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ABSTRACT  

Uveal melanoma (UM) exhibits recurring chromosomal abnormalities and gene driver mutations, 

which are related to tumor evolution/progression. Almost half of the patients with UM develop 

distant metastases, predominantly to the liver, and so far there are no effective adjuvant therapies. 

An accurate UM genetic profile could assess the individual patient’s metastatic risk, and provide 

the basis to determine an individualized targeted therapeutic strategy for each UM patients. 

To investigate the presence of specific chromosomal and gene alterations, BAP1 protein 

expression, and their relationship with distant progression free survival (DPFS), we analyzed tumor 

samples from 63 UM patients (40 men and 23 women, with a median age of 64 years), who 

underwent eye enucleation by a single cancer ophthalmologist from December 2005 to June 2016. 

The presence of losses/gains in chromosomes 1p, 3, 6p and 8q was determined by MLPA; GNAQ, 

GNA11, BAP1, EIF1AX and SF3B1 genes were sequenced, and BAP1 protein expression was 

detected by immunohistochemistry (IHC).   

Multivariate analysis showed that the presence of monosomy 3, 8q gain, and loss of BAP1 protein 

were significantly associated to DPSF, while BAP1 gene mutation was not, mainly due to the 

presence of metastatic UM cases with negative BAP1 IHC and no BAP1 mutations. Other 

mechanisms than mutation might be responsible for the loss of BAP1 protein expression, which, 

together with monosomy 3, represent the strongest predictors of metastases, and may have 

important implications for implementation of patient surveillance, properly designed clinical trials 

enrollment, and adjuvant therapy. 
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INTRODUCTION 

Uveal melanoma (UM) is a rare malignancy arising from uveal melanocytes. Current diagnosis of 

UM is based on both the clinical experience of the specialist and diagnostic techniques such as 

indirect ophthalmoscopy, ultrasonography scans, fundus fluorescein angiography, and 

transillumination1.  Despite the wide range of therapeutic options, including local radiotherapy, 

surgical resection and phototherapy, almost half of the patients with UM develop distant 

metastases, predominantly to the liver2. The poor outcome of UM patients with metastatic disease 

derives from the absence of proven effective adjuvant therapies3,4 .UM prognosis is based on 

clinicopathologic factors, and, most importantly, on molecular and genetic markers5-10. 

UM typically exhibits recurring chromosomal abnormalities, which are related to tumor 

progression11. Recently, Yavuzyigitoglu et al12 hypothesized that UM with specific mutations are 

characterized by different mechanisms causing different types of chromosomal abnormalities. 

Chromosome alterations correlated with reduced UM patient survival are chromosome 3 loss, 

chromosome 8q gains and loss of chromosome 1p (reviewed in 3). UM also shows a pattern of 

recurrent mutations. Mutations in GNAQ and GNA11 are early events that promote cell 

proliferation. Mutations in BAP1, SF3B1, and EIF1AX represent later events that are largely 

mutually exclusive. BAP1 mutations are associated with rapid metastatic progression and EIF1AX 

mutations with prolonged metastatic-free survival13-15. SF3B1 mutations have an intermediate risk 

and are associated with late metastasis16. 

Predictive information on the clinical outcome of UM patients could provide, in a hopefully near 

future, the basis to determine an individualized, targeted therapeutic strategy for each UM patient. 

To reach this goal, it is important to have an accurate prediction system to assess the individual 

patient’s metastatic risk.  

In this study, we evaluated clinical, pathologic, and genetic features of a UM series, and analyzed 

their associations with metastatic progression.   
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MATERIALS AND METHODS 

Patients 

Tissue samples were obtained from 63 primary UM after enucleation surgery at E.O. Galliera 

Hospital, Genoa, Italy, between December 2005 and June 2016. Written informed consent was 

obtained from all patients. Follow-up data were available for 61 patients, as shown in Table 1.  

Tissue sampling and histopathological analysis 

Tumor sampling was performed directly after enucleation by fine needle aspiration biopsy or by 

transscleral biopsy. For histopathologic examination, the eyes were formalin fixed and paraffin 

embedded (FFPE), and 2 μm-thick sections were stained with the conventional hematoxylin and 

eosin stain. Two co-authors (RB and MR) confirmed the diagnosis of UM. Cell type was assigned 

according to the modified Callendar classification system17.  

DNA extraction and Sanger sequencing 

DNA was extracted from tumor material conserved in RNAlaterTM (Ambion, Monza, Italy) or from 

archival  FFPE blocks using QIAamp DNA Mini kit and QIAamp DNA FFPE MINI kit (Qiagen, 

Hilden, Germany), respectively, according to the manufacturer’s instructions. DNA concentration 

and quality were checked in the Nanodrop-ND-1000 spectrophotometer and integrity of DNA by 

agarose gel electrophoresis. PCRs and sequencing data analysis were carried out as previously 

published18. All PCR primers are reported in in the Supplementary Table1.  

Multiplex ligation-dependent probe amplification (MLPA)  

Multiplex ligation-dependent probe amplification (MLPA) was performed according to the 

manufacturer’s instructions (MRC Holland, Amsterdam, The Netherlands). In short, 100 ng of 

genomic DNA diluted in 5 μl TE were denatured at 98°C for 5 min, cooled to 25°C and 3 μl of a 1:1 

mixture of MLPA buffer and SALSA P027-C1 Uveal Melanoma probe-mix was added. After 

hybridization for 16 h at 60°C, 32 μl ligation mix were added, and the reaction was incubated for 15 

min at 54°C followed by 5 min at 98°C. Subsequently, 10 μl of the SALSA PCR-mix were added to 

40 μl of ligation product and this was amplified by PCR in 35 cycles (30 s, 95°C; 30 s 60°C; 60 s 

72°C). PCR products were quantified using the ABI 3130XL (Applied Biosystems-Life 

Technologies Corporation, Milan, Italy) and coffalyser.net software (MRC-Holland). Data were 

analyzed as already published17.  
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Microsatellite analysis (MSA) 

Twelve polymorphic microsatellite repeats on chromosome 3 were chosen to perform MSA 

(Supplementary Table 2). PCRs were carried out using 25 ng of genomic DNA in a 25 µl reaction 

mix including 10x Platinum® PCR Supermix, 1.5mM MgCl2, 200µM dNTPs, 0.4µM each primer 

pair and 2U Taq Platinum (Invitrogen-Life Technologies Corporation, Italy). PCR cycles: 95°C for 

12 min, 10 x (15s, 94°C; 15s 56°C; 30s 72°C), 20 x (15s 89°C; 15s 56°C; 30s 72°C); 30m 72°C. 

PCR products were quantified using the ABI 3130XL sequencer (Applied Biosystems-Life 

Technologies Corporation, Milan, Italy) and analyzed by Genemapper™ software (Applied 

Biosystems, Foster City, CA, USA). A comparison of the peak area of DNA from UM biopsy 

specimens and normal DNA from matched blood sample allows the determination of allele ratio in 

UM.  

Sodium bisulfite modification and Pyrosequencing Assay  

Genomic DNA was chemically modified with the Epitect Bisulfite kit (Qiagen, Milan, Italy). The PCR 

and sequencing primers for BAP1 were designed with the Pyrosequencing Assay Design Software 

(Biotage, Uppsala, SW) to recognize some CpG sites in the CpG island in the TSS defined as Area 

119. The PCR primers sequences were: BAP1 Fw: 5’-Bio-GAGGGAGGGTTTGGATATG-3’; BAP1 

Rev: 5’-ATCCCCTCCTCACCTAAA-3’. The resulting amplicons were pyrosequenced (SPQ 96MA 

instrument, Qiagen) utilizing the Pyro Gold reagent kit SPQ 96MA according to the manufacturer 

instructions (BAP1 Sequencing primer: 5’-CCCCTCCTCACCTAAA-3’). Sequence analysis was 

conducted with the Pyro Q-CpG software (version 1.0.9).  

BAP1 Immunohistochemistry (IHC) 

IHC was performed on 2 µm sections with an automated IHC staining system (Ventana BenchMark 

ULTRA, Ventana Medical Systems, Italy). After deparaffinization and heat-induced antigen 

retrieval, the sections were incubated with a mouse monoclonal antibody raised against amino 

acids 430-729 of human BAP1 (C-4 clone sc-28383, 1:50 dilution, Santa Cruz Biotechnology, Inc. 

USA), followed by incubation with haematoxylin II. Endothelial cells constituted the internal positive 

control for IHC procedure. Two independent observers (RB and MR) scored the slides with no prior 

knowledge of the UM chromosome 3 status. 

Statistical Analysis  
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Fisher’s exact test was used to detect associations between the prevalence of metastasis and 

main discrete dichotomous factors. Univariate survival analysis of time to metastasis was 

performed using the Kaplan–Meier method (log-rank test), considering the date of enucleation as 

starting point and the date of MT diagnosis as endpoint. Data were censored on the date of last 

follow-up. Cox Proportional Hazard modelling was employed to estimate hazard ratios (HRs), 

adjusting for age, tumor stage (T), and sex. Statistical analysis was performed using STATA 

statistical package (version 14, Stata Corp, College Station, Texas, USA). 
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RESULTS 

Clinical-pathological findings 

The study cohort comprised 63 UM patients, consisting of 40 men (63%) and 23 women (37%), 

with a median age at the time of eye enucleation of 64 years (range 28-89 years) and a median 

follow-up time of 3 years (interquartile range, IQR: 2-6 years). Thirty-five out of 63 (56 %) patients 

had developed uveal melanoma metastases to the liver (mean time to metastasis 25.7 months; 

range 0–97 months). All the data relating to the patients, the pathological T stages, the UM 

histological cell type, and follow-up are summarized in Table 1. 

MLPA and MSA 

The distribution of gains in chromosomes 8q and 6p, chromosomes 3 monosomy/isodisomy, and 

losses in 1p is shown in the first 4 rows of Figure 1. MLPA was successful in 60/63 (95%) UM 

samples. Forty out of 60 (67%) analyzed samples harboured monosomy 3, 5/60 (8%) a partial 

monosomy 3 (Figure 1 and Supplementary Figure 1), 13/60 (22%) the loss of the short arm of 

chromosome 1 (1p-), 17/60 (28%) gains in 6p, and 41/60 (70%) gains in 8q. In 57 UM samples, the 

monosomic/disomic status of chromosome 3 was also confirmed by chromosome 3 MSA (MSA 

failed in UM01, UM06, UM10, UM40, UM49, and UM54). In 4 UM samples (UM2, UM20, UM33, 

and UM34) with a normal chromosome 3 dosage by MLPA, loss of heterozygosity (LOH) of all 

informative MSA markers indicated isodisomy of chromosome 3. In UM17, in addition to 1p loss, 

6p gain and 8q gain, MLPA showed the loss of control probes in 2p12.3, 4q13.2, and 13q14.3 

(data not shown).  

Mutation analysis 

GNAQ mutations were detected in 20/63 (32%), and GNA11 mutations in 25/63 (40%) UM 

samples (Figure 1 and Table 2). In GNAQ, all the mutations were missense mutations at the two 

known hotspots Q209 (13/20 (65%) c.626A>C p.Q209P, and 6/20 (30%) c.626A>T p.Q209L), and 

R183 (1/20 (5%) c.548G>A p.R183Q). In GNA11, all the mutations were missense mutations at 

the two known hotspots Q209 (23/25 (92%) c.626A>T p.Q209L), and R183 (2/25 (8%) c.547C>T 

p.R183C).  
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BAP1 coding regions and splice sites sequencing was successful in 60/63 (95%) UM samples, due 

to poor DNA quality/quantity of 3 samples (UM9, UM14, and UM49). BAP1 mutations were 

identified in 31/60 (52%) UM samples: 28 cases with monosomy 3 and 3 with isodisomy 3 (Figure 

1, and Table 2). In 6 UM samples with monosomy 3 (UM16, UM28, UM31, UM36, UM43, and 

UM48), Sanger sequencing showed a BAP1 heterozygous mutation (Table 2). Thirteen out of 31 

(42%) UM had in-frame mutations, consisting in 10 missense mutations and 3 in-frame deletions. 

To predict the possible impact of the amino acid substitutions due to the different missense 

mutation on the structure and function of BAP1 protein, Polyphen-220 

(genetics.bwh.harvard.edu/pph2/index.shtml) and SIFT21 (sift.jcvi.org) were used (Table 2). 

Out-of-frame mutations were present in 18/31 (58%) UM: 13 samples had frameshift 

insertions/deletions, 2 samples splice site mutations, 2 samples nonsense mutations, and 1 

sample a read-through mutation (Table 2). The distribution of BAP1 mutations is shown in 

Supplementary Figure 2. Nineteen out of 31 BAP1 mutations are not yet reported in UM or in any 

other cancer (Supplementary Table 3). BAP1 promoter methylation analysis was conducted in 3/11 

tumors with discrepancy between IHC and sequencing (loss of BAP1 protein expression and no 

BAP1 mutation), but no hypermethylation was detected (Supplementary Figure 3).  SF3B1 

mutations were identified at R625 codon in 6/61 (10%) UM: 5/6 SF3B1 mutations occurred in UM 

with BAP1 wt and positive IHC, and 1/6 in a UM with BAP1 wt but with negative IHC (Figure 1, and 

Table 2).  Five out of 60 (8%) UM had a missense mutation in EIF1AX gene (Figure 1, and Table 

2), in either exon 1 (UM32, UM52, UM60) or exon 2 (UM27, UM51). Two out of 5 EIF1AX 

mutations were found in cases with monosomy 3, BAP1 mutation, and loss of BAP1 nuclear 

immunostaining.  

BAP1 Immunohistochemistry  

BAP1 IHC was successful in 62/63 cases (for UM06 no FFPE tumor material was still available), 

(Figure 1).  

Nineteen out of 62 (31%) UM samples showed a BAP1 nuclear positive immunostaining, and 

43/62 (69 %) were IHC negative (Figure 2a and 2b, respectively). In positive UM samples, BAP1 

staining did not show any intratumoral heterogeneity. Among the 43 UM with negative nuclear IHC, 

4 UM samples (UM14, UM23, UM40, UM48) showed a cytoplasmic signal (Table 2, Figure 2c), 
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and 7 (UM16, UM28, UM31, UM36, UM38, UM43, UM48) with immune-cell infiltration (Table 2, 

Figure 2d).  

Statistical Analysis - Associations between mutations and distant progression free survival 

(DPFS) 

Univariate associations between studied parameters and metastatic disease were performed using 

the Fisher’s exact test (Table 3). Significant associations with DPFS were found for monosomy 3 

(p=0.008), gain of 8q (p=0.012), BAP1 mutation (p=0.019), and loss of BAP1 protein expression 

(p=0.005). Conversely, gain of 6p was associated with the absence of liver metastases (p=0.019). 

As regards time-to-event analysis, after a median follow-up time of 3 years (interquartile range, 

IQR: 2-6 years), median DPFS was 2.5 years (IQR: 1.8–7.7 years). Kaplan-Meier DPFS curves 

and Hazard Ratios adjusted for age, sex and tumor stage, T (Cox regression) showed that the 

presence of monosomy 3 was significantly associated to DPFS (HR=6.3, 95%CI: 1.5-27.2), as well 

as 8q gain (HR=3.6, 95%CI: 1.05-12.6), and BAP1 negative IHC (HR=4.3, 95%CI: 1.4-12.8), while 

the presence of BAP1 mutation was not statistically significant (HR=1.6, 95%CI: 0.7-3.8) (Figure 

3).  
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DISCUSSION  

Specific cytogenetic alterations are associated in UM to metastatic progression 22. Also in our UM 

series, monosomy 3 and gains in 8q were found associated to metastatic UM, and 6p gain to UM 

with a good prognosis. The relationship between BAP1 loss and UM metastatic progression is 

reinforced by multiple independent studies23,24. BAP1 protein activity depends on both 

deubiquitinating domain and nuclear localization. Missense mutations, which are mainly found in 

UCH domain, can impair the catalytic domain25,26. Frameshift mutations can give rise to abnormal 

mRNAs, subjected to nonsense-mediated RNA decay27, or resulting in truncated proteins lacking 

the C-terminal nuclear localization signals or prone to rapid degradation28,29.  Altogether, we found 

31 BAP1 mutations in UM with monosomy/isodisomy 3. In 6 UM samples, Sanger sequencing 

identified heterozygous BAP1 mutations. All these samples were characterized by immune-cell 

infiltration, and in all of them BAP1 IHC clearly showed loss of nuclear immunosignal in UM cells, 

with infiltrating cells showing positive nuclear immunostaining. In these cases, the most likely 

explanation for the observed BAP1 mutation heterozygosity could be the presence of wt BAP1 

alleles from infiltrating cells rather than BAP1 status heterogeneity in the tumor. Thirteen BAP1 

mutations were in-frame mutations, 12 of those clustered in the region spanning exons 4 to 8 of the 

BAP1 gene, within the UCH domain. In all but one case, the samples with BAP1 missense 

mutations were IHC negative: UM53, harboring in UCH domain the mutation H94R, predicted 

damaging by PolyPhen-2 and deleterious by SIFT, showed BAP1 nuclear signal. H94R could likely 

determine loss of UCH function while maintaining protein expression and nuclear localization. On 

the other side, all the other 11 in-frame mutations had as consequence the loss of BAP1 protein 

expression, independently from localization and functionality prediction by Polyphen2 and SIFT.  

Data about specific BAP1 missense mutations and resulting expression and/or localization of 

mutated BAP1 protein are not fully in agreement16,23,30,31: BAP1 C91 mutants showed conflicting 

IHC results, showing positive nuclear signal in some reports 16,30 and negative in others23; 

moreover, BAP1 A95D mutant revealed positive nuclear immunostaining16,30 but in another report it 

was described as structural instable, showing in vitro β-amyloid aggregation and perinuclear 

accumulation31.  
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Eighteen samples had truncating or read-through BAP1 mutations, and all showed the absence of 

BAP1 nuclear immunostaining. Previous papers showed that the consequence of out-of-frame 

mutations is the absence of BAP1 nuclear protein, with some exceptions: Koopmans et al 32 

reported two hemizygous mutants harboring an out-of-frame deletion in exon 16 with a positive 

BAP1 staining, and Yavuzyigitoglu et al16 described two UM cases (both with monosomy 3) 

expressing nuclear BAP1 protein despite the BAP1 nonsense mutations Q36*, and E406*, 

respectively. This latter finding is quite surprising, because both Q36* and E406* nonsense 

mutants are expected to have lost the epitope recognized by the antibody, and, in addition, they 

should have lost the nuclear localization signals.  

Associations between mutations and DPFS are in agreement with previous reports8,23,28,33, with the 

exception of BAP1 mutation, which did not reach a statistically significant association. Various 

factors could have influenced the latter result, e.g. heterogeneity in the length of follow-up, the 

relatively low statistical power which is a common bias of rare disease studies, but, most 

importantly, in 11/43 (26%) UM with negative BAP1 IHC no BAP1 mutations were found. Among 

the 11 cases with discrepancy between Sanger sequencing and IHC, 8 had monosomy 3 and 3 

partial monosomy 3, 6/11 were metastatic (follow-up 6-39 months), 3/11 were non metastatic 

(follow-up 11- 23 months), and 2 patients were lost to follow-up. UM cases lacking IHC BAP1 

signal without BAP1 mutations were already reported 16,33,34, but until now no other mechanisms 

than mutations are known that could prevent BAP1 expression, i.e. epigenetic changes leading the 

silencing of the gene, or alterations in non-coding regions that are regulation targets of BAP1 

expression. 

In our UM series, univariate analysis showed that chromosome 3 monosomy, 8q gain, BAP1 

mutations, and loss of BAP1 nuclear immunostaining were all significantly associated with 

metastatic progression, in agreement to previous studies15,32,33-36. Nevertheless, there is no 

prognostic factor combination able to identify all metastatic cases: 4/63 (6%) UMs assigned to the 

good-prognosis group on the basis of their genetic features (disomy 3, BAP1 wt and positive BAP1 

IHC) developed liver metastases. Only in one of these cases (UM17), in addition to UM-specific 

chromosome imbalances, a high instability was observed, with loss of some MLPA-control probes. 

It is known that rare UM with disomy 3 can develop metastases 35,37-39, but there is no evidence on 
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possibly involved metastatic pathway(s). Although many studies have reported quite large numbers 

of UM cases, those that have given a detailed mutational and cytogenetic analysis are indisputably 

fewer40. In this view, this study gives a contribution in defining the genetic UM landscape. For 

prognostication, the presence of monosomy 3 and BAP1 negative IHC are the strongest predictors 

of metastases, and may have important implications for the implementation of a more intensive 

patient surveillance and adjuvant therapy. The validity of these observations must be assessed in 

properly designed clinical trials. 
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Table 1  

Patients, tumor characteristics, and follow-up 

Tumor Id 
Age at 
Diagnosis 
(Y) 

Sex T 
Cell 
Type 

MT 
Time To 
MT 
(Months) 

Follow up 
(Months) 

UM01 64 M T4A M yes 38 38 

UM02 62 M T2A F yes 30 30 

UM03 69 M T4 M yes 24 24 

UM04 73 F T2A M yes 93 93 

UM05 74 M T4C E yes 47 47 

UM06 71 F - M no 0 148 

UM07 80 M T4B E yes 29 29 

UM08 60 M T2C E yes 97 100 

UM09 75 F T4A E yes 26 31 

UM10 69 M T3A E no 0 13 

UM11 62 M T4 E yes 6 6 

UM12 78 F T4A E no 0 51 

UM13 47 M T3B E yes 25 25 

UM14 57 F T4A E yes 14 14 

UM15 48 M T3A E no 0 33 

UM16 77 M T4B E yes 3 3 

UM17 64 M T3A E yes 7 21 

UM18 85 M  -  E no 0 0 

UM19 53 M T2A E yes 6 13 

UM20 78 M T3A E no 0 3 

UM21 74 M T4 E yes 27 27 

UM22 67 M T4B E yes 17 17 

UM23 47 M T2A E no 0 11 

UM24 47 M T3 E no 0 41 

UM25 40 M T4B E no 0 25 

UM26 86 M T4A E yes 12 19 

UM27 74 M T3A M UN UN UN 

UM28 49 F T3A M yes 25 25 

UM29 41 M T3A E no 0 28 

UM30 81 M - E yes 40 43 

UM31 78 F T4A E no 0 28 

UM32 63 F T4A E no 0 42 

UM33 51 F T3A E yes 0 0 

UM34 74 F T2A M yes 64 64 

UM35 28 F - M UN UN UN 

UM36 66 M T3A M no 0 22 

UM37 79 M T3A M yes 17 20 

UM38 71 M - E yes 25 39 

UM39 66 F T3A E no 0 21 

UM40 66 F T4 E yes 6 19 

UM41 59 M T4A E no 25 25 

UM42 83 F T3A E no 0 36 



19 
 

Table1. (Continued) 

Tumor Id 
Age at 
Diagnosis 
(Y) 

Sex T 
Cell 
Type 

MT 
Time To 
MT 
(Months) 

Follow up 
(Months) 

UM43 30 M T3A E no 0 23 

UM44 75 F - M yes 11 11 

UM45 28 F T3A E yes 13 28 

UM46 89 F T4B E no 0 23 

UM47 47 M T2 E no 0 52 

UM48 58 M T4A E yes 7 7 

UM49 41 M T3A E yes 26 39 

UM50 64 F T4A E yes 6 23 

UM51 59 M T3A M no 0 8 

UM52 35 F T3A E no 0 1 

UM53 64 F T4A M no 0 22 

UM54 71 F T4 E yes 22 22 

UM55 28 M T4A E no 0 22 

UM56 68 F T4A E no 0 43 

UM57 64 M T4A E no 0 35 

UM58 78 M T4A E yes 0 0 

UM59 40 F T4A E yes 26 38 

UM60 52 M T3A E yes 0 36 

UM61 66 M T2A E no 0 73 

UM62 51 M - E yes 23 27 

UM63 84 M T4B E yes 30 34 

 

M, male; F, female; T, tumor stage; E, epithelioid cell type; S, spindle cell type; M, mixed epithelioid 

and spindle cells; MT, metastases; UN, unknown.  



20 
 

Table 2 

 Genetic Analysis of 63 UM studied 

Tumor 
ID 

MTS 
Chrom. 
3 
Status  

GNAQ 
protein 

GNA11 
protein 

EIF1AX 
protein 

SF3B1 
protein 

BAP1 sequencing BAP1 protein 
Polyphen2/ 
SIFT 
prediction 

BAP1 
nucle
ar IHC  

Immune-
Infiltr. 

UM01 yes M3 wt Q209L  wt wt wt wt   pos   

UM02 yes ISO 3 wt Q209L  wt R625C wt wt   neg   

UM03 yes M3 wt Q209L  wt wt c.1817_1821del A606Gfs*35   neg   

UM04 yes M3 wt wt wt wt c.265_300del N89_L100del   neg   

UM05 yes M3 wt wt wt wt c.290T>C L97P 

Probably 
damaging/ 
Damaging 

neg   

UM06 
loss 
FU 

D3 wt wt wt wt wt wt (K139K) 
  

-   

UM07 yes M3 wt Q209L  wt wt c.2089T>C S697P 

Probably 
damaging/ 
Tolerated 

neg   

UM08 yes M3 wt wt wt wt c.287_307del L96_N102del   neg   

UM09 yes M3 wt Q209L nd nd nd nd   neg   

UM10 
loss 
FU 

M3 wt wt wt wt wt wt 
  

neg   

UM11 yes M3 wt wt wt wt c.638G>C R213P 

Probably 
damaging/ 
Damaging 

neg   

UM12 no D3 wt wt wt R625C wt wt   pos   

UM13 yes D3 Q209P wt wt wt wt wt   pos   

UM14 yes M3 wt wt wt wt nd nd   neg 
b
        

UM15 no D3 wt Q209L  wt R625H wt wt   pos   

 UM16 yes M3 Q209L  wt wt wt c.425del 
a
 N142Ifs*45   neg  +  

UM17 yes D3 wt wt wt wt wt wt   pos   

UM18 
loss 
FU 

M3 wt wt wt wt wt wt 
  

neg   

UM19 yes M3 Q209P wt wt wt wt wt   neg   

UM20 no ISO 3 Q209P wt wt wt c.1074-1081del A359Rfs*36   neg   

UM21 yes M3 wt  Q209L  wt wt c.188C>G S63C 

Probably 
damaging/ 
Tolerated 

neg   

UM22 yes M3 wt Q209L  wt wt c.233A>G N78S 

Possibly 
damaging/ 
Tolerated 

neg   

UM23 no M3 wt wt wt wt wt wt   neg 
b
        

UM24 no D3 Q209P wt wt R625H wt wt   pos   

UM25 no D3 Q209L  wt wt nd wt wt   pos   

UM26 yes M3 wt Q209L  wt wt c.175_179del R59Kfs*8   neg   

UM27 no D3 wt wt G15N wt wt wt   pos   

UM28 yes M3 wt Q209L  wt wt c.466C>T 
a
 Q156*   neg + 
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Table 2. (Continued)         

Tumor 
ID 

MTS 
Chr 3 
Status  

GNAQ 
protein 

GNA11 
protein 

EIF1AX 
protein 

SF3B1 
protein 

BAP1 sequencing BAP1 protein 
Polyphen2/ 
SIFT 
prediction 

BAP1 
nucle
ar IHC  

Immune-
Infiltr. 

UM29 no M3 wt R183C nd wt c.335T>G L112R 

Probably 
damaging/ 
Damaging 

neg   

UM30 yes M3 Q209P wt wt wt c.356_358del T119del   neg   

UM31 no M3 wt Q209L  wt wt c.145del 
a
 L49Cfs*23   neg + 

UM32 no M3 Q209P wt G6R wt c.79del   V27Cfs*45   neg   

UM33 yes ISO 3 Q209L  wt wt wt c.145del L49Cfs*23   neg   

UM34 yes ISO 3 Q209P wt wt wt c.1499_1515del G500Afs*31   neg   

UM35 no M3 wt wt wt wt wt wt   neg   

UM36 no M3 wt Q209L  wt wt 
c.629T>A 

a
  

c.627C>A 
a
  

I210N                          
(V209V) 

Probably 
damaging/ 
Damaging 

neg + 

UM37 yes M3 Q209L  wt wt wt 
c.283G>C  
c.1356C>T 

A95P          
(L452L) 

Probably 
damaging/ 
Damaging 

neg   

UM38 yes pM3 Q209P wt wt wt 
c.681C>T      
c.2163T>C 

wt              
(R227R)    
(S721S) 

  

neg + 

UM39 no M3 wt  wt wt wt wt wt   pos   

UM40 yes pM3 wt Q209L  wt wt wt wt   neg 
b
        

UM41 yes M3 wt Q209L  wt wt c.327_328insAG P110Sfs*4   neg   

UM42 no pM3 R183Q wt wt R625H wt wt   pos   

UM43 no M3 wt wt wt wt c.438-2A>G 
a
 SA   neg + 

UM44 yes M3 Q209P wt wt wt c.2189G>T *730Lext*205   neg   

UM45 yes M3 Q209P  wt wt wt c.760_763del T254Yfs*2   neg   

UM46 no M3 Q209P  wt wt wt wt wt   neg   

UM47 no D3 wt Q209L  wt wt wt wt   pos   

UM48 yes M3 wt wt wt wt c.976del  
a
 A323Pfs*12   neg 

b
 + 

UM49 yes M3 wt R183C wt wt nd nd   pos   

UM50 yes M3 wt Q209L  wt wt wt wt   neg   

UM51 no M3 Q209P  wt G9N wt c.681_697del F228Gfs*9   neg   

UM52 no D3 wt Q209L  G6V wt wt wt   pos   

UM53 no M3 Q209P  wt wt wt c.281A>G H94R 

Probably 
damaging/ 
Damaging 

pos   

UM54 yes pM3 wt wt wt wt wt wt   neg   

UM55 no M3 wt Q209L  wt wt c.375+1G>A SA   neg   

UM56 no D3 Q209L  wt wt wt wt wt   pos   

UM57 no D3 wt Q209L  wt R625C wt wt   pos   

UM58 yes M3 wt Q209L  wt wt c.503del F168Sfs*19   neg   

UM59 yes M3 wt Q209L  wt wt c.7A>T K3*   neg   
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Table 2. (Continued)         

Tumor 
ID 

MTS 
Chrom. 
3 
Status  

GNAQ 
protein 

GNA11 
protein 

EIF1AX 
protein 

SF3B1 
protein 

BAP1 sequencing BAP1 protein 
Polyphen2/ 
SIFT 
prediction 

BAP1 
nucle
ar IHC  

Immune-
Infiltr. 

UM60 yes D3 wt Q209L  K3E wt wt wt   pos   

UM61 no D3 wt  Q209L  wt wt wt wt   pos   

UM62 yes D3 wt wt nd wt wt wt   pos   

UM63 yes M3 Q209L  wt wt wt c.580G>A G194R 

Probably 
damaging/ 
Damaging 

neg   

 

FU, follow up; D, disomy; M, monosomy; pM, partial monosomy; FS, frameshift; IF, in frame; NS, nonsense; RT, read-throughs; syn, 

synonymous; E, exon; I, intron; nd, not done. Numbering of mutations on the genomic level refers to build GRCh37/hg19 

(ensemble/UCSC); 
a
, heterozygous mutation; 

b
, BAP1 IHC cytoplasmic signal 
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Table 3  Association of clinical and molecular characteristics with metastatic disease in univariate 

analyses (Fisher's exact test) 

  No MTs MTs   
two-tailed P 

value 

 Sex 

    M 17 23 40 
P=0.79 

F 11 12 23 

 Position 

    choroid+ciliar body 1 4 5 
P=0.36 

choroid 28 30 58 

 Extrinsecation 

    no 26 21 47 
P=0.28 

yes 3 6 9 

 Cell type 

    epithelioid 23 26 49 
P=0.55 

mixed epithelioid/fused 8 6 14 

 GNAQ 
    wt 19 24 43 

P>.99 
mut 9 11 20 

 GNA11 
    wt 18 20 38 

P=0.61 
mut 10 15 25 

 BAP1 (Sanger seq) 
    wt 19 10 29 

P=0.019 
mut 10 21 31 

 BAP1 IHC 
    pos 14 5 19 

 P=0.005 
neg 14 29 43 

 SF3B1 
    wt 22 33 55 

P=0.08 
mut 5 1 6 

 EIF1AX 
    wt 23 32 54 

P=0.16 
mut 4 1 6 

 Chr3 status 
    D 12 4 16 

P=0.008 
M 16 30 46 

 1p 
    wt 22 25 48 

P=.76 
1p- 7 6 12 

 6p 
    wt 17 27 46 

P=0.019 
6p+ 12 4 14 

 8q 
    wt 14 5 19 

P=0.012 
8q+ 15 27 41 

 
MT, metastasis; M, male; F, female; D, disomy; M, monosomy.     
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Figure legends 
 
 
Figure 1.  Overview of chromosome imbalances, gene mutations, and metastatic 

progression 

Squares in full grey color indicate the presence of the specific chromosome imbalances; 

squares with different graphic patterns indicate the presence of a mutation; black square, 

metastatic UM cases; squares with different graphic patterns indicate in BAP1 IHC row 

indicate BAP1 negative nuclear IHC signal; ND, not determined; ISO, isodisomy; P, partial 

gain/loss. 

 

Figure 2. BAP1 IHC in UM FFPE sections. 

a) BAP1 positive nuclear IHC signal in UM13, characterized by disomy 3 and BAP1 wt. b) 

Lack of nuclear BAP1 IHC signal in UM32, with monosomy 3 and BAP1 c.79del mutation. 

c) Cytoplasmic BAP1 IHC signal in UM40, characterized by a partial monosomy 3 and 

BAP1 wt. d) IHC staining of UM16, a case with monosomy 3 and BAP1 c.425del mutation: 

tumor cells are BAP1 IHC negative, and infiltrating cells show BAP1 positive nuclear IHC 

signal (left panel); the electropherogram shows a heterozygous deletion (right panel).  

In all the cases with negative BAP1 IHC, BAP1nuclear IHC signal in endothelial cells 

represents the internal positive control. 

 

Figure 3. Kaplan-Meier DPFS curves and Hazard Ratios  

Kaplan-Meier Distant Progression Free Survival (DPFS) curves and Hazard Ratios 

adjusted for age, sex and tumor stage (T) (Cox regression) (HR*) for: a) chromosome 3 

status (monosomy/disomy); b) 8q status (disomic 8q/8q gain); c) BAP1 IHC nuclear signal  

(positive/negative); d) BAP1 mutation by Sanger sequencing (wt/mutated). 

                                                                           


