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Abstract— The normal flow equation is a nonlinear partial
differential equation that is quite popular in numerous research
fields related to the so-called level set methods. Specifically, we
have investigated the feedback control of such an equation by
proposing two different regulators. The first approach consists
in considering the velocity field of the equation as a control
action; in such a case a simple proportional regulator is proved
to be stable. In the second case, the control acts on the source
term, and it relies on a Luenberger observer that provides an
estimate of the norm of the gradient involved in the normal
flow equation. Also this controller is proved to be stable by
using Lyapunov arguments. Simulation results are presented to
show the effectiveness of the proposed approaches.

I. INTRODUCTION

The interest for the normal flow (NF) partial differential

equation (PDE), or NF equation for short, is motivated,

among the others, by the success of the so called level set

methods [1]. Such methods are used to describe the motion of

fronts in two or three dimensions with a number of applica-

tions to fluid dynamics, image processing, material science,

and many other fields [2]–[6]. In this paper we present two

different regulators for systems described by the NF equation

with a control action that may be either the speed of the

velocity vector orthogonal to the front represented by the

level sets of the unknown function or the source term of the

NF equation. Stability results are presented in both cases

together with successful simulation results that show the

effectiveness of the proposed approaches.

The literature on the control of systems described by PDEs

is extremely vast. If we restrict our attention to hyperbolic

PDEs, as they are quite close to Hamilton-Jacobi equations

like the NF equation, various approaches have been proposed

to construct stabilizing closed-loop controllers and observers

with stable estimation error, even possibly combined together

in cascade for the purpose of output feedback. Such stability

results are usually established by proving the contraction

properties of the corresponding semigroup operators [7], [8]

or by using classical Lyapunov tools [9]–[11]. Besides, the

backstepping paradigm has become pretty popular starting

with the pioneering work by Smyshlyaev and Krstic [12]

(see also [13]–[19]).

Concerning state estimation for systems described by

PDEs, many observers are proposed in the literature (see,
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among others, [20]–[26]). Here, we rely on the use of a

nonlinear Luenberger observer for the purpose of control (see

also [27], [28]).

In this paper, we derive novel feedback controllers for

systems described by a NF equation. In more detail, the

control action may be either the speed coefficient of the

velocity vector directed towards the normal to the front in

all points or the source term of the equation. In the first

case, a simple proportional controller is proposed, while in

the second one a more complex scheme is developed that

is based on a Luenberger observer providing an estimation

of the norm of the gradient involved by the NF equation.

Rigorous proofs of stability for the resulting controllers are

derived using Lyapunov arguments [29]. The effectiveness

of the proposed controllers is tested in different numerical

examples, showing the pros and cons of the proposed ap-

proaches.

The paper is organized as follows. Section II reports the

basic definitions that will be used in the following. The two

proposed control schemes and the corresponding stability are

presented in Section III. Section IV illustrates the simulation

results, while conclusions are reported in Section V.

II. PRELIMINARIES

The set of the nonnegative real numbers is denoted by

R≥0, while R>0 denotes the strictly positive real numbers.

For any integer n ≥ 1 and x ∈ R
n, let |x| :=

√∑n
i=1 x

2
i .

Consider the Hamilton-Jacobi equation

φt(x, t) +H(x, φ(x, t),∇φ(x, t)) = 0 , (x, t) ∈ Ω× R≥0

(1)

where Ω ⊂ R
q is compact, H : Ω × R × R

q → R is the

Hamiltonian function, and let the bounded and uniformly

continuous function φ(x, t) be a viscosity solution of (1)

with initial condition φ(x, 0) = φ0(x). L2(Ω) denotes the

Hilbert space of square integrable functions γ : Ω → R
q

with norm |γ|L2
=

(∫

Ω |γ(x, t)|2dx
)1/2

< ∞ for all

t ≥ 0. H1(Ω) denotes the Sobolev space of square inte-

grable functions with square integrable first derivatives, i.e.,

H1(Ω) := {γ ∈ L2(Ω) : ∇γ ∈ L2(Ω)}. Finally, let ϕ : Ω →
R be an equilibrium of (1) with initial condition φ0(x) if

H(x, ϕ(x),∇ϕ(x)) = 0. Then, the solution φ(x, t) ∈ H1(Ω)
of (1) is said to be:

• L2 stable to ϕ(x) if for all ε > 0 there exists δε > 0
such that

|φ0 − ϕ|L2
< δε ⇒ |φ− ϕ|L2

< ε

for all t ≥ 0;
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• L2 asymptotically stable to ϕ(x) if it is stable and

lim
t→+∞

|φ− ϕ|L2
= 0 ;

• L2 exponentially stable to ϕ(x) if there exists λ > 0
such that

|φ− ϕ|L2
≤ c |φ0 − ϕ|L2

exp(−λt) (2)

for some c > 0 and all t ≥ 0.

In case

|φ− ϕ|L2
≤ c exp(−λt)

holds instead of (2) (i.e., without explicit dependence on

|φ0 − ϕ|L2
in the r.h.s.), we simply say that φ(x, t) con-

verges exponentially to ϕ(x) in L2 sense. Finally, the Young

inequality is the upper bound of the cross product of any

couple of real numbers a and b as follows: 2ab ≤ a2 + b2 .

III. CONTROL SCHEMES FOR THE NF EQUATION

In this section, we present two control schemes for the

NF equation. Generally speaking, first of all consider the

NF equation

φt(x, t)+g(x, t) |∇φ(x, t)| = h(x, t) in Ω× [0,+∞) (3)

where g : Ω×[0,+∞) → R and h : Ω×[0,+∞) → R are the

velocity field and the source term, respectively. First, we will

consider (3) with control input given by the velocity field. For

the sake of brevity, we will refer to this case as “velocity field

control,” or VFC for short. Then, we will focus on (3) with

control input represented by the source term, and we will

call such a case as “source term control,” or simply STC. In

the following, we will investigate both approaches in detail,

providing rigorous proofs of stability. For the sake of brevity,

we will focus on the proofs of stability to zero though we

may deal with tracking problems in general. Moreover, for

the same reason from now on we refer to the one-dimensional

case, i.e., with Ω = [a, b] with a < b.

A. Control in the Velocity Field

We focus on (3) with control input given by the velocity

field g(x, t) and source term h(x, t) equal to zero. In other

words, we consider the following equation:

φt(x, t) + u(x, t) |φx(x, t)| = 0 (4)

where u(x, t) denotes the control input. To stabilize (4), we

propose to use a feedback regulator as follows:

u(x, t) = k φ(x, t) (5)

where k > 0 is a given coefficient. Such a choice guarantees

the stability of the closed loop system, as proved by the

following theorem.

Theorem 1: System (4) subject to a proportional feedback

law (5) with gain k > 0 is L2 stable to zero.

Proof: Given the Lyapunov functional

V (t) =
1

2

∫

Ω

φ(x, t)2dx ,

owing to (4) it is straightforward to get

V̇ (t) = −k

∫

Ω

φ(x, t)2 |φx(x, t)|dx ≤ 0

for all φ(x, t) ∈ L2(Ω) and thus conclude on the L2 stability

to zero with gain k > 0 by means of standard Lyapunov

arguments [29].

Note that in general the above theorem ensures only

stability, but not asymptotic stability.

B. Control in the Source Term

We consider the NF equation (3) with a fixed velocity field

f(x, t) and a control input given by the source term. In other

words, instead of (4) we focus on the following equation:

φt(x, t) + f(x, t) |φx(x, t)| = u(x, t) (6)

where f : Ω × [0,+∞) → R is a known smooth, bounded

function acting as velocity field. From now on we suppose

that f(x, t) > 0 for x ∈ Ω, t ∈ [0,+∞). Such assumption

guarantees a coercive Hamiltonian, which is a condition,

among others, that is required to ensure the existence of

solutions for (6).

If we had at disposal the knowledge of the gradient of

φ(x, t), it would be easy to set up a regulator that stabilizes

the system to zero. For example, we could choose u(x, t) =
−k φ(x, t) + f(x, t) |φx(x, t)|. In the absence of any knowl-

edge on φx(x, t), we may construct a suitable observer-based

control scheme. More specifically, in the following firstly we

will focus on a Luenberger observer for the second term

in the l.h.s. of (6), i.e., η(x, t) := f(x, t) |φx(x, t)|. Then,

we will put such an observer in the loop with the scope

of compensating η(x, t) with a suitable estimate η̂(x, t) to

impose a stabilizing feedback.

In order to estimate η̂(x, t) := f(x, t) |φ̂x(x, t)|, we rely

on a Luenberger observer

φ̂t(x, t) + f(x, t) |φ̂x(x, t)|+ ℓ (φ̂(x, t)− φ(x, t)) = u(x, t)
(7)

where ℓ > 0 is the gain and φ̂(x, t) is the state of the

observer.

Theorem 2: Observer (7) for system (6) provides an esti-

mation error φ̃(x, t) := φ(x, t)− φ̂(x, t) that is L2 exponen-

tially stable to zero if ℓ > 0 and φ̃(a, t) = φ̃(b, t) for all

t ≥ 0.

Proof: The time derivative of the Lyapunov functional

V (t) =
1

2

∫

Ω

φ̃(x, t)2dx

is

V̇ (t) = −ℓ

∫

Ω

φ̃(x, t)2dx+

∫

Ω

f(x, t) φ̃(x, t)
[ ∣
∣
∣φ̂x(x, t)

∣
∣
∣

− |φx(x, t)|
]

dx . (8)

For the sake of brevity, let

Fφ(x, t) := f(x, t) φ̃(x, t)
[ ∣
∣
∣φ̂x(x, t)

∣
∣
∣ − |φx(x, t)|

]

.



Clearly, if
∫

Ω

Fφ(x, t)dx ≤ 0

from (8) we get V̇ (t) ≤ −ℓ V (t) and immediately conclude

the proof. Toward this end, we note that
∫

Ω

Fφ(x, t)dx =

∫

{x∈Ω: φ̃(x,t) φ̃x(x,t)≥0}

Fφ(x, t) dx

+

∫

{x∈Ω:φ(x,t) φ̃x(x,t)<0}

Fφ(x, t) dx . (9)

The first term in the r.h.s. of (9) can be easily bounded

by zero since f(x, t) is smooth and bounded. Concerning

the second term, the derivation of the same bound can be

obtained by using the assumption that f(x, t) is non negative.

For the sake of space limitation, this proof is omitted.

Note that the condition φ̃(a, t) = φ̃(b, t) can be satisfied

by choosing φ(x, t) = φ̂(x, t) on the boundary.

Based on the estimate η̂(x, t) := f(x, t) |φ̂x(x, t)|, we can

generate the control action

u(x, t) = −ℓ φ(x, t) + (ℓ− k) φ̂(x, t) + f(x, t)
∣
∣
∣φ̂x(x, t)

∣
∣
∣

(10)

in such a way to stabilize the system, as follows.

Theorem 3: The state of system (6) subject to (10) with

k > 0, ℓ > 0, and φ̃(a, t) = φ̃(b, t) converges exponentially

to zero in the L2 sense.

Proof: If we replace (10) in (7), we get φ̂t(x, t) =
−k φ̂(x, t) and hence, using the Lyapunov functional V (t) =
∫

Ω
φ̂(x, t)2dx/2, it is straightforward to prove the L2 expo-

nentially stability of φ̂(x, t) to zero. Since from the Young

inequalities it follows

φ(x, t)2 =
(

φ̃(x,t)
︷ ︸︸ ︷

φ(x, t) − φ̂(x, t) +φ̂(x, t)
)2

≤ 2 φ̃(x, t)2 + 2 φ̂(x, t)2 ,

we conclude on the L2 exponential convergence of φ(x, t) to

zero owing to the L2 exponentially stability of both φ̂(x, t)
and φ̃(x, t) (from Theorem 2).

It is noteworthy that the special choice of k just equal to

ℓ provides the simple observer-based law

u(x, t) = −k φ(x, t) + f(x, t)
∣
∣
∣φ̂x(x, t)

∣
∣
∣ (11)

In the next section, we will analyze the effectiveness of the

proposed control schemes by means of simulations.

IV. SIMULATION RESULTS

This section is focused on the numerical results we ob-

tained in applying the proposed approaches to force a front

to become another given reference front. As compared with

previous results on the optimal control of moving fronts

associated with the level set of a NF equation [30]–[32], the

new results are obtained by using much simpler controllers.

A moving front is described by the zero level set of a

certain function φd(x) ∈ H1(Ω). Specifically, the zero level

set of the function φ is given by the set-valued mapping

Γ : [0, T ] ⇒ C, where Γ(t) := {x ∈ Ω : φ(x, t) = 0}.

We will construct regulators for (3) such that Γ(t) tracks

the reference front Γd := {x ∈ Ω : φd(x) = 0}. Indeed, the

proposed approaches will allow to track the entire function

φ and not only its zero level set. As a consequence, all the

level sets of φ will converge to the corresponding level sets

of φd.

We focus on case studies involving VFC and STC prob-

lems with a two-dimensional NF equation and different

shapes of the reference curve given by the zero level set of

the function φd(x). More specifically, we considered a circle,

two ellipses, and a star-shaped curve, denoted as “Case A”,

“Case B”, and “Case C”, respectively. In all the examples,

we fixed f(x, t) = 1 for the STC.

In all the cases, the NF equations (4) or (6) were solved

on a spatial domain Ω = [−0.5,+0.5] × [−0.75,+0.75],
discretized by using a regular grid of 50 × 75 points.

Concerning the VFC approach, we fixed a time interval

[0, 1.5], discretized with sampling time ∆t equal to 0.03,

i.e., 50 time steps were needed to complete the simulation.

As regards the STC, we considered a time interval [0, 0.6]
sampled with a total of 300 steps.

All the simulations were performed in Matlab on a per-

sonal computer with a 2.6 GHz Intel Xeon CPU with 64 GB

of RAM. In more detail, the Matlab toolbox implemented by

Mitchell [33] was used. An upwind second-order essentially

non-oscillatory scheme [6, chap. 3] with respect to the space

was used for the numerical solution of the NF equations.

Concerning the time approximation, we adopted a total

variation diminishing Runge-Kutta scheme of second order.

Fig. 1 reports the snapshots of the fronts Γ(t) and Γd for

the VFC approach. In more detail, the results of the Cases

A and C were obtained with k = 20, while the plots of Case

B refers to k = 10000. Fig. 2 sketches the snapshots of the

fronts Γ(t) and Γd for the STC approach. Specifically, the

results of the Cases A and C were obtained with k = ℓ = 20,

while the plots of Case B refers to k = ℓ = 1000. In both

the VFC and STC, the largest coefficient in the Case B is

required by the intrinsic difficulty of this example, which

involves a change of topology.

To evaluate the performances, we introduce the quantity

e(t), defined as the symmetric difference between the actual

front Γ(t) and the reference one Γd, i.e.,

e(t) =

∫

Ω

Γ(t) ∆ Γd dx

where ∆ is the symmetric difference operator, i.e., A∆B =
(A∪B) \ (A∩B). Figs. 3 and 4 show the time behavior of

e(t) for the VFC and STC schemes, respectively.

It turns out that both the VFC and the STC are able to

guarantee convergence to the reference front Γd for all the

considered shapes. The convergence speed of the VFC is

higher than that of the STC, as it is evident by checking

Fig.s 3 and 4. In general, the STC requires larger values for
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Fig. 1. Front tracking snapshots obtained with the VFC approach in the three considered cases.

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case A t=0

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case A t=9.83·10−2

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case A t=1.99·10−1

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case A t=2.99·10−1

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case B t=0

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case B t=4.01·10−3

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case B t=1.00·10−2

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case B t = 1.61·10−2

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case C t=0

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case C t=9.83·10−2

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case C t=1.99·10−1

-0.5 0 0.5

-0.5

0

0.5

x1

x2
Γd

Γ(t)

STC Case C t=2.99·10−1

Fig. 2. Front tracking snapshots obtained with the STC approach in the three considered cases.

the parameter k to obtain convergence with respect to the

VFC. Such a behavior is ascribed to the the effect of the

observer in the loop of the STC, whereas no estimator is

required to control the fronts with the VFC.
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Fig. 3. Time decrease of the error e for the VFC approach.
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Fig. 4. Time decrease of the error e for the STC approach.

As said, both the VFC and STC methods ensure the con-

vergence of the entire function φ and not only its zero level

set. As a consequence, all the level sets of φ converge to the

corresponding level sets of φd. Fig.s 5 and 6 confirm this, as

they display the snapshots of the functions φ(x, t) at certain

time steps and φd(x) for the VFC and STC approaches,

respectively, in the first line and the corresponding level sets

in the second one for the Case C. Similar results could be

shown for the Cases A and B, but they are not reported for

the sake of brevity.

V. CONCLUSIONS

In this paper, we have studied the feedback control of the

NF equation by proposing two different regulators. In the first

case, the control acts on the velocity field of the equation,

and it is simply proportional. Moreover, it has been proved to

be L2 stable. In the second case, the control action is in the

source term and relies on a structure containing a Luenberger

observer that provides an estimation of the norm of the

gradient of φ(x, t) appearing in the NF equation. Successful

simulation results with different shapes given by the zero

level sets of the reference functions have been presented that

confirm the theoretical findings. The existence of the solution

of closed-loop NF equations is still an open problem that we

are currently investigating.
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