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Abstract

This thesis aims to show that in some applications the ap-

propriate selection of a small number of available items can be

beneficial with respect to the use of all available items.

In particular, we focus on portfolio selection and on operational

risk management and we use operations research techniques to

identify the few important elements that are needed in both cases.

In the first part of this work - based on an article published in

Economics Bulletin [Cesarone et al (2016)], we show that, for sev-

eral portfolio selection models, the best portfolio which uses only

a limited number of assets has in-sample performance very close

to that of an optimized portfolio which could include all assets,

but generally obtains better out-of-sample performance. This is

true for various performance measures, and it is often possible to

identify a "golden range" of sizes where the best performances

are obtained. These general empirical findings are consistent with

theoretical results obtained by Kondor and Nagy (2007) under



very restrictive assumptions. We also note that small portfolios

are preferable for several practical reasons including monitoring,

availability for small investors, and transaction costs.

In the second part of the thesis, we develop an operational risk

management framework for the assessment of the exposure of a

company (with particular reference to a financial institution) to

potential risk events arising from the launch of a new product.

This framework is based on the Analytic Hierarchy Process and

on the 80/20 rule which allows one to rank and to identify the

most relevant risk events, respectively.

By means of appropriate integer programming models we then

address the problem of identifying the mitigation actions that se-

cure the internal processes of a company with minimum cost. This

corresponds to the primary goal of an operational risk manager:

reducing the exposure to potential risk events. An alternative ap-

proach, when the budget is fixed, consists in selecting the subset

of mitigation actions that provide the greatest reduction in oper-

ational risk exposure for that budget. A parametric analysis with

ii



respect to the budget level provides additional information for the

management to take decisions about possible budget adjustments.

Keywords: Asset Management; Risk Diversification; Size Con-

straints; Small Portfolios; Analytic Hierarchy Process; New prod-

uct; Operational Risk Assessment; 80/20 rule.
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Chapter 1

Optimally chosen small portfolios

are better than large ones

One of the fundamental principles in portfolio selection models

is minimization of risk through diversification of the investment.

However, this principle does not necessarily translate into a re-

quest for investing in all the assets of the investment universe.

Indeed, following a line of research started by Evans and Archer

almost fifty years ago, we provide here further evidence that small

portfolios are sufficient to achieve almost optimal in-sample risk

reduction with respect to variance and to some other popular risk

measures, and very good out-of-sample performances.
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While leading to similar results, our approach is significantly

different from the classical one pioneered by Evans and Archer. In-

deed, we describe models for choosing the portfolio of a prescribed

size with the smallest possible risk, as opposed to the random port-

folio choice investigated in most of the previous works. We find

that the smallest risk portfolios generally require no more than 15

assets. Furthermore, it is almost always possible to find portfolios

that are just 1% more risky than the smallest risk portfolios and

contain no more than 10 assets. Furthermore, the optimal small

portfolios generally show a better performance than the optimal

large ones.

Our empirical analysis is based on some new and on some pub-

licly available benchmark data sets often used in the literature.

1.1 Introduction

Since the start of Modern Portfolio Theory with the seminal Mean-

Variance (MV) model of Markowitz (1952, 1959), the main aim of

portfolio selection models was that of reducing the risk of an in-
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vestment in the stock market through diversification while trying

to achieve a satisfactory return. However, Markowitz also realized

that, due to high correlations in the stock market, the benefit of

diversification would rapidly decline with the size of the portfolio.

In his fundamental book Markowitz (1959) he observed that: “To

understand the general properties of large portfolios we must con-

sider the averaging together of large numbers of highly correlated

outcomes. We find that diversification is much less powerful in

this case. Only a limited reduction in variability can be achieved

by increasing the number of securities in a portfolio.”

The first empirical evidence of the sufficiency of small portfo-

lios to achieve almost complete elimination of the diversifiable risk

in a market is probably due to a very influential work by Evans

and Archer (1968) where, for any given size K from 1 to 40, they

randomly picked subsets of K assets from a market of 470 secu-

rities and computed some statistics on the standard deviations of

the Equally-Weighted portfolios formed with each subset of assets.

They found that the average standard deviation for each size K
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was decreasing and rapidly converging to an asymptote and they

concluded that no more than around 10 assets were needed to

almost completely eliminate the unsystematic variation of a port-

folio return.

Thenceforth, several authors contributed to the debate about

the right size of a portfolio that almost completely eliminates

the diversifiable risk in a market (see, e.g., Newbould and Poon

(1993) and references therein). Furthermore, based on Evans

and Archer’s and on other similar findings, such magic size, or

size range, has been recommended in several textbooks on invest-

ment management and on corporate finance, as reported by Tang

(2004).

There are several reasons for preferring small portfolios to large

portfolios. The first and more obvious one concerns the infeasibil-

ity of holding large portfolios for small investors. However, even

big investors should consider the opportunity cost of holding large

portfolios and should identify the threshold where the costs exceed

the benefit of risk reduction. Statman (1987) identifies such costs
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with the transaction costs and, using the cost of holding an in-

dex fund that replicates the market as a proxy, finds a threshold

around 30-40 assets. Furthermore, there are other sources of cost

that depend on the size such as those for monitoring the behavior

and fundamentals of all the companies involved in the portfolio.

Another important advantage of small portfolios seems to be that

of reducing the estimation errors for variances and covariances

thus leading to better out of sample performance (see, e.g., Ce-

sarone et al (2014); DeMiguel et al (2009a)).

In this work we provide further evidence of the benefits of

small portfolios both in terms of in-sample risk reduction and

in terms of out-of-sample performance. However, our approach is

significantly different from the mainstream approach pioneered by

Evans and Archer. Indeed, we overcome one of the main weak-

nesses of their approach which consists in stating results that are

valid only on average. In other words, if one picks an arbitrary

Equally-Weighted portfolio of a given size in a market, there is no

guarantee that its risk will not be much larger than the average
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risk of all portfolios of the same size in that market.

The conceptually simple solution that we propose here is just

to choose the best Equally-Weighted portfolio for each given size

with respect to variance, and, furthermore, the optimal portfolios

for each given size with respect to three different and complemen-

tary risk measures. In this way for each size we clearly obtain a

portfolio which has a risk not greater (and typically quite smaller)

than the average risk. The reason why this simple idea was not

investigated before is probably due to the computational hardness

of the models required to find such best portfolios. Indeed, some

of these models have been solved exactly only recently for small

to medium size markets (see, e.g., Angelelli et al (2008); Cesarone

et al (2015) and references therein), and one model is solved here

for the first time. Once we have obtained the optimal size of

the minimum risk portfolio, we proceed with a sensitivity analysis

that allows us to find the smallest size of a portfolio whose risk is

not more than 1% larger than that of the minimum risk portfolio,

thus finding even smaller portfolios with satisfactory risk level.

6



Another difference between our approach and the one of Evans

and Archer consists in the possibility of using general weights

in the selected portfolio instead of equal weights only. For each

portfolio size, this clearly allows one to find portfolio with even

lower in-sample risk. However, since optimizing weights might

also cause the maximization of estimation errors DeMiguel et al

(2009b); Michaud (1989), this choice does not necessarily implies

better out-of-sample performance. For both weighting schemes

and for all risk measures we find results comparable to those of

Evans and Archer. More precisely, we identify some ranges of

(typically small) sizes where the portfolio risks are minimized and

ranges of even smaller sizes where the portfolio risks do not exceed

the minimum by more than 1%. The out-of-sample performance of

the selected portfolios for each specified size is another important

feature of our analysis which is rarely found in previous works on

the subject. Also in this case we find that the best performances

are generally obtained by portfolios with no more than 15 assets.

As an interesting complement to our findings, we mention that,
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in a recent and detailed analysis on the empirical behavior of in-

vestors and on the performance of their portfolios, Ivković et al

(2008) show that portfolios of small investors with low diversifi-

cation exhibit superior performance with respect to the ones with

high diversification.

1.2 The portfolio models

In this section we describe the models analyzed and we provide an

integer or a mixed-integer linear or quadratic formulation for all

models. We first need to introduce some notation. Let T + 1 be

the length of the in-sample period used to estimate the inputs for

the models. We use pit to denote the price of the i-th asset at time

t, with t = 0, ..., T ; rit =
pit − pi(t−1)

pi(t−1)
is the i-th asset return at

time t, with t = 1, ..., T ; x is the vector whose components xi are

the fractions of a given capital invested in asset i in the portfolio

we are selecting; y is a boolean vector whose components yi are

equal to 1 if asset i is selected, and 0 otherwise. We assume that

n assets are available in a market and, adopting linear returns,
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we have that Rt(x) =
n∑
i=1

xirit is the portfolio return at time t,

with t = 1, ..., T . The n-dimensional vector µ is used to denote

the expected returns of the n risky asset, while Σ denotes their

covariance matrix, and u denotes an n-dimensional vector of ones.

1.2.1 The Equally-Weighted portfolio

The most intuitive way to diversify a portfolio is to equally dis-

tribute the capital among all stocks available in the market. In

terms of relative weights we have xi = 1/n. This is known as the

Equally-Weighted (also called naïve or uniform) portfolio. Clearly

the choice of the Equally-Weighted (EW) portfolio does not use

any in-sample information nor involve any optimization approach.

However, some authors claim that its practical out-of-sample per-

formance is hard to beat on real-world data sets DeMiguel et al

(2009b). Furthermore, from the theoretical viewpoint, Pflug et al

(2012) show that when increasing the amount of portfolio model

uncertainty, i.e., the degree of ambiguity on the distribution of the

assets returns, the optimal portfolio converges to the EW portfo-
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lio. We will thus use this portfolio as a benchmark to compare

the performances of the portfolios obtained by the models.

1.2.2 Fixed-Size Minimum Variance Equally-Weighted

portfolios

As already observed, the EW portfolio is the most robust choice

when there is a great uncertainty about the distribution of the

asset returns. However, the EW portfolio has the drawback of

using all available assets, which might be too numerous and not

all desirable. A first proposal to overcome this drawback is due

to Jacob (1974), who proposes to select a small EW portfolio

(with a specified number K of assets) that has minimum variance

among all EW portfolios of the same size. The model by Jacob is

a nonlinear 0-1 optimization model that has not yet been tested

in practice due to its computational complexity. Thanks to the

recent advances in solution methods and computing power, we

can propose here an empirical study of such Fixed-Size Minimum

Variance Equally-Weighted (FSMVEW) model formally described
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below.

min yTΣy

s.t. uT y = K

y ∈ {0, 1}n

(1.1)

This is probably the simplest Fixed-Size portfolio model and has

the advantage of not requiring the problematic estimates of the

assets expected returns. Furthermore, the effects of the possible

estimation errors of the covariance matrix Σ do not result in very

large or small weights for some assets, but only influence the choice

of the subset of selected assets in the portfolio. From the optimiza-

tion viewpoint, it falls into the class of pseudoBoolean Quadratic

Programming problems which are known to be theoretically hard

to solve in the worst case (NP-hard) Boros and Hammer (2002).

However, due to its special structure, practical problems of this

type with several hundreds variables can be actually solved fairly

efficiently with available free or commercial codes.

Note that the vector x of weights of the optimal FSMVEW

portfolio selected by model (1.1) is obtained as x = 1
Ky. When

K = n the FSMVEW portfolio coincides with the EW portfolio.
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1.2.3 Fixed-Size Minimum Variance portfolios

Another model that does not require the estimates of the assets ex-

pected returns is the extreme case of the Markowitz model where

we only seek to minimize variance. Within our framework we

thus consider the following Fixed-Size Minimum Variance (FSMV)

model where only K assets are allowed in the selected portfolio

min xTΣx

s.t. uTx = 1

uT y = K

`y ≤ x ≤ y,

y ∈ {0, 1}n

(1.2)

The first constraint above is the budget constraint; the second one

represents the portfolio fixed-size constraint; u is an n-dimensional

vector of ones; y is an n-dimensional vector of binary variables

used to select the assets to be included in the portfolio; x is the

vector of portfolio weights, and ` is a minimum threshold (often

called buy-in threshold) for the weights of the selected assets which

must be greater than zero (in our experiments we chose ` = 0.01).
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Without these thresholds, Problem (1.2) could generate portfolios

with less than K assets, which is equivalent to replacing the con-

straint uTy = K with uTy ≤ K. Note that Problem (1.2) is

a Quadratic Mixed Integer Programming (QMIP) problem that

falls again in the class of NP-hard problems. However, also in this

case problems with a few hundred variables can be solved fairly

efficiently with available free or commercial codes. Furthermore,

a recently proposed Cesarone et al (2009, 2013) specialized algo-

rithm can solve problems of this type with up to two thousand

variables.

1.2.4 Fixed-Size Minimum CVaR portfolios

The Fixed-Size Minimum CVaR (FSMCVaR) model is a minimum

risk model like the previous one, but instead of variance it mea-

sures risk with Conditional Value-at-Risk at a specified confidence

level ε (CV aRε), namely the average of losses in the worst 100ε%

of the cases Acerbi and Tasche (2002). In our analysis losses are

defined as negative outcomes, and we set ε equal to 0.05. The
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FSMCVaR model can be written as follows:

min CV aRε(x)

s.t. uTx = 1

uT y = K

`y ≤ x ≤ y,

y ∈ {0, 1}n

(1.3)

where ` plays the same role as in (1.2).

Using a classical approach introduced by Rockafellar and Urya-

sev (2000) (see also Cesarone et al (2014)), Problem (1.3) can

be reformulated as a Mixed Integer Linear Programming (MILP)

problem with n + T + 1 continuous variables, n binary variables

and T + n + 3 constraints. Some recent computational experi-

ences reported in Cesarone et al (2015) on the solution of this

model with state-of-the-art commercial solvers show that models

with more than a few hundreds variables are hard to solve with

general purpose solvers and would probably benefit from more

specialized methods.

14



1.2.5 Fixed-Size Minimum Semi-MAD portfolios

The last risk measure that we take into account in our analysis is

the downside Mean Semi-Absolute Deviation (Semi-MAD):

SMAD(x) = E[min(0,

n∑
i=1

(rit − µi)xi)], (1.4)

This is a concise version of the more famous Mean Absolute Devi-

ation (MAD) risk measure, which is defined as the expected value

of the absolute deviation of the portfolio return from its mean

Konno and Yamazaki (1991). Indeed, Speranza (1993) showed

that Semi-MAD leads to a portfolio selection model that is equiv-

alent to the MAD model, but with half the number of constraints.

We thus consider the following Fixed-Size Minimum Semi-MAD

(FSMSMAD) model

min SMAD(x)

s.t. uTx = 1

uT y = K

`y ≤ x ≤ y,

y ∈ {0, 1}n

(1.5)
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where ` plays the same role as in (1.2). Using the linearization

approach described in Speranza (1993), we can reformulate this

problem as a MILP problem with n+T continuous variables, n bi-

nary variables and n+T+3 constraints (see Cesarone et al (2014)).

From the computational experiences reported in Cesarone et al

(2015) it appears that also this model, although slightly easier

than the previous one, cannot easily be solved with general pur-

pose state-of-the-art solvers when more than a few hundreds vari-

ables are involved.

1.3 Empirical behavior of the models

In this section we test the models described above on some publicly

available data sets.

The analysis consists of two parts. First, we examine the be-

havior of the portfolios selected by the models on the in-sample

window where we obtain the input parameters of the models. The

second part consists in evaluating the out-of-sample performance

of the portfolios, which is the aspect that matters most to in-
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vestors.

Since the markets are in continuous evolution, it seems ap-

propriate to rebalance the portfolio from time to time in order

to take new information into account. For this purpose, we use

a Rolling Time Window procedure (RTW), i.e., we shift the in-

sample window (and consequently the out-of-sample window) all

over the time length of each data set. More specifically, we con-

sider a time window (in-sample period) of 200 observations for the

data sets with weekly frequency, and of 120 observations for the

data sets with monthly frequency. The choice of the lengths of the

in-sample and of the out-of-sample windows is based on typical

settings of portfolio selection problems (see, e.g.,Bruni et al (2012,

2013); Cesarone et al (2015); DeMiguel et al (2009a)). Then we

solve the selection problem for overlapping windows built by mov-

ing forward in time with step size 4 (for the weekly data sets) or 1

(for the monthly data sets). The optimal portfolio found w.r.t. an

in-sample period is held for the following 4 weeks (out-of-sample

period of the weekly data sets) or 1 month (out-of-sample period

17



of the monthly data sets).

The out-of-sample performances of the resulting portfolios are

evaluated in different ways by computing some performance mea-

sures commonly used in the literature Rachev et al (2008). Let

x∗ = (x∗1, . . . , x
∗
n) denote the allocation of the selected portfolio

and rt = (r1t, . . . , rnt) denote the assets returns at time t. Then,

in our analysis we consider:

• the Standard Deviation of the selected portfolio return;

• the Sharpe Ratio as E[x∗r′t−rf ]
Std[x∗r′t−rf ] , where rf = 0;

• the Rachev Ratio as CV aRα[rf−x∗r′t]
CV aRβ [x∗r′t−rf ] , where rf = 0 and α =

β = 0.1;

• the Max Drawdown as −minx∗r′t which is the maximum

loss achieved by a portfolio during the holding period.

In our analysis we use six data sets, summarized in Table 1.1.

The monthly data sets (FF25, 48Ind, 100Ind) are taken from

Ken French’s website1. The weekly data sets (Stoxx50, FtseMib,
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Data set ] of assets time interval frequency source

1 FF25 25 07/1963-12/2004 monthly K. French

2 48Ind 48 07/1963-12/2004 monthly K. French

3 100Ind 100 01/1969-12/2011 monthly K. French

4 Stoxx50 32 01/2007-05/2013 weekly Yahoo Finance

5 FtseMib 34 01/2007-05/2013 weekly Yahoo Finance

6 Ftse100 63 01/2007-05/2013 weekly Yahoo Finance

Table 1.1: List of data sets analyzed.

Ftse100) are downloaded from http://finance.yahoo.com, and are

publicly available at

http://host.uniroma3.it/docenti/cesarone/DataSets.htm.

1.3.1 In-sample analysis

For each model described in Section 2.2 we study the behavior of

its optimal value (minimum risk) when varying the number K of

assets in the portfolio.

One of our main empirical findings is the scarce effect of diver-

sification in terms of risk reduction when the portfolio size K does

not belong to a certain range of values. Indeed, in all analyzed

markets, we find that the risk measures, representing the objective
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Figure 1.1: Boxplot of the in-sample risk w.r.t. the portfolio size for 48Ind.
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functions of the models, achieve minimum values for a range of

portfolio sizes corresponding to a significantly limited number of

assets w.r.t. the total. Furthermore, these risk measures tend to

increase when increasing the portfolio size, thus contrasting the

paradigm that the larger the diversification, the lower the risk.

In Figs. 1.1 and 1.2 we report some empirical evidences of this

phenomenon for monthly (48Ind) and for weekly (Stoxx50) data

sets. However, this behavior is similar for each data set analyzed.

Fig. 1.1 exhibits the boxplots of the different risk measures w.r.t.

all considered in-sample windows by varying the portfolio size K.

This means that, e.g., in the case of the 48Ind data set, for a fixed

K we have 377 values of risk, one for each in-sample window (i.e.,

one for each rebalancing of the portfolio). Similarly we obtain

Fig. 1.2, where we examine the Stoxx50 data set. Note however

that in the cases of weekly data sets for a fixed K we have 32 in-

sample windows (i.e., 32 values of risk). As mentioned above, the

boxplot of the in-sample volatility generated by the EW portfolios

corresponds to that of the FSMVEW portfolios when K = n, and
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Figure 1.2: Boxplot of the in-sample risk w.r.t. the portfolio size for Stoxx50.
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it generally presents the highest median volatility. This feature

is common to all data sets, and it suggests that a greater diver-

sification does not always imply a risk reduction, i.e., increasing

the number of assets in the portfolio could worsen its in-sample

performance in terms of risk.

The empirical results of the FSMVEW portfolios could be com-

pared to the findings obtained by Evans and Archer, and by

further influential experiments in the literature such as the well-

known Fama’s experiment Fama (1976). The author finds that, in

a market with 50 stocks, the effect of naïve diversification deter-

mines a remarkable reduction of the portfolio in-sample volatility,

but only when including in the portfolio up to 20 stocks. We refer

to naïve diversification as an EW strategy with a random selection

of K out of n available stocks. Indeed, he observes that adding

further stocks in the portfolio does not yield a considerable im-

provement. More precisely, Fama claims that approximately 95%

of the possible reduction deriving from diversification is achieved

passing from 1 to 20 assets. However, we point out that our ap-
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proach is significantly different from that of Fama, as well as from

that of Evans and Archer. Indeed, we overcome one of the main

weaknesses of their approach which consists in stating results that

are valid only on average. In other words, if one picks an arbitrary

EW portfolio of a given size in a market, there is no guarantee

that its risk will not be much larger than the average risk of all

portfolios of the same size in that market. While the results ob-

tained by the FSMVEW portfolios are those corresponding to the

best Equally-Weighted portfolios for each given size with respect

to volatility. The findings on the FSMVEW model also highlight

that when the EW strategy is combined with risk minimization

(instead of a randomly selection ofK out of n available stocks) the

selected small portfolios show an improvement both in terms of

volatility and of robustness of its values obtained on all in-sample

windows.

In addition, once we have obtained the optimal size of the min-

imum risk portfolio for each in-sample window, we examine the

range spanned by these optimal sizes. In Fig. 1.3 we show for the
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Figure 1.3: Distribution of the portfolio size corresponding to the global

minimum risk.

100Ind data set the distribution of the optimal portfolio sizes (i.e.,

corresponding to the global minimum risk) for all models analyzed

w.r.t. all in-sample windows. We can see that the global mini-

mum risk portfolio never exceeds 15 stocks for the 100Ind data set.

However, this behavior is almost the same in all the other con-

sidered data sets, with the only exception of Ftse100, where the

optimal portfolio size is seldom around 20 stocks. Furthermore,
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given the global minimum risk on an in-sample window, we de-

tect the smallest size of a portfolio whose risk is not more than 1%

larger than that of the minimum risk portfolio, thus finding even

smaller portfolios with satisfactory risk level. Then, we repeat this

procedure for each in-sample window and for each portfolio model.

In Fig. 1.4 we report the distribution of these 101% min-risk op-

timal portfolio sizes for each model analyzed w.r.t. all in-sample

windows. More precisely, for each in-sample window we consider

all the cardinalities for which the corresponding portfolio has a

risk at most 1% greater than that of the minimum risk portfolio.

As highlighted from the four sub-figures (one for each portfolio),

the 101% min-risk portfolios generally show a significant risk re-

duction with 10 stocks for 100Ind data set. Furthermore, in most

of the cases we can achieve it with just 6 stocks. However, the

101% min-risk portfolio for the other data sets never exceeds a

size of 15, and generally are needed at most 10 stocks.

The most compelling result emerging from the in-sample anal-

ysis is the existence of a portfolio size range (whose location could
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Figure 1.4: Distribution of the 101% min-risk portfolio.
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depend on the number of assets for each market) where one can

generally find the lowest values of risk for all models considered.

Indeed, we find that the smallest risk portfolios generally require

no more than 15 assets. Furthermore, it is almost always possible

to find portfolios that are just 1% more risky than the smallest

risk portfolios and contain no more than 10 assets.

Further evidences of this phenomenon can be found, e.g., in

Fig. 1.5, 1.6, 1.7, and 1.8, where we emphasize the behavior of

the optimal range considering all the rolling time windows con-

sidered for the portfolios. More precisely, the red lines stand for

the minimum number portfolios that are, at most, 1% more risky

than the minimum risk portfolio.

1.3.2 Out-of-sample analysis

The second part of our analysis concerns the out-of-sample be-

havior of the portfolios. Our main goal is to confirm the finding,

emerged from the in-sample analysis, that we can improve perfor-

mances without investing in a large number of stocks.

Again, we consider the EW portfolio as a benchmark and, in-
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Figure 1.5: Minimum risk portfolios - 101% range (Dow Jones)

stead of focusing only on volatility reduction, we also compute the

performance indices described in Section 1.3. We start by verify-

ing the behavior of the out-of-sample standard deviation. More

precisely, we check whether this performance measure reaches an

optimal value, or at least a good value, for small-size portfolios.

We can see in Figs. 1.9a and 1.10a that, both for monthly (48Ind)

and for weekly (Stoxx50) data sets, the standard deviations of

the portfolios returns reach their minima for small sizes. For

larger sizes, the portfolios volatility tends to increase with different

growth rates. These increases, except for the FSMVEW, are due
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Figure 1.6: Minimum risk portfolios - 101% range (Euro Stoxx 50)
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Figure 1.7: Minimum risk portfolios - 101% range (Ftse 100)
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Figure 1.8: Minimum risk portfolios - 101% range (Ftse Mib)
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(a) Volatility. (b) Rachev ratio.

Figure 1.9: Analysis of the out-of-sample portfolio returns for 48Ind.

to the buy-in threshold constraints. Without these constraints we

should expect nearly flat curves. However, the buy-in threshold

constraints are necessary to eliminate unrealistically small trades

that can otherwise be included in an optimal portfolio. In Figs.

1.9b and 1.10b we show the values of two other performance mea-

sures, namely the Rachev and Sharpe ratios for the same data

sets. As for the standard deviation, each model generally tends

to provide the best values of the latter performance measures for

small sizes. Furthermore, these values almost always decay when

the portfolio size approaches n. This behavior provides a further
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(a) Volatility. (b) Sharpe ratio.

Figure 1.10: Analysis of the out-of-sample portfolio returns for Stoxx50.

support to the idea of improving the performances of a portfolio

by limiting the number of its stocks.

In addition to the graphical evidence, where only the most

representative results are shown, we also performed an extensive

comparative analysis on all data sets considered. Since describ-

ing the results for all data sets and for all portfolio sizes is im-

practical, we report here the out-of-sample analysis for only three

fixed sizes: K = 5, 10, 15. This choice is based on the observa-

tion that K = 5, 10, 15 generally belong to the optimal ranges

in which the various models achieve the in-sample lowest risk for
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each data set. In Table 1.2 we provide the standard deviation of

the out-of-sample returns for K = 5, 10, 15 for each model and

data set analyzed. It is remarkable that the EW portfolio has

almost always the worst performance, with the single exception of

the 100Ind market, where the FSMCVaR portfolios generate the

highest standard deviation. In Table 1.3 we report the Sharpe ra-

tio of the out-of-sample returns for the same portfolio sizes of the

previous table and for each model and data set analyzed. Note

that when the portfolio excess return is negative some gain-to-risk

ratios have no meaning, thus we report “-”. Again we observe that

the EW portfolio yields the worst performances compared with

those of the other models, with the exception of the FSMCVaR

portfolios for the 100Ind and FF25 markets. Similar considera-

tions can be made about the Rachev Ratio of the out-of-sample

returns shown in Table 1.4. Indeed, again the EW portfolio tends

to be the worst choice, with the only exception of the 100Ind data

set. We also observe that for K = 10 the FSMV model seems

to be preferable since it provides the best results for 4 data sets
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K=5 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.0448 0.0378 0.0556 0.0134 0.0185 0.0169

FSMVEW 0.0431 0.0397 0.0424 0.0139 0.0181 0.0170

FSMV 0.0431 0.0377 0.0443 0.0141 0.0169 0.0166

FSMSMAD 0.0430 0.0377 0.0446 0.0136 0.0177 0.0172

EW 0.0509 0.0488 0.0512 0.0210 0.0296 0.0288

K=10 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.0447 0.0376 0.0536 0.0133 0.0189 0.0175

FSMVEW 0.0441 0.0416 0.0428 0.0125 0.0203 0.0184

FSMV 0.0432 0.0372 0.0438 0.0126 0.0170 0.0168

FSMSMAD 0.0432 0.0369 0.0440 0.0128 0.0167 0.0174

EW 0.0509 0.0488 0.0512 0.0210 0.0296 0.0288

K=15 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.0448 0.0378 0.0537 0.0134 0.0188 0.0179

FSMVEW 0.0458 0.0419 0.0435 0.0128 0.0218 0.0201

FSMV 0.0433 0.0371 0.0439 0.0127 0.0173 0.0170

FSMSMAD 0.0434 0.0367 0.0436 0.0126 0.0171 0.0175

EW 0.0509 0.0488 0.0512 0.0210 0.0296 0.0288

Table 1.2: Standard Deviation of the out-of-sample returns.
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K=5 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.244 0.279 0.133 0.334 0.124 0.211

FSMVEW 0.267 0.285 0.249 0.247 0.119 0.165

FSMV 0.268 0.293 0.249 0.257 0.126 0.207

FSMSMAD 0.276 0.293 0.247 0.244 0.086 0.198

EW 0.264 0.242 0.215 0.173 – 0.026

K=10 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.248 0.278 0.142 0.298 0.120 0.175

FSMVEW 0.290 0.268 0.256 0.284 0.091 0.099

FSMV 0.27 0.289 0.242 0.276 0.112 0.178

FSMSMAD 0.276 0.294 0.253 0.266 0.122 0.162

EW 0.264 0.242 0.215 0.173 – 0.026

K=15 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.250 0.274 0.143 0.281 0.124 0.161

FSMVEW 0.296 0.260 0.249 0.278 0.042 0.072

FSMV 0.272 0.289 0.242 0.269 0.098 0.179

FSMSMAD 0.280 0.293 0.257 0.260 0.109 0.152

EW 0.264 0.242 0.215 0.173 – 0.026

Table 1.3: Sharpe Ratio of the out-of-sample returns.
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K=5 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 1.216 1.281 0.877 1.618 1.162 1.167

FSMVEW 1.201 1.260 1.049 1.614 1.048 1.101

FSMV 1.245 1.403 1.043 1.514 1.164 1.205

FSMSMAD 1.25 1.363 1.032 1.382 1.07 1.218

EW 1.150 1.200 0.992 1.007 0.861 0.910

K=10 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 1.215 1.271 0.892 1.459 1.145 1.104

FSMVEW 1.199 1.284 1.047 1.477 0.963 1.007

FSMV 1.244 1.360 1.027 1.514 1.147 1.150

FSMSMAD 1.234 1.343 1.033 1.333 1.147 1.185

EW 1.150 1.200 0.992 1.007 0.861 0.910

K=15 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 1.217 1.245 0.896 1.397 1.123 1.064

FSMVEW 1.195 1.261 1.052 1.347 0.861 0.907

FSMV 1.244 1.343 1.024 1.426 1.135 1.135

FSMSMAD 1.234 1.343 1.047 1.320 1.103 1.132

EW 1.150 1.200 0.992 1.007 0.861 0.910

Table 1.4: Rachev Ratio of the out-of-sample returns.
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K=5 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.209 0.150 0.578 0.027 0.042 0.031

FSMVEW 0.214 0.175 0.201 0.029 0.045 0.036

FSMV 0.198 0.123 0.206 0.030 0.037 0.031

FSMSMAD 0.201 0.121 0.206 0.039 0.041 0.032

EW 0.261 0.259 0.262 0.052 0.064 0.061

K=10 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.210 0.145 0.501 0.033 0.042 0.034

FSMVEW 0.219 0.201 0.201 0.029 0.041 0.041

FSMV 0.198 0.126 0.209 0.023 0.039 0.031

FSMSMAD 0.203 0.125 0.212 0.031 0.039 0.034

EW 0.261 0.259 0.262 0.052 0.064 0.061

K=15 FF25 48Ind 100Ind Ftse100 FtseMib Stoxx50

FSMCVaR 0.212 0.141 0.493 0.029 0.040 0.036

FSMVEW 0.235 0.206 0.213 0.027 0.050 0.045

FSMV 0.199 0.129 0.210 0.027 0.039 0.031

FSMSMAD 0.203 0.127 0.210 0.027 0.040 0.035

EW 0.261 0.259 0.262 0.052 0.064 0.061

Table 1.5: Max drawdown of the out-of-sample returns.
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out of 6, while for K = 15 it presents the best performances for 5

data sets out of 6.

The last performance measure considered in our analysis is the

Max drawdown, which is the worst out-of-sample loss achieved

by a portfolio, as described in Section 1.3. Table 1.5 shows that,

again, the EW portfolio always has the worst performance for the

prescribed sizes K = 5, 10, 15, with the exception of the 100Ind

market, where the FSMCVaR portfolios provide the worst loss.

On the other hand, although there is not a clear superiority of

a single model, we observe that the FSMV portfolios present the

best values for 3 data sets out of 6 for K = 5, and for 4 data sets

out of 6 for K = 10 and for K = 15.

1.4 Conclusions

The concept of diversification is not well-defined and the measures

of diversification are continuously evolving (see, e.g., Fragkiskos

(2013); Meucci (2009) and references therein). However, the qual-

itative idea of diversification is to not overly concentrate the in-
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vestments in very few stocks. Indeed, the role of diversification is

to reduce risk by diversifying it as much as possible.

In this work we investigated the possible benefits and disadvan-

tages of enlarging the portfolio size in several portfolio selection

models with respect to various measures of performance. Similar

to various previous findings, but with a substantially different ap-

proach, our empirical results show that in most cases limiting the

size of the selected portfolio improves both the in-sample and the

out-of-sample performance. We might call this a “small portfo-

lio effect”. These results are somewhat in line with the tendency

described by DeMiguel et al (2009a), where an improved out-of-

sample performance is often observed for the 1-norm-constrained

minimum-variance portfolios. The analogy is based on the obser-

vation that the 1-norm is often regarded as an approximation of

the 0-norm, i.e., the size of the portfolio.

Further studies are underway to investigate the validity of this

small portfolio effect with respect to other risk and performance

measures and in larger markets.
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1.5 Further research

To verify the existence of a “small portfolio effect", we use the

results of Kondor and Nagy (2007), who study the estimation

error arising from a large portfolio and limited time series. The

authors claim that the noise of the minimal risk portfolio is greater

than that of the Equally Weighted portfolio. More precisely, to

measure the effect of noise on portfolio selection, the authors use

the following metrics:

q2
0 =

Σijw
opt
i σ

(0)
ij w

opt
j

Σijw
(0)
i σ

(0)
ij w

(0)
j

(1.6)

where the superscript opt refers to the optimal weights w and 0

to the “true" weights and the true covariance matrix elements σij.

For a portfolio with returns that are (i) standard, (ii) independent,

and (iii) normal variables, one can demonstrate that,

q0 =
1√

1− N
T

, (1.7)

where N and T are the number of stocks in a market and the

length of the returns time series, respectively. In Fig. 1.11 we show
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Figure 1.11: Cumulative distribution function of risk events’ priorities

some preliminary empirical results related to the effect of noise

on portfolio selection considering a market in which the returns

follows a multivariate standard normal distribution (of dimension

N). Here, the blue line is the theoretical behavior of q0 while, for

various combination of N and T , the squares are the ratios for the

Global Minimum Variance portfolios with short selling, the circles

are the ratios of the Global Minimum Variance portfolios without

short selling, and the Xs are those of the Fixed-Size Minimum

Variance portfolios.
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As one can see from the figure, there is a huge benefit - in

terms of noise reduction - when investing in few stocks when the

ratio N/T approaches to 1. This benefit can be measured by the

vertical segment which divides the circles and the Xs from the

blue line. However, we need to verify this behavior with empirical

market data to justify a noise reduction for the portfolios with few

stocks. This last investigation is left for further research.
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Chapter 2

Operational risk assessment of a

new product using AHP

Risk assessment of a new product is one of the most critical activ-

ities performed by the Operational Risk Management (ORM) of

a company operating in the financial sector. When introducing a

new product, there are few reference points to assess its riskiness

for ORM, due both to the lack of operational loss data and to the

inexperience of the process owners in handling the new operation.

To overcome these two limitations, we propose an operational risk

framework that is able to identify and prioritize the most danger-

ous operational risk events with respect to the introduction of a
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new product in a bank. In this paper, we apply a methodology

based both on the Analytic Hierarchy Process (AHP) approach to

prioritize operational risk events, and on the “80/20 rule” to allo-

cate them in appropriate risk rating classes. The aim of ranking

and assigning risk rating classes is to select the mitigation actions

to protect the most exposed internal processes of a company with

respect to operational risks.
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2.1 Introduction

A product is defined new when one or more factors such as, for in-

stance, product complexity and/or target customers, represent a

point of attention during the feasibility evaluation of the product

itself Ingber (2016). Although it is difficult to define uniquely a

new product, one can consider the cases in which a company sig-

nificantly modifies the features of an existing product (e.g. new

distribution channel, new geographic market). For instance, offer-

ing a loan to different customer segments that current ICT systems

fail to handle (as it requires a new software or an upgrade of the

existing one) is a new product. Again, one can define as new a

product that requires a modification of the risk tolerance thresh-

olds; even an existing product distributed in a geographical area

with different regulations from those of the registered office of the

company can be considered new. More generally, we can define

a product new when the current operational context of a finan-

cial institutions1 (e.g., pricing models, ICT systems, and organi-
1In any case, companies operating in other areas may also adopt this framework.
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zational models) does not allow to develop, distribute, manage,

and control it. Conversely, products that only modify contractual

terms (e.g., modification from a fixed to a floating interest rate)

are not defined as new.

According to Girling (2013), in the development phase of a new

product a company should try to identify its critical points, in-

cluding the potential operational risk exposure. For this reason, a

company should question itself “around the operational practical-

ities, accounting and tax practices, legal and regulatory require-

ments, and any other areas that should be addressed before the

launch”.

A new product can cause an exposure to both known and new

operational risk events for a bank. Such events may give rise to

several types of impacts, which are difficult to quantify in terms

of economic losses, especially because there are no historical data

of losses. “Senior management should ensure that there is an ap-

proval process for all new products, activities, processes and sys-

tems that fully assesses operational risk” Basel Committee et al
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(2011). Thus, the operational risk managers of a company must

establish a methodology to perform a risk assessment before the

launch of a new product or business.

Generally, risk assessments are based on expert judgments Cooke

(2004). Thus, it seems reasonable to use the judgements expressed

by process owners to assess the operational risks of a new prod-

uct. Since generally risk = likelihood·impact Anthony Tony Cox

(2008), classical operational risk assessments require that process

owners should identify the likelihood and the severity of the poten-

tial operational risk events2. However, this estimation can be very

difficult due to the lack of historical losses data and of experience

in managing the new operation. Furthermore, process owners’

judgments can embody cognitive biases Skjong and Wentworth

(2001). For instance, typical examples of bias are (i) the tendency

to overestimate the likelihood of the most recent events and to

underestimate that of the oldest events (availability bias); (ii) to

ignore events that rarely occurred (threshold heuristic); (iii) to
2Potential operational risk events are identified during a specific mapping activity (see

Section 2.3.1).
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maintain previous judgments (anchoring bias).

We apply a strategy to assess the operational risk of a new

product in the financial sector, which is able to overcome the

limitations of the traditional assessment methodologies, based on

the combination of the likelihood and the impact of risk events

by means of a heat map (see, e.g., Anthony Tony Cox (2008)).

Indeed, we stress that our approach does not require any informa-

tion about the frequency and the severity of the operational risk

events.

Note that there literature about the operational risk manage-

ment of a new product is scarce, even though the problem of esti-

mating the operational risk exposure of a new product is definitely

one of the main duties for operational risk managers. Further-

more, the existing bibliographical references (see, e.g., Scandizzo

(2010)) focus on what should be done instead of how to practi-

cally deal with the operational risk management of a new product.

Indeed, in previous articles and books we can find the elements

that a risk manager should consider. However, there is no trace of
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any technique or tool to implement an operational risk assessment.

Our contribution, in this context, is to provide a framework whose

tools are already widely tested in other fields (particularly in the

field of engineering). Indeed, our framework allows to assess the

riskiness of any new product. Thus, although we present a case

study related to a new financial product, one can implement our

technique in companies operating in many different fields.

More precisely, in this work we provide an operational risk

framework based on the Analytic Hierarchy Process (AHP), by

which we are able to prioritize operational risk events (in a de-

creasing order of importance). For such a ranking, process owners

only have to perform pairwise comparisons between the elements

belonging to the same level of a decisional hierarchy Saaty (1987).

In addition, combining the results obtained from the AHP model

with the well-known “80/20 rule” (also called Pareto principle, see

Pareto (1964)), we can divide all risk events into 4 classes, each

with a specific degree of relevance.

The chapter is organised as follows. In Section 2.2 we present
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the various phases that characterize a risk assessment process for

a new product. In Section 3 we briefly discuss the main features of

the AHP model, also describing the structure of a suitable hierar-

chy for the operational risk assessment of a new product. Section

2.3.2 shows how to apply the “80/20 rule” to cluster operational

risk events in 4 rating categories, in order to facilitate the planning

of the mitigation actions to protect the most exposed internal pro-

cesses of a company. In Section 2.3 we provide a capital budgeting

model to optimally prioritize risk mitigation actions, while in Sec-

tion 2.5 we illustrate a numerical example of the entire framework.

Conclusions are drawn in Section 2.6, where we also describe some

issues left for future research.

2.2 Risk assessment for a new product

As mentioned above, the launch of a new product makes it nec-

essary to establish a strategy to identify, evaluate and mitigate

operational risk events that can arise during or after its launch.

The European Banking Authority claims that “The Risk Control
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function should be involved in approving new products or signifi-

cant changes to existing products. Its input should include a full

and objective assessment of risks arising from new activities under

a variety of scenarios, of any potential shortcomings in the insti-

tution’s risk management and internal control frameworks, and of

the ability of the institution to manage any new risks effectively”

European Banking Authority (2011).

According to Scandizzo (2010), an operational risk manager

should consider several risk factors related to the introduction of

a new product, such as

• new market;

• characteristics of the new product;

• new way of doing business;

• new laws;

• change in regulatory requirements;

• change in market beliefs.
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The analysis of these factors can allow to depict their causal link

with operational risk events (cause-event-effect). In other words,

risk factors can be seen as detonators for the occurrence of op-

erational risk events. Scandizzo (2010) also states that the de-

partments of a bank should highlight the operational risk aspects

of a new product, which include - inter alia - (i) potential new

reporting requirements, (ii) accounting treatment, (iii) represen-

tation within the ICT software, (iv) reinforce requirements. These

aspects should be thoroughly analyzed to detect any issues to be

solved. For example, if the system of inserting and managing data

of a product requires changes of the ICT system, then it would

be necessary to verify whether their timing is coherent with the

launch of the new product.

An operational risk manager should define a taxonomy of op-

erational risk events with a sufficient degree of detail, so that the

output of AHP can better represent the real risk profile. For in-

stance, in the case of an internal fraud event, a possible taxonomy

could be
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• level 1: internal fraud;

• level 2: unauthorised activity

• level 3: transactions not reported (intentional);

• level 4: transfer to a bank account of the same operator not

reported (intentional).

Furthermore, an operational risk manager should focus on the ex-

isting/potential internal processes to manage the operation of the

new product. Then, given the taxonomy of operational risk events

and the flowchart of the existing/potential internal processes, an

operational risk manager can perform the risk mapping into the

internal processes. Once the risk mapping is completed, process

owners can assess each potential operational risk event. As men-

tioned earlier, following the classical methodologies for operational

risk assessments, the inherent risk mainly depends on two param-

eters, namely the likelihood of loss occurrence and the expected

loss in the case of occurrence. More precisely, once process owners

have expressed their views about these two parameters, one can

estimate the inherent risk of each operational risk event by means
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of a heat map, where different levels of criticality are generally

represented by an appropriate color scale. However, during the

launch of a new product process owners have often very limited

information to carefully estimate the likelihood and the expected

loss of each operational risk event and, generally, they do not

have experience in managing the new operation. These are the

main reasons that lead us to develop a new strategy, based on

the Analytic Hierarchy Process (AHP). As we shall explain in the

next section, following our methodology, process owners need only

pairwise comparisons between elements of the same nature, thus

significantly simplifying the evaluation phase. The main steps for

applying the AHP method to the operational risk evaluation are

listed in Section 2.3.1.

2.3 The Analytic Hierarchy Process

As discussed above, our strategy for the evaluation of a new prod-

uct is based on the Analytic Hierarch Process (AHP) technique,

which is a widely used model for multi-criteria decision analysis
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(a branch of Operations Research), introduced by Saaty (1977).

AHP aims to analyze and solve complex problems, especially those

related to the cognitive distorsion of human decisions. More gen-

erally, AHP is a method to determine a ranking among a set of

elements.

According to Forman and Selly (2001)3, AHP provides the fol-

lowing advantages:

• a decrease in the time needed to find an agreed solution4 ;

• an increase in the level of detail of the analysis;

• an increase in the level of participation and consensus of all

process owners;

• the resolution of conflicts between process owners;

• a reduction of cognitive biases during the Risk Assessment.

In our framework, AHP allows us to evaluate the relative level of

criticality for all potential operational risk events without know-
3The authors report some applications of the AHP at the Inter-American Development

Bank, among which some that concern supplier/vendor selection.
4Note that this feature is particularly useful in case of internal cross-processes involving

different owners.
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ing their likelihood of occurrence and their expected loss, histor-

ical loss data, and any experience in managing the new opera-

tion. In particular, we emphasize that AHP allows an operational

risk manager to mitigate the process owners’ cognitive bias. This

model is able to quantify, by means of a semantic scale (see Section

2.3.1 for a complete description), the process owners’ judgments

(which are the only input required by AHP), through pairwise

comparisons of the analyzed elements Saaty (2005). Furthermore,

we point out that AHP can handle multiple judgments (expressed

by different process owners) on the same couple of elements. In-

deed, AHP can aggregate these multiple judgments through a ge-

ometric mean Forman (2001). AHP is also able to quantify cog-

nitive biases by means of simple calculations (see Section 2.3.1).

2.3.1 Assessing operational risks of a new product with

AHP

Our implementation of the AHP method for the evaluation of the

operational risks related to the introduction of a new product is

similar to that of Mustafa and Al-Bahar (1991), who propose the
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assessment of the project risks for the construction of a bridge

through AHP.

Our analysis consists of the following steps:

• risk mapping;

• construction of the decisional hierarchy;

• evaluation phase.

Risk Mapping

The first step involves mapping the potential operational risk

events into the existing/potential processes of the company. To

identify all the possible events related to the new operation, one

should examine all available documentation on the new product.

From this documentation, one could derive roles and responsibili-

ties for each department of the company involved into the launch

of the new product and into the management of the new operation.

Process owners, who perform the mapping activity under the

supervision of operational risk managers, have the responsibility

of identifying all potential operational risk events.
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Construction of the decisional hierarchy

The second step of the methodology requires the representation of

a multi-criteria decision problem, which consists in prioritizing the

operational risk events due to the introduction of a new product

by means of a decisional hierarchy. A decisional hierarchy is a

multilayer structure to organize factors and actors of a problem.

Each layer is composed of homogeneous elements, namely a given

level of the hierarchy must contain a set of pairwise comparable

elements.

The decisional hierarchy of our approach consists of the follow-

ing layers:

• Layer 1: (goal) prioritize operational risk events arising from

the introduction of a new product;

• Layer 2: (decisional criteria) identify the departments of the

company involved in the management of the new operation;

• Layer 3: (sub-criteria) establish the existing/potential pro-

cesses that characterize the new operation;
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Figure 2.1: Decisional hierarchy

• Layer 4: (alternatives) identify operational risk events in each

process.

To support intuition, In Fig. 2.1 we provide a scheme of the

decisional hierarchy. Note that the modularity of this hierarchy

could also allow us to add a further layer. For instance, this fifth

layer could contain the loss effects due to an operational risk event,

or the risk factors that can determine a given loss event.

The elements of a layer of the hierarchy can be clustered into

groups. Each group is a set of homogeneous elements that a pro-

cess owner must pairwise compare and that are connected to the

same element of the upper layer of the hierarchy. For example,

in Fig.2.1 the set of risks (Risk “1”, Risk “2”, ..., Risk “k”) related
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to Process “1” is a group. Niemira and Saaty (2004) suggest to

create groups with few elements to simplify the decision making

process.

The output provided by AHP is a scalar (called a priority) for

each operational risk event, which enables to rank the risk events

with respect to their level of criticality. As shown more in detail

in next section, one can compare these priorities locally, namely

among elements of a cluster (so-called “Local Scale”), or globally,

namely among elements of a layer (so-called “Global Scale”). Note

that all the elements of Layer 2 are considered as a single group.

Thus, in Layer 2 the Global and the Local Scale comparisons

coincide.

Evaluation phase

The last step of the analysis consists in assessing the relative im-

portance of the elements belonging to the same layer by means of

process owners’ judgments. More in detail, this phase is generally

performed by the operational risk managers, who can use several

ways to collect this information, e.g., through a survey, a work-
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shop, or interviews. We believe that the most convenient way to

gather information is an interview with process owners, so that

an operational risk manager can directly control their cognitive

biases. Indeed, operational risk managers can report in real-time

to a process owner any inconsistencies of his judgments by means

of the Consistency Ratio, which quantifies cognitive biases (see

Expression (2.1)).

One of the key properties of AHP is to reduce possible cog-

nitive biases by simplifying the decision-making process, namely

by pairwise comparing elements rather than comparing them all

together.

In practice, for pairwise comparisons required by AHP, opera-

tional risk managers could ask process owners, during the inter-

views, questions of this kind5: “with reference to the operational

risk level of the new product, what is the department that manages

the most risky processes between Department “1” and Department
5Probably, the most suitable person to assess the riskiness of each organizational unit

is the project manager who is responsible for monitoring the launch of the new product.

Note that the project manager is, in turn, a process owner.
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Intensity of

importance on an Definition Explanation

absolute scale

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance of Experience and judgment slightly favour

one over another one activity over another

5 Essential or strong importance Experience and judgment strongly favour

of one over another one activity over another

7 Very strong importance of An activity is favoured very strongly over another;

one over another its dominance demonstrated in practice

9 Extreme importance of The evidence favouring one activity over another

one over another is of the highest possible order of affirmation

2, 4, 6, 8 Intermediate values between When compromise is needed

the two adjacent judgments

Table 2.1: Semantic scale

“2”? To what extent? ”. Process owners could answer these ques-

tions through the semantic scale proposed by Saaty (1988) and

reported in Table 2.1. Clearly, the purpose of this scale, whose

values range from 1 to 9, is to convert qualitative judgments into

ordinal numbers6. A justification for the interval [1, 9] of the se-

mantic scale is due to Dehaene (2011), who states that “intro-

spection suggests that we can mentally represent the meaning of
6According to Dantzig (1954), “number sense should not be confused with counting,

which is probably of a much later vintage, and involves, as we shall see, a rather intricate

mental process”. Indeed, through number sense it is possible to compare a plurality of

objects.
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Element1 Element2 . . . ElementN

Element1 1 a12 · · · a1N

Element2 1/a12 1 · · · a2N

...
... · · · ...

...

ElementN 1/a1N 1/a2N · · · 1

Table 2.2: Generic pairwise comparison matrix

numbers 1 through 9 with actual acuity. Indeed, these symbols

seem equivalent to us”.

The judgements on elements of a given cluster are collected

within a so-called pairwise comparison matrix (see Table 2.2).

For a practical construction of the pairwise comparison matrix,

see the case study described in Section 2.5. However, for sake of

clarity, we can say that if a process owner assigns the value of 3

(i.e., moderate importance of one over another) when comparing

elements “1” and “2” of the same group, then a12 = 3. In addition,

in order for the comparison between the elements “1” and “2” to

be consistent, we have that a21 = 1
a12

= 1
3 . Summarizing, the

pairwise comparison matrices have the following properties:
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1. by construction, the elements of the diagonal are all equal to

one (i.e., each element is equally important to itself);

2. for consistency the elements of the upper triangle are recip-

rocal with respect to those of the lower triangle.

Note that, thanks to these properties, a process owner must only

express N(N − 1)/2 comparisons to fulfil a pairwise comparison

matrix. With this matrix it is possible to compute the priori-

ties of the elements belonging to the same cluster. A strategy

to obtain the priorities of the elements from their pairwise com-

parison matrix is the principal eigenvalue method Saaty (2003),

where the priorities are given by the components of the normalized

eigenvector ωmax corresponding to the maximum eigenvalue λmax.

One of the advantages of the principal eigenvector method is its

capability of easily quantifying the process owner’s bias through

the so-called Consistency Ratio (CR). This ratio is calculated as

follows:

CR =
CI

RI
(2.1)

where CI and RI are the Consistency Index and the Random In-
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N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Table 2.3: Random Index values

dex, respectively. The Consistency Index is

CI =
λmax −N
N − 1

(2.2)

The Random Index is a parameter that depends on the number

of elements of the pairwise comparison matrix, as reported in Ta-

ble 2.3 (see Saaty (2003)). According to Saaty (1990) a pairwise

comparison matrix is consistent when CR ≤ 10%. Consistency is

closely linked to the following requirements: (a) aij = 1
aji

and (b)

aijajk = aik for all i, j, k = 1, ..., n. As described above, the prior-

ities of a cluster of potential operational risk events, calculated by

the principal normalized eigenvector ωmax, represent the relative

importance of each risk event with respect to the others belonging

to the same cluster (the so-called “Local Scale”). Once we have

calculated the priorities for all clusters of two contiguous layers

in the hierarchy (see Fig.2.1), we can compute the “Global Scale”
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priority of each element of the lower layer with a multiplicative

approach, as described from the following example. Let us assume

that Layer 2 consists of 2 elements, Department “1” and Depart-

ment “2”, having local scale priorities ω1 = 70% and ω2 = 30%,

and that Layer 3 provides two clusters: c1 linked to Department

“1” and containing three elements (γ, δ, and ε); and c2 linked

to Department “2” and containing two elements (φ, η). The lo-

cal scale priorities of the three elements of c1 are ωLSγ = 50%,

ωLSδ = 20%, ωLSε = 30%, while those of the remaining two are

ωLSφ = 50%, ωLSη = 50%. Then, the global scale priorities of the

elements belonging to Layer 3 are ωGSγ = 70% × 50% = 35% ,

ωGSδ = 14% , ωGSε = 21%, ωGSφ = 15%, and ωGSη = 15%. The

same mechanism is true for the remaining layer of the hierarchy.

The global scale priorities of the risk events (i.e., the elements

of Layer 4 of the hierarchy) represent the relative contribution of

each potential operational risk event to the overall risk profile of

the new product. Thus, through the Global Scale priorities, one

can prioritize operational risk events in terms of relevance (in a
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decreasing order).

2.3.2 80/20 rule

Once the ranking of the potential operational risk events is ob-

tained from the AHP method, we can group this set into four

rating clusters to better represent their criticality when choos-

ing the risks to be mitigated. For this purpose, we use Juran’s

“80/20 rule”7, which is a widespread empirical principle (used in

several business fields) that states that roughly 80% of a phe-

nomenon is explained by roughly 20% (“vital few”) of its causes

Juran (1951). This 80/20 rule could facilitate risk managers to

interpret the output provided by AHP. In view of this rule, we

cluster the operational risk events, identified by the process own-

ers, into four rating categories in a decreasing order of relevance:

“critical”, “high”, “medium”, “low”.

To determine the four classes of rating, we first identify three

classes by the cost-benefit analysis of Lysons and Farrington (2006),

and then we split the first class into two sets, as shown in Table
7Juran was inspired by Pareto’s results (Pareto, 1896).
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ABC ANALYSIS Lysons and Farrington (2006) Risk rating classes

Elements cumulative Relative contribution to

Class of Elements Relevance Rating distribution range overall risk of

elements the new product

Class A First 20% ' 80% Critical [0%, 5%] ' 50%

High (5%,20%] ' 30%

Class B Second 30% ' 15% Medium (20%, 50%] ' 15%

Class C Remaining 50% ' 5% Low (50%, 100%] ' 5%

Table 2.4: Risk rating classes for the operational risk events of a new product.

2.4. In a nutshell, these four classes are obtained by fixing ap-

propriate cut-offs on the cumulative distribution function of the

operational risk events.

In our framework, we can interpret the “80/20” rule by stating

that roughly the 80% of the operational risk related to the intro-

duction of a new product is due to roughly 20% of the risk events

identified by the process owners. To establish the above mentioned

cut-offs, we refer to the quantiles of the cumulative distribution

function of the operational risk events (sorted in descending or-

der) with respect to their ranking obtained by the AHP model.

This means that our “vital few” elements are both the “critical”

and the “high” risks.

Note that, using this additional clustering into four classes,
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the Management of a company can choose to focus on mitigation

actions especially for “critical” and “high” risks, coherently with

principles of parsimony and efficiency. However, this choice has to

be coherent with the risk appetite and the risk tolerance thresh-

olds defined by the same Management. Conversely, “medium” and

“low” risks, as a matter of principle, should be constantly moni-

tored in order to ensure that these risks remain below appropriate

tolerance thresholds established by the Management. Indeed, in

the case of risk events related to strategic processes, the Manage-

ment can choose to invest in additional mitigation actions also for

“medium” and “low” risks.

Although the primary goal is to guarantee the core processes, it

is reasonable to assume that the Management of a company wants

to try to maximize efficiency for a given money budget and other

available resources. In this context, grouping these two categories

of risks (“medium” and “low”) is fundamental to save money and

other resources.

A further support to these evidences can be obtained from Fig.
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2.2, where we report a theoretical cumulative distribution of the

priorities of the risk events. Indeed, one can directly observe the

importance of the contribution to risk with respect to the number

of operational risks. Note that the closer the cdf of the operational

risk events to the Pareto distribution is, the more the use of the

“80/20 rule” is justified.

Furthermore, we point out that the risk map should provide at

least 20 operational risk events to apply the “80/20 rule”. Indeed,

if the number of risk events is less than 20, then the first 5% of

elements is less than a single risk event.

2.4 Optimally choosing the mitigation actions

of the intervention plan

Once the most relevant risk events are identified by means of the

AHP model and of the 80/20 Rule, process owners must sketch

proper mitigation actions, which generally concern the develop-

ment of existing/new ICT systems, staffing review, drawing of in-

ternal processes, and policy formalization. Note that a mitigation
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Figure 2.2: Cumulative distribution function of risk events’ priorities
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action can cover one or more risk events, while each risk event can

be covered by one or more mitigation actions. A company should

first estimate the cost of each mitigation action. Then one can

search for an optimal intervention plan to reduce the operational

risk exposure arising from a new product.

A typical aim in operational risk management is to cover the

operational risk exposure minimizing the cost of the mitigation

actions. Thus, considering n risk events (i.e. those critical and

high) andmmitigation actions, we solve the following set covering

problem:

min cTx

s.t. Ax ≥ 1

x ∈ {0, 1}m
(2.3)

where 1 is the all-ones vector of dimension m, c is the vector

of costs of the mitigation actions, and A is a n × m boolean

matrix with rows representing the risk events and the columns

representing the mitigation actions. Element aij is 1 if the action

i mitigates risk event j, and 0 otherwise.
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The output of the model (for a practical application, see Sec.

2.5) provides the mitigation actions that secure the internal pro-

cesses of the company, minimizing the cost of the intervention

plan. One of the most interesting features of the model is that

one can handle overlaps among mitigation actions by minimizing

their total cost.

2.4.1 Optimally choosing a subset of mitigation actions

As previous mentioned, operational risk managers together with

process owners must rank the potential risk events. Furthermore,

critical and high risk events should be all mitigated by means of

suitable corrective actions. However, the Management of a com-

pany can adjust the aforementioned ranking, in coherence with its

risk tolerance. Accordingly to this faculty, the Management can

choose to mitigate only a subset of these events or rather extend

the set of the risks upon which it is necessary to identify an inter-

vention. In other words, they can either judge that the company

has bigger fishes to fry or that a medium/low risk events could

put the company on thin ice.
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The company is safe and sound only when mitigating all the

most relevant risks (better safe than sorry!). However, the budget

might not suffice to cover all critical and high risks. In this con-

text, the Management should choose a subset of mitigation actions

to get the best sub-optimal situation, aiming at not throwing the

baby out with the bathwater. An operational risk manager could

help the Management providing a model to achieve the highest

reduction in operational risk exposure under a budget constraint.

Note that, if one looks more closely, we have already established

a rule to prioritize risk events (i.e. the Analytic Hierarchy Pro-

cess) and to identify the subset of risk events to mitigate (i.e. the

80/20 rule): now we deal with an additional problem related to

the unavailability of an appropriate budget.

The following optimization problem represents a possible solu-
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tion to choose the best subset of mitigation actions:

max pT y

s.t. cx ≤ b

y ≤ Ax ≤ my

y ∈ {0, 1}n

x ∈ {0, 1}m

(2.4)

where m and n are the number of mitigation actions and risk

events, respectively. Furthermore, p is the reduction of operational

risk exposure correlated to each mitigant8 and b is the available

budget. Here xi = 1 if the i-th mitigation action is chosen, and

xi = 0 otherwise. On the other hand, note that the constraint

y ≤ Ax ≤ my implies that yj = 1 if at least one mitigation action

covers the j-th risk event, and yj = 0 otherwise. Thus, the model

correctly aims at maximizing the score of all mitigated risks.

However, as previously mentioned, one should take the output

of this model with a grain of salt. Indeed, the model provides
8We assume here that the reduction of operational risk exposure of a given mitigation

action, is equal to the sum of the priorities (obtained with the Analytic Hierarchy Process)

of the risk events that the action covers.
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the optimal combination of mitigation actions in terms of prior-

ity, without caring about to the processes they secure. However,

in a more refined version of the model, one can also include con-

straints on the minimum reduction for each process (considering

the location of the risk events).

One of the most interesting feature of Model 2.4 is the possibil-

ity of performing a parametric analysis for different budgets. More

precisely, one can obtain the optimal sets of mitigation actions ob-

tained by increasing the available financial resources b. This can

be used by the Management to decide whether an increase in the

budget to mitigate operational risk exposure is justified by an

increase in the score of the risks covered.

2.5 Case study

Imagine a bank wants to launch a new type of loan. The goal

of the problem is to prioritize the most relevant operational risk

events arising from the new product. The three departments (i.e.

criteria) taken into account are (i) Front Office, (ii) Back Office,
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(i) (ii) (iii)

(i)FrontOffice 1 3 5

(ii)BackOffice 1/3 1 3

(iii)MiddleOffice 1/5 1/3 1

Table 2.5: Departments pairwise comparison matrix

and (iii) Middle Office. Given the following pairwise comparison

matrix

one can easily calculate the normalized maximum eigenvector ωDepmax =

(0.64 0.26 0.10).
The processes (i.e., sub-criteria) are: (a) Inquiry; (b) Delibera-

tion; (c) Disbursement; (d) Recovery; (e) Monitoring; (f) Renewal.
The alternatives are the possible breakdowns that can arise dur-
ing the operations, identified by the process owners, which are the
operational risk events. In this case study they are:

#1 Missed verification of prejudice absence and of previous/ pendants competition pro-

ceedings

#2 Data entry errors regarding customers/guarantees/other data for the evaluation of

the credit worthiness

#3 Missing/ incomplete/ not updated documentation, related to third parties and re-

quired for the inquiry by internal procedures

#4 Missed analysis of the links between subject to inquiry and its legal/ economic mem-
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bership group

#5 Deliberation of a loan beyond delegated powers

#6 Unavailability of ICT systems that support the deliberation of a loan

#7 Documentation for the execution of the contract falsifified by internal resources

#8 Missing/ incomplete/ not updated contracts

#9 Disavowed signature and/or signature of people without proper power

#10 Failure to notify credit transfer

#11 Hacking of ICT systems that support the delivery of a loan

#12 Delay or failure to activate credit recovery actions (unintentional)

#13 Failure to observe the terms for insinuations for concourse procedures

#14 Failure to activate credit recovery actions (intentional)

#15 Lack of preservation of physical goods given as collateral

#16 Failure to control or reintegrate value of collateral over time

#17 Errors in the preparation of the report on the status of mortgages granted and

disbursed

#18 Unavailability of ICT systems that support the renewal of a loan

#19 Data entry errors regarding customers/guarantees/other data for the evaluation of

the credit worthiness

#20 Errors in archiving customer documentation for the renewal of a loan (intentional)

Given the above cited elements for the problem, one can build

the decisional hierarchy of Fig. 2.3 To complete the hierarchy,

on one hand, process owners must evaluate the processes with
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Figure 2.3: Decisional hierarchy

respect to their reference department and, on the other hand, the

risk events with respect to their reference process. In both cases,

process owners must follow the steps below

1. fulfil the pairwise comparison matrices;

2. check the consistency of judgments by means of the Consis-

tency Ratio;

3. calculate the normalized eigenvector corresponding to the

maximum eigenvalue;

4. convert the global scale priorities into the local scale.
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(i) (ii)

(i)Inquiry 1 1/7

(ii)Deliberation 7 1

Table 2.6: Processes protected by the Front Office

(i) (ii)

(i)Disbursement 1 5

(ii)Recovery 1/5 1

Table 2.7: Processes protected by the Middle Office

Here we list the remaining pairwise comparison matrices needed

to solve the problem. First, we compare the processes related to

their reference departments:

Second, we list the pairwise comparison matrices of the risks

potentially arising from the processes.

We report the local scale priorities of the elements considered

in the analysis (for simplicity, we do not include all the pairwise

comparison matrices) in Fig. 2.4: Applying the 80/20 rule we find
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(i) (ii)

(i)Monitoring 1 9

(ii)Renewal 1/9 1

Table 2.8: Processes protected by the Back Office

#1 #2 #3 #4

#1 1 1 3 1

#2 1 1 3 1/3

#3 1/3 1/3 1 1/3

#4 1 3 3 1

Table 2.9: Risks of the inquiry

#5 #6 #7

#5 1 1/5 1/7

#6 5 1 1/3

#7 7 3 1

Table 2.10: Risks of the inquiry
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#8 #9 #10 #11

#8 1 3 1 1/9

#9 1/3 1 1 1/7

#10 1 1 1 1/9

#11 9 7 9 1

Table 2.11: Risks of the disbursement

#12 #13 #14

#12 1 1 1/5

#13 1 1 1/5

#14 5 5 1

Table 2.12: Risks of the recovery

#15 #16 #17

#15 1 1/7 1/5

#16 7 1 3

#17 5 1/3 1

Table 2.13: Risks of the monitoring
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#18 #19 #20

#18 1 1 3

#19 1 1 3

#20 1/3 1/3 1

Table 2.14: Risks of the renewal

Figure 2.4: Local scale priorities of the elements
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a unique “critical” risk (i.e. #7 Documentation for the execution of

the contract falsifified by internal resources) and four “high” risks

(i.e. #11, #6, #16, and #5). To mitigate these five risk events,

process owners hypothesize the following mitigation actions (into

the square brackets we show their cost):

A Drawing a new process for handling the operation [50];

B Recruitment of 4 junior analysts [60];

C Recruitment of 2 senior analysts [100];

D Purchasing an external software to support the operation [120];

E Development of an internal tool to support the operation [180].

Into the boolean matrix 2.15 we show what risks are covered by

each mitigation action (1 if the risk is covered, 0 otherwise) Solving

the model of Sec. 2.4 one can optimize the cost of mitigation

actions necessary to secure the most critical processes. In this

case study, the optimal choice is the implementation of mitigation

actions “A” and “D”. Indeed, thanks to these two actions, one can

mitigate all the “critical” and “high” risk events.
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A B C D E

#7 1 0 1 0 0

#11 0 0 0 1 1

#6 0 0 0 1 1

#16 1 1 1 0 1

#5 0 1 1 1 1

Table 2.15: Mitigation actions vs risk events

2.6 Conclusions

Our approach to assess the operational risk exposure arising from

the launch of a new product provides several advantages. First,

AHP allows to address the lack of information through a sim-

plification of the decision-making process. Furthermore, we can

control the process owner’s cognitive bias. We are still able to

estimate a rating for each operational risk event, thus making the

output of the AHP more intuitive. Indeed, the main goal of the

proposed methodology is to identify the most exposed internal

process of a company and, consequently, to reduce the gaps of

87



the control environment. In this context, the application of the

“80/20 rule” helps to narrow down the environment of the most

urgent mitigation actions.

The impossibility to implement appropriate mitigation actions,

against the most significant operational risk events, can cause sev-

eral impacts of different types, including material operating losses.

These impacts can affect the success of the new product implemen-

tation project and, in extreme cases, can compromise the business

continuity.

Thanks to the approach shown in this paper, the operational

risk managers of a company operating in the financial sectors can

carry out an operational risk assessment for the new product.

This analysis falls into the broader perimeter of the new product

approval process which involves the entire risk management de-

partment and should provide a useful tool to express an informed

opinion on its feasibility.

Further studies are underway to investigate the possibility of

improving the flexibility of the two optimization models shown
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above to be able to consider also partial mitigation actions (e.g.,

if a given mitigation action involves hiring 4 people, we want to

investigate what can be the effect of hiring only 2 of them).
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