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Abstract 

Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic 

hematopoietic cell transplantation, result in an overall survival of about 40%, a figure 

hardly comparable with the extraordinary 80-90% cure rate currently reported in children. 

When translated to the adult setting, modern pediatric-type regimens improve the survival 

to about 60% in young adults. The addition of tyrosine kinase inhibitors for patients with 

Philadelphia chromosome positive disease and the measurement of minimal residual 

disease to guide risk stratification and post-remission approaches has led to further 

improvements in outcomes. Relapsed disease and treatment toxicity - sparing no patient 

but representing a major concern especially in the elderly - are the most critical current 

issues awaiting further therapeutic advancement. Recently, there has been considerable 

progress in understanding the disease biology, specifically the Philadelphia-like signature 

as well as other high-risk subgroups. In addition, there are several new agents that will 

undoubtedly contribute to further improvement in the current outcomes. The most 

promising agents are new the monoclonal antibodies, immunomodulators, and chimeric 

antigen receptor T cells and, to a lesser extent, several new drugs targeting key molecular 

pathways involved in leukemic cell growth and proliferation. This review examines the 

evidence supporting the increasing role of the new therapeutic tools and treatment options 

in different disease subgroups, including frontline and relapsed/refractory disease. It is 

now possible to define the best individual approach based on to the emerging concepts of 

precision medicine. 
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Introduction 

In Western countries, new cases of adult acute lymphoblastic leukemia (ALL) occur at an 

annual rate of approximately 1/100,000, with a bimodal distribution decreasing at 45-54 

years and increasing again above 55 years, totaling in the United States about 2300 new 

cases/year for patients above 15 years of age (1750 between 15-55 years).1,2 Over the 

past decade, we have witnessed an incredible therapeutic improvement. Currently, 

pediatric patients have an estimated 5-year overall survival (OS) approaching 90%.3-5 

Modern pediatric programs thrive on an intensified use of corticosteroids (mainly 

dexamethasone), antimetabolites (especially methotrexate and 6-mercaptopurine) and L-

asparaginase/pegylated-asparaginase, and rely on minimal residual disease (MRD) 

analysis for further dose intensification or allogeneic hematopietic cell transplantation 

(HCT).6-8  

Recent advances using pediatric regimens in adults 

The results in adult ALL have unfortunately not kept pace, with OS rates below 45%9 

despite the addition of central nervous system (CNS) prophylaxis, ‘late’ intensification with 

prolonged maintenance chemotherapy and an extensive use of HCT in high risk (HR) 

subsets. Currently, pediatric inspired regimens are being administered in young adult 

patients, leading to improvements in EFS (event-free survival) and OS rates as compared 

to historical controls.10-13 This approach, initially reserved for adolescents and young adults 

(AYA, less than 40 year-old),10,14,15 and later applied to patients up to 50-60 years of age, 

11,12,16 has increased 5-year OS rate to ≥ 50%, and up to 70-80% in favorable subsets 

(AYA, SR [standard risk]), MRD negative) (supplemental Table 1),17 but not in older 

patients, whose survival decreases progressively to less than 20%.2-4 Finally, allogeneic 

HCT is often considered in first complete remission (CR) in adults with HR disease in order 

to reduce the risk of relapse,18 but potential benefits may be offset by transplant-related 

morbidity and mortality, especially in the elderly.19 

Risk stratification 

Current risk stratification criteria reflect the clinical and prognostic heterogeneity of ALL 

and determine which patients should undergo more intensive treatment including HCT, 

due to the high risk of relapse. Besides patient-related characteristics, namely advanced 

age and poor performance status, recognized risk factors include hyperleucocytosis, early 

T-precursor (ETP) phenotype and adverse cytogenetics/genetics, i.e. t(9;22)/BCR-ABL1 
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rearrangement (Philadelphia chromosome positive [Ph+] ALL), Ph-like ALL, 

t(4;11)/KMT2A-AFF1 rearrangement, hipodiploidy, mutated TP53 and other 

abnormalities.20 In all studies, MRD has proven to be a major independent risk factor for 

relapse.21 In contrast to MRD-negative patients (typically defined as ˂ 10-4), MRD-positive 

patients are seldom cured with chemotherapy alone. In prospective trials performed over 

the past 25 years, enrolling more than 1500 patients,22-24 OS was between 60-80% with 

chemotherapy alone in MRD-negative patients, even in HR subsets and Ph+ ALL.25 

Instead MRD-positive patients benefit partially from HCT, however with OS rates of 50% or 

less in intention-to-treat analyses, due to the cumulative effects of pre-and post-

transplantation relapse and tranplant-related deaths.26-28 

Current therapeutic limitations 

The treatment of older patients represents a major obstacle,29 and, at all ages, relapse 

affects one third or more of the patients and remains an unsolved issue due to extremely 

poor results with standard salvage chemotherapy. An international study on 1706 patients 

with refractory or recurrent (R/R) B-cell precursor (BCP) ALL reported 3-year survival rates 

of only 10%.30 Results are worse in Ph+ ALL31 and T-cell precursor (TCP) ALL, with some 

mitigation provided by nelarabine.32 Another concern is high-grade toxicity causing deaths 

in remission, which increases with age and with transplants (20% or more in most studies). 

The challenge of new management options 

Despite these constraints, the management of adult ALL can improve further. This new era 

started with the advent of tyrosine kinase inhibitors (TKI) for Ph+ ALL,33 flourished with 

immunotherapy for BCP ALL and is now empowered by novel immunotherapeutics 

(Tables 1 and 2)13,34-64 and several small molecules targeting critical metabolic pathways 

(Figure 1, Table 3), used alone or in combination in specific ALL subsets (Figure 2). While 

more robust data on toxicity, dosing and therapeutic implications are required, and will be 

generated by ongoing trials (Clinical.Trials.gov repository, accessed April 2017; 

supplemental Tables 2-7), some of these agents could improve the cure rate and prompt a 

shift in the therapeutic regimens for ALL. The most promising agents currently available 

are those targeting cell membrane antigens (CD19, CD20, CD22) and major molecular 

pathways controlling cell proliferation and apoptotic response (multiple kinases and 

members of Bcl-2, TP53, RAS, mTOR/PI3K, pre-B/B-cell receptor and NOTCH networks). 

Furthermore, new molecular and drug profiling techniques  might become essential to 
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define targets and compounds deserving evaluation in trials or individual patients. At 

present, this new strategy is still largely speculative, especially in frontline therapy, since 

both molecular sequencing and new drug sensitivity screening models have not yet been 

sufficiently tested or validated in early clinical trials.This review will focus on the rationale 

supporting this change and will illustrate how new treatment approaches and related 

experimental work are likely to modify and improve the management of adult ALL. 

Actionable target and drug screening 

Molecular profiling                                                                                                                

While targets for immunotherapy can be identified by diagnostic immunophenotype, ALL  

subtype classification and target identification relies mostly on molecular genetics for the 

detection of gene rearrangements, translocations and actionable recurrent mutations with 

genome-wide technologies.65-69 In the era of precision medicine, molecular profiling has 

gained in importance for the management of this disease. New concepts for targeted 

therapies and combinatory approaches with immunotherapy and/or chemotherapy require 

sophisticated experimental modeling and are now increasingly entering into clinical 

development (Figure 2 and supplemental Tables 2-9).  

Drug profiling platforms                                                                                                              

Since the molecular classification of ALL is often insufficient to capture the complex 

biology of the disease and provide a predictive guide for treatment,70 functional screening 

approaches are being explored to generate drug response profiles directly from clinical 

samples, leading to proof of concept results and raising interest to explore  this approach 

in clinical trials (Figure 3). The first screening platform tested a customized library of 

kinase inhibitors,71 leading to a prospective trial in relapsed acute myeloid leukemia (AML). 

The Primary Blood Cancer Encyclopedia project, which integrates short-term drug testing 

data with transcriptome and DNA methylome analysis, strongly supported the value of 

phenotypic screening in hemato-oncology.72 Some platforms are based on large viability 

assays for high-throughput testing72-74 with the advantage of simplicity and lower costs, 

and others more sophisticated are based on automated microscopy which can 

discriminate leukemia cells with the normal microenvironment at the single cell level.75,76 

Functional screens of ALL samples maintained on mesenchymal stromal cells identified 

unexpected dependencies in defined HR ALL subtypes77, captured response 
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heterogeneity across ALL subtypes, discriminated patients based on drug sensivitiy 

efficiently75,78,79 and detected new pathways and vulnerabilities in resistant disease.75,77-80  

New disease models                                                                                                        

Drug development can be accelerated using humanized mouse models with primary 

leukemia81,82 that enable systematic preclinical drug testing.83,84 Patient-derived xenograft 

(PDX) biobanks integrate extensive genomic and clinical information,75,85-88 mirror the 

clonal architecture of leukemia initiating cells,89-92 maintain the genetic composition of the 

xenografted sample,75,77,89,93 and enable testing of new agents on samples from clinically 

representative cohorts of patients, providing survival cues and a longer window for 

combinatorial drug testing. Impressive results have been reported from a first trial 

assessing drug sensitivity in patients with refractory hematologic malignancies using multi-

parametric image-based immunocytometry to distinguish the effect of drugs on malignant 

and normal blood cells.76 Out of 48 patients, informative results could be used for 17 

patients receiving assay-guided treatment, including 2 BCP ALL patients, resulting in 

responses in 8 patients (1 with ALL). These results will stimulate the design of larger 

clinical studies on specific disease entities, in order to capture the full potential of drug 

response profiling with the aim to avoid unnecessary toxicity of inappropriate salvage 

regimens and improve responses in selected subgroups.  

Functional drug screening for molecularly unclustered ALL                                                     

The usefulness of functional drug screening is being explored in patients with ALL not 

included in specific molecular clusters. For example BCL2-dependent ALL was identified 

by screening PDX models for sensitivity to BH3 mimetics including venetoclax75,77,85,94,95 

and drug combinations established to overcome resistance.75,96 Similarly, selective 

sensitivity to alternative RIP-1 dependent cell death pathways (necroptosis by SMAC 

mimetics) not exploited by current anti-leukemic agents were discovered.80,97 PDX models 

have also been used to understand elucidate the critical dependence on altered metabolic 

function.98-100 This underscores the importance to cross-reference drug responses over 

many samples in a structured database to establish the effective and expected dose-

response range for relevant outliers, that is a drug sensitivity pattern not predicted by the 

molecular ALL subset. 

New management options with immunotherapeutics                                                                                                                                                                           
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Rituximab                                                                                                                                         

In BCP ALL, the expression of CD20 confers a poor prognosis.101 Rituximab, a chimeric 

anti-CD20 antibody, was evaluated in combination with chemotherapy for untreated 

patients with Ph- CD20+ BCP ALL. At the MD Anderson Cancer Center (MDACC), 

rituximab was added to the first four courses of the hyper-CVAD regimen.44 The results 

demonstrated an improved CR duration, a lower relapse rate and an improved OS, but 

only in patients younger than 60 years as compared to historical controls (70% vs. 38%, P 

< .001; and 75% vs. 47%, P = .003). Comparable data were produced by the German 

adult ALL Study Group.45 The French-Belgian-Swiss Group for Research on Adult ALL 

(GRAALL) evaluated the addition of rituximab in a phase III study using a pediatric inspired 

regimen:13  patients 18-59 years old received 16-18 rituximab doses, resulting in improved 

the 2-year EFS from 52% to 65% (P = .004), due to a decreased relapse rate with no 

increase in toxicity.                                                                                                                                                         

Blinatumomab                                                                                                                          

New antibody constructs have shown promise for R/R ALL.102 Blinatumomab, a bispecific 

T-cell engager (BiTE®) construct, received US Food and Drug Administration and 

European Medicines Agency approval. Blinatumomab simultaneously targets CD19 

(present on most BCP ALL cells) and CD3 (present on cytotoxic T-cells) and acts to bring 

ALL cells into proximity of T-cells, capable of tumor eradication. In a phase II study,38 189 

adult patients with Ph- R/R BCP ALL received blinatumomab with 43% (81/189) of them 

achieving CR or CR with defective hematologic recovery (CRh), and 40% of responders 

able to successful transition to allogeneic HCT Importantly, 60 out of 73 evaluable CR 

patients (82%) achieved MRD negativity. Results were similar in the phase III trial with a 

44% CR/CRh rate in the blinatumomab arm compared to 25% in patients receiving 

chemotherapy,39 and 76% compared to 48% turning MRD negative. Although generally 

well tolerated, grade 3 or higher cytokine release syndrome (CRS) and neurologic toxicity 

was seen in 4.9% and 9.4% of patients, respectively. Blinatumomab was tested as a single 

agent in patients with R/R Ph+ ALL, where it induced a CR rate of 36% associated with 

88% MRD-negative status,40 and in Ph- MRD-positive ALL, achieving an excellent 

response rate of 78%, with prolonged survival, occasionally without HCT.36,103 Resistance 

mechanisms include a defective T-memory/regulator cell response, PD1/PD-L1 

overexpression104 and emergence of CD19-negative subclones.105                                                                                          
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Inotuzumab ozogamicin (INO)                                                                                                                             

INO is an anti-CD22 antibody conjugated to calicheamicin in late clinical development. A 

phase I/II study demonstrated a CR/CRi (incomplete hematologic recovery) rate of 68% 

with 84% of responding patients achieving MRD-negativity.53 In a recent phase III trial INO 

was superior to salvage chemotherapy for R/R ALL. Among the first 218 patients 

randomized, 81% of those assigned to INO achieved CR compared to 29% who received 

standard-of-care, with higher percentage of MRD-negative cases (78% versus 28%, P < 

.0001).54 Duration of remission and OS favored INO, as confirmed by a long-term update 

reporting a 2-year rate of 22.8% vs 10% in standard care group (P .0001).106 However, 

hepatotoxicity was more frequent in the INO group (51% versus 34%), including incidence 

of sinusoidal obstruction syndrome (SOS) (13% versus < 1%). Although most of the cases 

occurred after HCT, 5 patients (3%) developed SOS with INO therapy alone.107            

Given the proven efficacy of this compound on these studies, INO is being combined with 

chemotherapy in the frontline setting. Using a mini-hyper-CVD regimen 

(cyclophosphamide, vincristine, dexamethasone) with INO in elderly, 47 out of 48 

evaluable patients (98%) achieved a CR/CRi (35 CR), coupled with flow-cytometric MRD-

negative status in 76%. Two-year PFS and OS were 52% and 66%, respectively.56,108 

Chimeric antigen receptor (CAR) T-cells                                                                                                                             

Cellular immunotherapy with CD19-directed CAR T-cells represents another promising 

approach for R/R disease. Anti-CD19 CAR T-cells have been the most extensively studied 

in trials using “second-generation” receptors, which comprise three components: an 

extracellular antigen-recognition domain derived from the single-chain variable fragment of 

a monoclonal antibody (scFv), an intracellular signaling domain (the CD3z chain from the 

T-cell receptor), and a co-stimulatory domain (most commonly, 4-1BB or CD28).109-111 

Initial phase I/II studies using the CTL019 construct reported a 90% CR rate in 30 patients 

(25 pediatric, 5 adult).110 In addition, 88% of the patients who achieved a CR were MRD-

negative. Responses were durable with 7 relapses and 19 ongoing remissions (2 to 24 

months), with 15 patients receiving no further therapy. High rates of CAR T-cell 

persistence (68%) and associated B-cell aplasia was reported at 6 months. In 

collaboration with Novartis, CTL019 was administered to 75 children and young adults, 

with 81% achieving CR and concurrent MRD-negative status. At a median follow-up of 

10.6 months, 29 remained in CR. One-year EFS and OS were 50% and 76%, 

respectively.60 This led to the approval of tisagenlecleucel (KymriahTM), the first CAR 
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product in the US. The outcomes in adult patients treated with CAR T-cells has been less 

impressive with median EFS and OS of 6.1 months and 12.9 months, respectively.63                                                                                                                                           

CAR T-cells but not NK cells112 could also be effective against CNS leukemia.113 Although 

anti-CD19 CAR T-cells can generate rapid and impressive responses, therapy is 

associated with a unique set of severe side effects. The two major toxicities include CRS 

and neurotoxicity. In the CTL019 study, all patients experienced signs and symptoms of 

CRS with 8 of 30 patients requiring transfer to intensive care unit.110 Fortunately, 

tocilizumab, an anti-IL6 receptor antibody, was found effective and has become the 

mainstay of management for severe CRS, as it is well-tolerated and rapidly effective in the 

majority of cases. Current approaches include optimization of the CAR T-cell product in 

defined proportions of CD4 and CD8 T-cell subsets, development of humanized CARs, 

CARs with two co-stimulatory domains, allogeneic CARs and CARs against other antigens 

such as CD22.  

New management options in molecularly-defined ALL subsets                                                                            

Ph+ ALL                                                                                                                                

Outcome of Ph+ ALL was dramatically improved by TKIs.114-118 Single-agent imatinib or 

dasatinib plus corticosteroids therapy, pioneered by the Gruppo Italiano Malattie 

Ematologiche dell’Adulto (GIMEMA)114,119 induced CR virtually in all patients without risk of 

induction death. With TKI-chemotherapy combinations, CR rate exceeded 95% but death 

occurred in 2-7% of the cases. In a randomized trial from GRAALL,116 a combination of de-

escalated chemotherapy plus TKI resulted in less induction toxicity and non-inferior CR 

and survival results compared to standard chemotherapy plus TKI. In a MDACC study, 

ponatinib combined with Hyper-CVAD led to an excellent 83% 2-year OS, even without 

HCT115. In elderly and/or frail patients (median age 68 years, range 27-85 years), ponatinib 

monotherapy (GIMEMA) resulted in 87.5% 1-year OS, associated with a 45% molecular 

response rate.120 Postremission consolidation is still based on intensive chemotherapy 

(plus TKI) and HCT, when feasible. This “global” strategy led to survival rates approaching 

50%, thus meaning we still need to improve. Chemotherapy-free trials with TKI-

immunotherapy combinations (e.g. TKI-blinatumomab) are ongoing (NCT02744768) and 

will clarify the place of this antibody construct especially in eradicating MRD. As for other 

ALL subsets, MRD persistence is associated with recurrence while its negativity may 

identify patients with favorable prognosis in whom the indication for HCT could be 
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reconsidered to spare morbidity and mortality.25                                                                                           

With these premises, relapse remains relatively frequent event and is often sustained by 

mutations, the most deleterious being T315I. New potentially active agents include 

axitinib,73 a vascular endothelial growth factor receptor inhibitor active in T315I mutant, a 

new TKI, danusertib,121 and ABL001 (asciminib),122 a novel allosteric TKI that binds to the 

myristoyl pocket of ABL1, causing an inactive kinase conformation (NCT02081378 phase I 

trial for patients intolerant/refractory to standard TKI). Notably, a drug sensitivity testing 

platform123 allowed the identification of axitinib as a selective inhibitor of the T315I 

mutant.73 As for combinatory studies, of interest is the simultaneous administration of 

dasatinib, ruxolitinib and dexamethasone, which in vitro was shown to restore cytokine 

dependency, inhibit STAT3 and STAT5 activation and prevent leukemia initiating cell 

growth and acquisition of mutations (NCT02494882),124 and the combination of ruxolitinib 

with nilotinib (NCT01914484). In cases with IKZF1 impairment, retinoids can induce IKZF1 

re-expression, stimulate cell maturation and restore in vitro TKI sensitivity.125 Moreover, 

promoters of myelomonocytic differentiation can successfully induce Ph+ ALL cells into 

non-leukemic monocytes/macrophages.126 

Ph-like ALL                                                                                                                            

The Ph-like subgroup, initially identified by means of gene expression profiling, accounts 

for about 20% of adult BCP ALL cases,with a prevalence in AYA. These cases are 

characterized by a transcriptional profile similar to that of Ph+ ALL but lacking the 

t(9;22)/BCR-ABL1 rearrangement.127-130 Instead, the underlying genomic lesions are 

heterogeneous making its recognition difficult and uneven among trials. CRLF2 

rearrangements are detected in about 50%, lesions affecting ABL class genes (i.e. ABL1, 

ABL2, CSF1R, PDGFRA, PDGFRB) in roughly 10%, JAK/STAT genes (i.e. JAK1-3, IL7R, 

and CRLF2 mutations) in <10%. Rearrangements in other TKs and EPOR gene are 

extremely rare. IKZF1 deletions occur in up to 80% of the cases. Patients with Ph-like ALL 

have a poorer outcome when compared to other BCP ALL subsets and is not yet clear 

whether they should receive a HCT upfront based on MRD persistence only.128,131 Given 

the activated kinome profile several groups are currently testing the combination of TKIs 

with chemotherapy. Children’s Oncology Group (COG) is testing ruxolitinib in CRLF2-

rearranged and/or JAK-STAT deregulated patients (NCT02723994) or dasatinib in 

untreated patients (NCT02883049), while MDACC is testing these drugs in pre-treated 

patients (NCT02420717), with disappointing results.132 Other experimental approaches 
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employ a variety of inhibitors based on the individual molecular profile. The pan-TKI 

ponatinib could be effective regardless of the underlying genetic lesion.133                                      

MLL-rearranged ALL 

The prognosis of t(4;11)/KMT2A-AFF1+ and other MLL-rearranged ALLs is poor and could 

be improved by new targeted approaches. MLL (i.e. KMT2A) rearrangements are 

associated with high levels of H3K79 methylation catalyzed by the DOTL1 enzyme. 

Therefore DOT1L inhibitors, particularly EPZ-5676 (pinometostat) have been tested in R/R 

cases (NCT02141828, NCT01684150) in both pediatric and adult cohorts.134 Furthermore, 

MLL-rearranged cases express high levels of Bcl-2, BAX, and BIM but relatively low levels 

of BCL-XL and MCL-1, a mechanism is directly sustained by KMT2A rearrangement on 

BCL2 expression and is partly mediated by interaction with H3K79me2/3. As a 

consequence, in vitro and xenograft model studies showed that the Bcl-2 inhibitor 

venetoclax induces cell killing in synergy with chemotherapy.85,135,136 Additionally, histone 

deacetylase inhibitors (HDACi) can exert synergistic activity with cytarabine by repressing 

cytidine deaminase.137   

TCF3-rearranged ALL                                                                                                                                   

TCF3-PBX1+ ALL associated with t(1;19) represents about half the cases of the newly 

recognized pre-BCR (B-cell receptor)+ subset and is characterized by a favorable outcome 

with intensive treatment. These cases could be targeted by dasatinib since they 

overexpress a large number of TKs138 including the BCR-dependent TK ROR1139 and Mer 

TK which correlates with risk of CNS progression140, by idealisib due to the high levels of 

PIK3CD 141 and ibrutinib via downmodulation of the pre-BCR signaling on BCL6.98,142-143                                         

Instead, TCF3-HLF+ ALL is a very high risk subset associated with t(17;19), often with 

high levels of BCL2 expression recalling venetoclax as a potential therapeutic 

compound.77 Drug response profiling predicted robustly resistance to conventional drugs 

and confirmed a unique sensitivity to venetoclax. Combination therapy with 

dexamethasone, vincristine and venetoclax in PDX from two patients maintained CR for up 

to one year.77 

Hypodiploid BCP ALL                                                                                                   

Hypodiploid ALL is a rare poor prognostic subtype including near haploid (24–31 

chromosomes), low hypodiploid (32–39 chromosomes) and high hypodiploid (40–43 

chromosomes) ALL.144 RAS and PI3K pathways are frequently altered in near haploid 
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ALL, while TP53 and IKZF members are often mutated in low hypodiploid ALL, pinpointing 

to functional targeting using PI3K and PI3K/mTOR inhibitors.144,145 Germline mutational 

screening of TP53 should always be performed in these cases.                                                                                                                                  

Other BCP ALL subsets                                                                                                          

Many other actionable deletions or mutations are emerging in BCP ALL (and sometimes 

TCP ALL).127,144,146-148 These involve pathways affecting lymphoid development, cell cycle, 

regulation of transcription, lymphoid and RAS signaling, epigenetic modifications, cytokine 

receptors, TK expression and the JAK/STAT phosphorylation system  (Table 3). Focus is 

now on downstream members of the RAS pathway, namely with the MEK and PI3K 

inhibitor BEZ235 (NCT01756118), the allosteric MEK1/2 inhibitor selutetinib, trametinib 

and steroids, and FLT3 inhibitors, i.e. lestaurtinib, midostaurin and quizartinib – all being 

evaluated in phase I-II and III trials, respectively (NCT 00866281, NCT00557193 and 

NCT01411267). Among epigenetic regulators, HDACi vorinostat and panobinostat are 

being investigated in phase I-II trials for R/R disease (NCT01483690, NCT01321346 and 

NCT01321346), however with reports of toxicity. JAK2 inhibitors (ruxotilinb) and BCL2 

inhibitors might be used in cases harboring target mutations. SMAC mimetics, directly 

acting on apoptosis/necroptosis pathways, proteasome inhibitors and checkpoint 

inhibitors, have shown in vitro activity and are being studied (Supplemental files). The role 

of inhibitors of molecules involved in interaction with the marrow niche (NOTCH3 and 

NOTCH4) is still largely undetermined,149 while targeting SCD and SPP1 gene/proteins150 

and vascular endothelial growth factor A (with bevacizumab) could be useful against CNS 

leukemia.151 

B-ALL (mature B/Burkitt leukemia)                                                                                           

MYC rearrangements are the hallmark of B-ALL, leading to escape from cell cycle control 

and high proliferative rate. Thus inhibition of MYC-related pathways is an attractive option 

for refractory disease. MYC inhibitors JQ1 and THZ1 target MYC/MAX heterodimerization 

and CDK7 (THZ1), while dependency of MYC activation on multiple enhancers and ‘super-

enhancers’, such as a BET proteins and PI3K are targeted by mTOR or HDACi, Aurora 

kinase A and B and other BET inhibitors (I-BET 151, GSK525762, CPI-0610).152  New 

phase I trials are underway. 

TCP ALL                                                                                                                                    

TCP ALL accounts for about 25% of ALL cases and is further classified according to 
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maturation stage (early-, cortical- and mature-T). With modern pediatric-based regimens 

adopting MRD/risk-oriented intensification, outcome of TCP ALL may be excellent and 

superior to that of BCP ALL.  Among actionable molecular lesions,153 the most frequent is 

NOTCH1 mutation. NOTCH1 and the strictly associated gamma-secretase inhibitors (GSI) 

were tested in late stage disease, with some responses of short duration and considerable 

gut toxicity.154 The best study reported one CR and an overall 32% response rate in 25 

relapsed patients.155 Theoretically, targeting NOTCH1-related overexpression of 

chemokine receptor CCR7 and its ligand CCL19 could reduce the risk of CNS disease.156 

Many other targeting agents are being investigated, often in combination, like GSI and 

AKT inhibitors to revert glucocorticoid resistance157-159 (Figure 2, Table 3). Moreover, 

induction of T-cell receptor signaling led to apoptosis mimicking thymic negative 

selection,160 while targeting contact structures with the marrow microenvironment (CXCR4, 

CXCL12) reduces proliferation and the propagation potential of leukemic stem cells.161,162 

Notably PDX and drug screening models identified a subset of refractory T-ALL responsive 

to dasatinib in a nanomolar range, correlating with strong responses in vivo after 

resistance to multiple other treatments.75  

Early thymic precursor (ETP) ALL                                                                                                                                           

This peculiar diagnostic subset (weak/absent CD5 expression and early T/myeloid 

phenotype/genotype) is associated with poor outcome unless treated with very intensive 

MRD-based chemotherapy or HCT in first CR.163 ETP ALL is characterized by 

abnormalities typically observed in myeloid disorders including mutations in RUNX1, 

ETV6, GATA3, IDH1, IDH2, DNMT3A164,165 and the JAK/STAT pathway. In an 

experimental PDX model ETP ALL was exquisitely sensitive to ruxolitinib, which abrogated 

IL7-induced STAT5 phosphorylation.166 Furthermore, FLT3 inhibitors might be considered 

since mutations are detected in about 35% of cases.167                                                                 

Future directions 

We are entering an intensive phase of clinical investigations with new agents. To take 

advantage of these new treatment options we will have to gradually shift from R/R ALL to 

the frontline setting, where treatment resistance is less likely to occur.168 We will certainly 

need to develop solutions to integrate functional and genomic data for reference 

bioinformatics tools supporting clinical decisions, in accordance with studies in cancer 

patients including AML and childhood ALL169-171 For the exploration of individualized or 
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subset-specific treatment forms it will be crucial to design prospective clinical studies with 

modular elements to evaluate optimal strategies for chemotherapy,172 immunotherapy and 

combinations of molecularly targeted drugs and synergistic drug pairs,74,173 and detect 

activity in the early clinical trials more rapidly to pilot subsequent therapeutic 

developments. 
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Legends to the figures 

Figure 1. Actionable targets and drugs for innovative therapeutics in adult ALL.  

New therapeutic targets are membrane markers associated with B- or T-cell functions 

(type A), intracellular molecules involved in the regulation of key cell proliferation and 

differentiation pathways (type B) and receptors involved in the interaction with the 

supportive marrow niche (type C). Examples are shown for each category. Multi-targeted 

therapy is possible and synergy with chemotherapy is reported. Molecular profiling and ew 

drug profiling techniques can help identify suitable targets and the more active compounds 

and drug combinations, to be exploited in clinical trials of subset- and patient-specific 

therapy.  

 

Figure 2. Subset-specific approaches with new therapeutics in adult ALL. 

Clinical and pre-clinical experimental approaches with new management options for adult 

ALL and subsets (detailed sourcing and referencing in text and supplemental tables). 

Clinical trial evidence extracted from ClinicalTrials.gov repository, accessed April, 2017. 

 

Figure 3. Drug Response Profiling (DRP) of primary patient samples.  

(A) Workflow for phenotypical screens of co-cultures of primary ALL cells on human 

mesenchymal stromal cells using large scale automated microscopy. Generation of 

patient-derived xenografts (PDX) provide a renewable source of representative ALL cells 

for mechanistic research but may also be invaluable for deeper co-clinical validation 

experiments depending on the clinical situation. (B) Example of DRP output. IC50 values 

that were obtained based on dose-response curves with 8 datapoints after 72 h exposure 

of ALL cells to a selection of drugs are shown as a heatmap (red responses in the nM 

range, deep blue; resistance in the 10 μM range). Two examples of individual strong 

activity to the SMAC mimetic birinapant and to dasatinib are provided, with validation in an 

extended set of ALL PDX. MRD: minimal residual disease.  


