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Abstract The mechanical behaviour of complex materials, characterised at finer

scales by the presence of heterogeneities of significant size and texture, strongly

depends on their microstructural features. By lacking in material internal scale pa-

rameters, the classical continuum does not always seem appropriate for describing

the macroscopic behaviour of such materials, taking into account the size, the ori-

entation and the disposition of the heterogeneities. This often calls for the need

of non-classical continuum descriptions, which can be obtained through multiscale

approaches aimed at deducing properties and relations by bridging information at

different levels of material descriptions.

Current researches in solid state physics as well as in mechanics of materials show

that energy-equivalent continua obtained by defining direct links with lattice sys-

tems, as widely investigated by the corpuscular-continuous approaches of 19th cen-

tury, are still among the most promising approaches in material science. The aim is

here to point out the suitability of adopting discrete to scale-dependent continuous

models, based on a generalization of the so–called Cauchy-Born (Voigt) rule used in

crystal elasticity and in classical molecular theory of elasticity, in order to identify

continua with additional degrees of freedom (micromorphic, multifield, etc.) which

are essentially non-local models with internal length and dispersive properties. It

is shown that, within the general framework of the principle of virtual powers, the

correspondence map relating the finite number of degrees of freedom of discrete

models to the continuum kinematical fields provides a guidance on the choice of the

most appropriate continuum approximation for heterogeneous media. Some appli-

cations of the mentioned approach to ceramic matrix composites and masonry-like

materials are discussed.
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1 Introduction

This contribution focuses on constitutive theories for continuous models originated

from refined discontinuous descriptions of materials. The classical molecular the-

ory of elasticity, as developed by Navier, Cauchy and Poisson [25, 7, 30] in the

19th century, represents the first attempt to derive the field equations of an elastic

body basing on the definition of microscopic laws for systems of point–like particles

(‘molecules’) close together and interacting through attractive forces. In these mech-

anistic descriptions, inspired to Newton’s idea of coherence of elastic bodies [26],

the molecules, are perceived as ultimate particles without extension, inside which

no forces are accounted for, that interact in pairs through forces depending on their

mutual distance and directed along the line connecting their centres (‘central–force’

scheme). A kinematic corresponding map between the discrete degrees of freedom

and the continuous fields guarantees the transition from the fine to the gross de-

scription. Macroscopic stress measures are then derived as averages of molecular

material quantities over a convenient volume element, called ‘molecular sphere of

action’, outside which intermolecular forces are negligible.

The central–force description led to experimental discrepancies concerning the

number of elastic constants, that were less than those needed to represent the be-

haviour of materials belonging to various symmetry classes. Successively, Voigt

and Poincaré introduced mixed energetic/mechanistic approaches providing refined

molecular models that circumvented the problem of the underestimation of the num-

ber of the material constants related to the central–force scheme [32, 2, 3, 31]. In

particular, Voigt introduced a potential of force and moment interactions exerted

between pairs of rigid bodies, while Poincaré proposed a multibody potential de-

scription [35, 36, 29]. Both Voigt and Poincaré removed the local character of the

Cauchy description by modifying the central–force scheme thus obtaining continua

which could be classifiable as ‘implicitly’ or ‘weakly’ non-local [18, 20, 10], be-

cause of the presence of internal lengths and dispersion properties that can be there

recognized [31]; although they finally led back to classical continua by introducing

internal constraints: Voigt by imposing the same uniform rotation to the particles and

Poincaré by considering only pair–interaction terms. However, even if both Voigt

and Poincaré, on using the refinement of non–local descriptions, offered a good

solution to the controversy about the elastic constants, the mechanistic–molecular

approach was abandoned in favour of the energetic–continuum approach by Green,

and their works have been neglected for long time [3].

Now these ideas found a renewed interest with particular reference to the prob-

lem of constitutive modelling of composite materials. The mechanical behaviour of

materials characterized at finer scales by the presence of heterogeneities of signif-

icant size and texture strongly depends on their internal structure that is intrinsi-

cally heterogeneous and discrete because interfaces (grain boundaries, thin layers,

etc.) dominate the gross behaviour. By lacking in material internal scale parameters,

moreover, the classical continuum does not always seem appropriate to describe the

macroscopic behaviour of such materials taking into account the size, the orientation

and the disposition of the heterogeneities. This calls for the need of non–local con-
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tinuum descriptions which can still be obtained through homogenization approaches

aimed at deducing properties and relations by bridging information at proper under-

lying discrete micro–levels via energy equivalence criteria. Thus, providing that the

original lattice models were refined by extending the concept of molecule in or-

der to describe different internal phases (rigid inclusions, voids, etc.) and taking

into account of non central inter–molecular actions, or by enriching the potential

descriptions introducing multibody interaction terms, discrete–to–scale dependent

non–local continua could be naturally derived. As sample models nonlocal continua

with additional degrees of freedom are reported. These continua are non–classical

continua, of the kind described in [22, 5, 10, 14, 1], derived from lattice systems

made of rigid particles and distributed voids (pores, microcracks, etc.) and adopted

for the description of ceramic matrix composites or masonry–like materials.

2 Corpuscular micro-model

The discrete model adopted for the fine description of the reference composite

material is made of kind of structured molecules broadly representing the internal

phases of the material: the fibres, described as rigid particles of polygonal shape,

and the flaws, perceived as slits of arbitrary shape and a predominant dimension. The

slits are considered opened, stationary and with blunt edges (no tip effects accounted

for). The particles interact in pairs through forces and couples while the slits interact

through forces directed along the line connecting their centres. Particles and slits

also interact each other by forces. The slits must be considered as devices to transmit

to the matrix additional forces due to the presence of defects. In this sense they

represent the microcracks/pores. Their stiffness depends on the surrounding elastic

field. In this paragraph the analysis is conducted within the linearised framework,

where the velocity fields stand for infinitesimal displacement fields and the power

stands for work.

Let A and B be two rigid particles, respectively centred at the positions a and

b, and H and K two slits located at the positions h and k. The vectors wa and wb

respectively denote the velocity of a and b and the skew–symmetric tensors Wa and

Wb the angular velocities of the two particles. For each pair of adjacent particles the

strain measures of the lattice are defined as:

wi = wa
i −wb

i = [wa +Wa(pa −a)]− [wb +Wb(pb −b)] ,

Wi = Wa−Wb , (1)

where pa and pb are two test points, on A and B, through which the particles

interact, and wa
i and wb

i their velocities. Further lattice strain measures for each slit

H , each pair of interacting slits (H , K ) and each pair of interacting particle–slit

(A , H ) are:

dh , d j = dh −dk , wl = wa
i − (wh +dh) , (2)
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where: the vector dh (dk) represents the half–crack opening displacement on H

(K ) and wh (wk) is the velocity vector of h (k) on the external boundary of H

(K ).

The forces and the couples that B (A ) exerts on A (B) are respectively repre-

sented by the vector ta (tb) and the skew–symmetric tensor Ca(Cb). The force due

to dh on H is represented by the vector zh
o. Due to dh, the slit interacts with the

adjacent particles and the neighbouring slits. The vector zh (zk) is the action that K

(H ) exerts on H (K ), while the vector rh (ra) represents the action transmitted

by H (A ) to A (H ).

If the material can be considered periodic, or at least statistically homogeneous,

a representative volume element, Mµ , referred as the module, can be individuated.

Taking into account the balance equations of the internal actions of the module the

mean power of the internal actions over the volume of the module, V (Mµ), can be

written:

Π̄µ = 1
V (Mµ ) {∑

i

{ti · [wi−Wa(pa −pb)]+
1

2
Ci ·Wi}

+ ∑
h

zh
o ·d

h +∑
j

z j ·d j +∑
l

{rl · [wl −Wa(pa −h)]}} , (3)

where it has been put: ta = −tb = ti , zh = −zk = z j , rh = −ra = rl ,

Ca =−Cb +[(pa−pb)⊗ ta−ta⊗ (pa−pb)]+[(pa−h)⊗ rh−rh ⊗ (pa−h)] = Ci,

and where the summations are respectively extended to each pair (A ,B), (H ,K ),
(A ,H ) in Mµ .

The selection of linear elastic response functions for the interactions between

particles and for the forces due to the crack opening displacements; non–linear elas-

tic functions for the interactions between slits, decribed as continuous distributions

of dislocations with Burgers’ vector parallel to the opening directions; other non–

linear phenomenological functions for the interactions between slits and particles:

ti = Ki[wi −Wa(pa −pb)] , Ci = KiWi , zh
o = Dhdh ,

z j = D j
‖ dh ‖‖ dk ‖

‖ h−k ‖2
(h−k) , rl =

f1(a) f2(h)

‖ a−h ‖2
(a−h) , (4)

here assumes a purely paradigmatic meaning for the procedure reported in Section

3 and it can at any time be modified in order to meet the needs of finer constitu-

tive descriptions. In Equations (4) the components of the second order Ki, Dh and

fourth order Ki tensors; the constant D j and the scalar functions f1 and f2 (two ap-

proximately Gaussian functions describing respectively the local force field around

a particle (A ) and a slit (H ) [19]) depend on the elastic constants of the matrix and

the geometry of the two kinds of inclusions.
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3 Micro–macro transition via virtual power equivalence

In order to identify the equivalent continuum model, hypotheses of regularity of the

kinematical descriptors introduced in Section 2 are given. According to discrete–

continuum coarse–graining approaches described in [31], kinematical maps relating

discrete–to–continuous kinematical fields are introduced. These maps are given by

Taylor expansions up to the second order of the macro velocity vector w(x), the

skew–symmetric micro angular velocity tensor W(x), and the independent micro

velocity vector d(x):

wa = w(x)+∇w(x)(a−x)+
1

2
[∇2 w(x)(a−x)](a−x)+o(a−x)

Wa = W(x)+∇W(x)(a−x)+
1

2
[∇2W(x)(a−x)](a−x)+o(a−x)

dh = d(x)+∇d(x)(h−x)+
1

2
[∇2 d(x)(h−x)](a−x)+o(h−x) , (5)

for any A , H ∈Mµ , where x is the centre of the module and where, from now on,

the term ‘macro’ stands for standard and ‘micro’ for non-standard fields. Assuming

that a continuous neighborhood M of x, occupying the same Euclidean region of

Mµ , is well definede, these maps impose that the continuum locally undergoes the

same deformations as the lattice system. Equations (5) provide a generalization of

Cauchy, Voigt or Poincaré’s homogenization rules reported in [31]. From now on,

the explicit dependence of any field on x will be undertaken.

Basing on the maps (5) various kinds of continua can be identified that are in

general non–classical, as described in [31]. By expanding the series up to higher or-

ders refined descriptions allowing to take into account long–range interactions can

be obtained. Specific continuous models can also be derived by imposing proper in-

ternal constraints to the lattice model, as in the cases studied by Voigt and Poincaré,

obtaining continua that can be defined continua with latent microstructure [4].

3.1 First order continuum approximation. Continuum with rigid

and affine local structure

Using Equations (5) with ∇w, ∇W and ∇d constant the strain measures of the lattice

system (1), (2) can be expressed in terms of the smooth fields ∇w−W, ∇W, d and

∇d as:

wi = (∇w−W) (a−b)+∇W [(pa−a)⊗ (a−x)− (pb−b)⊗ (a−x)] ,

Wi = ∇W (a−b) , (6)

d j = ∇d (h−k) ,

where the explicit dependence of any field on x has been undertaken.
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After some algebra, the mean power of the contact actions (3) can be also ex-

pressed as function of these strain fields:

Π̄µ = 1
V (Mµ ) {{∑

i

ti ⊗ (a−b)+∑
i

rl ⊗ (a−h)} · (∇w−W)

+ {∑
i

ti ⊗ [(pa −a)⊗ (a−x)− (pb−b)⊗ (b−x)]+
1

2
Ci ⊗ (a−b)} ·∇W

+ {∑
h

zh
o +∑

l

rl} ·d

+ {∑
h

zh
o ⊗ (h−x)+∑

j

z j ⊗ (h−k)+∑
l

rl ⊗ (h−x)} ·∇d} . (7)

It can be now assumed that a continuum scalar field representing the internal

power density of a multifield continuum, in a neighbourhood of x occupying the

same region of the module M ≡ Mµ , exists as a function of the primal strain fields

∇w−W, ∇W, d, ∇d:

π(∇w−W,d,∇d) = S · (∇w−W)+
1

2
S ·∇W + z ·d+ Z ·∇d, (8)

where the second order tensor S, the third order tensor S, the vector z and the second

order tensor Z are the dual stress fields power–conjugate to the strain measures

∇w−W, ∇W, d, ∇d, respectively.

The requirement that the internal power is preserved in the transition from the

fine to the gross description for any ∇w−W, ∇W, d and ∇d, through the localiza-

tion theorem, gives:

Π̄µ(∇w−W,d,∇d)= π(∇w−W,d,∇d) . (9)

Then the continuum stress measures are identified as functions of the internal actions

and of the fabric vector and tensors of the module (i.e. size, shape and disposition

of inclusions):

S = 1
V (Mµ ) {∑

i

ti ⊗ (a−b)+∑
l

rl ⊗ (a−h)} ,

S = 1
V (Mµ ) {∑

i

2ti ⊗ [(pa −a)⊗ (a−x)− (pb−b)⊗ (b−x)]+Ci ⊗ (a−b)} ,

z = 1
V (Mµ ) {∑

h

zh
o +∑

l

rl} ,

Z = 1
V (Mµ ) {∑

h

zh
o ⊗ (h−x)+∑

j

z j ⊗ (h−k)+∑
l

rl ⊗ (h−x)} . (10)

In the virtual power setting delineated, non variational, the results apply regard-

less of the material response. Once the constitutive equations for the lattice system

are defined, for instance those of Equations (4), by identifying the actual strain rates

of the discrete model using again the maps (5), always under the hypothesis of

homogeneous deformations, the continuum constitutive relations for all the stress
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measures introduced are derived in the following form:

S = A(∇w−W)+B∇W +Cd+D∇d+ΨS(d
2,∇d2,‖ d ‖‖ ∇d ‖) ,

S = E(∇w−W)+F∇W ,

z = I(∇w−W)+Md+N∇d+Ψz(d
2,∇d2,‖ d ‖‖ ∇d ‖) ,

Z = O(∇w−W)+Qd+R∇d+ΨZ(d2,∇d2,‖ d ‖‖ ∇d ‖) . (11)

In Equations (11) the constitutive tensors of the second (M), third (C, I, N, Q),

fourth (A, D, O, R), fifth (B, E) and sixth (F) order have components depending on

the elastic constants and the geometrical parameters of the material phases, as well

as the non–linear vector (Ψz) and second order tensor (ΨS ,ΨZ) functions. If the dis-

crete system is hyperelastic, also the equivalent continuum is hyperelastic and the

following symmetry relations between constitutive tensors hold: BT ·T = T · ET,

for any third order tensor T and second order tensor T; Cv ·T= v · IT, for any vector

v and second order tensor T; DT ·V = T ·OV, for any second order tensor T and

V; NT · v = T ·Qv, for any second order tensor T and vector v. If the material mi-

crostructure is arranged respecting the central symmetry the odd order tensors B, C,

N, and the corresponding transposed tensors defined by the above relations, are null.

Moreover, the tensors B, C, F, M, N, as well as the corresponding transposed ten-

sors, contain internal length parameters and then, even in this case of homogeneous

deformations, the non–local character of the description is guaranteed.

The lattice system described in Section 2 can be then replaced by an equivalent

multifield continuum with additional degrees of freedom endowed with a rigid lo-

cal structure (Cosserat, e.g. [10]) plus a deformable (affine) structure, of the kind

described in [5] or also in [14], encoded in the power formula (8). This continuum

undergo microdeformations independent of the local macroscopic deformation and

a detailed description of the basics can be found in [34, 31]. This description can be

contextualized within the more general frameworks delineated in [27, 8, 11, 16].

In the case in which d = 0, using Equations (11) where no–interaction between

particle and slits are accounted for (C = 0 , I = 0 and D = 0 ,O = 0), the internal

power density (8) can be written:

π = [A(∇w−W)+B∇W] · (∇w−W)+
1

2
[E(∇w−W)+F∇W] ·∇W , (12)

that is the power density formula of a micropolar continuum equivalent to an as-

sembly of rigid particles, without slits, undergoing independent rotations one each

other, Wa, and interacting through forces and couples, ta, Ca (∀A in Mµ ).

In order to make comparisons with other continuous models, it is useful to dis-

tinguish in the expression (12) the contributions of the symmetric and the skew-

symmetric part of the strain and stress tensors. By decomposing the displacement

gradient ∇w = E + R, with E = sym[∇w] and R = skw[∇w], where the operators

sym and skw respectively extract the symmetric and the skew-symmetric part of a

tensor, it is:
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π = sym[A(E +R−W)+B∇W] ·E+ skw[A(E +R−W)+B∇W] · (R−W)

+
1

2
[E(E +R−W)+F∇W] ·∇W . (13)

By putting:

πYY = sym[AE] ·E

πY K = sym[A(R−W)] ·E = skw[AE] · (R−W)= πKY

πKK = skw[A(R−W)] · (R−W)

πYC = sym[B∇W] ·E =
1

2
EE ·∇W = πCY

πKC = skw[B∇W] · (R−W)=
1

2
E(R−W) ·∇W = πCK

πCC =
1

2
F∇W ·∇W , (14)

Equation (13) can be written:

π = πYY +πKK +πCC +2(πY K +πYC +πKC) . (15)

It can be noticed that the term πYY corresponds to the classical term. The terms πKK

and πCC are characteristic to the Cosserat continuum. The mixed terms πCY = πYC

and πCK = πKC are null in the case of materials belonging to the class of cen-

trosymmetric materials or more restricted symmetry classes, while the mixed term

πY K = πKY is null in the case of orthotetragonal materials or more restricted material

symmetry classes.

3.2 Second order continuum approximation

Let us now consider the case in which, in the maps (5), d = 0 and W = skw[∇w] =
R, with ∇2 w 6= 0. Referring to the original lattice system, these constraints connote

a system without slits and with particles constrained to undergo the same local rigid

rotation of the continuum (Wa = R, ∀(A ) ∈ Mµ ), as in the Voigt model described

in [31]. This implies that: ∇w−W = E (E = sym[∇w]) and, for negligible distances

pa −pb, the strain measures of the lattice reduce to:

wi = E(a−b)+
1

2
∇2w[(a−x)⊗ (a−x)− (b−x)⊗ (b−x)] , (16)

where the explicit dependence of any field on x is undertaken. Hence, the mean

power of the contact actions over Mµ (3) can be written as:
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Π̄µ = 1
V (Mµ ) {∑

i

ti ⊗ (a−b) ·E

+
1

2
∑

i

ti ⊗ [(a−x)⊗ (a−x)− (b−x)⊗ (b−x)]·∇2w} . (17)

This formula corresponds to the mean power of the internal action of the module

of a lattice system whose particles, as mentined above, are locally constrained to

have the same rotation and to (non–locally) interact through forces and moments of

forces, but no couples. It can be shown in fact that, for pa −pb approaching to zero,

constitutive and balance considerations imply that the interaction couple Ci is null

(as assumed by Voigt, [36], p. 599).

Considering a continuous neighborhood, M ≡ Mµ , of a second–gradient contin-

uum of the kind described in [23, 24], which has the fields E and ∇2w as primal

strain fields, the equivalence between the mean internal power of the module (Equa-

tion 17) and the internal power density formula of the continuum

π = T ·E +T ·∇2w , (18)

for any E and ∇2w, through the localization theorem, gives the dual stress measures

as functions of the contact actions and of the fabric quantities of the module:

T = 1
V (Mµ ) ∑

i

sym[ti ⊗ (a−b)]

T = 1
2V (Mµ ) ∑

i

ti ⊗ [(a−x)⊗ (a−x)− (b−x)⊗ (b−x)] . (19)

Assuming that the interactions between the pairs of particles (A ,B) are lin-

ear elastic forces: ti = Kiwi, with Ki the second order stiffness tensor for the ith

pair, and assuming that the discrete-continuum maps (5), under the mentioned kine-

matical constraints, also hold for the actual kinematical descriptors, the constitutive

relationships of the equivalent second–gradient continuum can be obtained in the

form:

T = AE +B∇2w

T = EE +F∇2w , (20)

where the elastic tensors of order four (A), five (B, E) and six (F) have components

depending on the elastic constants of the matrix and on the geometry of the inclu-

sions. For these tensors the same symbols as those used for the first order continuum

are used in order to underline the similarities in the identification process, although

their components in general differ. Their explicit expressions are reported in [33]. In

the case of hyperelastic materials the transposition relation holds: BA ·B = A ·EB,

for any pair of second order tensors A and B. In the case of central symmetry the

odd order tensors B and E are null. These tensors and the tensor F contain material

internal lengths.
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Then, the power density of the internal actions of the equivalent second gradient

continuum can be written:

π = [AE +B∇2w] ·E +[EE +F∇2w] ·∇2w . (21)

It is useful to separate the different terms:

πYY = AE ·E

π∇∇ = F∇2w ·∇2w

π∇Y = B∇2w ·E = EE ·∇2w = πY ∇ , (22)

in such a way that:

π = πYY +π∇∇ +2πY ∇ . (23)

The term πYY corresponds to the classical term. The term π∇∇ is characteristic to the

second gradient continuum. The mixed term πY ∇ is null in the case of centrosym-

metric materials.

3.3 Classical continum approximation

Under both the constraints d = 0 and W = R, assuming homogeneous discrete–

continuum maps, that is Equations (5) with ∇2 w = 0, it is:

wi = E(a−b) . (24)

and the mean internal power (Equation 17) reads:

Π̄µ = 1
V (Mµ ) ∑

i

ti ⊗ (a−b) ·E . (25)

The kinematic map (24) corresponds to the so–called Cauchy–Born rule used in

crystal elasticity.

Superimposing the continuous neighborhood of x, M , to the module, Mµ , the

tensor E can be interpreted as the smooth field representing the symmetric strain

measure of a Cauchy continuum. By requiring the equivalence between Π̄µ and the

internal power density of the classical continuum

π = T ·E , (26)

for any E, always basing on the localization theorem, the classical dual stress tensor

T is identified as:

T = 1
V (Mµ ) sym[ti ⊗ (a−b)] . (27)
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Assuming the linear elastic response functions for the contact actions as in Sub-

section 3.2 and assuming that the discrete-continuum maps (5), under the given

kinematical constraints, also hold for the actual kinematical descriptors, the consti-

tutive relationships of the equivalent classical continuum can be expressed in the

form:

T = AE , (28)

where A is the fourth order classical elastic tensor, which does not contain any ma-

terial length, and:

π = πYY . (29)

The Cauchy model is equivalent in terms of power to a discrete system of rigid

particles locally constrained to have the same rotation which locally interact through

forces.

4 Structure of external power and balance equations for bulk

and contact actions of the equivalent non-classical continua

The structure of a non–local, scale–dependent, non-classical continuum is encoded

in its internal power formula. In Section 3 it has been shown that the power equiv-

alence between complex lattice systems and non-classical continua with additional

degrees of freedom, together with the selection of response functions for the discrete

model, leds to the identification of the constitutive functions for all the, standard and

non–standard, internal actions. This is a key critical point for such kind of continua.

Other critical points are the derivation of the whole set of balance equations and

the identification of the external actions [5, 15, 6]. In this Section it is shown how

starting from the power density formula of continua as those identified in Section

3, using the divergence theorem and applying the virtual power principle the struc-

ture of the corresponding external power can be defined, as well as the kinds of

bulk and contact actions (macro and micro tractions). Moreover, in agreement with

the axiomatic framework delineated in [13, 9], the local balance equations for the

standard and non–standard actions are derived.

4.1 Continuum with rigid and affine microstructure

Let us now consider the internal power of the continuum identified in Subsection 3.1

over a control region P ⊆ C , C being the Euclidean region occupied by a body,

with smooth boundary ∂P and outward normal n:
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Π =
∫

P

[S · (∇w−W)+
1

2
S ·∇W + z ·d+Z ·∇d]dV . (30)

The divergence theorem gives:

Π =

∫

P

[div S ·w+ (
1

2
div S+ skwS) ·W +(div Z− z) ·d]dV

+

∫

∂P

(Sn ·w+
1

2
Sn ·W +Z n ·d)dA , (31)

Then the power equivalence between the internal and external power required for

any w, W, and d, provides the structure of the external power as:

Π e =

∫

P

b ·wdV +

∫

∂P

(t ·w+
1

2
C ·W +p ·d)dA , (32)

for any P ⊆ C , where, for the sake of simplicity, neither volume terms dual to

W nor volume terms dual to d (external volume microforces) are considered. By

localization, the balance equations for the bulk:

divS+b = 0 ,

divS+2 skwS = 0 , in P

divZ− z = 0 , (33)

and the contact actions (macrotractions, surface microcouples, microtractions):

Sn = t , Sn = C , Zn = p , on ∂P (34)

are then derived. In Equations (33) and (34): b is the vector of the external volume

forces; t and C ∈ Skw are the vector and tensor (Skw being the set of second order

skew-symmetric tensors) of surface forces and couples on ∂ P, respectively; p is the

vector of surface microforces exerted through ∂P.

Equation (33a) expresses the classical linear momentum balance, (33b) the an-

gular momentum balance and (33c) the micro linear momentum balance. It is worth

noting that this last balance equation, obtained via the virtual power equivalence,

is not obtainable via the standard invariance under Galilean changes of observers

[15]. In Equations (33) and (34), S represents the second order macrostress tensor,

S the third order couple–stress tensor, while z and Z are respectively the vector of

the internal volume microstructural actions and the second order microstress tensor.

These last terms account for the additional state of stress on the body due to the

presence of defects and to their interactions. In particular, the internal force z can

be interpreted as an auto–force accounting for the internal changes of the material

configurations due to the presence of defects, while it can be shown that the stress

tensor Z, due to the relative deformation between defects, is related to the so–called

configurational, or material, tensor [14, 21].

It can be shown that the microstrain measures d and ∇d are non–null under a

rigid micromotion. According to the axiomatic description in [9], it must be then
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required that the internal power under rigid macro and micro motions:

Π ∗ =

∫

P

[S · (∇w−W)∗+
1

2
S ·∇W∗+ z ·d∗ + Z ·∇d∗]dV (35)

is null for any strain field defined as in [31]: (∇w−W)∗ = 0, ∇W∗ = 0, d∗ = Rd,

∇d∗ = R∇d, where the symbol ‘∗’stands for the attribute ‘rigid’. Then applying the

divergence theorem it is:

Π ∗ =

∫

P

(z ·Rd ·+Z ·R∇d)dV

= −

∫

P

Rz ·ddV +

∫

P

div(RZ) ·ddV −

∫

P

RZ n ·d dV

=
∫

P

R · (divZ− z)⊗ddV +
∫

∂P
R ·Zn⊗d dA = 0 ,

(36)

and, accounting for the microforce balance (Equation 33c), it is:

skw(Z n⊗d) = 0 , on ∂P . (37)

Equation (37) is a micromoment balance equation, playing the role of a constitutive

prescription [9], which implies that the microtraction p is parallel to d.

If only the rigid microstructure is present (d = 0), the internal power is zero for

any rigid velocity field, and no equation must be added to Equations (33). In this case

the bulk balance equations obtained using the principle of virtual power correspond

to those of a micropolar continuum (33a,b), with the surface balance (34a,b).

4.2 Second gradient continuum

The internal power of a second–gradient continuum (Subsection 3.2) writes:

Π =

∫

P

T ·∇wdV +

∫

P

T ·∇2wdV , (38)

where P ⊆ C is the control volume with boundary ∂ P and outward normal n, C

always being the Euclidean region occupied by a body.

Applying the divergence theorem to the term related to the microtraction T it is:

∫

P

T ·∇2wdV = −
∫

P

divT ·∇wdV +
∫

∂P

Tn ·∇wdA , (39)

and, by putting T̃ = T−divT, Equation (38) can be rewritten as follows:

Π =

∫

P

T̃ ·∇wdV +

∫

∂P

Tn ·∇wdA. (40)
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Then, applying the divergence theorem to the first term of Equation (40), it is:

∫

P

T̃ ·∇wdV = −

∫

P

divT̃ ·wdV +

∫

∂P

T̃n ·wdA. (41)

By decomposing ∇w as: ∇w = ∇sw + ∂nw ⊗ n, with ∇sw = ∇w (I− n ⊗n) and

∂nw = ∇wn, I being the identity tensor, the expression of the internal power (40)

becomes:

Π = −

∫

P

divT̃ ·wdV +

∫

∂P

T̃n ·wdA+

∫

∂P

Tn ·∇swdA+

∫

∂P

(Tn)n · ∂nwdA .

(42)

The theorem of divergence can also be applied to the term of Equation (42) re-

lated to the surface velocity gradient in several ways [23, 12, 28]. One way consists

in exploiting the surface divergence theorem [12]:

∫

∂P

Tn ·∇swdA = −

∫

∂P

[divs(Tn)+2k(Tn)n] ·wdA , (43)

and then:

Π = −
∫

∂P

divT̃ ·w+
∫

∂P

[T̃n−divs(Tn)−2k(Tn)n] ·wdA+
∫

∂P

(Tn)n · ∂nwdA ,

(44)

where k =− 1
2

tr∇sn is the mean curvature of ∂P. In this case the power equivalence

between internal and external power required for any w, W and d, and any P ⊆ C ,

provides the structure of the external power as:

Π e =

∫

P

b ·wdV +

∫

∂P

(f ·w+h · ∂nw) dA , (45)

where b is the body force, f and h are the diffused traction and microtractions on

∂P, respectively.

By localisation the balance equations for the bulk and contact actions become:

divT̃+b = 0 in P , (46)

with:

T̃n−divsTn−2k(Tn)n = f ,

(Tn)n = h on ∂P . (47)

Another way of applying the divergence theorem [28] accounts for the presence of

contact actions distributed along lines ∂ (∂P) in such a way that:

∫

∂P

Tn ·∇swdA = −

∫

∂P

divs(Tn) ·wdA+

∫

∂ (∂P)
(Tn)m ·wdl , (48)
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where m is a unit vector, orthogonal to both n and the tangent direction of ∂ (∂ P),

pointing outward from the interior of ∂ P. Considering and edge ∂̂P with outwards

normals n and m are not univocally defined it is assumed that:

∫

∂ (∂P)
(Tn)m ·wdl =

∫

∂̂P

< (Tn)m > ·wdl , (49)

where < (Tn)m > denotes the edge average of (Tn)m over the tangent and the

normal vectors of the two surfaces connecting at ∂̂P. Then the internal power can

be rewritten as:

Π = −

∫

P

divT̃ ·wdV +

∫

∂P

[
T̃n−divs(Tn)

]
·wdA

+

∫

∂P

(Tn)n · ∂nwdA +

∫

∂̂P

< (Tn)m > dl (50)

Applying the virtual power principle the external power can be written as:

Π ext =

∫

P

b ·wdV +

∫

∂P

(f ·w+h · ∂nw) dA+

∫

∂̂P

hl ·wdl . (51)

where b is the body force, f and h are the diffused traction and microtraction on

∂P, respectively, and hl is the traction concentrated at the edge ∂̂P. By localising,

the local balance equations derived are:

divT̃+b = 0 in P , (52)

with:

T̃n−divs(Tn) = f ,

(Tn)n = h on ∂P ,

< (Tn)m > = hl on ∂̂P . (53)

In the case of the internal power of the continuum of Subsection 3.3, the virtual

power principle gives the balance equations of the Cauchy continuum:

divT +b = 0 in P . (54)

Tn = f on ∂P. (55)
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5 Numerical simulations

In this paragraph some results of numerical simulations, obtained using COMSOL

Multiphysics c© finite element code, are mentioned for highlighting the potentiality

of the non–classical continua described in Section 3 and 4.

5.1 Porous fibre reinforced composites

The main features of the non–classical continua described above, here also called

multifield continua because of the presence of additional degrees of freedom, are

the presence of internal lengths in the material description and spatial dispersion in

wave propagation. For these reasons such continua can be classified as ‘implicitly’

non–local models [18, 10].

In the continuum with rigid and affine microstructure of Sections 3.1 and 4.1

dispersion properties are related to the presence of the microvelocity term d in the

equations of motion, that is not a derivative nor in space neither in time. In the works

[34, 31] a one-dimensional problem, a bar with continuous distribution of micro-

craks, has been analysed under the effect of free and forced oscillations. In both

cases, the variation of the phase velocity of propagating waves with the frequency,

or the wave number, showed that the additional descriptor d reveals the presence of

the microcrack as a disturbance spread along the bar which alters the shape and the

velocity of the waves, and the that the kind of this disturbance strongly depends on

the microcrack density per unit lengths.

Here the results of a two dimensional panel made of an orthotetragonal porous

ceramic material in tension has been reported in order to show another peculiarity

of the multifield continuum of Sections 3.1 and 4.1 that is the reduction in stiffness

obtained as an effect of the additional stress/strain state introduced in the multifield

model.

The panel, of length L = 100 µm, is simply supported and has different levels of

porosity, evaluated with a pore density factor p (pores area/panel area). In the multi-

field model this factor enters into the constitutive tensors M and R of Equations (11).

It is made of Al2O3 hexagonal grains, of side 22.5 µm, and Co interfaces, of thick-

ness 1−2 µm, with Youngs’ modulus and Poisson’s coefficients: Eg = 410000 MPa,

νg = 0.25 and Ei = 210000 MPa, νi = 0.235, respectively. The grains are not rigid

and their deformability has be taken into account in terms of energy equivalent

stiffness at the interfaces: AiEiEg/(EiAi + EgAg), Ag and Ai being the grain and

interface areas, respectively. The multifield solution has been obtained and com-

pared with a Finite Element solution for: p = 0.039 (1), p = 0.11 (2), p = 0.192 (3),
p = 0.254 (1). The two solutions show that the vertical component of the displace-

ment increases with the increase of the porosity (Figure 2), confirming that in such

a multifield model the presence of damage can be accounted for as an additional

state of stress and strain rather than a reduction in stiffness, like in internal variables

models with which these results have been compared [17].
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Fig. 1 Sketch of the ceramic panel

Fig. 2 Vertical component of displacement along the vertical direction of the panel for different

pore density: (1) p = 0.039, (2) p = 0.11, (3) p = 0.192, (4) p = 0.254

5.2 Masonry–like materials

Here some results of a parametric study conducted for various schemes of or-

thotropic block assemblies is reported. A square panel of side L, made of blocks

of length b and height h, simply supported and subjected to shear load has been

analysed by varying the scale (ε1 = b/L, ε2 = h/L) and aspect (ρ = h/b) ratios

(Figure 3). The panel has been described as a discrete model made of rigid bod-

ies interacting by linear elastic springs and as a Cosserat, a second gradient and a

Cauchy model, as identified in Sections 3, 4.

Figure 4 shows the contours lines of the angular component of the strain tensors,

in the discrete, Cosserat, ([∇w−W]12 = ∇w−W · e1 ⊗ e2), second gradient and

Cauchy ([E]12 = E · e1 ⊗ e2), e1, e2 being the unit vectors defining the horizontal

and vertical direction, respectively, obtained for the cases: a1 (ε1 = 0.2, ε2 = 0.05,

ρ = 0.25); a4 (ε1 = 0.2, ε2 = 0.1, ρ = 0.5); b7 (ε1 = 0.2, ε2 = 0.2, ρ = 1). It can

be noted that the Cosserat continuum solution is always in good agreement with the

discrete solution. Differently, the second gradient and Cauchy continua fit well the

response of the discrete model only in the orthotetragonal case (square blocks with

no-interlocking: case b7).

The cases of Figure 5: a3 (ε1 = 0.025, ε2 = 0.0125, ρ = 0.25); a6 (ε1 = 0.025,

ε2 = 0.025, ρ = 0.5); b9 (ε1 = 0.025, ε2 = 0.025, ρ = 1) show that the same oc-

curs at finer scales: the differences between the Cauchy/second gradient and dis-
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Fig. 3 Orthotropic block assemblies with different scale and aspect ratios. Left, systems with inter-

locking (from top to bottom and left to right: schemes a1–a9). Right, systems without interlocking

(from top to bottom and left to right: schemes b1–b9)

Fig. 4 Contour lines of the angular strain component in the discrete, Cosserat ([∇w−W]12), sec-

ond gradient and Cauchy ([E]12) model. Cases: a1, a4, b7 [33]
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Fig. 5 Contour lines of the angular strain component in the discrete, Cosserat ([∇w−W]12), sec-

ond gradient and Cauchy ([E]12) model. Cases: a3, a6, b9 [33]

crete/Cosserat solutions are reduced, but still remain. The correspondence of all the

solutions is obtained only in the orthotetragonal case.

The reason for which second gradient and Cauchy models fail in representing the

behaviour of the discrete systems for orthotropic materials relies in the strong non–

symmetries of the strain and stress tensors. In the discrete as in the Cosserat models

in fact the power term πKK due to relative rotation, which corresponds to the skew–

symmetric part of the strain, plays an important role. Note that in the orthotetragonal

case it is always πY K = πKY = 0 (see Equations 14). In the second gradient and

Cauchy continua instead the strain, as well as the stress, is symmetric and the relative

rotation term is not present (Equations 22). This can be also confimed by the results

of Figure 6 showing the contour lines of the sole non-null component of the relative

rotation in the Cosserat model ([R−W]12 = (R−W) ·e1 ⊗e2=−[R−W]12 = (R−
W) · e2 ⊗ e1). Here the cases shown are: a1 (ε1 = 0.2, ε2 = 0.05, ρ = 0.25); a7

(ε1 = 0.2, ε2 = 0.2, ρ = 1); b7 (ε1 = 0.2, ε2 = 0.2, ρ = 1); a3 (ε1 = 0.025, ε2 =
0.0125, ρ = 0.25); a9 (ε1 = 0.025, ε2 = 0.025, ρ = 1); b9 (ε1 = 0.025, ε2 = 0.025,

ρ = 1). This component reduces with the loss of interlocking becoming null in the

orthotetragonal case (b7, b9).

Overall, this parametric study shows that the Cosserat continuum works well both

in case of particles of significant size and when it is necessary to account for strong

non-symmetries in strain and stress, like in orthotetragonal assemblies. The second
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Fig. 6 Contour lines of the relative rotation in the Cosserat model. Cases: a1, a7, b7, a3, a9, b9

(courtesy of A. Pau)

gradient continuum, differently from the classical continuum, can represent the scale

effects but, as the Cauchy continuum, lacks of the descriptor for the relative rotation

(i.e. strain non–symmetry) that can be predominant in orthotropic assemblies.

6 Final remarks

The discrete modelling of materials, crucial in the past for building constitutive the-

ories for solids, can still be of help in determining physically plausible constitutive

models for complex materials. The most significant suggestion, in a sense derived

by Voigt and Poincaré, is the idea to build–up a refined non-local intermolecular

potential based on appropriate, physically based, complex discrete systems to de-

fine case by case. Where refined here means to extend the concept of ‘molecule’

for representing the various internal phases and to use generalised correspondence

maps between discrete and continuum descriptors.

Scale–dependent continuous macro models have been unambiguously identified

from complex discrete micro–models using the power equivalence procedure de-

scribed in Section 3 using generalised correspondence laws between the large set of

degrees of freedom of the discrete and the continuum field descriptors. In this way

the macroscopic stress measures have been identified in terms of the constitutive

constants and the geometry of the micro–model. In order to provide physical con-

sistency to multifield continua, the constitutive relations have been finally derived

assuming physically–based response functions for the lattice interactions.
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These continua retains memory of the fine organization of the material by means

of additional field descriptors and satisfy the basic requirements for the mechanical

modelling of complex materials, that is: the presence of internal lengths and spatial

dispersion in wave propagation, which in turn define the non–local character of the

material description.
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