, p1(x), p2(x),p3(x) +- NULL

3: EXCHANGE(1r(x), #sol)
4: #sol+- #sol 1, #o +- #o + 1
5: for all v E N(x) do
6: T(v)+-T(v)-1
7: d +- the direction of the grid line that passes both x and v
8: Pd(v) +- NULL

9: if T(v) = 0 then
10: EXCHANGE(#sol + #o + 1, 1r(v))
11: #o +- #o + 1, #1 +- #1 - 1
12: else if T(v) = 1 then
13: EXCHANGE(#sol + #o + #1 + 1, 1r(v))
14: #1 +- #1 + 1
15: d' +- the direction index such that Pd' (v) # NULL

16: x' +- Pd'(v), .,\d,(x') +- .,\d,(x') + 1
17: end if
18: end for
19: end procedure

20: procedure EXCHANGE(p, q) t> exchange the p-th and q-th vertices in 1r
21: U +- 1r-1(p), V +- 7r-1(q)
22: 1r(u) +- q, 1r(v) +- p
23: end procedure

2-tight vertex u, and D is the set of two solution neighbors of u. The point is that, for each trigger,
we generate Din 0(1) time somehow.

Let F = Vo(S \ D) denote the set of vertices free from S \ D, and Gp denote the subgraph
induced by F. The inserted vertices should form an independent set within Gp. The point is that
we count the MIS size of Gp, denoted by #MIS, without finding an IvIIS itself. Surprisingly, we can
count #Mrs in 0(1) time. Only when #Mrs > p, we search for an MIS to be inserted, denoted by
I, and thereby obtain an improved solution (S \ D) U I. The search for I requires 0(n) time. Since
the O(n)-time task is done at most once during the search of triggers, the overall time complexity
is linear with respect to the number of searched vertex sets.

Based on this top-level strategy, we realize the (p, oo)-neighborhood search algorithms below.

Case of p = 1. Let S be a maximal solution. Figure 2 shows a situation in which the (1, oo)
neighborhood contains an improved solution. If x is dropped from the solution, then the tightness
of every neighbor is decreased by one. In particular, all 1-tight neighbors (i.e., u, v and w) become
free. All of the three vertices can be inserted into the solution since any two of them are not
adjacent to each other. We have an improved solution (S \ { x}) U { u, v, w}.

We generalize this example. The (1, oo)-neighborhood contains an improved solution iff there
are x ES and u, v ¢ S such that (S \ {x}) U { u, v} is a solution. It is clear that 1t and v should be
neighbors of x. They are 1-tight, and their unique solution neighbor is x. The u and v should not
be adjacent, which implies that u and v are not on the same grid line. We define A(x) as a subset
of the direction indices in which x has a 1-tight neighbor, i.e., A(x) = {d E [3] I .,\d(x) > O}. Then
#Mrs, the largest number of vertices that can be inserted into S \ { x} simultaneously, is given by
the cardinality IA(x)f.

Theorem 1 Given a solution S, we can find an improved solution in its (1,oo)-neighborhood or
conclude that it is 1-rnaximal in O(n2

) time.

7

Algorithm 2 A (1, oo)-neighborhood search algorithm for a maximal solution

global variables: parameters 1r, #sol, #o, #1, T,)'1, >-2, A3, Pl, P2, p3.
require: the parameters as a whole must represent a maximal solution.

1: function 1-NS
2: for i = 1,2, ... ,#sol do
3: X f- 7r-1 (i)
4: if IA(x)I 2: 2 then
5: I+- PrcKUPONETIGHT(x)
6: drop x from the solution, and inse1t each vertex in I into the solution
7: return "an improved solution is found"
8: end if
9: end for

10: return "the solution is 1-maximal"
11: end function

12: function PICKUP0NETIGHT(x)
13: I+- 0
14: for all d E A(x) do
15: v +- PrcKUPONETIGHTONGRID(x, d)
16: J +- J U { v}
17: end for
18: return I
19: end function

20: function PrcKUPONETIGHTONGRrn(x, d)
21: v +- an arbitrary 1-tight vertex in N(x) in direction d
22: return v
23: end function

PROOF: We assume the given solution S to be maximal; we can check in 0(1) time whether Sis
maximal or not. If it is not maximal, we have an improved solution by inserting any free vertex
into Sin O(n) time.

An improved solution exists iff there is x ES with IA(x)I 2: 2. Then we use each solution vertex
as what we call a trigger. All solution vertices can be searched by sweeping the first section of the
vertex ordering 1r. There are at most n 2 solution vertices. For each solution vertex x, the number
IA(x)I can be computed in 0(1) time. If x with IA(x)I 2: 2 is found, we can determine an MIS I
to be inserted in O(n) time, searching the grid line ex,d for an arbitrary 1-tight vertex for every
direction d E A(x). Then we have an improved solution in O(n) time by dropping x from Sand
by inserting all vertices in J into S \ { x}. D D

In Algorithm 2, we present a function 1-NS that outputs whether the solution maintained
by the parameters is 1-maximal or not. The solution is assumed to be maximal. If it is not
1-maximal, then the function searches for an improved solution and updates the parameters so
that the improved solution is maintained. It then outputs "an improved solution is found." Two
functions PrcKUPONETIGHT(x) and PICKUPONETIGHTONGRID(x, d) are used as subroutines to
search for an improved solution. The function PrcKUPONETIGHT(x) returns a maximal subset
of 1-tight neighbors of x that are on different grid lines from each other. Any subset returned
by PrcKUPONETIGHT(x) is an independent set and can be inserted into S \ {x}. Note that
the size of the independent set is at most three. To collect vertices in the independent set, the
function PICKUP0NETIGHT0NGRID(x, d) is called for each d E A(x); it returns an arbitrary
1-tight neighbor of x on the grid line ex,d· G,iven x, the two subroutines run in O(n) time.

We may improve the empirical efficiency by using 1-tight vertices as triggers; we search 1-tight
vertices, instead of searching solution vertices themselves. For each 1-tight vertex, we test its
unique solution neighbor x as the vertex to be dropped. We never miss an improved solution

8

Algorithm 3 An alternative (1, oo)-neighborhood search algorithm for a maximal solution

global variables: parameters 1r, #sol, #o, #1, T, .\1, .\2, .\3, Pl, p2, p3.
require: the parameters as a whole must represent a maximal solution.

1: function 1-NS*
2: for i = 1,2, ... ,#1 do
3: u +- 7f-

1(#sol + #o + i) t> u is a 1-tight vertex
4: x +- the unique solution neighbor of u

t> x can be decided by tracing the pointers pa(u)
5: if IA(x)I ~ 2 then
6: I+- PrcKUPONETIGHT(x)
7: drop x from the solution, and insert each vertex in I into the solution
8: return "an improved solution is found"
9: end if

10: end for
11: return "the solution is 1-maximal"
12: end function

1~2

3

this 2-tight vertex is not
free from (S\ {x,y}) U {u}

Figure 3: An illustration of the case in which a (2, oo)-swap can be made: Shaded vertices are free
from (S \ { x, y}) U { u }.

because all x'-s with IA(x)I ~ 1 are covered by this strategy. The number of searched vertices is
#1 = IVi(S)I, which is expected to be smaller than #sol= ISi when ISi is large to some degree;
this expectation comes from Proposition 3. We show this version of a (1, oc)-neighborhood search
algorithm in Algorithm 3, as the function named 1-NS*. In fact, to the extent of our preliminary
experiments, 1-NS* runs faster than 1-NS most of the time.

Case of JJ = 2. Let S be a 1-maximal solution. The (2, oo)-neighborhood contains an improved
solution iff there exist x, y E S and u, v, w ¢ S such that (S \ { x, y}) U { u, v, w} is a solution. These
vertices should satisfy Lemmas 1 to 4 in (Andrade et al., 2012), which are conditions established
for the general MIS problem. According to the conditions, each vertex in { u, v, w} is either 1-tight
or 2-tight, and at least one of them is 2-tight. The unique solution neighbor of a 1-tight vertex is
either x or y, and the two solution neighbors of a 2-tight vertex are x and y.

Let u be a 2-tight vertex and let x and y be its solution neighbors. We denote by F the set of
vertices free from (S \ { x, y}) U { u}. We would like to know the MIS size of G F. To observe how
vertices in F are distributed, see Fig. 3. In the figure, we take the coordinates so that x (resp.,
y) is the u'-s solution neighbor in the direction 1 (resp., 2). Indicated by shade, vertices in Fare
among the four solid grid lines, that is, Ex,2, Ex,3, Ey,l and Ey,3· Let us denote the intersection point
of Ex,2 and Ey,1 by tt'. Formally, it is defined as u' = (1ti,1L;,1t~) = (x1,y2,us), where u3 equals to
X3 and y3 • The tt' is the only vertex in F that can be 2-tight. Note that it does not necessarily
exist and that it is not necessarily 2-tight; it may have another solution neighbor in the direction
3. Then F consists of all 1-tight vertices on the four grid lines and u', where u' E F only when it
exists and is 2-tight.

g

Lemma 1 The MIS size of Gp is either[A(x)\{l}[+[A(y)\{2}[or[A(x)\{l}[+[A(y)\{2}[+1.

PROOF: The former is the number of solid grid lines that have a 1-tight vertex. We can construct
an independent set of that size by taking a 1-tight vertex from each grid line because any two of
such vertices are not adjacent. We cannot insert any other 1-tight vertex into this independent
set, but if u' is in F, we may be able to insert it into the solution. D D

Lemma 2 The MIS size of Gp is [A(x) \ {l}[+[A(y) \ {2}/+1 iff the vertex 1.' exists, it is 2-tight,
and >'2(x) = >..1(Y) = 0.

PROOF: If the MIS size is [A(x) \ {1 }[+ [A(y) \ {2}/ + 1, every MIS should contain the only 2-tight
vertex in F, that is u'. Then we have ..\2 (x) = >..1 (y) = 0 since, if not so, we could construct an MIS
that does not contain u' by exchanging u' and any 1-tight vertex on (,;,2 or f.y,l· The sufficiency is
obvious. D D By Lemmas 1 and 2, we have the following lemma immediately.

Lemma 3 Given a 2-tight vertex u, the MIS size of Gp can be computed in 0(1) time.

PROOF: We can recognize the solution neighbors x and y in 0(1) time by tracing the pointers
Pd(u). Then the MIS size of Gp can be computed in 0(1) time from the last two lemmas. D D

Theorem 2 Given a solution S, we can find an improved solution in its (2, oo)-neighborhood or
conclude that it is 2-maximal in O(n3) time.

PROOF: Similarly to the proof of Theorem 1, we assume that Sis 1-maximal.
We use each 2-tight vertex u as a trigger. All 2-tight vertices can be searched by sweeping the

last section of the vertex ordering, and their number is at most [V \Sf::;; [V[::;; n 3 • For u, we can
compute the MIS size of Gp in 0(1) time from Lemma 3, where Fis the set of vertices free from
S \ { x, y} U { u }. If the MIS size is no less than two, there exists an improved solution. An MIS of
Gp is decided in O(n) time by searching the four grid lines. D D

In Algorithm 4, we present a function 2-NS that outputs whether the solution is 2-maximal or
not. The solution is assumed to be 1-maximal. If it is not 2-maximal, then the function searches
for an improved solution and updates the parameters so that the i~nproved solution is maintained.
It then outputs "an improved solution is found." The subroutine IsIMPROVABLE(u) is called for
each 2-tight vertex u, in order to decide whether Gp constructed from u has an MIS of size no less
than two. In this subroutine, the coordinates are permuted by a bijection ¢ : [3] -+ [3] so that x
(resp:, y) is the 1t'-s neighbor in the direction ¢(1) (resp., ¢(2)); see line 14. We have [A(x)[::;; 1 for
any solution vertex x E S since Sis 1-maximal. Then #MIS s; 3 holds and thus the total number
of inserted vertices is at most four.

Case of p = 3. We introduce the following result in order to reduce the search space.

Theorem 3 (Itoyanagi et al. (2011)) Let S be a 2-maximal solution. Suppose that there exist
x, y, z E S and u, v, w, s (j. S such that (S \ {x, y, z}) U { u, v, w, s} is a solution. Without loss of
generality, we assume T(u) :::: T(v) :::: T(w) :::: T(s). Then we are in either of the following two
cases.

(I) u is 3-tight such that Ns(u) = {x,y,z}.

(II) u and v are 2-tight siich that Ns(u) = {x, y} and Ns(v) = {x, z }.

To cover (I), we use a 3-tight vertex as a trigger. To cover (II), we use a pair of non-adjacent
2-tight vertices that have exactly one solution neighbor in common as a trigger. The following
Lemma 4 (resp., Lemma 5) states that, when we are given a trigger in the case (I) (resp., (II)),
the largest number of vertices to be inserted can be decided in 0(1) time.

10

Algorithm 4 A (2, oo)-neighborhood search algorithm for a I-maximal solution

global variables: parameters 1r, #sol, #a, #1, T, >-1, >-2, .A3, Pl, P2, p3.
require: the parameters as a whole must represent a I-maximal solution.

1: function 2-NS
2: for i = #sol+ #a+ #1 + 1, ... , IV[do
3: u +- 1r-1(i) 1> u is either 2-tight or 3-tight
4: if T(u) = 2 then
5: if IsIMPROVABLE(u) is TRUE then
6: return "an improved solution is found"
7: end if
8: end if
9: end for

10: return "the solution is 2-maximal"
11: end function

12: function IsIMPROVABLE(u)
13: x, y +- solution neighbors of u
14: ¢+-the permutation¢: [3] -+ [3] of coordinates such that x (resp., y) is the neighbor of 1,

in the direction ¢(1) (resp., ¢(2)).
15: #MIS+- [A(x) \ {¢(1)}[+ fA(y) \ {¢(2)}[
16: if ¢(2) r/:. A(x), ¢(1) r/:. A(y), N(x) n N(y) contains u' =f u, and T(u') = 2 then
17: #MIS f- #MIS + 1
18: end if
19: if #MIS ::; 1 then
20: return FALSE
21: end if
22: I+- {u}
23: for all d E A(x) \ { ¢(1)} do
24: I+- I U {PICKUP0NETIGHT0NGRrn(x, d)} I> see Algorithm 2
25: end for
26: for all d E A(y) \ {¢(2)} do
27: I+- I U {PICKUP0NETIGHT0NGRrn(y, d)} I> see Algorithm 2
28: end for
29: if ¢(2) r/:. A(x), ¢(1) r/:. A(y), N(x) n N(y) contains u1 =f u, and T(u') = 2 then
30: I +- I U { u'}
31: end if
32: drop x and y from the solution, and insert each vertex in I into the solution
33: return TRUE
34: end function

Lemma.4 Let u denote a 3-tight vertex. Let x, y and z be solution neighbors of u and F be the
set of vertices free from (S \ { x, y, z}) U { u}. Once u is given, the MIS size of G F can be decided
in 0(1) time.

PROOF: The solution neighbors x, y and z can be decided in 0(1) time by tracing the pointers
pa(u). We illustrate a typical situation in Fig. 4. The vertices in F are among solid grid lines.
All of them are either 1-tight or 2-tight. Analogously to the case of p = 2, at most three vertices
are 2-tight, that is, u', u" and u'". Note that they are not necessarily 2-tight; e.g., in Fig. 4,
u11 is 3-tight and u111 does not exist. We see that the MIS size is between a and a+ 3, where
a= fA(x) \ {l}f + fA(y) \ {2}! + IA(z) \ {3}[. We can decide the exact value a+ /3 in 0(1) time;
the number /3 represents how many vertices in { 1£', u", u'"} belong to every MIS. We can compute
it in 0(1) time in an analogous way to the proof of Lemma 2. D D

11

·········D

Figure 4: A typical situation discussed in the proof of Lemma 4: Shaded vertices are free from
(S\{x,y,z})U{ii}.

Lemma 5 Let n and v denote 2-tight vertices that are not adjacent to each other and that have
exactly one solution neighbor in common. Let N s (n) = { x, y}, N s (v) = { x, z} and F be the set
of vertices free from (S \ { x, y, z}) U { n, v}. Once n and v are given, the MIS size of Gp can be
decided in 0(1) time.

PROOF: We illustrate a typical situation in Fig. 5. The vertices in F are among solid grid lines.
All of them are either 1-tight or 2-tight.

We construct another graph G'p = (Ii U I2, J) so that IIi U I2I and IJI are constants and that
Gp and G'p have the same MIS size. By this, we can compute the MIS size of Gp in 0(2°<1)) time.
We introduce the definition of G'p; The Ii is the set of "solid" grid lines that contain a 1-tight
vertex; by a solid grid line, like one in the figure, we mean a grid line that passes one of { x, y, z}
but does not pass n or v. The I2 is the set of 2-tight vertices that are at intersecting points of
some two solid grid lines in Ii. Thus, a vertex in Ii corresponds to a grid line, and a vertex in
I2 corresponds to a 2-tight vertex. Two vertices a and b are joined by an edge if they satisfy the
appropriate condition among the following:

(i) a, b E Ii '* The grid lines a and b have only one 1-tight vertex, respectively, and these 1-tight
vertices are adjacent to each other.

(ii) a E Ii and b Eh '* The 2-tight vertex bis on the grid line a.

(iii) a, b E I2 '* The 2-tight vertices a and b are adjacent to each other.

In Fig. 6, we show G'p that is constructed from F in the situation of Fig. 5.
We claim that Gp and G'p have the same MIS size. A member of any independent set in Gp

is either a 1-tight vertex on the grid line in Ii or a 2-tight vertex in h. All of them appear as
vertices in G'p. Also, two vertices in G'p are joined by an edge iff they should not belong to the
same independent set in Gp.

Clearly, we have llil S: 5, II2I S: @ = 10, and IJI S: (1;) = 105. The remaining task is to
show that, once n and v are given, we can construct G'p in 0(1) time. The x, y and z can be
decided in 0(1) time. We can decide Ii and I2 in 0(1) time. For each (a, b) E (Ii Uh) x (Ii U I2),

whether (a, b) E J or not can be identified in 0(1) time. We should give a remark on the case
of (i), i.e., a, b E Ji. We claim that no two grid lines in Ii are parallel. Then a and b are either
intersecting or skew, and only when they are skew, a 1-tight vertex on a and a 1-tight vertex on b
can be adjacent. Furthermore, from elementary geometry, such a pair of adjacent 1-tight vertices
is unique if it exists; see wand w' in Fig. 5. Whether both a and b have exactly one 1-tight vertex,
respectively, can be identified in 0(1) time by using the parameter .A, and whether these 1-tight
vertices are adjacent or not can be identified in 0(1) time by using the 3D array C. D D

12

w"

w'

:¢: " ! /: '
1~ ·····©···················

3 /:

Figure 5: A typical situation discussed in the proof of Lemma 5: Shaded vertices are free from
(S\ {x,y,z}) U {u,v}.

Figure 6: The graph G'p = (Ii U [z, J) constructed from F of Fig. 5

Theorem 4 Given a solution S, we can find an improved solution in its (3,oo)-neighborhood or
conclude that it is 3-maximal in O(n4) time.

PROOF: We assume S to be 2-maximal, similarly to the previous theorems.
Recall (I) and (II) in Theorem 3. We claim that all triggers are searched in O(n4) time; For (I),

all 3-tight vertices are searched in O(n3) time by sweeping the last section of the vertex ordering
1r. For (II), all pairs of non-adjacent 2-tight vertices that have exactly one solution neighbor in
common are searched in O(n4) time; we search every solution vertex x E Sand every pair of its
2-tight neighbors that are not on the same grid line.

For each trigger, the largest number of vertices to be inserted is computed in 0(1) time from
Lemmas 4 and 5. If the number exceeds three, then an improved solution exists; an MIS to be
inserted can be decided in O(n) time by searching the grid lines passing the three solution vertices
to be dropped. D D

The number of vertices to be inserted is at most six. Unfortunately, as we will observe in
Sect. 6, the ILS with (3, oo)-neighborhood is inferior to ILSs with other neighborhoods due to its
inefficiency. We skip the description of the neighborhood search algorithm since it would be too
lengthy.

4 Trellis-Neighborhood Search Algorithm

In this section, we propose a novel type of neighborhood, Trellis-neighborhood, and a neighborhood
search algorithm that runs in O(n3·5) time.

Trellis-neighborhood is a generalization of (v, oo)-neighborhood with v :c; 2. Let d E [3] and
k E [n] be any integers. We regard a vertex v as a 3D integral point v = (v1,v2,v3). Cutting the
n x n x n 3D integral cube by a 2D plane vd = k, we have a 2D face. We call this face the (d, k)-face.
There are possibly some vertices on the (d, k)-face. In Trellis-swap, the set D of solution vertices
to be dropped is any subset of solution vertices on the face. We define the Trellis-neighborhood
of a solution S as the set of all solutions that can be obtained by dropping such D from S and
then inserting an independent set I into S \ D. Observe that (v, oo)-neighborhood with p :c; 2 is a
special case of Trellis-neighborhood in the sense th~t the cardinality IDI is restricted top.

13

1~2
3

[]

Figure 7: An example of trellis: Four bold squares on the 2D face are the solution vertices to be
dropped. Vertices in the trellis are indicated by shade.

We claim that, even when Dis maximal (i.e., Dis the set of all solution vertices on a (d, k)
face), a largest I can be computed efficiently in O(n2·5) time since the problem of finding a largest
J is reduced to the maximum bipartite matching problem. In what follows, we restrict ourselves
to such D. Then IDI is at most n and there are at most 3n different D'-s. Let us define the
(d, k)-Trellis, a certain subgraph of G.

Definition 1 Suppose that we are given a solution S. For any d E [3] and k E [n], let D ~ S
be a subset D = {(v1,v2,v3) ES I vd = k}. We denote by Fi (resp., F2) the set of all 1-tight
(resp., 2-tight) vertices such that the unique solution neighbor is contained in D (resp., both of the
solution neighbors are contained in D). We define the (d, k)-trellis as the subgraph of G induced
by DUFi UF2.

The point is that any independent set in the trellis can be inserted into S \ D since dropping D
from S makes all vertices in DU F 1 U F2 free. Furthermore, no other vertex can be free. This
motivates us to find an MIS in the trellis. Below we call the (d, k)-face and the (d, k)-trellis simply
the face and the trellis, respectively, when d and k are clear from the context.

We show an example of trellis in Fig. 7. The D consists of four solution vertices on the 2D
face, i.e., D = {x, y, z, z'}. All vertices in the trellis are indicated by shade; Fi is the set of five
1-tight vertices, and F2 is the set of three 2-tight vertices. We see that all vertices in DU F2 are
on the 2D face. Two vertices in F1 are also on the same face, while the three other vertices in F1
are out of the face like a hanging vine.

Lemma 6 Given d E [3] and k E [n], we can compute an MIS of the (d,k)-trellis in O(n2·5) time.

PROOF: We explain how to compute an MIS of the trellis. Let us partition Fi into Fi = F{ U F{'
so that F{ (resp., F{') is the subset of vertices on the face (resp., out of the face). In the subgraph
G F;', each connected component is a clique, and every clique consists of 1-tight vertices on a grid
line perpendicular to the face; e.g., in Fig. 7, £ and £' are such grid lines. Let H ~ F{' be an
independent set such that exactly one vertex is picked up from every clique of G F;'. It is easy to
see that, among IvlISs of the trellis, there is one that contains H as a subset. Intending such an
MIS, we ignore the vertices in F{' and their unique solution neighbors. Let D" ~ D be a subset
such that D" = UuEH Ns(zt); e.g., in Fig. 7, D" = {z, z'}. We can no longer choose the vertices
in D". Let D' = D\D".

The remaining task is to compute an MIS of'the remaining part, say G D'uF{uF2 • All the vertices
in D' U F{ U F2 are on the face. At most one vertex is chosen from a grid line on the face, and
there are 2n grid lines in all. It is the problem of finding a maximum matching in a bipartite
graph like Fig. 8; a vertex is associated with a grid line on the face, and the bipartition of vertices

14

Grid lines
in direction 1 00

Grid lines
in direction 2 0

Figure 8: The bipartite graph in the proof of Lemma 6: Any matching corresponds to an indepen
dent set of the trellis. { x, y} is a matching that consists of vertices in the current solution, and we
see a larger matching such as { s, v, w }.

Algorithm 5 A Trellis-neighborhood search algorithm for a maximal solution

global variables: parameters 1r, #sol, #o, #1, T, ..\1, ..\2, ..\3, Pl, P2, pg.
require: the parameters as a whole must represent a maximal solution.

1: function TR-NS
2: for all d E [3] and k E [n] do
3: D +-the set of solution vertices on the (d, k)-face
4: I +-an MIS of the (d, k)-trellis
5: if III > IDI then
6: drop each vertex in D from the solution
7: insert each vertex in I into the solution
8: return "an improved solution is found"
9: end if

10: end for
11: return "the solution is Trellis-maximal"
12: end function

is determined by the directions of grid lines. An edge joins two vertices whenever the trellis has
a vertex on the intersecting point of the corresponding two grid lines. Let A!f be a maximum
matching of this bipartite graph.

An MIS of the trellis is given by the union of H and M. It takes O(n2) time to recognize
the vertex sets D, Fi and F2 and partitions D = D' U D" and F1 = F{ U F{', to decide a subset
H <;;; F{', and then to construct the bipartite graph since the bipartite graph has 2n vertices and
O(n2) edges. We need O(n2·5) time to compute M (Hopcroft and Karp, 1973). D D

Theorem 5 Given a solution S, we can find an improved sol·ution in the Trellis-neighborhood or
conclude that it is Trellis-maximal in O(n3·5) time.

PROOF: There are 3n faces and thus 3n trellises. For a (d, k)-trellis, let D be the maximal subset
of solution vertices on the trellis. We can identify whether there is an independent set I with
IDI < III or not in O(n2·5) time from Lemma 6. When such D and I are found, we have an
improved solution (S \ D) U I by dropping D from S and then by inserting I into S \ D. This
requires O(n2

) time since IDI :S:: n and III :s; 2n. D D

In Algo,rithm 5, we present a Trellis-neighborhood search algorithm. The function TR-NS
outputs whether the current maximal solution is Trellis-maximal or not; if not, like the (p, oo)
neighborhood search algorithms, the function searches for an improved solution and updates the
parameters so that the improved solution is maintained. It then outputs "an improved solution is
found."

As we did for (1, oo)-neighborhood search algorithms in Sect. 3.2, we may improve the empirical
efficiency by using 1-tight vertices as triggers. We claim that, if a (d, k)-trellis does not have a
1-tight vertex (i.e., Fi = 0), then any independent set I in the trellis satisfies III :S:: IDI, that is,
no improved solution is possible from the trellis. This is because, if F 1 = 0, any vertex in the
bipartite graph representation (corresponding to a grid line on the (d, k)-face) is either isolated

15

Algorithm 6 An alternative Trellis-neighborhood search algorithm

global variables: parameters 1r, #sol, #o, #1, T, >-.1, >-.2, A3, Pl, p2, p3.
require: the parameters as a whole must represent a maximal solution.

1: function TR-NS*
2:

3:

4:

5:

6:

7:

8:

9:

for i = 1, 2,, .. , #1 do
u = (u1, u2, u3) +- 7r-

1(#sol + #o + i)
for all d E [3] do

D +-the set of solution vertices on the (d, ua)-face
I +-an MIS of the (d, ua)-trellis
if III > IDI then

drop each vertex in D from the solution
insert each vertex in J into the solution

10: return "an improved solution is found"
11: end if
12: end for
13: end for
14: return "the solution is Trellis-maximal"
15: end function

t> u is a 1-tight vertex

or matched with respect to the matching that corresponds to the current solution, and thus no
augmenting path exists. Hence, we have only to search the trellises with Fi =f 0. We summarize
this version of Trellis-neighborhood search algorithm in Algorithm 6. In Sect. 6, we will see that
the ILS algorithm with TR-NS* is more efficient than one with TR-NS.

5 Iterated Local Search (ILS) Algorithm

We present our ILS algorithm for the PLSE problem. The ILS algorithm iterates local searches
until the computation time exceeds a given time limit, and then outputs the incumbent solution
S*, i.e., the best solution among those searched so far. Each local search begins with an initial
solution and repeats a (p, oo)-neighborhood search algorithm until it finds a p-maximal solution,
say S. If S is not worse than the current S* (i.e., IS I 2". IS* I), then S* is updated to S. The initial
solution So of the next local search is generated by "kicking" S*.

This section is devoted to explaining how we generate So from S*. In Algorithm 7, we summarize
the function GENERATElNITSOL that returns the parameter set for So for the input parameter set
for S*. First we copy S* to S0 , by making a duplicate of the parameter set for S* (line 2). Then
we forcibly insert k non-solution vertices into S0 • We choose the number k of inserted vertices
with probability 1/2k (line 3). Specifically, we repeat the following steps k times; we pick up a
non-solution vertex u (lines 5 to 15), drop its solution neighbors from the solution (line 16), and
insert u into the solution (line 17). If there appear free vertices, then one is chosen at random and
inserted into the solution repeatedly until it becomes maximal (lines 18 to 21).

We choose k vertices from all the non-solution vertices, except the first one (see lines 5 to 12).
We choose the first one by a special mechanism so that (a) trivial cycling is avoided and (b) the
diversity of search is attained.

To realize (a), we choose the first vertex u from a special subset of V \ So. Let Sb ~ So be a
subset of solution vertices that have a 1-tight neighbor;

Sb= {x E S0 13d E [3], >-.a(x) > 0}.

We choose u not from V \ So but from N(Sb). (If Sb is empty, then N(Sb) is also empty. In this
case we choose u from V\ S0 instead.) Let us describe the motivation of using N(Sb). See Fig. 9.
In the upper and lower figures, u and u' are the non-solution vertices to be inserted, respectively,
and { x, y} and { x', y'} are solution vertices to be dropped, respectively. The only difference of the
two situations is the tightness of v and v'; the tightness of v in the upper figure is 1, whereas that
of v' in the lower figure is 2. Observe that x is among Sb since it has a 1-tight neighbor v, while x'

16

Algorithm 7 A function for generating the parameter set for the initial solution of the next local
search

1: function GENERATEINITSOL(1r*, #:ol> #a, #i, T*, Ai, A2, A3, Pi, P2, P:i)
2: ('If, #sol, #o, #1,T, A1, A2, A3, Pl, P2, p3) +- (7r*' #:01, #a, #i, T*' Ai, A2, X3, Pi' P2, p't,) [> in

what follows, we manipulate the solution represented by (7r, #sol, #o, #1, T, A1, A2, A3, pi, p2, p3)
3: k +- a natural number chosen with probability 1/2k
4: forK=l, ... ,kdo
5: if K = l then
6: Sb+- {1r-1(i) Ii E [#sod, :ld E [3], Ad(7r-1(i)) > O}
7: if Sb =f 0 then
8: P +- N(Sb)
9: else

10: P +- {7r-1(#sol + 1), · · · ,7r-1(1VI)}
11: end if
12: u +- the non-solution vertex in P that has been outside the solution for the longest

time
13: else
14: u +- an arbitrary non-solution vertex
15: end if
16: drop all solution neighbors of u from the solution
17: insert u into the solution
18: while #o > 0 do
19: v +- an arbitrary free vertex
20: insert v into the solution
21: end while
22: end for
23: return (7r, #sol, #o, #1, T, A1, A2, A3, Pl, P2, p3)
24: end function

is not so. Then we have u E N(Sb) and u1 ¢:. N(Sb). In the upper figure, dropping u from So and
inserting x and y into So\ {u}, we obtain a solution in the right side that is different from So; v
is in the new solution since it became free when x was dropped. On the other hand, in the lower
figure, we may encounter the cycling phenomenon in the subsequent local search; the right solution
is not I-maximal since we obtain an improved solution by a (1, 2)-swap that drops u' and inserts
x' and y' into the solution. However, this improved solution is equivalent to the left solution.

We call this way of deciding the first inserted vertex the Population Restricting Strategy (PRS).
In the next section, we will observe how this strategy is effective in comparison with the case in
which the strategy is not activated.

To realize (b), we employ the soft-tabu approach that is utilized in Andrade et al. 's ILS for the
:tvlIS problem (Andrade et al., 2012). Specifically, among the non-solution vertices in N(Sb), we
choose the one that has been outside the solution for the longest time.

6 Computational Study

In this section we demonstrate how the ILS with Trellis-neighborhood computes high-quality so
lutions efficiently through a computational study.

We conduct two experiments. In Sect. 6.1, we compare two variants of the ILS algorithms, TR
ILS and TR-ILS*. TR-ILS (resp., TR-ILS*) is the ILS algorithm such that, in its local search,
the Trellis-neighborhood search algorithm in Algorithm 5 (resp., in Algorithm 6) is used to find a
Trellis-maximal solution. We show that TR-ILS* is n10re likely to deliver a high-quality solution
than TR-ILS. Vve also observe the effect of the PRS. Then in Sect. 6.2, we show that TR-ILS*
outperforms other ILS variants (i.e., 1-ILS*, 2-ILS, 3-ILS) and two optimization softwares, IBM
ILOG CPLEX and LOCALSOLVER.

17

u E N(Sb)

y'D
i @

.. ···

"·~;P ® -

(before inserting u')
u' f:- N(Sb)

cp
: 0

D···········:0::~::·:·············@
o····

(after insertion)

cp
: CD

D···········:CD::~::·:·············@
CD,...-

(after insertion)

Figure 9: Situations in which a non-solution vertex is forcibly inserted: (upper) u E N(Sb), (lower)
u' f:- N(Sb)

All the experiments are conducted on a workstation that carries an Intel® Core TM i7-4770
Processor (up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory. The
installed OS is Ubuntu 14.04.1. The ILS algorithms are implemented in C.

Benchmark instances are random PLSs. A PLS is parametrized by the order n and the ratio
r E [O, 1] of pre-assigned symbols over the n x n grid. We take n from {50, 60, 70} and r from
{0.3, 0.4, ... , 0.8}. Given (n, r), we generate an instance by two well-known schemes in the lit
erature, quasigroup with holes (QWH) and quasigroup completion (QC) (Bartak, 2006; Gomes
and Shmoys, 2002). Starting with an arbitrary Latin square, QWH generates a PLS by dropping
n 2 l n2 r J symbols from the grid so that l n 2 r J symbols remain. On the other hand, starting
from an empty assignment, QC repeats assigning a symbol to an empty cell randomly so that the
resulting assignment is a PLS, until ln2r J cells are assigned symbols. Note that a QWH instance
always admits a complete Latin square as an optimal solution, whereas a QC instance does not.
We use QWH instances to observe how often the algorithms can find an optimal solution and QC
instances to observe how large the solutions found are.

We solve the PLSE problem by reducing it to the MIS problem. We show the averaged size of
graph G = (V, E) in Table 1. The graph sizes are not different by a significant margin between
QWH and QC, and the average is taken over 200 QWH instances and 200 QC instances. A
large graph is not necessarily hard in our case. It is known that the PLSE problem has easy
hard-easy phase transition (Gomes and Shmoys, 2002); an instance with an intermediate r (e.g.,
0.5::;; r::;; 0.7) is harder in general.

For each instance, we generate an initial solution So and feed it to the ILS algorithms or to the
competitors. The So is generated by a constructive algorithm named G5 in (Alidaee et al., 2008),
which is a "look-ahead" minimum-degree greedy algorithm for the MIS problem. We confirmed in
(Haraguchi, 2013) that G5 is the best among several simple constructive algorithms.

6.1 Comparison between Tr-ILS* and Tu-ILS.

For n = 70 and each r E {0.3, 0.4, ... , 0.8}, we run TR-ILS* and TR-ILS on 200 QWH instances
and 200 QC instances. We run one ILS algorithm 5 times for each instance, changing the seed of
a pseudo random number. The time limit in each run is set to 10 seconds.

We show the result on QWH instances in Fig. 10. The horizontal axis indicates the pre-assigned

18

Table 1: Averaged size of the graph G = (V,E): the column "density" indicates the ratio of IEI
to IVl(IVI -1)/2

n r WI (xlO") IEI (xl0°) density(%)
50 0.3 43.7 1600.7 0.17

0.4 27.8 757.5 0.20
0.5 16.4 315.2 0.23
0.6 8.7 109.6 0.29
0.7 3.9 29.1 0.38
0.8 1.3 4.8 0.54

60 0.3 75.3 3312.4 0.12
0.4 47.9 1561.9 0.14
0.5 28.2 646.4 0.16
0.6 14.8 222.8 0.20
0.7 6.6 58.2 0.27
0.8 2.2 9.5 0.39

70 0.3 119.2 6122.7 0.09
0.4 75.8 2881.1 0.10
0.5 44.5 1188.4 0.12
0.6 23.3 406.9 0.15
0.7 10.3 105.0 0.20
0.8 3.4 16.8 0.29

ratio r. For each r, one ILS algorithm is run 200 x 5 = 1000 times. We show in the vertical axis
how often the algorithm finds an optimal solution in the 1000 runs. To observe the effect of PRS,
we run both ILS algorithms with PRS activated and with PRS inactivated. We also show the result
on QC instances in Fig. 11. In this figure, the vertical axis indicates ILi + ISi, where L denotes the
PLS given as an instance and S denotes the solution found. Note that ILi = l n2r J is a constant
for a given r. A bar represents the average of the medians over 200 instances, where the median
is taken over 5 runs on one instance; an error bar represents the averages of maxima and minima
over the 5 runs.

Generally, TR-ILS* with PRS ranks first, followed by TR-ILS with PRS, TR-ILS* with no
PRS, and TR-ILS with no PRS.

QWH (Fig. 10): Clearly, we see this tendency for r = 0.3 to 0.6. When r = 0.7, the algorithms
hardly find an optimal solution probably due to the problem hardness. When r = 0.8, TR
ILS* with PRS is slightly worse than TR-ILS with PRS, but the difference appears to be
within a small error.

QC (Fig. 11): The tendency is shown in general not only for medians but also for maxima and
minima. Furthermore, all medians of TR-ILS* with PRS are optimal from r = 0.3 to 0.5;
the bar reaches n2 = 4900.

Whether PRS is activated or not, TR-ILS* is better than TR-ILS. We introduced TR-NS* in
Algorithm 6, aiming at avoiding vain neighborhood searches. It seems that TR-NS* achieves this
goal to a large extent. As a numerical evidence, we show the averaged computation time of a single
run of local search in Table 2. A local search in TR-ILS* is 2 to 4 times faster than a local search
in TR-ILS.

We see that PRS contributes to the improvement of the performance in both ILS algorithms.
In the next experiment, we activate PRS for all ILS algorithms.

6.2 Comparison between Tr-ILS* and Other Solvers

We compare TR-ILS* with other ILS variants and the competitors. For ILS variants, we take
up 1-ILS*, 2-ILS and 3-ILS that use 1-NS* in Algorithm 3, 2-NS in Algorithm 4 and a (3, oo)
neighborhood search algorithm (whose description is omitted in the paper), respectively. We

19

100
~
~ 80
....
,:;
.9

l 60

0
()

40

20

0

QWH (n=70)

~ TR-ILS*, PRS: active
~ TR-ILS, PRS: active

0.3 0.4 0.5

c::::=::::;:::s TR-ILS', PRS: inactive
c::::=:::;:::sJ TR-ILS, PRS: inactive

0.6 0 . .7 0.8
pre-assigned ratio r

Figure 10: Comparison of completion ratios between TR-ILS* and TR-ILS (QWH, n = 70)

Table 2: Computation time (ms) of a single run of local search (QC, n = 70, PRS is active)
ILS algorithm r = 0.3 0.4 0.5 0.6 0.7 0.8
TR-ILS* 8.29 4.50 2.03 0.77 0.45 0.29
TR-ILS 31.95 18.95 8.53 2.68 1.12 0.46
1-ILS* 5.00 2.85 1.38 0.58 0.29 0.13
2-ILS 8.14 4.52 2.04 0.98 0.51 0.23
3-ILS 150.73 85.63 39.41 12.24 3.89 1.22

employ 1-NS* instead of 1-NS in Algorithm 2 since we observe that the former yields better results
in our preliminary experiments. We set the time limit of the ILS algorithms to 10 seconds.

For competitors, we employ two exact solvers and one heuristic solver. For the former, we
employ the optimization solver for integer programming (CIP) and the one for constraint opti
mization (CCP) from IBM ILOG CPLEX ver. 12.6.1. It is easy to formulate the PLSE problem
by these models (Gomes and Shmoys, 2002). For the latter, we employ LOCALSOLVER ver. 4.5
(LSOL), which is a general heuristic solver based on local search. Hopefully our ILS algorithms
will outperform LSOL since ours is specialized to the PLSE problem, whereas LSOL is developed
for general discrete optimization problems. All the parameters are set to default values except
that, in CCP, DefaultinferenceLevel and AllDiffinferenceLevel are set to extended. The
time limit of the competitors is set to 30 seconds, which is 3 times the time limit given to the ILS
algorithms.

For each (n, r) E {50, 60, 70} x {0.3, ... , 0.8}, we generate 100 QWH instances and 100 QC
instances. The same initial solution being given, each solver is run on'ce on an instance. Table 3
shows how often the solvers find optimal solutions for QWH instances (in which the initial solutions
are not optimal), and Table 4 shows the average of the improved size for QC instances. In both
tables, a row corresponds to a pair (n, r), and a column corresponds to a solver. In particular, the
3rd column corresponds to G5, the initial solution generator. The column indicates how often the
initial solution itself is an optimal solution in Table 3, while it indicates the initial solution size
ISol (plus ILi = ln2rJ) in Table 4. A bold number indicates the largest value in a row.

The ILS algorithms outperform the competitors in most of the (n, r) '-s in both tables. \Tve
claim that TR-ILS* should be the best among the four ILS algorithms; 3-ILS is clearly inferior to
others. The remaining three algorithms seem to be competitive, but TR-ILS* ranks first or second
most frequently.

20

ttJ

+
....:i

4900

4860

4820

4780

QC (n = 70)

~ TR-ILS*, PRS: active
I-Y/,"/:-:·,1 TR-ILS,_ PRS: active

0.3 0.4 0.5

c::::s:::::=::: TR-ILS*, PRS: inactive
c:==::J TR-ILS, PRS: inactive

0.6 0.7 0.8
pre-assigned ratio 7'

Figure 11: Comparison of the solution qualities between TR-ILS* and TR-ILS (QC, n = 70)

Table 3: Completion ratios (%) of the ILS algorithms and the competitors (QWH)
n r G5 TR-ILS* 1-ILS* 2-ILS 3-ILS CIP CCP LSOL
50 0.3 9 100 100 100 95 0 93 1

0.4 3 100 99 99 92 0 70 5
0.5 0 100 96 96 83 0 12 6
0.6 0 36 30 23 5 0 0 0
0.7 0 0 0 0 0 0 0 0
0.8 60 100 100 100 100 100 100 100

60 0.3 0 100 100 100 51 0 71 1
0.4 0 100 96 99 52 0 22 0
0.5 0 95 89 95 17 0 1 0
0.6 0 23 16 12 0 0 0 0
0.7 0 0 0 0 0 0 0 0
0.8 0 99 98 100 99 100 100 99

70 0.3 0 99 100 100 19 0 34 0
0.4 0 98 95 97 8 0 8 0
0.5 0 84 82 87 0 0 0 0
0.6 0 10 5 2 0 0 0 0
0.7 0 0 0 0 0 0 0 0
0.8 0 98 93 97 95 100 100 46

QWH (Table 3): TR-ILS* ranks first or second in all the 18 (n, r)'-s, and is among the first rank
in 11 (n,r)'-s (except r = 0.7). We see that "under-constrained" instances with r:::; 0.4 and
"over-constrained" instances with r = 0.8 are relatively easy since even G5 often finds an
optimal solution (n = 50) and the competitors perform well on them. On the other hand, an
instance with r = 0. 7 is the hardest; no solver finds an optimal solution even when n = 50.

QC (Table 4): TR-ILS* ranks first or second in 17 (n, r)'-s except (60, 0.8), and is among the
first rank in 15 (n,r)'-s. It performs well especially on instances with r:::; 0.7. Concerning
the competitors, CIP is good for "over-constrained" instances with r = 0.8 while CCP is
suitable for "under-constrained" instances. In this maximization context, the heuristic solver
LSOL performs relatively well, especially on hard instances with r = 0.5 to 0.7.

21

Table 4: Improved sizes brought by the ILS algorithms and the competitors (QC)
n r ILl+ISol TR-ILS* 1-ILS* 2-ILS 3-ILS CIP CCP LSOL
50 0.3 2496.03 3.97 3.97 3.95 3.93 0.00 3.84 0.32

0.4 2493.78 6.22 6.20 6.22 6.08 0.00 4.24 0.87
0.5 2488.52 11.48 11.37 11.43 10.73 0.00 1.40 4.44
0.6 2476.21 20.97 20.02 20.09 18.46 0.00 2.66 13.00
0.7 2442.21 27.86 27.26 27.57 25.56 4.19 8.83 21.24
0.8 2382.07 12.07 12.07 12.04 12.02 12.51 6.03 11.60

60 0.3 3593.07 6.93 6.91 6.93 6.21 0.00 5.22 0.13
0.4 3590.68 9.32 9.29 9.28 7.90 0.00 1.87 0.49
0.5 3585.29 14.65 14.36 14.29 12.24 0.00 0.54 2.21
0.6 3572.61 24.06 23.21 23.24 20.16 0.00 1.09 12.91
0.7 3534.62 37.50 36.85 35.96 31.89 0.09 5.83 26.43
0.8 3456.59 21.90 22.00 21.78 21.46 21.99 7.55 19.85

70 0.3 4890.20 9.80 9.78 9.78 7.12 0.00 3.55 0.05
0.4 4887.73 12.25 12.23 12.25 8.67 0.00 0.63 0.25
0.5 4881.09 18.48 18.32 18.35 12.88 0.00 0.08 1.81
0.6 4868.21 27.98 27.09 26.72 20.31 0.00 0.53 9.56
0.7 4829.65 43.30 42.76 41.32 34.73 0.00 2.29 30.06
0.8 4731.35 34.56 35.32 34.46 32.58 30.09 6.38 29.82

Although 3-ILS deals with the largest neighborhood, the performance is the worst among the
ILS algorithms. This must be due to its inefficiency. See Table 2 again. A local search in 3-ILS
is about 10 to 40 times slower than those in the other three ILSs. Then 3-ILS may not iterate an
enough number of local searches. The diversity of search must not be attained to a sufficient level.

The high performance of TR-ILS* is mainly due to the efficient implementation of its neighbor
hood search algorithm, TR-NS* in Algorithm 6. In Table 2 we see that a local search in TR-ILS*
is at most only 2 times slower than one in 1-ILS*, and is competitive with one in 2-ILS although
a Trellis-neighborhood is a superset of a (p, oo)-neighborhood (p ~ 2) and, in the worst case anal
ysis, the running times of TR-NS*, 1-NS* and 2-NS are bounded by O(n3·5), O(n2) and O(n3),

respectively.

7 Concluding Remarks

We have considered efficient local search algorithms for the PLSE problem. First, we presented
(p,oo)-neighborhood search algorithm~ for p E {1,2,3} running in O(nP+l) time. We then intro
duced a new type of neighborhood, Trellis-neighborhood, and presented its neighborhood search
algorithm that runs in O(n3·5) time. We observed that TR-ILS*, an ILS algorithm with Trellis
neighborhood, outperforms not only other ILS variants but also IP and CP solvers from IBM ILOG
CPLEX and LOCALSOLVER.

Our starting point is a reduction of PLSE to MIS. This enables us to apply the local search
methodology of Andrade et al. (2012) to the PLSE problem. However, our study is not just a simple
application. We have achieved the above result by making use of the graph structure peculiar to
the problem. Specifically, the following are key properties of our graph:

• A vertex is regarded as a 3D integral point.

• The neighbors of a vertex are partitioned into 0(1) cliques and no two neighbors in different
cliques are adjacent.

The idea in the paper may be extended to various problems. Here we describe two examples:

Colored Partial Latin Square Extension (C-PLSE): Suppose that each cell is colored by
one of given n colors, say c1, ... , Cn, Given such a colored grid, we say that a PLS satisfies

22

the color condition if, for any color c E { c1, ... , Cn}, each symbol in { 1, 2, ... , n} appears at
most once in the cells having c. In this problem, given a PLS that satisfies the color condition
with respect to a given colored grid, we are asked to find its largest extension.

Symmetric Partial Latin Square Extension (S-PLSE): A PLS L is symmetric if (i, j, k) E
L implies (j, i, k) E L. In this problem, we are asked to find a largest extension of a given
symmetric PLS.

The two problems generalize some known problems; e.g., the C-PLSE problem contains the max
imization version of completing Sudoku or Euler squares (Lewis, 2007; Rosenhouse and Taalman,
2012), and the S-PLSE problem contains the maximization version of completing single round
robin scheduling (Rasmussen and Trick, 2008). To extend our local search for these problems, we
need to reconstruct the graph G = (V, E) that is determined by the given PLS in the manner of
Sect. 2. For the C-PLSE problem, we should connect any two vertices (i,j,k) and (i',j',k) by
an edge if the cells (i,j) and (i',j') have the same color. For the S-PLSE problem, we should
merge any vertex (i, j, k) (i < j) with the vertex (j, i, k). Note that in the resulting graph the
second property above does not hold any more. Recently, for the S-PLSE problem, we developed
a (p,oo)-neighborhood search algorithm (p :S: 2) whose running time is O(nP+l), extending the
algorithms in this paper. The extension requires trickier arguments, and will be addressed in our
future paper (Haraguchi).

Concerning experiments, we used random PLSs as benchmark instances and observed that ones
with r E [0.6, 0.7] are harder than others. It is known in the literature that "balanced" instances
are especially hard, that is, the number of empty cells is approximately the same over rows and
columns (Gomes and Shmoys, 2002). Balanced instances are available from some websites; e.g.,
http://www. cs .hbg .psu. edu/txni31/graphcoloring .html. Unfortunately, our ILS hardly finds
an optimal solution of a QWH balanced instance with r E [0.6, 0.7] even when n = 30.

Further comparison is left for future work. IBM ILOG CPLEX and LOCALSOLVER are just
two of existing optimization solvers. Also, they have many adjustable parameters for adapting
themselves to instances. We should mention the approach by SAT. As mentioned in (Gomes and
Shmoys, 2002), we do not consider that it is an effective strategy to solve PLSE by means(of SAT.
Let us describe our preliminary results; we solve the satisfiability problem on QWH instances by
a CSP solver SUGAR (ver. 2.2.1) (Tamura, 2014), where MrNISAT (ver. 2.2.0) (Een and Sorensson,
2010) is employed as the core SAT solver. Note that any QWH instance is satisfiable. This scherne
decides the satisfiability (and thus finds an optimal solution) for about 50% of the instances within
30 seconds (n = 40 and r E {0.3, 0.4, ... , 0.8}), while TR-ILS finds an optimal solution for 78%
of the instances within the same time limit. However, SAT technology is advancing year by year,
and there are many sophisticated SAT/MaxSAT/MinSAT solvers (e.g., l:VIAxSATZ (Li et al., 2007),
MINSATZ (Li et al., 2012), and various participant solvers in The International SAT Competitions
(http://www.satcompetition.org/)) and encoding techniques (e.g., MIS to MinSAT (Ignatiev
et al., 2014)). It would be interesting to explore the best combination for solving PLSE.

Finally, from the viewpoint of approximation algorithms, we evaluate approximation factors
'of p-maximal and 'n·ellis-maximal solutions and analyze the time complexities that are needed to
compute them. In a maximization problem instance, a p-approximate solution (p E [O, 1]) is a
solution whose size is at least the factor p of the optimal size. Hajirasouliha et al. (2007) analyzed
approximation factors of (p, p+ 1)-maximal solutions, using Hurkens and Schrijver's classical result
on the general set packing problem (Hurkens and Schrijver, 1989). From this and Theorems 1, 2,
4 and 5, and since the solution size is at most n 2

, we have the following theorem.

Theorem 6 Any 1-maximal, 2-maximal, 3-maximal and Trellis-maximal solutions are 1/2-, 5/9-,
3/5- and 5/9-approximate solutions, respectively. Furthermore, these can be obtained in O(n4),

O(n5), O(n6) and O(n5·5) time by extending an arbitrary solution by means of the local search.

Although the local search achieves the best approximation factor for the PLSE problem cur
rently, no one has explored its efficient implementation in the literature. This paper resolves this
issue to some degree.

23

Acknowledgements

We gratefully acknowledge very careful and detailed comments given by anonymous reviewers.

References

B. Alidaee, G. Kochenberger, and H Wang. Simple and fast surrogate constraint heuristics for the
maximum independent set problem. J. Heuristics, 14:571-585, 2008.

D.V. Andrade, M.G.C. Resende, and R.F. Werneck. Fast local search for the maximum independent
set problem. J. Heuristics, 18:525-547, 2012. The preliminary version appeared in Proc. 7th
WEA (LNCS vol. 5038), pp. 220-234 (2008).

C. Ans6tegui, A. Val, I. Dotu, C. Fernandez, and F. 1fanya. Modeling choices in quasigroup
completion: SAT vs. CSP. In Proc. National Conference on Artificial Intelligence, pages 137-
142, 2004.

G. Appa, D. Magos, and I. Mourtos. Searching for mutually orthogonal latin squares via integer
and constraint programming. European J. Operational Research, 173(2):519-530, 2006a.

G. Appa, D. Magos, and I. Mourtos. A new class of facets for the latin square polytope. Discrete
Applied Mathematics, 154(6):900-911, 2006b.

R.A. Barry and P.A. Humblet. Latin routers, design and implementation. IEEE/OSA J. Lightwave
Technology, 11 (5) :891-899, 1993.

R. Bartak. On generators of random quasigroup problems. In Proc. CS CLP 2005, pages 164-178,
2006.

C.J. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathematics,
8:25-30, 1984.

C.J. Colbourn and J.H. Dinitz. Handbook of Combinatorial Designs. Chapman & Hall/CRC, 2nd
edition, 2006.

B. Crawford, M. Aranda, C. Castro, and E. Monfroy. Using constraint programming to solve
sudoku puzzles. In Proc. ICCIT '08, volume 2, pages 926-931, 2008.

B. Crawford, C. Castro, and E. Monfroy. Solving sudoku with constraint programming. In Cutting
Edge Research Topics on Multiple Criteria Decision Making, volume 35 of Communications in
Computer and Information Science, pages 345-348, 2009.

M. Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local
search. In Proc. FOGS 2013, pages 509-518, 2013.

N. Een and N. Sorensson. The MiniSat Page (ver. 2.2.0). http://minisat.se/Main.html, 2010.
Accessed 10 July 2015.

M. Furer and H. Yu. Approximating the k-set packing problen1 by local improvements. In
Proc. ISCO 2014, volume 8596 of LNCS, pages 408-420, 2014.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman & Company, 1979.

C. Gomes, M. Sellmann, C. van Es, and H. van Es. The challenge of generating spatially balanced
scientific experiment designs. In Proc. CPAIOR 2004, volume 3011 of LNCS, pages 387-394,
2004a.

C.P. Gomes and B. Selman. Problem structure in the presence of perturbations. In Proc. AAAI-97,
pages 221-227, 1997.

24

C.P. Gomes and D.B. Shmoys. Completing quasigroups or latin squares: a structured graph
coloring problem. In Proc. Computational Symposium on Graph Coloring and Generalizations,
2002.

C.P. Gomes, R.G. Regis, and D.B. Shmoys. An improved approximation algorithm for the partial
latin square extension problem. Operations Research Letters, 32(5):479-484, 2004b.

I. Hajirasouliha, H. Jowhari, R. Kumar, and R. Sundaram. On completing latin squares. In
Proc. STAGS 2001, volume 4393 of LNCS, pages 524-535, 2007.

K. Haraguchi. An efficient local search for the constrained symmetric latin square construction
problem. in preparation.

K. Haraguchi. A constructive algorithm for partial latin square extension problem that solves
hardest instances effectively. In Recent Advances in Computational Optimization - Results of the
Workshop on Computational Optimization WCO 2013 at FedCSIS 2013, pages 67-84, 2013.

K. Haraguchi. An efficient local search for partial latin square extension problem. In Proc. CPAIOR
2015, volume 9075 of LNCS, pages 182-198, 2015.

K. Haraguchi and H. Ono. Approximability of latin square completion-type puzzles. In Proc. FUN
2014, volume 8496 of LNCS, pages 218-229, 2014.

J.E. Hopcroft and R.M. Karp. An n5/ 2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Computing, 2(4):225-231, 1973.

C.A.J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR,
with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete
Mathematics, 2(1):68-72, 1989.

A. Ignatiev, A. Morgado, and J. Marques-Silva. On reducing maximum independent set to mini
mum satisfiability. In Proc.=SAT 2014, volume 8561 of LNCS, pages 103-120. 2014.

J. Itoyanagi, H. Hashimoto, and M. Yagiura. A local search algorithm with large neighborhoods
for the maximum weighted independent set problem. In Proc. MIC 2011, pages 191-200, 2011.
The full paper is written in Japanese as a master thesis of the 1st author in Graduate School of
Information Science, Nagoya University (2011).

R. Kumar, A. Russel, and R. Sundaram. Approximating latin square extensions. Algorithmica, 24
(2):128-138, 1999.

'
T. Lambert, E. Monfroy, and F. Saubion. A generic framework for local search: Application to

the sudoku problem. In Proc. ICCS 2006, volume 3991 of LNCS, pages (3,11-648, 2006.

R. Le Bras, A. Perrault, and C.P. Gomes. Polynomial time construction for spatially balanced
latin squares. Technical report, Computing and Information Science Technical Reports, Cornell
University, 2012. http:/ /hdl. handle. net/1813/28697.

R. Lewis. Metaheuristics can solve sudoku puzzles. J. Heuristics, 13(4):387-401, 2007.

C.M. Li, F. IVIanya, and J. Planes. New inference rules for max-sat. Journal of Artificial Intelligence
Research, 30:321-359, 2007.

CJvI. Li, Z. Zhu, F. Ivianya, and L. Simon. Optimizing with minimum satisfiability. Artificial
Intelligence, 190:32-44, 2012.

F. Ma and J. Zhang. Finding orthogonal latin squares using finite model searching tools. Science
China Information Sciences, 56(3):1--9, 2013.

R. V. Rasmussen and M. A. Trick. Round robin scheduling - a survey. European Journal of
Operations Research, 188(3):617-636, 2008.

25

J. Rosenhouse and L. Taalman. Taking Sudoku Seriously. Oxford University Press, 2012.

H. Simonis. Sudoku as a constraint problem. http://4c.ucc.ie/-hsimonis/sudoku.pdf, 2005.
Accessed 10 July 2015.

C. Smith, C. Gomes, and C. Fernandez. Streamlining local search for spatially balanced latin
squares. In Proc. IJCAI'05, pages 1539-1541, 2005.

R. Soto, B. Crawford, C. Galleguillos, E. Monfroy, and F. Paredes. A hybrid AC3-tabu search
algorithm for solving sudoku puzzles. Expert Systems with Applications, 40(15):5817-5821, 2013.

N. Tamura. Sugar: a SAT-based Constraint Solver (ver. 2.2.1). http: //bach. istc. kobe-u, ac,
jp/sugar/, 2014. Accessed 10 July 2015.

H. Vieira Jr., S. Sanchez, K.H. Kienitz, and M.C.N. Belderrain. Generating and improving orthog
onal designs by using mixed integer programming. European J. Operational Research, 215(3): .
629-638, 2011.

26

