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Abstract

Motivation: Information theoretic and compositional/linguistic analysis of genomes have a central

role in bioinformatics, even more so since the associated methodologies are becoming very valuable

also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection

of k-mer statistics, i.e. how many times each k-mer in fA;C ;G;T gk occurs in a DNA sequence.

Although this problem is computationally very simple and efficiently solvable on a conventional com-

puter, the sheer amount of data available now in applications demands to resort to parallel and distrib-

uted computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the

realm of genome assembly. However, they are so specialized to this domain that they do not extend

easily to the computation of informational and linguistic indices, concurrently on sets of genomes.

Results: Following the well-established approach in many disciplines, and with a growing success

also in bioinformatics, to resort to MapReduce and Hadoop to deal with ‘Big Data’ problems, we

present KCH, the first set of MapReduce algorithms able to perform concurrently informational and

linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmark-

ing of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with

respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for

genome assembly problems. In conclusion, KCH is a much needed addition to the growing number

of algorithms and tools that use MapReduce for bioinformatics core applications.

Availability and implementation: The software, including instructions for running it over Amazon

AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH.

Contact: umberto.ferraro@uniroma1.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Linguistic and informational analysis of biological sequences is one

of the mainstays of alignment-free genomic and proteomic sequence

analysis, with further extensions and applications to epigenomic and

metagenomic studies, e.g. (Benoit et al., 2016; Giancarlo et al.,

2009, 2015, 2015; Lo Bosco, 2016; Nordstrom et al., 2013; Pinello

et al., 2011; Utro et al., 2016). At their heart, many of those meth-

ods have the collection of k-mer statistics, i.e. how many times each
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sequence of length k over a finite alphabet appears in a biological se-

quence. Once that such a statistics is available, one can use it to

compute many informational and linguistic indices (Giancarlo et al.,

2009, 2014), the ones considered in this study being defined in

Section 2.2. Although the computation of those statistics and indices

are quite simple from the algorithmic point of view, the quantity of

data on which they have to be computed makes the problem no

longer solvable with a conventional computer. Here we propose

KCH, the first suite of linguistic and informational analysis

algorithms designed under the MapReduce paradigm (Dean and

Ghemawat, 2004) and implemented and tested on a Hadoop

cluster (White, 2015). Indeed, following other areas of science,

MapReduce, Hadoop and Spark (Zaharia et al., 2010) are rapidly

becoming a standard in dealing with ‘Big Data’ problems in

bioinformatics (see Cattaneo et al., 2017a,b; Ferraro Petrillo et al.,

2017a,b; Zhou et al., 2017). In order to properly place our contribu-

tions in the context of the State of the Art, we need a formal

statement of the kinds of k-mer statistics one is interested in,

together with the types of algorithms relevant for this study.

1.1 Exact k-mer statistics for sets of collections of

genomic sequences: formal statement and algorithmic

specification
We define two versions of the statistics of interest. Let R be an

alphabet and let S be a finite set of collections of sequences in R�. A

local k-mer statistics (LS, for short) consists of computing how

many times each of the k-mers in Rk appears in each of the collec-

tions in S, separately. Another statistics, referred to as cumulative

statistics (CS for short), collects how many times each of the k-mers

in Rk appears in the collections of sequences in S, cumulatively. We

are interested in two types of algorithms, the first takes as input a

collection of sequences and provides as output LS, while the second

type provides CS as output. It is clear that algorithms computing

LS can compute CS in one execution: pad each sequence in each

collection in S with an extra symbol not in R and then concatenate

the resulting sequences from all collections to obtain the input to LS,

which will consist of a single collection with a single sequence in it.

On the other hand, algorithms computing CS cannot compute LS,

although they can be used as subroutines, i.e. m calls to an algorithm

computing CS, where m is the number of collections in S.

1.2 State of the art
Motivated by genome assembly applications, several algorithms have

been designed and tested that make use of parallel computing (HPC for

short), both shared-memory multi-thread or distributed, for the collec-

tion of k-mer statistics. Technically, they address the computation of

CS and not even for arbitrary sequence collections (most of them work

for NGS data). For the convenience of the reader, they are reported in

Section 2.1.2 of the Supplementary Material.

In regard to this study, the most serious drawback that they ex-

hibit is that, although they can be used as subroutines to solve LS, it

is open how that would affect their performance and scalability, in

particular in reference to the downstream computation of informa-

tional and linguistic indices. For instance, the mentioned HPC

programs count only k-mers, so their output must be stored on disk

before it is passed on to another process that computes informa-

tional and linguistic indices on collections of sequences on which LS

has been computed.

1.3 Our contributions
1.3.1 The first distributed suite of algorithms for both LS and CS

KCH is the first suite of Distributed Algorithms that can efficiently

solve both LS and CS and provide the distributed computation of in-

formational indices. Where KCH can be compared with the state of

the art, i.e. the computation of CS, it is at least a factor of 30 faster

with respect to the other MapReduce solution available, i.e. BioPig

(Bhatia and Wang, 2011; Nordberg et al., 2013). Although some-

what methodologically unfair to compare algorithms designed on

different architectural principles, KCH is also very competitive

with respect to shared-memory multi-thread algorithms. For the

comparison, we have chosen a representative set (criteria detailed

in Section 2.1.2 of the Supplementary Material): KAnalyze

(Audano and Vannberg, 2014), Jellyfish2, an evolution of Jellyfish

(Marçais and Kingsford, 2011), DSK (Rizk et al., 2013) and KMC3

(Kokot et al., 2017), this latter being the fastest algorithm for CS in

this class to date.

1.3.2 Methodology: architectures and programming for big data in

bioinformatics

Our experiments show the following. (i) Via a rigorous comparison

between KCH and state of the art shared-memory multi-thread algo-

rithms, MapReduce, Hadoop and distributed computing are quite

competitive for Bioinformatics applications, reinforcing the findings

of the only previous quantitative study available in the Literature

(Siretskiy et al., 2015). (ii) Although scripting software platforms

such as BioPig are quite useful for fast prototyping and software

development, the design and engineering of efficient bioinformatics

algorithms for fundamental tasks cannot be eluded even under the

apparently highly scalable MapReduce paradigm.

1.3.3 Further insights into the linguistic and informational nature of

genomes

We have performed two sets of experiments. The first concerns the

origin of nullomers (Hampikian and Andersen, 2007), i.e. short

sequences that do not appear in a given genome, and it provides

further experimental support to the point of view that nullomers

in genomes are accountable by means of a random process (Aurell

et al., 2016), i.e. they have a clear combinatorial nature although

that does not rule out other biology-related reasons for the absence

of some of them in genomes, e.g, mutational pressure (Acquisti

et al., 2007) or unfavorable structural conformation (Vergni et al.,

2016). The second concerns the first analysis of three large plant

genomes that highlights the differences between their linguistic and

informational content and their taxonomic classification.

2 Materials and methods

2.1 Hadoop, the MapReduce paradigm and algorithms:

key factors influencing efficiency
It is well known that a distributed system is composed of a set of in-

dependent computing nodes, each consisting of several processing

cores, main and external memory. Nodes must cooperate via com-

munication in order to solve a specific problem (Ben-Ari, 2006). Key

to the efficiency of the system is the middleware, in our case,

Hadoop.

The algorithms that it supports have to be designed according to

the MapReduce paradigm, which consists of splitting the input into

several parts, each one processed by a dedicated map task in a paral-

lel fashion. The final output is obtained by executing a set of inde-

pendent reduce tasks, that are in charge of aggregating the results

Informational and linguistic analysis of large genomic sequence collections 1827

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/11/1826/4802227
by guest
on 03 June 2018

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty018#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty018#supplementary-data


produced by the map tasks. We highlight next some of the key

parameters that influence the efficiency of an algorithm executed

under Hadoop. Additional aspects relating to Hadoop as well as the

lifetime of an Hadoop application are presented in Cattaneo et al.

(2017b).

With reference to Figure 1, a cluster of computers supervised by

Hadoop includes at least a master node, mainly responsible for the

global assignment of computational resources, and a set of slave

nodes, where each node is part of the Hadoop Distributed File

System (HDFS) (Shvachko et al., 2010) and it is able to run one or

more worker processes, which are software agents that allow to

efficiently perform either map or reduce tasks. They play a key role.

Indeed, a single slave node can execute a variable number of

workers, thus allowing to fully exploit the parallelism of multi-core

nodes. In order to obtain an efficient distributed algorithm under

Hadoop, both the number of workers per node and the number of

tasks that each of them can handle are essential parameters since

they affect the granularity of the parallelism and the trade-off

overhead/useful computation. Likewise, the trade-off between the

number of workers running on a slave node and the amount of

physical memory available on that node may heavily affect the

execution time due to virtual memory thrashing and I/O bus conges-

tions (Denning, 1970).

A less obvious key role is played by HDFS, that includes efficient

mechanisms to transparently and automatically split the input

among the slave nodes. This approach favors data local computa-

tion, i.e. each slave operates on the data that are within it, and it

seems the most suitable for k-mer statistics. For such a mechanism,

one essential parameter of HDFS is the block size, which determines

the number of blocks in a partition of each HDFS file and, impli-

citly, the amount of data that each map task has to process. In turn,

the choice of a block size has impact on both the total number of

map tasks necessary to execute an algorithm with a given input and

the duration of each task. For instance, a small block size may result

in an inefficient use of the system since the time spent by the middle-

ware for the management of the given task may be larger than the

one required for the execution of the task itself.

Summarizing the above discussion, in order to achieve a full use of

the available resources one must account for: (a) the number of nodes,

and for each of them, the number of cores and the main memory in it;

(b) the number of blocks in which the input is partitioned. In terms of

Hadoop configuration parameters, (a) and (b) can be controlled by a

proper setting of (1) the maximum number of workers that can be

simultaneously executed on each slave; (2) the maximum main

memory available to each worker and (3) the HDFS block size.

2.2 A selection of informational and linguistic indices

for sequence analysis
The indices that have been selected for inclusion in KCH are defined

next, for a single sequence X 2 S and for a fixed value of k.

• Estimating k-mer Probability Distributions from Counts (see

Giancarlo et al., 2015). We provide both Maximum Likelihood

and Bayesian estimates with the use of pseudo-counts, those lat-

ter reported in Section 1.1 of the Supplementary Material for the

convenience of the reader. In its most basic version, it is obtained

from LS, by dividing the frequencies of the k-mers occurring in X

by the overall number of k-mers in X.
• Empirical Entropy (see Giancarlo et al., 2009). The empirical entropy

of a sequence X is defined as HðXÞ ¼ �
P

x2Rk pðxÞlog2ðpðxÞÞ,
where p(x) denotes the empirical probability of the k-mer x occurring

in X.

• k-mers Spectrum (see Chor et al., 2009). It is a plot of an

histogram in which the abscissa denotes the potential number of

occurrences of k-mers in X and the ordinate gives how many of

the k-mers in Rk appear exactly that number of times.
• Linguistic Complexity (see Utro et al., 2016). Assume that

k � jXj. LCS(X, i) is defined as the number of distinct i-mers

that are present in X, normalized by jXj. Then, the linguistic

complexity LCðS; kÞ ¼
Pk

i¼1 LCSðS; iÞ.

2.3 KCH—the core component
We present how to compute k-mer statistics for CS. How to further

extend KCH to perform the same task for LS and to how compute

the indices defined in Section 2.2 is given in Section 1.3 of the

Supplementary Material. Moreover, from now on, when we men-

tion KCH, we refer to the computation of either LS or CS, unless

otherwise stated.

2.3.1 High level description

(1) Data Input Input sequences are read from HDFS nodes using the

Fastdoop library (Ferraro Petrillo et al., 2017a) (Fig. 2a).

(2) Map Phase and Network Shuffle. Each map task creates a set

of r local hash tables Hts to maintain the frequency counts of the

k-mers found while scanning its own input sequence(s) (Fig. 2b).

These hash tables represent an implicit binning/partitioning of Rk

and they are used to perform a first level of counting aggregation.

Then, each map task extracts the k-mers from its input sequence(s)

and updates its hash tables accordingly. At the end of the map

phase, all hash tables related to the same partition of Rk are sent for

aggregation to the same distinct reduce task by means of a network

shuffle (Fig. 2c). If an hash table gets full while still scanning the in-

put sequence(s), it is immediately sent to the reduce phase and

replaced by a new empty hash table.

Fig. 1. A schematic representation of a cluster of processors configured to

run an algorithm designed for Hadoop. Each component is as described in

Section 2.1. The communication among nodes uses the Gigabit Ethernet,

while the storage of input and output files is distributed among the local disks

present in each slave node
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(3) Reduce Phase and Downstream Applications. In this phase, a

reduce function receives as input all the hash tables of the same par-

tition to compute their aggregated statistics. They are retrieved from

the network shuffle and processed one at time, to reduce memory re-

quirements. The k-mers counts contained in each input hash table

are aggregated in a target hash table. After the aggregation, the re-

duce function will make available to downstream applications the

counts of all k-mers found in its corresponding bin (Fig. 2d).

2.3.2 A second level of details

The KCH counting algorithm is composed of the following functions.

a. Function setup. A map task creates r hash tables with Cmap

entries.

b. Function map. The input of a map function is the identifier of

the sequence idSeq and the sequence (or part of it in case of very

long sequences) Seq. Our algorithm uses the standard binary

encoding of a letter of the alphabet fA;C;G;Tg to pack a k-mer

into an integer. Since now each character of a k-mer needs two

bits rather than eight, we have a saving in memory usage but

also an additional one in the transmission of partial statistics

from the workers performing map to the ones performing re-

duce. Moreover, it provides a very effective implementation of

the scanning strategy used to extract k-mers from an input

sequence, described next. Initially, a new k-mer kmer0 is ex-

tracted by looking at the first k characters of the input sequence

and packed into a single integer. The same is done for its canon-

ical representation. From that point on, new k-mers are ex-

tracted by processing the last k-mer found by means of binary

SHIFT and AND operations. The process goes on until the end

of the sequence is reached or an N character is found. i.e. a char-

acter indicating that no letter from the DNA alphabet could be

assigned to that genomic position. Accordingly, the algorithm

skips all the sequences of length k containing the N character

and starts over the scanning strategy. In addition, when a new-

line character is found, it is ignored. Whenever a new k-mer kme

r0 is found, its local partial frequency count is updated accord-

ingly, but no output is provided. In particular, the hash table for

which one needs to increment the counter or start a new one is

identified as follows: kmer0 is placed in the hash table having the

id obtained by taking the numerical representation of kmer0

mod r. Once that its input has been scanned, the map task

proceeds by emitting as output the copy of each hash table,

together with an identifier, by executing the endupFlush

function.

c. Function intermediateFlush. Once fixed an initial size for the

hash tables, some of them may need to be expanded at run-time

and that, in turn, may cause a map task to run out of memory.

In order for that to be avoided, the algorithm follows a flushing

strategy by means of which an hash table can be output even if

the task has not completed yet its execution. In fact, the function

intermediateFlush is executed to check if the number of elements

in a hash table ht exceeds a certain threshold t. If this is true, the

algorithm emits the id of the table as key, i.e. idHt, and its bin-

ary copy as value, i.e. ht. Then, this local table is replaced with

an empty one.

d. Function endupFlush. The algorithm emits the id of the target

table as key, i.e. idHt, and its binary copy as value, i.e. ht. Then,

the table is discarded.

Algorithms 1 and 2, reported in Section S1.2 of the

Supplementary Material, provide further details about KCH, includ-

ing the critical choice of the hash function. We also point out that

we have devised a methodology, presented in Section S1.4 of the

Supplementary Material, to engineer KCH on a specific Cluster for

taking full advantage of the hardware available.

3 Results

3.1 Experimental methodology
In analogy with (Rizk et al., 2013), we use synthetic datasets derived

from the Illumina human genome dataset (Available at: ftp://ftp.ddbj.

nig.ac.jp/ddbj_database/dra/fastq/SRA010/SRA010896/SRX016231/).

We also use a set of 12 genomes, namely Bacillus subtilis, Escherichia

coli, Helicobacter hepaticus, Legionella pneumophila, Neisseria menin-

gitidis, Caenorhabditis elegans, Drosophila melanogaster, Homo

sapiens, Saccharomyces cerevisiae, all downloaded from GenBank

(Benson et al., 2013), and Picea glauca (Birol et al., 2013) (PG for

short), Picea abies (Nystedt et al., 2013) (PA for short) and Pinus taeda

(Zimin et al., 2014) (PT for short) for a total of 60 GB. Additional in-

formation about the datasets are available in Section 2.1.1 of the

Supplementary Material. As for hardware, we have used a cluster,

whose configuration and Hadoop parameter setting are detailed in

Section S2.2 of the Supplementary Material.

3.2 Scalability of KCH
One of the key factors in judging a MapReduce program is its scal-

ability, i.e. its ability to take full advantage of the processing power

made available to it. Here, we measure such an ability for KCH. We

discuss first LS.

Experiments are performed with varying dataset sizes and values

of k. For the former, we have used 2, 8, 32 and 128 GB, since that

range of sizes well represents possible input sizes of datasets coming

from genomic and metagenomic studies. Likewise, the chosen values

of k, i.e. 3, 7 and 15, are representative of the ones that are expected

Fig. 2. A snapshot of the KCH architecture outlining how data is distributed,

processed and recombined during the workflow. (a) HDFS. Input sequences

are initially stored on an instance of the HDFS distributed filesystem and

loaded in memory using the Fastdoop library. (b) Map Phase. Each map task

creates a set of local hash tables that are used to evaluate and to maintain the

k-mers frequencies of its own sequence(s). (c) Network Shuffle. All the hash

tables coming from different map tasks and related to the same partition of

Rk are sent for aggregation to the same distinct reduce task. (d) Reduce

Phase. Each reduce task aggregates all the hash tables related to a same par-

tition and makes available the computed k-mers counts to downstream

applications
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to be used in applications such as alignment-free sequence compari-

son, informational, linguistic and compositional analysis of

biological sequences, e.g. Chor et al., (2009) and Giancarlo et al.,

(2009, 2014), where values of k substantially above 10 are hardly

found. For each size, we generate a dataset as outlined in Section

S2.1.1 of the Supplementary Material.

As it is evident from the results reported in Figure 3, the advan-

tage of using more and more workers, i.e. the scalability of the

algorithm, becomes more and more evident as the dataset size in-

creases. It is also evident that the beneficial effect of increasing the

number of workers per slave fades out. This happens because having

many workers running on the same node may produce performance

bottlenecks due to several processes trying to access the same disk or

the same network connection at the same time. Finally, it has to be

pointed out that the behavior of our algorithm with respect to

scalability has the same trend for all the tested values of k.

As for CS, we can draw the same conclusions as LS based on the

experiments reported in Section 2.3 of the Supplementary Material.

3.3 KCH in application domains: useful, versatile and

competitive
In order to show the flexibility and competitiveness of KCH, we

present in Section 3.3.1 results relating to the presence of nullomers

in biological sequences (Hampikian and Andersen, 2007) versus the

estimation of the informational content of a genome. We also pro-

vide an outline of the first linguistic and informational analysis of

the three plant genomes with the use of the indices mentioned in

Section 2.2. Additional details are given in Section S2.4 of the

Supplementary Material, due to space limitations. Finally, Section

3.3.3 reports a comparison between KCH and the analogous shared-

memory multi-thread software programs available and that are

motivated and useful for genome assembly only.

3.3.1 Linguistic and informational analysis of sets of genomes

For each of the genomes included in this study, we first establish the

largest value of k that we can use in our analyses involving k-mers.

To this end, we resort to the technique proposed in (Giancarlo et al.,

2015), which identifies the maximum k such that it is still possible

to estimate reliably the information content of a given genome via

its empirical k-mer probability distribution. That is, the maximum

value of k for which one can estimate the kth order entropy of the

genome within a given error bound, expressed in percentage and

given as a parameter to the method. For the interested reader, the

technical details are in Section S1.5 of the Supplementary Material.

We use two threshold values, one very conservative while the other

standard in experimental analysis, i.e. 1% and 5%, respectively. For

each of the genomes, the corresponding maximal values of k we can

use for our analysis are reported in Table 1.

3.3.2 Nullomers versus the reliable estimation informational

content of a genome

In order to place our findings in the proper context, it is worth re-

calling that the latest research on the origin of nullomers indicates

that: (i) there may be structural properties of DNA involved in their

absence (Vergni et al., 2016); (ii) relatively short nullomers may be

seen as the result of sampling from a random sequence (Aurell et al.,

2016); (iii) while very long ones have a biological origin (Aurell

et al., 2016). We contribute to give further support to (ii) by high-

light the combinatorial nature of the origin of nullomers in terms of

their relation with the well known finite sampling effect (Aurell

et al., 2016; Giancarlo et al., 2009), i.e. if the genome one is

analyzing has a short length with respect to 4k, not all k-mers will

occur in that genome, making a reliable estimation of the kth order

entropy of that genome impossible.

For a given genome, let kmin;g denote the minimum taken over all

nullomer lengths in genome g. With reference to Table 1, there is a

self-evident correlation between the second and third columns in

that table. it is worth of mention that the Spearman rank correlation

value is 0, 9734 with a P-value of 9, 9E–8. That is, as the genome

length grows, so does kmin;g.

Now, let kmax;g;t denote the maximum value of k for which one

can estimate the kth order entropy of genome g with an error of t%.

Then, for each genome in this study, we have that kmin;g is within

the interval ½kmax;g;1;kmax;g;5�. Moreover, the values of kmin;g and

kmax;g;5 coincide for 8 of the 12 genomes in this study, while for two

of them the same happens for t¼1. For completeness, the Spearman

rank correlations between the kmin sequence and the sequence of

left and right interval points is 0, 9847 (P-value 1.5E–8) and 0.9982

(P-value 1, 6E–13).

In conclusion, our experiments indicate that nullomers start to

occur in proximity of where the finite sample effect starts to play a role

in the reliable estimation (error at 5% or below) of the informational

content of a genome. For completeness, we also report in Tables 2–6,

the percentage of nullomers that the genomes in this study have in

common, up to their kmax values at error rate of 5%. The results in the

tables clearly indicate that the considered nullomer sets are highly

species-specific, a result in agreement with the Literature. Indeed,

nullomer sets, in particular nullomers of minimal length, retain enough

species-specificity to be of use in Phylogeny, e.g. (Rahman et al., 2016).

Taxonomy versus Compositional and Informational Content of

Three Large Plant Genomes. Given the mentioned plant genomes, we

have computed the informational and linguistic indices mentioned in

Section 2.2, for each of them, up to k¼14 (the maximum value for

which the informational content of the three genomes is preserved up

to an error of 5%). A complete analysis is provided in Section S2.4 of

the Supplementary Material, due to space limitations. Here we limit

ourselves to highlight a finding that is perceived as methodologically

significant: with reference to Supplementary Figures S2–S5, both in

terms of informational and linguistic content, PT and PG are closer to

each other than to PA, although PA and PG are taxonomically closer

to each other than to PT (see ITIS Partnership, 2010).

(a)

(c)

(b)

Fig. 3. Local Statistics. (a) Scalability of KCH, for the case k¼3, for all datasets,

which are indicated in the figure according to the legend to the right. The ab-

scissa gives the number of workers used, while the ordinate gives the corres-

ponding time. (b)–(c) As in (a), but for k¼7 and k¼15
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3.3.3 Cumulative statistics for genome assembly

For the experiments conducted in this section, we use the same data-

sets as in Section 3.2. In addition to the values of k indicated in that

section, we have also experimented with k¼31, which is a value that

finds use in k-mer statistics for genome assembly (Compeau et al.,

2011). Moreover, since we are dealing with reads that have yet to be

assembled, we consider canonical k-mer counts (i.e. for each k-mer k

mer0 found, we consider the lexicographically smaller among kmer0

and its reverse complement). CS is the relevant statistic here.

Comparison of KCH with BioPig. It computes CS with the use

of the ‘kmerCount.pig’ routine (Nordberg et al., 2013). We have

used it with the same parameter settings as KCH. We omit the results

obtained when using the 2GB dataset as in this case we would have

only 8 worker nodes used over 32 because of the HDFS block size

set to 256 MB. Unfortunately, we were unable to test large values of

k, e.g. 15 and 31, for the two largest datasets, due to the inefficien-

cies of BioPig. Therefore, in Figure 4, we limit ourselves to report

as indication the results of the comparison of KCH with BioPig for

the computation of CS on the 32GB and 128GB datasets, using

k¼3, 7. It is to be remarked that the average speed-up of KCH with

respect to BioPig is about � 30� in those settings.

Comparison of KCH with Shared-Memory Multi-Thread

Algorithms. Although it is difficult to compare a multi-thread

algorithm with a distributed one, we proceed as follows in order to

obtain results as fair as possible. A thread is considered as a worker

in our framework and each of the multi-thread algorithms are exe-

cuted on a single slave node of the available cluster. We take as

measure of performance the speed and the scalability of the various

algorithms. Of the chosen algorithms to be included in this study

(see Introduction), here we discuss KMC3 only: it is consistently the

best performing algorithm among the shared-memory multi-thread

ones, to date. For completeness, the experiments with the other algo-

rithms selected for this study are reported in Section S2.5 of the

Supplementary Material. Figure 5 provides a comparison between

KCH and KMC3. It is worth recalling that KMC3 has been specifically

designed for NGS data and highly engineered for that type of data.

Indeed, it works only with short reads as input. It is clear that the

advantage granted by the specialization of KMC3 to short reads ver-

sus the generality of KCH disappears as the degree of parallelism and

the dataset sizes increase. It is also evident that KMC3 hardly scales

with the number of threads as its execution time decreases only

slightly when increasing the number of threads.

4 Conclusions

We have presented KCH, the first suite of MapReduce algorithms spe-

cifically designed for the linguistic and informational analysis of large

collections of biological sequences. Its implementation on Hadoop

shows that it is useful, versatile and competitive even with respect to

methods that use shared-memory multi-thread architectures to collect

k-mer statistics only for applications related to genome assembly. By

virtue of the growing interest that the bioinformatics community is

Table 1. The first two columns are self-explanatory

Genome Length (bytes) kmin kmax

1% 5%

Helicobacter hepaticus 1 821 649 7 5 7

Neisseria meningitidis 2 300 775 8 6 8

Legionella pneumophila 3 440 237 8 6 8

Bacillus subtilis 4 268 311 8 6 8

Escherichia coli 4 699 685 8 6 8

Saccharomyces cerevisiae 12 309 083 9 7 9

Caenorhabditis elegans 101 539 997 10 9 10

Drosophila melanogaster 145 522 589 11 8 11

Homo sapiens 3 294 586 009 11 11 13

Picea abies 12 666 745 333 12 12 14

Pinus taeda 22 353 200 238 12 13 14

Picea glauca 25 194 253 706 12 13 14

Note: The third gives the minimum value of k for which there are nullom-

ers in each genome, while the remaining columns give the maximum value of

k one can use in order to estimate within a given percentage of error the en-

tropy of each genome via its k-order empirical probability distribution.

Table 2. Cardinality of the intersection of nullomer sets in BS, EC,

LP and NM genomes, given in percentage w.r.t. to the size of the

smaller set involved in the intersection, for k¼ 8

BS EC LP NM

BS – 2E–5 0 0

EC 2E–5 – 1E–4 1E–3

LP 0 1E–4 – 8E–5

NM 0 1E–3 8E–5 –

Note: Each species is indicated by the initials of its Latin name, e.g.

Bacillus subtilis is indicated as BS.

Table 3. The table legend is as in Table 2, but for HS and DM

and k¼ 11

DM

HS 3E–8

Table 4. The table legend is as in Table 2, but for HS, PT, PA and PG

and k¼ 12

HS PA PG PT

HS – 6E–6 2E–6 1E–6

PA 6E–6 – 2E–7 5E–8

PG 2E–6 2E–7 – 9E–8

PT 1E–6 5E–8 9E–8 –

Table 5. The table legend is as in Table 2, but for HS, PT, PA and PG

and k¼ 13

HS PA PG PT

HS – 6E–3 3E–3 2E–3

PA 6E–3 – 5E–4 3E–4

PG 3E–3 5E–4 – 2E–4

PT 2E–3 3E–4 2E–4 –

Table 6. The table legend is as in Table 2, but for PT, PA and PG

and k¼ 14

PA PG PT

PA – 7E–2 4E–2

PG 7E–2 – 2E–2

PT 4E–2 2E–2 –
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giving to ‘Big Data’ techniques such as MapReduce and the centrality

of the tools proposed here for alignment-free sequence analysis, KCH

represents a much needed addition to the current set of MapReduce

bioinformatics algorithms and tools.

Based on this success, for the future, one can envision the design of

MapReduce and Hadoop algorithms for alignment-free sequence com-

parison, based on more sophisticated notions of ‘k-mers’, such as

spaced words and seeds [see Horwege et al. (2014) and Leimeister

et al. (2017) and references therein]. Technically, the two-level aggre-

gation strategy, with the use of bins partitioning Rk, characterizing

KCH has been instrumental in its superiority with respect to BioPig,

which follows a rather straightforward map and reduce scheme.

Moreover, since there is no guarantee of balance among the various

bins, the flushing strategy that has been adopted is also a key factor.

Although it is not to be expected that the techniques produced here can

be applied verbatim to the more general contexts outlined earlier, they

provide a non-trivial path for the development of successful

MapReduce alignment-free sequence comparison algorithms. Finally,

given the growing level of attention that Spark is receiving in

Bioinformatics, the further extensions of this work will have to account

also for the proper choice of the middle-ware. At this stage, no obvious

benefit in efficiency is seen with a Spark implementation of KCH.
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