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Preface to ”Recent Developments in Cointegration”

As an empirical econometrician, I have always strongly believed in the power of analyzing sta-

tistical models as a scientifically viable way of learning from observed data. In the aftermath of the

great recession, this seems more important than ever. Most economic and econometric models in

macroeconomics and finance did not seem well geared to address features in the data of key impor-

tance for this crisis. In particular, the long persistent movements away from long-run equilibrium

values typical of the pre-crisis period seem crucial in this respect. Because of this, I hoped that the

papers submitted to this Special Issue would use cointegration to address these important issues,

for example by applying cointegration to models with self-reinforcing feed-back mechanisms, or by

deriving new tests motivated by such empirical applications, or by dealing with near integration in

the I(1) and I(2) models. Without a doubt, the outcome has surpassed my most optimistic expectations.

This Special Issue contains excellent contributions structured around several interconnected themes,

most of them addressing the abovementioned issues in one way or the other. While some of the papers

are predominantly theoretical and others are mainly empirical, all of them represent a good mixture of

theory and application. The theoretical papers solve problems motivated by empirical work and the

empirical papers address problems using valid statistical procedures. In this sense, the collection of

articles represents econometric modeling at its best. As the guest editor, I feel both proud and grateful

to be presenting an issue containing so many high-quality research papers.

The high quality of the articles is to a significant degree a result of detailed, insightful, and very

useful referee reports. I would like to take the opportunity to express a deeply felt gratitude to all the

reviewers who have invested their precious time to check and improve the quality of the articles. Your

efforts made all the difference.

Katarina Juselius

Special Issue Editor
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How to link a theoretical model with empirical evidence in a scientifically valid way is a
tremendously difficult task that has been debated as long as economics and econometrics have
existed. The dilemma facing an empirical economist/econometrician is that there are many economic
models but only one economic reality: which of the models should be chosen? Rather than choosing
one economic model and forcing it onto the data, the CVAR model structures the data based on the
likelihood principle to obtain broad confidence intervals within which potentially relevant economic
models should fall. This is consistent with the basic ideas of Trygve Haavelmo, who, with his Nobel
Prize winning monograph “The Probability Approach to Economics”, can be seen as the forefather
of the modern likelihood-based approach to empirical economics. Juselius (2015) argues that the
Cointegrated VAR model, by allowing for unit roots and cointegration, provides a solution to some
of the statistical problems that Trygve Haavelmo struggled with. Hoover and Juselius (2015) argue
that a theory-consistent CVAR scenario can be interpreted in terms of Haavelmo’s notion of an
“experimental design for data based on passive observations”. A CVAR scenario translates all basic
hypotheses of an economic model into a set of testable hypotheses describing empirical regularities in
the form of long-run relations and common stochastic trends. A theoretical model that passes the first
check of such basic properties is potentially an empirically relevant model. Also, because scenarios
also can be formulated for competing models and then checked against data, they can be seen as a
scientifically valid way of selecting the most empirically relevant economic model among available
candidates. Examples of CVAR scenarios for a variety of standard economic models can be found in
Juselius (2006, 2017) and Juselius and Franchi (2007).

To learn about the mechanisms that tend to generate crises, we need to develop methodological
principles that can link economic models consistent with self-reinforcing adjustment behavior to
the econometric model (here, the CVAR model). My own paper, “Using a Theory-Consistent CVAR
Scenario to Test a Real Exchange Rate Model based on Imperfect Knowledge”, is an attempt to do so.
As such, it also works as a motivating introduction to the main themes of the Special Issue. It addresses
the dilemma of unobserved expectations and the crucial role they play in economic models versus a
CVAR model based on observable variables. A solution to this dilemma is obtained by introducing a
rather weak assumption on the time-series property of the forecast shock, i.e. the deviation between the
actual observation at time t and the expected value at time t + 1 made at time t. Given this assumption,
the paper derives a theory-consistent CVAR scenario in which basic assumptions of an imperfect
knowledge theory model are translated into testable hypotheses of the CVAR’s common stochastic
trends and cointegration relations. The derived scenario shows that under the assumption of imperfect
knowledge expectations, the data are likely to be near I(2). This is because such expectations tend to
drive prices away from long-run equilibrium states for extended periods of time and hence generate
long persistent swings in the data. An application to the real exchange rate between Germany and the
USA shows remarkable support for the derived scenario.

The I(2) model has a rich but also more complex structure than the I(1) model. In particular,
the computational complexities behind the estimation of the various structures describing the
long run, medium run, and short run are quite daunting. The paper by Jurgen Doornik entitled

Econometrics 2018, 6, 1 1 www.mdpi.com/journal/econometrics
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“Maximum Likelihood Estimation of the I(2) Model under Linear Restrictions” discusses how to
calculate ML estimates of the CVAR model for I(2) data both in its autoregressive and moving average
representations. As the ML estimation of I(2) models always requires iteration, the paper discusses
different algorithms and offers a new, so-called “triangular form” representation of the I(2) model.
While it offers an efficient way of calculating the estimates, the triangular form represents a certain
mathematical beauty on its own. The algorithm is implemented in the new software package CATS 3
in OxMetrics (Doornik and Juselius 2017) which allows for a full-fledged I(2) procedure that also
calculates ML tests and estimates of the I(2) model under linear restrictions.

While the methods of estimating the different structures of the I(2) model are well-known,
either unrestrictedly or subject to just-identifying restrictions, it is more difficult to derive tests of
over-identifying restrictions on these structures. In particular, ML tests of over-identifying restrictions
on the parameters of common trends are rare or nonexistent, whereas tests of certain non-identifying
hypotheses on the common trends can be found. Common for the latter is that they imply the same
restriction on the long-run beta structure and, hence, can easily be translated into hypotheses on
the cointegration vectors. When the restrictions are over-identifying, it is much more challenging to
derive such test procedures. The paper by Peter Boswijk and Paolo Paruolo entitled “Likelihood Ratio
Tests of Restrictions on Common Trends Loading Matrices in I(2) VAR Systems” derives a new test
for over-identifying restrictions on the common trends loading matrices in an I(2) model. It shows
how a fairly complex over-identifying hypothesis on the common trends loadings matrix can be
translated into hypotheses on the cointegration parameters, in addition to presenting an algorithm
for (constrained) maximum likelihood estimation and providing a sketch of its asymptotic properties.
As an illustration, the paper tests an imperfect knowledge hypothesis on the loadings of the common
trends discussed in Juselius and Assenmacher (2017) motivated by an analysis of the PPP and UIP
between Switzerland and the USA. The hypothesis did not obtain empirical support, implying that the
original hypothesis has to be modified to some extent.

The recent theory of imperfect knowledge economics offers an economic framework for addressing
certain features in the data, such as long persistent swings away from equilibrium values, which often
are associated with financial behavior in asset markets. The paper by Leonardo Salazar entitled
“Modeling Real Exchange Rate Persistence in Chile” takes as a starting point the long and persistent
swings in the real Chilean dollar exchange rate and uses a monetary model based on imperfect
knowledge economics as a theoretical explanation for this persistence. Applying the ideas of Juselius
(this issue), he finds that the data cannot be rejected as I(2) and that the results support the hypothesis
of error-increasing behavior in prices and interest rates. He finds that persistent movements in the
real exchange rate are compensated by similar movements in the interest rate spread, a result that was
also found in Juselius (this issue) as well as in Juselius (2006) and Juselius and Assenmacher (2017).
However, in the present case the copper price was also needed to explain the deviations of the real
exchange rate from its long-run equilibrium value.

Another field where expectations play an important role in price setting is in the housing market.
This became painfully obvious when excessive movements in house prices kickstarted the worst
recession since the Depression in the 1930s. The paper by Andreas Hetland and Simon Hetland,
“Short-Term Expectation Formation Versus Long-Term Equilibrium Conditions: The Danish Housing
Market”, shows that the long-swings behavior observed in the market price of Danish housing can
be understood by studying the interplay between short-term expectations and long-run equilibrium
conditions. They introduce an asset market model for housing based on imperfect knowledge in which
the demand for housing is affected by uncertainty rather than just risk. Under rather mild assumptions,
this leads to other forms of forecasting behavior than usually found when assuming so-called rational
expectations. The data were found to be I(2)-consistent with imperfect knowledge models. Using the
I(2) cointegrated VAR model, they find that the long-run equilibrium for the housing price corresponds
closely to the predictions from the theoretical model. The results of the paper corroborate previous
findings that the housing market is well characterized by short-term momentum forecasting behavior.
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However, the conclusions have even greater relevance since house prices (through wealth effects) often
play an important role in the wider Danish economy, as well as in other developed economies.

Few economic models were able to foresee the great recession, which started a (sometimes
heated) debate on the usefulness of standard economic models. Many economists argued that the great
recession could not possibly have been predicted: it was a black swan. Many empirical econometricians
were less convinced; the long and persistent imbalances had been all but invisible in the period
preceding the crisis. Mikael Juselius and Moshe Kim demonstrate in their paper, “Sustainable
Financial Obligations and Crisis Cycles”, that an econometric model based on cointegration and
smooth transition would have been able to foresee three of the most recent economic crises in USA:
the savings and loans crisis in 1992, the IT-bobble crisis in 1995, and the great recession in 2008. In all
three cases, the paper shows that the amount of credit losses in the household and the business sector
exceeded the estimated sustainable debt level approximately 1–2 years before the recession started.
This result is obtained by calculating the sustainable level of debt using the financial obligations ratio
as a measure of the incipient aggregate liquidity constraint instead of the often used debt-income ratio.
An interesting result is that the intensity of the interaction between credit losses and the business cycle
was found to depend on whether the credit losses originate in the household or the business sector. For
example, the savings and loans crisis originated primarily from losses in the private household sector,
the IT crisis from the business sector, and the great recession from both the private and the business
sectors. As excessive debt is often the main trigger of a financial crisis, exemplified by the recent crises,
failure to foresee and prevent it is likely to cause a breakdown of economic stability. In this sense,
the results have important implications for the design of macroprudential policy and countercyclical
capital buffers.

Many economists correctly argue that true unit roots are implausible in economic data, as over
the very long run this would lead to data properties that are generally not observed: economic data do
not tend to move away from equilibrium values forever. This said, data often contain characteristic
roots, which are so close to the unit circle that a standard unit root test would not be able to reject
the null of unity. Juselius (in this issue) therefore argues that a unit root should not be considered a
structural economic parameter (as is frequently done in the literature); rather, one should think of it as
a statistical approximation that allows us to structure the data according to their persistency properties.
The advantage is that inference can be made about the long run, the medium run, and the short run in
the same model. Still, the question of how this affects the probability analysis of the CVAR model has
to be addressed. The paper by Massimo Franchi and Søren Johansen entitled “Improved Inference on
Cointegrating Vectors in the Presence of a near Unit Root Using Adjusted Quantiles” takes its starting
point from the paper by Elliot (1998). The latter shows that correct inference on a cointegrating relation
depends in a complex way on whether the model contains a near unit root trend or not, and that the
test for a given cointegration vector may have rejection probabilities under the null that deviates from
the nominal size by as much as 90%. The present paper extends previous results by Elliot (1998) by
using a CVAR model with multiple near unit roots. It derives the asymptotic properties of the Gaussian
maximum likelihood estimator and a test of a cointegrating relation in a model with a single near unit
root using the two critical value adjustments suggested by McCloskey (2017). A simulation study
shows that the latter eliminates the abovementioned serious size distortions and demonstrates that the
test has reasonable power for relevant alternatives. By analyzing a number of different bivariate Data
Generating Processes, the paper shows that the results are likely to hold more generally.

The focus of empirical work is often on estimating and identifying long-run cointegration relations,
rather than common stochastic trends. The latter are intrinsically more difficult as common tends are
usually assumed to be functions of unobserved structural shocks, whereas the estimated residuals are
not structural as they tend to change every time a new variable is added to the model. In spite of the
difficulty, it is of considerable interest to correctly identify the structural trends because they describe
the exogenous forces pushing the economy. Failure to do so may lead to a plethora of interpretations
often based on the same data. Since it is natural to estimate unobserved common trends based on
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unobserved components models, this is the starting point for the paper by Søren Johansen and Morten
Nyboe Tabor, titled “Cointegration between Trends and Their Estimators in State Space Models and
Cointegrated Vector Autoregressive Models”. The state space model with an unobserved multivariate
random walk and a linear observation equation is studied with the purpose of finding out under which
conditions the extracted random walk trend cointegrates with its estimator. The criterion is that the
difference between the two should be asymptotically stationary. The paper shows that this holds for
the extracted trend given by the linear observation equation, but no longer holds when identifying
restrictions are imposed on the trend coefficients in the observation equation. Only when the estimators
of the coefficients in the observation equation are consistent at a faster rate than the square root of
the sample size will there be cointegration between the identified trend and its estimator. The same
results hold when data generated from the state space model are analyzed with a cointegrated vector
autoregressive model. The findings are illustrated by a small simulation study.

While panel data models with cointegration are widely used, the role of the deterministic terms
in the model is still open to debate. This is addressed in the paper by Uwe Hassler and Mehdi
Hosseinkouchack, “Panel Cointegration Testing in the Presence of Linear Time Trends”, which
considers a class of panel tests of the null hypothesis of no cointegration when the data contain
linear time trends. All tests under investigation rely on single equations estimated by least squares,
and the tests are either residual-based or not. The focus is on test statistics computed from regressions
with intercept only and with at least one of the regressors being dominated by a linear time trend. In
such a setting, often encountered in practice, the limiting distributions and critical values provided for
the case “with intercept only” are not correct. The paper demonstrates that this leads to size distortions
growing with the panel size N. Moreover, it reports the appropriate distributions and shows how
correct critical values are obtained.

Today, most econometric packages contain a cointegration routine that calculates estimates and
test results using various kinds of algorithms. The more complex the model to be estimated, the more
complex the algorithm to be used. Some algorithms may stop at local maxima, while others are more
powerful in finding the global maximum. For an applied econometrician, it is a serious problem
that the same model applied to the same data may give different results depending on the algorithm
used. This is the motivation behind the paper by Jurgen Doornik, Rocco Mosconi, and Paolo Paruolo,
titled “Formula I(1) and I(2): Race Tracks for Likelihood Maximization Algorithms of I(1) and I(2)
Cointegrated VAR Models”. It provides a number of test cases, called circuits, for the evaluation of
Gaussian likelihood maximization algorithms of the cointegrated vector autoregressive model. Both
I(1) and I(2) models are considered. The performance of algorithms is compared first in terms of
effectiveness, defined as the ability to find the overall maximum. The next step is to compare their
efficiency and reliability across experiments. The aim of the paper is to commence a collective learning
project by the profession on the actual properties of algorithms for CVAR model estimation, in order to
improve their quality and, as a consequence, the reliability of empirical research.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A theory-consistent CVAR scenario describes a set of testable regularieties one should
expect to see in the data if the basic assumptions of the theoretical model are empirically valid.
Using this method, the paper demonstrates that all basic assumptions about the shock structure and
steady-state behavior of an an imperfect knowledge based model for exchange rate determination
can be formulated as testable hypotheses on common stochastic trends and cointegration. This model
obtaines remarkable support for almost every testable hypothesis and is able to adequately account
for the long persistent swings in the real exchange rate.

Keywords: theory-consistent CVAR; imperfect Knowledge; theory-based expectations; international
puzzles; long swings; persistence

JEL Classification: F31; F41; G15; G17

1. Introduction

International macroeconomics is known for its many pricing puzzles, including the purchasing
power parity (PPP) puzzle, the exchange rate disconnect puzzle, and the forward rate puzzle. The basic
problem stems from an inability of standard models based on the rational expectations hypothesis
(REH) to account for highly persistent deviations from PPP and uncovered interest parity (UIP).
See Engel (2014) and references therein for studies on REH and behavioral models.

Figure 1 illustrates the long swings in the nominal and the real exchange rate that have puzzled
economists for decades. The upper panel shows relative prices for the USA and Germany together
with the nominal Deutshemark/Dollar rate for the post-Bretton Woods, pre-EMU period. While both
series exhibit a similar upward sloping trend defining the long-run fundamental value of the nominal
exchange rate, the nominal exchange rate fluctuates around the relative price with long persistent
swings. The lower panel shows that the persistent long swings in the real exchange rate (deviation
from the PPP) seem to almost coincide with similar long swings in the real interest rate differential.

The theory of imperfect-knowledge-based economics (IKE) developed in Frydman and Goldberg
(2007, 2011) shows that the pronounced persistence in the data may stem from forecasting behavior of
rational individuals who must cope with imperfect knowledge. Frydman et al. (2008) argues that the
persistent swings in the exchange rate around long-run benchmark values are consistent with such
forecasting behavior.

Hommes et al. (2005a, 2005b) develops models for a financial market populated by fundamentalists
and chartists where fundamentalists use long-term expectations based on economic fundamentals
and chartists are trend-followers using short-term expectations. Positive feedback prevails when the
latter dominate the market. In these models agents switch endogenously between a mean-reverting
fundamentalist and a trend-following chartist strategy. For a detailed overview, see Hommes (2006).

Econometrics 2017, 5, 30 6 www.mdpi.com/journal/econometrics
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Figure 1. The graphs of the (mean and range adjusted) German-US price differential and the nominal
exchange rate (upper panel), and the deviation from purchasing power parity and the real bond rate
differential (lower panel).

Consistent with the above theories, Figure 1 shows that there are two very persistent trends in
the data, the upward sloping trend in relative prices and the long persistent swings in the nominal
exchange rate. It also suggests that the long swings in the real exchange rate and the real interest
rate differential are related. Juselius (2009) shows empirically that it is not possible to control for the
persistence in the real exchange rate without bringing the interest rates into the analysis.

But, while a graphical analysis can support intuition, it cannot replace hypotheses testing.
To be convincing, testing needs to be carried out in the context of a fully specified statistical model.
Juselius (2006, 2015) argues that a well-specified Cointegrated Vector AutoRegression (CVAR) model
is an approximate description of the data generating process and, therefore, an obvious candidate for
such a model. Hoover et al. (2008) argues that the CVAR allows the data to speak freely about the
mechanisms that have generated the data. But, since the empirical and the theoretical model represent
two different entities, a bridging principle is needed. A so called theory-consistent CVAR scenario
(Juselius 2006; Juselius and Franchi 2007; Moller 2008) offers such a principle. It does so by translating
basic assumptions underlying the theoretical model into testable hypotheses on the pulling and pushing
forces of a CVAR model. One may say that such a scenario describes a specified set of testable empirical
regularities one should expect to see in the data if the basic assumptions of the theoretical model were
empirically valid. A theoretical model that passes the first check of such basic properties is potentially
an empirically relevant model. M. Juselius (2010) demonstrates this for a new Keynesian Phillips curve
model. Hoover and Juselius (2015) argues that it may represent a designed experiment for data obtained
by passive observations in the sense of Haavelmo (1994).

The purpose of this paper is to derive a CVAR scenario for exchange rate determination assuming
expectations are formed in the context of imperfect knowledge. The CVAR model is applied to
German-US exchange rate data over the post-Bretton Woods, pre-EMU period which is characterized
by pronounced persistence from long-run equilibrium states. The empirical results provide remarkable
support for essentially every single testable hypothesis of the imperfect knowledge based scenario.

The paper is organized as follows: Section 2 discusses principles underlying a theory-consistent
CVAR scenario, Section 3 introduces an imperfect knowledge based monetary model for exchange rate
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determination, Section 4 discusses how to anchor expectations to observable variables and derives
their time-series properties. Section 5 reports a theory-consistent CVAR scenario, Section 6 introduces
the empirical CVAR model, Section 7 tests the order of integration of individual variables/relations
and Section 8 reports an identified structure of long-run relations strongly supporting the empirical
relevance of imperfect knowledge and self-reinforcing feed-back behavior. Section 9 concludes.

2. Formulating a Theory-Consistent CVAR Scenario1

The basic idea of a CVAR scenario analysis is to derive persistency properties of variables and
relations that are theoretically consistent and compare these with observed magnitudes measured by
the order of integration, such as I(0) for a highly stationary process, I(1) or near I(1) for a first order
persistent process, and I(2) or near I(2) for a second order persistent process.2 One may argue that
it is implausible that economic variables move away from their equilibrium values for infinite times
and, hence, that most economic relations should be classified as either stationary, near I(1) or near
I(2). But this does not exclude the possibility that over finite samples they exhibit a persistence that
is indistinguishable from a unit root or a double unit root process. In this sense the classification of
variables into single or double unit roots should be seen as a useful way of classifying the data into
more homogeneous groups. For a detailed discussion, see Juselius (2012).

Unobservable expectations are often a crucial part of a theoretical model, whereas the empirical
regularities to be uncovered by a CVAR analysis are based on the observed data. Therefore, what we
need to do is to derive the persistency property of the forecast shock, ft = xt − xe

t+1|t, as a measure of
how the persistency of expectations differ compared to the observed variables. This differs from most
work on expectations in economic models where the focus is on forecast errors rather than, as here,
on forecast shocks.

In the discussion below we find it useful to distinguish between the forecast of asset prices for
which expectations are crucial and real economy variables, such as consumer goods inflation and
real growth rates, for which expectations may matter but only in a subordinate way. The ideas are
illustrated with simple examples.

Case 1. Let xt be an asset price integrated of order one, for example, xt = xt−1 + εt where εt is a
stationary uncorrelated error. A consistent forecasting rule is formulated as

xe
t+1|t = xt + ft, (1)

where xe
t+1|t denotes the expected value of xt+1 formulated at time t and ft is a forecast shock that

may be uncorrelated or correlated over time. The latter is likely to be relevant in an imperfect
knowledge economy, where agents may not know whether the random walk model specification is
correct or stable over time. For this reason they would be inclined to use all kinds of forecasting
rules, such as technical trading rules. Expectations are assumed to influence outcomes, so

xt = xe
t|t−1 + εt, (2)

where εt is an unanticipated forecast error. Inserting (2) in (1) leads to

xe
t+1|t = xe

t|t−1 + εt + ft, (3)

1 This section is an adaptation of Section 2 in Juselius (2017) where it is used to discuss a rational-expectations-based
monetary model.

2 A highly persistent process is one for which a characteristic root is either close to or on the unit circle. See for example
(Elliot 1998; Franchi and Johansen 2017) for a theoretical treatment.
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showing that the forecast change depends on the most recent forecast error, εt, and the
forecast shock, ft. An expression for the data-generating process can be found by inserting
xe

t|t−1 = xt−1 + ft−1 in (2)
xt = xt−1 + ft−1 + εt, (4)

i.e., change in the process depends on the previous forecast shock, ft−1, and the forecast error, εt.

Now, a “rational expectations” agent, knowing that the random walk is the true model will choose
ft = 0. According to (3), the expectations will then follow a random walk and xt will continue to follow
the same model. In a “rational expectations” economy expectations do not change the process xt.

An “imperfect knowledge” agent, on the other hand, does not necessarily believe there is a true
data-generating model. If, instead, he is a chartist then his forecast shocks will tend to be systematically
positive/negative depending on whether the market is bullish or bearish. The process xt will become
a random walk with a time-varying drift term, ft−1. If the latter is persistent then xt may ultimately
become near I(2). Thus, the variable xt may be a random walk in a period of regulation when
speculative behavior is not a dominant feature and become a near I(2) process after deregulation. As
another example, let’s assume that an imperfect knowledge trader chooses ft = εt, i.e., the forecast
shock for the next period’s forecast is chosen to be equal to the realized forecast error at time t. In this
case, the process will become xt = xt−1 + εt−1 + εt and the variance of the process Δxt will be twice
as large as the pure random walk. But, given (3) and (4), the forecast error will nonetheless be equal
to a random noise, εt. Hence, when actual outcomes are influenced by the forecasts, traders in an
imperfect knowledge economy may not be making systematic forecast errors in spite of their imperfect
knowledge. This is because expectations are likely to change the data-generating process both of xt

and xe
t+1|t.

Case 2. Let xt be an asset price described by (4) where ft is a very persistent forecast shock. Such a
shock can be assumed to be positive when the market is bullish and negative when it is bearish
and may be approximated with a first order autoregressive model with a time-varying coefficient
ft = ρt ft−1 + ε f ,t. Juselius (2014) discusses the case where the average of ρt, ρ̄, is close to 1 and
Var(ε f ,t) � Var(εt). In this case xt is integrated of order near I(2), Δxt contains a near unit root
due to the drift term ft, but this drift term is hardly discernible when the variance of εt is much
larger than the variance of ε f ,t.

A consistent forecasting rule is xe
t+1|t = xt + ft, so the forecast shock, ft = xe

t+1|t − xt, is a

persistent (near) I(1) process. 3

Case 3. Let xt be a “real economy” variable integrated of order I(2). The simplest example of an I(2)
model is xt = xt−1 + Δxt−1 + εt, in which a consistent forecasting rule is xe

t+1|t = xt + Δxt, so the
forecast shock ft = xe

t+1|t − xt = Δxt is I(1). Given this assumption, expectations do not change
the data-generating process for xt:

xt = xe
t|t−1 + εt = xt−1 + Δxt−1 + εt. (5)

The data-generating process for expectations becomes:

xe
t+1|t = xe

t|t−1 + Δxt + εt,

= xe
t|t−1 + Δxe

t|t−1 + εt + Δεt,

showing that expectations also follow an I(2) model, but now with a moving average error.

3 Juselius (2012) showed for simulated data that the drift term can be quite precisely estimated by a moving average of Δxt of
suitable length.

9



Econometrics 2017, 5, 30

Even though a variable such as a consumer price index may not in general be subject to speculation,
in an imperfect knowledge economy it may nonetheless be indirectly affected by speculative movements
in asset prices. This would be the case if there is a two-way interdependency between fundamentals
and asset prices owing to self-fulfilling expectations in the financial market.4 For example, when
speculation in foreign currency leads to long persistent swings in the nominal exchange rate, prices are
also likely to be affected. See Juselius (2012) for an extended discussion. This means that εt in (5) may
be affected by forecast shocks in financial markets.

Assumption A exploits these simple ideas:

Assumption A When xt ∼ I(1), (xe
t+1|t − xt) = ft is assumed to be I(0), when xt ∼ near I(2) it is

assumed to be near I(1) and when xt ∼ I(2) it is assumed to be I(1).

Note that Assumption A disregards xt ∼ I(3), as it is considered empirically implausible,
and xt ∼ I(0), as it defines a non-persistent process for which cointegration and stochastic trends have
no informational value.

Note also that xt ∼ I(1) implies that Δxt ∼ I(0), whereas xt ∼ I(2) implies that Δxt ∼ I(1) and
Δ2xt ∼ I(0). Given Assumption A, we have that:

Corollary When xt ∼ I(1), xt, xt+1 and xe
t+1|t share the same common stochastic trend of order I(1),

i.e., they have the same persistency property. When xt ∼ I(2) or near I(2), Δxt, Δxt+1 and Δxe
t+1

share the same common stochastic I(1) trend, i.e., they have the same persistency property.

Consequently, when xt ∼ I(1), β′xt, has the same persistency property as β′xe
t+1|t or β′xt+1.

When xt ∼ I(2), β′xt + d′Δxt has the same order of integration as β′xt + d′Δxe
t+1|t and τ′Δxt has the

same order of integration as τ′Δxe
t+1|t and τ′Δxt+1.5 Thus, Assumption A allows us to make valid

inference about a long-run equilibrium relation in a theoretical model even though the postulated
behavior is a function of expected rather than observed outcomes.

Based on the above, the steps behind a theory-consistent CVAR scenario can be formulated
as follows:

1. Express the expectations variable(s) as a function of observed variables. For example, according to
Uncovered Interest Rate Parity (UIP), the expected change in the nominal exchange rate is equal
to the interest rate differential. Hence, the persistency property of the latter is also a measure of
the persistency property of the unobservable expected change in nominal exchange rate and can,
therefore, be empirically tested.

2. For a given order of integration of the unobserved expectations variable and of the forecast
shocks, ft, derive the theory-consistent order of integration for all remaining variables and for the
postulated behavioral relations of the system.

3. Translate the stochastically formulated theoretical model into a theory-consistent CVAR scenario
by formulating the basic assumptions underlying the theoretical model as a set of testable
hypotheses on cointegration relations and common trends.

4. Estimate a well-specified VAR model and check the empirical adequacy of the derived
theory-consistent CVAR scenario.

3. Imperfect Knowledge and the Nominal Exchange Rate

While essentially all asset price models assume that today’s price depends on expected future
prices, models based on rational expectations versus imperfect knowledge differ with respect to
how agents are assumed to make forecasts and how they react on forecasting errors. In REH-based

4 Soros (1987) uses the concept of reflexivity for such a situation.
5 Section 6 provides a definition of β, d and τ.
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models, agents are adjusting back toward the equilibrium value of the theoretical model after
having made a forecast error, implying that expectations are endogenously adjusting to the proposed
true model. However, when “perfect knowledge” is replaced by imperfect knowledge, the role of
expectations changes.

In IKE-based models, individuals recognize that they do not know the (or may not believe in the
existence of a) “true” model. They also revise their forecasting strategies as changes in policy, institutions,
and other factors cause the process to undergo structural change at times and in ways that cannot be
foreseen. Frydman and Goldberg (2007) show that these revisions (or expectational shocks) may have
a permanent effect on market outcomes and thus act as an exogenous force in the model. The Cases 1
and 2 in Section 2 illustrate this important feature of imperfect knowledge.

If PPP prevails in the goods market, one would expect the nominal exchange rate to approximately
follow relative prices and the real exchange rate, qt,

qt = st − (pd,t − p f ,t) ∼ I(0) (6)

to be stationary.6

If uncovered interest rate parity prevails in the foreign currency market, the interest rate
differential, (id,t − i f ,t), should reflect the expected change in the exchange rate, se

t+1|t − st. But, interest
rate differentials tend to move in long persistent swings whereas the change in nominal exchange
rates are characterized by a pronounced short-run variability. The excess return puzzle describes the
empirical fact that the excess return, exrt, defined as

exrt = (id − i f )t − (se
t+1|t − st), (7)

often behaves like a nonstationary process. To solve the puzzle it has been customary to add a risk
premium, rpt, to (7), which usually is a measure of the volatility in the foreign currency market.
But, although a risk premium can account for exchange rate volatility, it cannot account for the persistent
swings in the interest rate differential. To control for the latter, Frydman and Goldberg (2007) propose to
add to the UIP an uncertainty premium, upt, measuring agents’ loss aversion due to imperfect knowledge
and a term measuring the international financial position.7 Because the time-series property of the latter
is difficult to hypothesize about, it will be left out at this stage. Instead, similar to Stillwagon et al. (2017)
we incorporate a risk premium, rpt, to the Uncertainty Adjusted UIP (UA-UIP) now defined as

(id − i f )t = (se
t+1|t − st) + rpt + upt, (8)

describing an economy in which loss averse financial actors require a minimum return—an uncertainty
premium—to speculate in the foreign exchange market. When the exchange rate moves away from
its long-run value, the uncertainty premium starts increasing until the direction of the exchange rate
reverses towards equilibrium. Frydman and Goldberg (2007) argues that the uncertainty premium is
likely to be closely associated with the PPP gap, but that other gaps, for example the current account
balance, could play a role as well. Focussing on the PPP gap as a measure of the uncertainty premium,
the UA-UIP is formulated as

(id − i f )t = (se
t+1 − st) + rpt + f (pd − p f − s)t. (9)

where rpt is basically associated with market volatility, for example measured by short-term changes
in interest rates, inflation rates, nominal exchange rates, etc.

6 The PPP puzzle describes the empirical fact that the real exchange rate often tends to move in long persistent swings and
that the volatility of the nominal exchange rate, st, is much larger than the one of relative prices.

7 The assumption that agents are loss averse, rather than risk averse, builds on the prospect theory by Kahneman and Tversky (1979).

11



Econometrics 2017, 5, 30

Thus, the expected change in the nominal exchange rate is not directly associated with the
observed interest rate differential but with the interest rate differential corrected for the PPP gap and
the risk premium.

4. The Persistence of the PPP Gap

That agents have diverse forecasting strategies is a defining feature of imperfect knowledge based
models - bulls hold long positions of foreign exchange and bet on appreciation while bears hold short
positions and bet on depreciation.8 Speculators are likely to change their forecasting strategies depending
on how far away the price is from the long-run benchmark value. For example, Hommes (2006) assumes
that the proportion of chartists relative to fundamentalists decreases as the PPP gap grows. When
the exchange rate is not too far from its fundamental value, the proportion of chartists is high and
the rate behaves roughly as a random walk. When it has moved to a far-from-equilibrium region,
the proportion of fundamentalists is high and the real exchange rate becomes mean-reverting. This is
similar to the assumption made in Taylor and Peel (2000) except that this study attributes the threshold
to transactions cost.

Frydman and Goldberg (2007, 2011) explains the persistence of the PPP gap by non-constant
parameters due to forecasting under imperfect knowledge. According to this, financial actors are
assumed to know that in the long run the nominal exchange rate follows the relative price of the two
countries whereas in the short run it reacts on a number of other determinants, zt, which may include,
for example, changes in interest rates, relative incomes and consumption, etc. Therefore, financial actors
attach time-varying weights, Bt, to relative prices depending on how far away the nominal exchange
rate is from its fundamental PPP value, i.e.,

st = A + Bt(pd,t − p f ,t) + zt. (10)

The change in the nominal exchange rate can then be expressed as:

Δst = BtΔ(pd,t − p f ,t) + ΔBt(pd,t − p f ,t) + Δzt.

Frydman and Goldberg (2007) make the assumption that
∣∣∣ΔBt(pd,t − p f ,t)

∣∣∣� ∣∣∣BtΔ(pd,t − p f ,t)
∣∣∣ . This is

backed up by simulations showing that a change in ΔBt has to be implausibly large for ΔBt(pd,t − p f ,t)

to have a noticeable effect on Δst. Therefore, we assume that

Δst � BtΔ(pd,t − p f ,t) + Δzt. (11)

To study the properties of this type of time-varying parameter model, Tabor (2017) considers
the model:

ΔYt = α(Yt−1 − βtXt−1) + εy,t (12)

ΔXt = εx,t.

He generates the data with α = −1 and βt = β0 + ρβt−1 + εβ,t for ρ = {0.0, 0.5, 0, 95, 1.0}. α = −1
implies that the adjustment of Yt back to β′

tXt is immediate. Instead of estimating a time-varying
parameter model, Tabor fits a constant parameter CVAR model to the simulated data, so that (βt − β)Xt

becomes part of the CVAR residual. It corresponds approximately to the forecast shock ft in the
previous section. The simulation results show that the closer ρ is to 1, the more persistent is the
estimated gap term, Yt − β̂′Xt, and the smaller is the estimated adjustment coefficient α (while still
highly significant). As long as ρ < 1, the mean of the estimated β̂ approximately equals its true value β.

8 Thechnically a speculator could expect a depreciation, but one small enough to be offset by the interest rate differential.
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Thus, the pronounced persistence that often characterizes constant-parameter asset price models
can potentially be a result of time-varying coefficients due to forecasting under imperfect knowledge.

Assume now that agents are forecasting the change in the nominal exchange rate by using (11),
i.e., by relating Δst to relative inflation rates with a time-varying coefficient βt,

Δst = βtΔ(pd − p f )t + εs,t, (13)

where βt = β0 + ρβt−1 + εβ,t and E(βt) = (β0/1 − ρ) = 1. If ρ is close, but not equal to one, the Tabor
results imply that Δst −Δ(pd − p f )t = Δqt is likely to be a persistent near I(1) process and, hence, that qt

is a near I(2) process.
The near I(2) approximation is useful as it allows for a linear VAR representation and, hence,

can make use of a vast econometric literature on estimation and testing. Another option is to use a
non-linear adjustment model, for example proposed by Bec and Rahbek (2004).

5. Associating Expectations with Observables in an Imperfect Knowledge Based Model

The first step of a theory-consistent CVAR scenario is to formulate a consistent description of the
time series properties of the data given some basic assumptions of agents’ expectations formation.
In the foreign currency market, expectations are primarily feeding into the model through the UA-UIP
condition (9). It states that the expected change in the nominal exchange rate is given by the interest rate
differential corrected for an uncertainty and a risk premium. As mentioned above, the risk premium
is assumed to be associated with short-term changes in the market such as realized volatilities and
changes in the main determinants. The former may be assumed stationary whereas the latter may
be empirically near I(1). The uncertainty premium is assumed to be associated with a persistent
gap effect considered to be near I(2) in accordance with the findings in Johansen et al. (2010) and
Juselius and Assenmacher (2017). As explained above, the PPP gap effect is likely to be near I(2) when
the forecast shock of Δst is ft = Δst − βtΔ(pd,t − p f ,t) with β̄t = 1. Imperfect knowledge economics
would predict that βt ≈ 0 in the close neighborhood of parity, close to 1 in the far-from-parity region,
and between 0 and 1 in the intermediate cases.

If interest rate differentials are affected by a risk and an uncertainty premium, then so are the
individual interest rates:

ij,t = ij,t−1 + Δupj,t + Δrpj,t + ε j,t j = d, f (14)

where ε j,t is a white noise process. The persistency of a near I(2) uncertainty premium will always
dominate the persistency of a stationary or near I(1) risk premium. For notational simplicity, the latter
will be part of the error term ε j,t.

The change in the uncertainty premium, Δupt, is assumed to follow a persistent AR(1) process:

Δupj,t = ρjΔupj,t−1 + εup,j,t, and εup,j,t ∼ Niid(0, σ2
εup,,j) j = d, f . (15)

The autoregressive coefficient ρj,t is considered to be approximately 1.0 in periods when the real
exchange rate is in the neighborhood of its long-run benchmark value and � 1.0 when it is far away
from this value. Since the periods when ρj,t � 1.0 are likely to be short compared to the ones when
ρj,t ≈ 1.0, the average ρ̄j is likely to be close to 1.0 so that

Δupj,t =
t

∑
i=1

ρ̄t−i
j εup,j,i + ρ̄t

jΔup0

is a near I(1) process. Integrating (14) over t gives:
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ij,t = ij,0 +
t

∑
i=1

ε j,i +
t

∑
i=1

Δupj,i, (16)

= ij,0 +
t

∑
i=1

ε j,i + upj,t, j = d, f

where

upj,t =
t

∑
s=1

s

∑
i=1

ρ̄s−i
j εup,j,i + ρ̄jΔup0

t

∑
i=1

ρ̄i
j + upj,0.

Thus given (15), upj,t is near I(2) and so are nominal interest rates. Note, however, that the shocks to
the uncertainty premium, while persistent, are likely to be tiny compared to the interest rate shocks,
capturing the empirical fact that the variance of the process is usually much larger than the variance of
the drift term (for a more detailed discussion, see Juselius (2014)). The process (16) is consistent with
persistent swings of shorter and longer durations typical of observed interest rates. The interest rate
differential can be expressed as:

(id,t − i f ,t) = (id,0 − i f ,0) + upt +
t

∑
i=1

(εd,i − ε f ,i). (17)

where upt = upd,t − up f ,t. The term ∑t
i=1(εd,i − ε f ,i) implies a first order stochastic trend in the

interest rate differential, unless ∑t
i=1 εd,i = ∑t

i=1 ε f ,i, which would be highly unlikely in an imperfect
knowledge world. As the uncertainty premium, upj,t, is assumed to be near I(2), the differential upt is
also near I(2), unless upd,j − up f ,j = 0. Equality would, however, imply no uncertainty premium in
the foreign currency market, which again violates the imperfect knowledge assumption9.

Approximating upt with a fraction, φ, of the PPP gap gives:

(id,t − i f ,t)− φ(pd,t − p f ,t − st) = (id,0 − i f ,0) +
t

∑
i=1

(εd,i − ε f ,i), (18)

showing that the interest rate differential corrected for the uncertainty premium is I(1).
The Fisher parity defines the real interest rate as rj,t = ij,t −Δpe

j,t+1|t. Using Δpe
j,t+1|t = Δpj,t + fpj ,t

we get
rj,t = ij,t − Δpj,t − fpj ,t, j = d, f (19)

Alternatively, (19) can be expressed for the inflation rate:

Δpj,t = ij,t − rj,t + fpj ,t, j = d, f . (20)

Inserting (16) in (20) gives:

Δpj,t = ij,0 +
t

∑
s=1

ε j,s + upj,t − rj,t + fpj ,t j = d, f . (21)

It appears that the inflation rate would be near I(2) (which is implausible) unless rj,t and upt cointegrate.
Goods prices are generally determined by demand and supply in competitive international goods
markets and only exceptionally affected by speculation. If nominal interest rates exhibit persistent
swings but consumer price inflation does not, then the real interest rate will also exhibit persistent
swings. Thus, the uncertainty premium should affect nominal interest rates, but not the price of goods,
implying that upt is part of rj,t rather than the inflation rate. In this case the real interest rate is near I(2)

9 Brunnermaier et al. (2008) discuss a “rational expectations” model for carry trade where agents demand a premium because
of their risk preferences. Under this assumption upt �= 0 in spite of perfect information.
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but, because it cointegrates with the uncertainty premium from near I(2) to I(0), i.e., upj,t − rj,t is I(0)
in (1), the inflation rate is I(1). This implies a delinking of the inflation rate and the nominal interest
rate as a stationary Fisher parity relationship as predicted by Frydman and Goldberg (2007) and shown
in Frydman et al. (2008).

Integrating (21) over t gives an expression for prices:

pj,t = ij,0 × t +
t

∑
s=1

s

∑
i=1

ε j,i +
t

∑
i=1

fpj ,i + pj,0, j = d, f (22)

showing that prices are I(2) around a linear trend.
The inflation spread between the two countries can be expressed as

(Δpd,t − Δp f ,t) = (id,0 − i f ,0) +
t

∑
s=1

(εd,s − ε f ,s) + ( fpd ,t − fp f ,t), (23)

showing that the inflation spread is I(1). Integrating (23) over t gives an expression for the relative price:

pd,t − p f ,t = pd,0 − p f ,0 + (id,0 − i f ,0)t +
t

∑
s=1

s

∑
i=1

(εd,i − ε f ,i) +
t

∑
i=1

( fpd ,i − fp f ,i), (24)

showing that the relative price is I(2) with a linear trend.
An expression for the change in nominal exchange rates can be found from the uncertainty

adjusted UIP:
Δst = (id − i f )t−1 − upt−1. (25)

Inserting the expression for (id − i f )t from (17) gives:

Δst = (id,0 − i f ,0) +
t−1

∑
i=1

(εd,i − ε f ,i) + upt − upt−1,

= (id,0 − i f ,0) +
t−1

∑
i=1

(εd,i − ε f ,i) + Δupt

Summing over t gives an expression for the nominal exchange rate:

st = s0 + (id,0 − i f ,0)t +
t−1

∑
s=1

s

∑
i=1

(εd,i − ε f ,i) + upt. (26)

Thus, the nominal exchange rate contains a local linear trend originating from the initial value of
the interest rate differential, an I(2) trend describing the stochastic trend in the relative price and a
near I(2) trend describing the long swings due to the uncertainty premium.

An expression for the real exchange rate can now be obtained by subtracting (24) from (26):

st − pd,t + p f ,t = (s0 − pd,0 − p f ,0)− (εd,t − ε f ,t) + upt −
t

∑
i=1

( fpd,i − fp f ,i ), (27)

showing that the real exchange rate is a near I(2) process due to the uncertainty premium. Thus, under
imperfect knowledge both the nominal and the real exchange rate will show a tendency to move in
similar long swings. Figure 1 illustrates that this has been the case for Germany and the USA in the
post-Bretton Woods, pre-EMU period.
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Finally, inserting the expression for (23) in (18) gives:

(id,t − i f ,t)︸ ︷︷ ︸
near I(2)

− φ(pd,t − p f ,t − st)︸ ︷︷ ︸
near I(2)︸ ︷︷ ︸

near I(1)

− (Δpd,t − Δp f ,t)︸ ︷︷ ︸
near I(1)

︸ ︷︷ ︸
I(0)

= ( fpd,t − fpd,t)︸ ︷︷ ︸
I(0)

, (28)

showing that the real interest rate differential cointegrates with the PPP gap to a stationary relation as
deduced in Frydman and Goldberg (2007).10 While the real exchange rate is inherently persistent as
discussed in Section 4, the degree of persistence may vary over different sample periods. It may sometimes
be very close to I(2), sometimes more like a persistent I(1) process. Whatever the case, the persistency
profile of the real exchange rate, the interest rate and the inflation rate differentials should be one degree
higher in an imperfect knowledge economy compared to a “rational expectations” economy.

Thus, imperfect knowledge predicts that both exchange rates and interest rates in nominal and real
values are integrated of the same order and that the Fisher parity does not hold as a stationary condition.

6. A Theory-Consistent CVAR Scenario for Imperfect Knowledge

The first step in a scenario describes how the underlying stochastic trends are assumed to load
into the data provided the theory model is empirically correct. The results of the previous section
showed that the data vector xt = [pd,t, p f ,t, st, id,t, i f ,t] should be integrated of order two and be affected
by two stochastic trends, one originating from twice cumulated interest rate shocks, ∑t

s=1 ∑s
i=1 ε j,i,

and the other from the uncertainty premium being near I(2). Two stochastic I(2) trends that load
into five variables implies three relations which are cointegrated CI(2, 1)11. These relations can be
decomposed into r relations, β′xt, that can become stationary by adding a linear combination of the
growth rates, d′Δxt, and s1 linear combinations β′

⊥1xt which can only become stationary by differencing.
Thus, stationarity can be achieved by r polynomially cointegrated relations (β′xt + d′Δxt) ∼ I(0) and s1

medium-run relations among the differences β′
⊥1Δxt. For a more detailed exposition see, for example,

(Juselius 2006, chp. 17).
The three CI(2, 1) relations are consistent with different choices of r and s1 as long as

r + s1 = p − s2 = 3 where s2 is the number of I(2) trends. Theoretically, (18) predicts that
(id,t − i f ,t) and (st − pd,t + p f ,t) are cointegrated CI(2, 1) and (28) that (id,t − i f ,t), (st − pd,t + p f ,t)

and (Δpd,t + Δp f ,t) are cointegrated CI(2, 2), so {3 ≥ r ≥ 1}. The following two cases satisfy this
condition: {r = 2, s1 = 1, s2 = 2} , and {r = 3, s1 = 0, s2 = 2} . Juselius (2017) finds that the trace test
supports {r = 2, s1 = 1, s2 = 2} and the scenario will be formulated for this case. The pushing force
of this scenario comprises three autonomous shocks, u1,t, u2,t and u3,t, two of which cumulate twice
to produce the two I(2) trends, while the third shock cumulates only once to produce an I(1) trend.
The pulling force consists of two polynomially cointegrated relations and one medium-run relation
between growth rates.

Based on the derivations in the previous section, it is possible to impose testable restrictions
on some of the coefficients in the scenario. For example, relation (22) assumes that the uncertainty
premium does not affect goods prices so that (c21, c22) = 0. Relation (27) assumes that the long-run
stochastic trend in relative prices and nominal exchange rate, ∑t−1

i=1 ∑i
s=1(εd,s − ε f ,s), cancels in

(pd − p f − s), so that (c11 − c12) = c13. Relation (16) assumes that the relative price trend does not load
into the two interest rates, so that (c14 = c15 = 0). Based on these restrictions, the imperfect knowledge
scenario is formulated as:

10 Because a risk premium was left out from (14), short-term changes of other important variables are therefore absent in (28).
11 That β′xt is CI(2, 1) means that cointegration takes the vector process xt ∼ I(2) down to I(1), i.e., the order of integration

1 step down. If β′xt is CI(2, 2), then cointegration takes the I(2) process down to stationarity.
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⎡⎢⎢⎢⎢⎢⎣
pd
p f
s
id
i f

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
c11 0
c12 0

c11 − c12 c23

0 c24

0 c25

⎤⎥⎥⎥⎥⎥⎦
[

ΣΣu1

ΣΣu2

]
+

⎡⎢⎢⎢⎢⎢⎣
b11 b21 b31

b12 b22 b32

b13 b23 b33

b14 b24 b34

b15 b25 b35

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ Σu1

Σu2

Σu3

⎤⎥⎦+ Zt, (29)

where u1 is a relative price shock and u2 a shock to the uncertainty premium. Section 2 noted that a risk
premium is likely to be near I(1) and thus able to generate an additional trend in the data. Tentatively
u3 is therefore considered a shock to the risk premium and Σu3 to be a medium-run trend originating
from such shocks. Consistent with the derivations in the previous section all variables are assumed to
be I(2). Since the two prices and the exchange rate share two stochastic I(2) trends, there exists just
one relation, (pd − w1 p f − w2s) ∼ I(1) with (w1, w2) �= 1.

The following three CI(2, 1) cointegration relations follow from (29):

1.
{
(pd − p f − s)− a1(id − i f )− γ1t

}
∼ I(1) if c23 + a1(c24 − c25) = 0

2. (id − a2 pd − a3s − γ2t) ∼ I(1), if c24 − a3c23 = 0 and a2c11 + a3(c11 − c12) = 0
3. (i f − a4 p f − a5s − γ3t) ∼ I(1), if c25 − a5c23 = 0 and a4c12 + a5(c11 − c21) = 0

The first relation corresponds to (18), whereas the two remaining relations, while not explicitly
discussed above, are consistent with the theoretical model set-up. The next section will demonstrate
that they are also empirically relevant. Note also that the inclusion of a linear trend in the relation
means that trend-adjusted price/nominal exchange rate rather than the price itself is the relevant
measure. Any linear combination of the three relations are of course also CI(2, 1).

The case (r = 2, s1 = 1, s2 = 2) implies two multicointegrating relations, β′xt + dΔxt, and one
medium-run relation between the differences, β⊥,1Δxt. To obtain stationarity, two of the CI(2, 1)
relations need to be combined with growth rates in a way that cancels the I(1) trends. As an illustration,
the scenario restrictions consistent with stationarity are given below for the first polynomially
cointegrated relation given by (28). The scenario restrictions on the remaining two relations can
be similarly derived.

1.
{

ppp − a1(id − i f )− a6(Δpd − Δp f )− γ1t
}

∼ I(0), if c23 + a1(c24 − c25) = 0,

{(b11 − b12 − b13)− a1(b14 − b15)− a6c11} = 0,
{(b21 − b22 − b23)− a1(b24 − b25) + a6c21} = 0, and
{(b31 − b32 − b33) + a6(b34 − b35)} = 0

2. (id − a2 pd − a3s − a7Δpd − γ2t) ∼ I(0),

and one medium-run relation, β′
⊥1Δxt:

1. (Δpd + d1Δp f + d2Δs + d3Δi f ) ∼ I(0).

Note that linear combinations of the proposed stationary relations are, of course, also stationary.

7. The Empirical Specification of the CVAR Model

The empirical analysis is based on German-US data for the post-Bretton Woods, pre-EMU period12.
The sample starts in 1975:8 and ends in 1998:12 when the Deutshemark was replaced by the Euro.
The empirical VAR corresponds to the one in Juselius (2017) and has two lags and contains a few
dummy variables, Dt:

12 All estimates are based on a recent Beta version of CATS 3 in OxMetrics Doornik and Juselius (2017).
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Δ2xt = ΓΔxt−1 + Πxt−1 + μ0 + μ01Ds91.1,t + μ1t + μ1t91.1 (30)

+φ1Dtax,t + φ2Dp86.2,t + φ3Dp91.2,t + εt,

where xt = [pd,t, p f ,t, st, id,t, i f ,t] and pt stands for CPI prices, st for the Dmk/dollar exchange rate,
it for 10 year bond rates, a subscript d for Germany and a subscript f for the USA, t is a linear
trend starting in 1975:3, t91:1,t allows the linear trend to have a different slope from 1991:1 onwards13,
and Ds91:1,t is a step dummy also starting in 1991:1, controlling for the reunification of East and West
Germany. Dtax,t is an impulse dummy accounting for three different excise taxes introduced to pay
for the German reunification, Dp86.2 is controlling for a large shock to the US price and bond rate in
connection with the Plaza Accord, and Dp91.2 accounts for a large shock to the exchange rate after the
reunification.

The hypothesis that xt is I(1) is formulated as a reduced rank hypothesis, Π = αβ′, where α

is p × r and β is p1 × r with p1 = p + 2 (p variables + 2 deterministic trends) The hypothesis that
xt is I(2) is formulated as an additional reduced rank hypothesis, α′⊥Γβ⊥ = ξη′, where ξ, η are
(p − r)× s1 and α⊥, β⊥ are the orthogonal complements of α, β respectively (Johansen 1992, 1995).
The first reduced rank condition is associated with the levels of the variables and the second with
the differenced variables. The intuition is that the differenced process also contains unit roots when
data are I(2). Juselius (2017) finds that the maximum likelihood trace test (Nielsen and Rahbek 2007)
supports the case {r = 2, s1 = 1, s2 = 2}.

Since the I(2) condition is formulated as a reduced rank on the transformed Γ matrix, the latter
is no longer unrestricted as in the I(1) model. To circumvent this problem we use the following
parameterization (see Johansen 1997, 2006; Doornik and Juselius 2017):

Δ2xt = α

⎡⎢⎣
⎛⎜⎝ β

β01

β0

⎞⎟⎠
′⎛⎜⎝ xt−1

t91:1,t−1

t − 1

⎞⎟⎠+

⎛⎜⎝ d
d01

d0

⎞⎟⎠
′⎛⎜⎝ Δxt−1

Ds91:1,t−1

1

⎞⎟⎠
⎤⎥⎦

+ζ

⎛⎜⎝ τ

τ01

τ0

⎞⎟⎠
′⎛⎜⎝ Δxt−1

Ds91:1,t−1

1

⎞⎟⎠+ Φ1Dtax,t + Φ2Dp86.2,t + φ3Dp91.2,t + εt,

t = 1975.09 − 1998.12

(31)

where τ = [β, β⊥1] and d is proportional to τ⊥. In (30) an unrestricted constant (and step dummy) will
cumulate twice to a quadratic trend, and a linear (broken) trend to a cubic trend. By specifying the
broken trend to be restricted to the β part and the differenced broken trend to the d part of model (31)
these undesirable effects are avoided. For more details, see Doornik (2017), Kongsted et al. (1999),
(Juselius 2006, chp. 17).

8. Testable Hypotheses on Integration and Cointegration

Section 4 found that all the five variables should be individually (near) I(2) under imperfect
knowledge. The following testable hypotheses represent relevant linear combinations of the variables:

• (pd,t − p f ,t) ∼ near I(2),
• st ∼ near I(2),
• (id,t − i f ,t) ∼ near I(2),
• (st − pd − p f )t ∼ near I(2),

13 The change in the slope of the trend could possibly be associated with a change in the financial position between the
two countries as discussed in Frydman and Goldberg (2007).
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•
{
(id,t − i f ,t)− b1(st − pd − p f )t

}
∼ near I(1)

The above hypotheses can be formulated as a known vector b1 in τ, i.e., τ = (b1, b1⊥ϕ) where b1⊥ϕ

defines the remaining vectors to be in the orthogonal space of b1.14 For example b′1 = [0, 0, 0, 1, 0, 0, 0]
tests whether the German bond rate is a unit vector in τ. If not rejected, bd,t can be considered at
most I(1), if rejected I(2). Note, however, that Section 4 found that prices and the nominal exchange
rate contain both deterministic and stochastic trends and the tests have to take this into account.

For example, H′
1 =

[
1 0 0 0 0 0 0
0 0 0 0 0 0 1

]
tests whether trend-adjusted German price is I(1).

To allow for a deterministic trend is important as it would otherwise bias the tests towards a rejection
of I(1).

Table 1 reports the test results. Except for the German bond rate, the results are supporting the
imperfect knowledge hypothesis that all variables are near I(2). Even though, the I(1) hypothesis of
the nominal and the real exchange rate is borderline acceptable, the low p-value is more in line with
near I(2) than I(1).15 That the German bond rate could be rejected as (near) I(2) with a p-value of
0.45 may indicate that the German bond rate was less affected by speculative movements than the US
rate. Similar results have been found in Juselius and Assenmacher (2017). Hypothesis H9 corresponds
to (18) and support the results in Section 4 that the PPP gap and the interest rate differential should
cointegrate from I(2) to I(1).

Table 1. Testing hypotheses of I(1) versus I(2).

pd p f s b1 b2 t91 t χ2(v) p-Value

H1 τ′
1 1 − − − − ∗ ∗ 31.9(2) 0.00

H2 τ′
1 − 1 − − − ∗ ∗ 32.5(2) 0.00

H3 τ′
1 1 −1 − − − ∗ ∗ 24.7(2) 0.00

H4 τ′
1 − − 1 − − ∗ ∗ 5.3(2) 0.07

H5 τ′
1 1 −1 −1 − − − − 8.4(4) 0.07

H6 τ′
1 − − − 1 − − − 3.7(4) 0.45

H7 τ′
1 − − − − 1 − − 12.6(4) 0.01

H8 τ′
1 − − − 1 −1 − − 12.4(4) 0.01

H9 τ′
1 1 −1 −1 a −a − − 3.0(5) 0.70

9. The Pulling Forces

The long and persistent swings away from long-run equilibrium values visible in Figure 1 suggest
the presence of self-reinforcing feedback mechanisms in the system. Such behavior is likely to show up as
a combination of equilibrium error increasing (positive feedback) and error correcting behavior (negative
feedback) either in the adjustment of the two polynomially cointegrating relations, α(β

′
xt + d′Δxt),

or in the adjustment to the changes in the τ relations, ζτ′Δxt. Juselius and Assenmacher (2017) argue
that the adjustment dynamics in the I(2) model, given by α and d, can be interpreted as two levels of
equilibrium correction: the d adjustment describing how the growth rates, Δxt, adjust to the long-run
equilibrium errors, β

′
xt and the α adjustment describing how the acceleration rates, Δ2xt, adjust to the

dynamic equilibrium relations, β
′
xt + d′Δxt. The interpretation of d as a medium-run adjustment is,

however, conditional on α �= 0.

14 Note that in the I(1) model this type of hypothesis is testing whether a variable/relation is I(0), whereas in the I(2) model
whether it is I(1).

15 Juselius (2017) shows that a standard rational expectations model is consistent with the real exchange rate behaving like an
I(0) or possibly a near-I(1) process.
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The adjustment dynamics are illustrated for the variable xi,t:

Δ2xi,t = · · ·
r

∑
j=1

αij

p

∑
i=1

(βijxi,t−1 + dijΔxi,t−1) +
r

∑
j=1

ζij

p

∑
i=1

(βijΔxi,t−1) + εi,t, i = 1, ..., p

The signs of β, d, and α determine whether the variable xi,t is error increasing or error correcting in the
medium and the long run. If αijβij < 0 or/and αijdij < 0, then the acceleration rate, Δ2xi,t, is equilibrium
correcting to (β

′
jxt + d′jΔxt); if dijβij > 0 (given αij �= 0), then Δxi,t, is equilibrium error correcting to β

′
jxt;

if ζijτij < 0 then Δ2xi,t is equilibrium correcting to τ′
j Δxt−1. In all other cases the system is equilibrium

error increasing (except for the cases when the coefficient is zero).
The two stationary polynomially cointegrating relations, β

′
ixt + d′iΔxt, i = 1, 2 can be interpreted

as dynamic equilibrium relations in the following sense: When data are I(2), β′xt is in general I(1)
describing a very persistent static equilibrium error. In a market economy, a movement away from
equilibrium would trigger off a compensating movement elsewhere in the system. The I(2) structure
tells us that it is the changes of the system, d′Δxt, that adjust to the static equilibrium error either in
an error-correcting manner bringing β

′
xt back towards equilibrium, or in an error-increasing manner,

pushing β
′
xt further away from equilibrium.

However, as long as all characteristic roots of the model are inside the unit circle, any equilibrium
error increasing behavior is compensated by error correcting behavior somewhere else in the system.
For example, speculative behavior may push the real exchange rate away from equilibrium but an
increasing uncertainty premium will eventually pull it back toward equilibrium. The largest unrestricted
root in our model is 0.48, so the system is stable and all persistent movements in the data are properly
accounted for.

Table 2 reports an overidentified structure of βxt + d′Δxt and an unrestricted estimate of β⊥1.
For a given identified β, the d parameters are uniquely determined as long as d is proportional to τ⊥.
See Doornik (2017) in this special issue. The standard errors of β are derived in Johansen (1997) and
those of d by the delta method in Doornik (2017).16 To facilitate interpretation, statistically insignificant
adjustment coefficients (with a t-ratio <|1.4|) are replaced by an asterisk (*). Error-increasing coefficients
are shown in bold face. As discussed above, the α, d and ζ coefficients allow us to investigate how the
variables have responded to imbalances in the system.

The β structure contain altogether 6 overidentifying restrictions which are tested with the
likelihood ratio test described in Johansen et al. (2010) and accepted with a p-value of 0.72.

The first polynomially cointegrated relation corresponds closely to the Uncertainty Adjusted UIP
relation (28):

(id,t − i f ,t) = 0.01(pd,t − p f ,t − st)− 0.16Δpd,t − 1.1Δp f ,t + 0.48Δst +

0.0005Δid,t − 0.006Δi f ,t + 0.013 − 0.006Ds91,t + e1,t

where the PPP gap is a proxy for the uncertainty premium and d′Δxt ≈ (0.16Δpd,t + 1.1Δp f ,t −
0.48Δst − 0.0005Δid,t + 0.006Δi f ,t) can be thought of as a proxy for Δse

t+1 and a risk premium measuring
short-term variability in the market. While the coefficient to the PPP is tiny, describing a very slow
adjustment to the long-run PPP, the adjustment to the combined (excess return) relation is very fast
as measured by the α1 coefficients. The latter show that in the long run all variables, except for the
nominal exchange rate, adjust in an error correcting manner to the disequilibrium e1,t. In the medium
run, German inflation and the nominal exchange rate are error increasing (d11β11, d13β13 < 0) and so
are the two interest rates (d14β14, d15β15 < 0). Since an increasing PPP gap is likely to cause imbalances

16 Note that all β coefficients have t ratios that are sufficiently large to be statistically significant also after a near unit root
correction. See (Franchi and Johansen 2017; Elliot 1998.)

20



Econometrics 2017, 5, 30

in the real economy and such imbalances have to be financed, the level of interest rates is likely to
respond, which can explain their error-increasing behavior in the medium run.

Altogether the results of the first relation can be interpreted as follows: The PPP gap moves in
long persistent swings as a result of error-increasing behavior of the nominal exchange rate and the
interest rate differential. As long as the PPP gap and the interest rate differential move in tandem,
the long-run equilibrium error, β′

1xt, is small and the response of the system is moderate. But when
the disequilibrium starts increasing, all variables, except for the nominal exchange rate, will react in an
error-correcting manner so as to restore equilibrium.

The second polynomially cointegrated relation contains elements of the relation (19) in Section 4:

b f ,t − 0.89Δp f ,t = 0.01 ̂(p f ,t + st) + 0.22Δpd,t − 0.0007Δid,t +

0.0072Δi f ,t − 0.04 + e2,t.

where x̂t stands for “trend-adjusted”. An increase/decrease in the US bond rate relative to the US
inflation rate (i.e., the real bond rate in (19)) is associated with an increase/decrease in the trend-adjusted
US price denominated in Dmk.17 Each of the d and α coefficients represents error-correcting adjustment,
even the nominal exchange rate is error-correcting in α.

The medium-run stationary relation between growth rates, β′
⊥1Δxt, is given by

Δpd,t � 0.14Δp f ,t + 0.30Δst − 0.33Δid,t + 0.49Δi f ,t + (32)

0.0026 − 0.002Ds91,t + e3,t

showing that German inflation rate has been co-moving with US inflation rate, with the change in the
nominal exchange rate and with the change in the interest rate differential. The relation resembles
relation (28) in differences, except that the coefficients are not consistent with proportional effects.
Thus, in the medium run, German price inflation has not fully reacted to changes in the US price and
the nominal exchange rate. As a consequence it has contributed to the long swings in the real exchange
rate visible in Figure 1. The estimates of ζ3 in Table 3 show that the German and the US inflation rates
are primarily adjusting to this relation, supporting the interpretation of (32) as a medium-run secular
trend relationship between inflation rates.

Table 3 also reports the estimated adjustment coefficients ζ of β′Δxt where β is given by the
estimates of Table 2. It appears that the changes of the two disequilibria have had a very significant
effect on both interest rates: β′

1Δxt in an error increasing manner and β′
2Δxt in an error correcting

manner. Interestingly, the nominal exchange rate does not adjust very significantly to any of the
three equilibrium errors. Thus, in the medium run speculative movements in the exchange rate
seems to have been the main driver in the Dollar-Deutshemark market.18 Since both bond rates are
equilibrium-error increasing in d1 and ζ1, the results may tentatively suggest that it is the interest
rates that respond to the speculative movements in the nominal exchange. It is also notable that the
coefficients on the exchange rate are much larger in absolute value than those on the price levels,
suggesting that the changes in the inflation rates were too small to compensate the movements away
from long-run equilibrium PPP values caused by financial speculators (trend followers/chartists)19.
This supports the imperfect knowledge hypothesis that in the medium run the nominal exchange
rate tends to move away from its long-run equilibrium values, while in the long run it moves back
towards equilibrium.

17 A similar relationship was found in Juselius and Assenmacher (2017) for Swiss-US data and in Juselius and Stillwagon (2017)
for UK-US data, both for a more recent period.

18 The latter result is also found in Juselius and Stillwagon (2017).
19 Similar results were found in Juselius and Assenmacher (2017) and in Juselius and Stillwagon (2017).
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Table 2. An identified long-run structure in β.

β̃ = (h1 + H1 ϕ1, . . . , hr + Hr ϕr) , χ2(6) = 4.60[0.72]

pd,t p f ,t st id,t i f ,t t91.1 t1)

β̃′1 −0.013
[−16.9]

0.031
[16.9]

0.013
[16.9]

1.00 −1.00 − −
d′1 0.16

[3.2]
1.11
[5.3]

−0.48
[−6.9]

−0.0005
[−3.4]

0.0054
[3.2]

0.006
[3.8]

−0.013
[−8.5]

α′1 0.45
[15.3]

−0.13
[−4.4]

1.51
[3.1]

−0.01
[−3.8]

0.02
[4.0]

β̃′2 − −0.009
[−15.1]

−0.009
[−15.1]

− 1.00 0.002
[2.5]

0.52
[1.5]

d′2 −0.22
[−1.7]

−0.89
[−5.5]

∗ 0.0007
[12.8]

−0.0072
[−12.8]

∗ 0.038
[14.1]

α′2 0.67
[10.3]

0.40
[6.5]

3.25
[3.0]

−0.03
[−5.0]

∗ − −

β̃′⊥,1 1.00 −0.14 −0.30 0.33 −0.49 0.0020 -0.0026
1) The trend estimate has been multiplied by 1000. Error-increasing coefficients in bold face. A * means an
insignificant coefficient.

Table 3. The adjustment coefficients ζ.

ζ1(β′
1Δxt) ζ2(β′

2Δx) ζ3(β′
⊥1Δxt)

ΔΔpd,t ∗ ∗ −0.82
[−16.5]

ΔΔp f ,t ∗ ∗ 0.23
[4.7]

ΔΔst 13.9
[1.9]

∗ ∗
ΔΔid,t 0.35

[9.2]
−0.71
[−13.9]

∗
ΔΔi f ,t −0.73

[−10.6]
−0.37
[−4.0]

−0.02
[−2.0]

Coefficients with a |t − value| < 1.3 is replaced with an *.

10. A Plausible Story

The results generally confirm the hypotheses in Juselius (2012) where prices of tradable goods
are assumed to be determined in very competitive customer markets Phelps (1994). Hence, prices are
assumed not to be much affected by speculation and, therefore, not to exhibit persistent speculative
swings around benchmark values.20

A shock to the long-term interest rate (for example, as a result of a domestic increase in sovereign
debt) without a corresponding increase in the inflation rate, is likely to increase the amount of speculative
capital moving into the economy. The exchange rate appreciates, jeopardizing competitiveness in the
tradable sector, the trade balance worsens, and the pressure on the interest rate increases. Under this
scenario, the interest rate is likely to keep increasing as long as the structural imbalances are growing,
thus generating persistent movements in real interest rates and real exchange rates. The estimates of
β′xt + d′Δxt and the error-increasing behavior of the interest rates in d1 and ζ1 support this interpretation.

The tendency of the domestic real interest rate to increase and the real exchange rate to appreciate
at the same time reduces domestic competitiveness in the tradable sector. In an imperfect knowledge
economy in which the nominal exchange rate is determined by speculation, firms cannot in general
count on exchange rates to restore competitiveness after a permanent shock to relative costs. Unless
firms are prepared to loose market shares, they cannot use constant mark-up pricing as their pricing
strategy. See, for example, (Krugman 1986; Phelps 1994; Feenstra 2015). To preserve market shares, they

20 Energy, precious metals and, recently, grain may be exceptions in this respect.
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would have to adjust productivity or profits rather than increasing the product price. Therefore, we
would expect customer market pricing (Phelps 1994) to replace constant mark-up pricing, implying that
profits are squeezed in periods of persistent appreciation and increased during periods of depreciation.
Evidence of a nonstationary profit share co-moving with the real exchange rate has for instance been
found in Juselius (2006).

The results showed that German prices have been equilibrium error-increasing (d11β11 < 0) in the
medium-run at the same time as the nominal exchange has moved away from its long-run equilibrium
value. Thus, Germany’s reaction to the long swings in the real exchange rate has been to suppress
price changes as a means to preserve competitiveness. US prices, on the other hand, have been error
correcting (d12β12 > 0) to the PPP gap, albeit very slowly so, indicating that the USA’s reaction has
been more prone to letting prices follow the swings in the dollar rate as a result of speculative flows.21

Judging from the accumulating US trade deficits in this period, US enterprises might have lost market
shares accordingly.

To conclude: the IKE behavior of interest rates and the nominal exchange rate seem key for
understanding the long swings in the currency market.

11. Conclusions

The paper demonstrates how basic assumptions underlying a theory model can be translated
into testable hypotheses on the order of integration and cointegration of key variables and their
relationships. The idea is formalized as a theory-consistent CVAR scenario describing the empirical
regularities we expect to see in the data if the long-run properties of a theory model are empirically
relevant. The procedure is illustrated for a monetary model of real exchange rate determination based
on imperfect knowledge expectations.

The empirical results provide overwhelmingly strong support for the informationally less demanding
imperfect knowledge type of model. In particular, this model seems able to explain the long and persistent
swings in the nominal and the real exchange rate that have puzzled economists for long. This conclusion
is strengthened by very similar results based on Danish-German data (Juselius 2006, chp. 21), on Swiss-US
data (Juselius and Assenmacher 2017) and on UK-US data (Juselius and Stillwagon 2017). Because of
this, it seems that the key for understanding these long swings in exchange rates and interest rates (both
real and nominal) is to recognize the importance of imperfect knowledge, reflexivity, and positive and
negative feedback mechanisms (Soros 1987; Frydman and Goldberg 2013; Hands 2013; Hommes 2013).

As the real exchange rate and the real interest rate are among the most important determinants
for the real economy, the results point to the importance of understanding the underlying cause of the
long persistent movements with which they typically evolve over time. The failure of extant models
to foresee the recent financial and economic crisis, and to propose adequate policy measures in its
aftermath gives a strong argument for this. Without such an understanding financial behavior in the
foreign currency and the stock market is likely to continue to generate bubbles and crises with serious
implications for the macroeconomy and subsequent political turmoil.
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Abstract: Estimation of the I(2) cointegrated vector autoregressive (CVAR) model is considered.
Without further restrictions, estimation of the I(1) model is by reduced-rank regression
(Anderson (1951)). Maximum likelihood estimation of I(2) models, on the other hand, always
requires iteration. This paper presents a new triangular representation of the I(2) model. This is the
basis for a new estimation procedure of the unrestricted I(2) model, as well as the I(2) model with
linear restrictions imposed.
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1. Introduction

The I(1) model or cointegrated vector autoregression (CVAR) is now well established. The model
is developed in a series of papers and books (see, e.g., Johansen (1988), Johansen (1991),
Johansen (1995a), Juselius (2006)) and generally available in econometric software. The I(1) model is
formulated as a rank reduction of the matrix of ‘long-run’ coefficients. The Gaussian log-likelihood is
estimated by reduced-rank regression (RRR; see Anderson (1951), Anderson (2002)).

Determining the cointegrating rank only finds the cointegrating vectors up to a rank-preserving
linear transformation. Therefore, the next step of an empirical study usually identifies the cointegrating
vectors. This may be followed by imposing over-identifying restrictions. Common restrictions,
i.e., the same restrictions on each cointegrating vector, can still be solved by adjusting the RRR
estimation; see Johansen and Juselius (1990) and Johansen and Juselius (1992). Estimation with
separate linear restrictions on the cointegrating vectors, or more general non-linear restrictions, requires
iterative maximization. The usual approach is based on so-called switching algorithms; see Johansen
(1995b) and Boswijk and Doornik (2004). The former proposes an algorithm that alternates between
cointegrating vectors, estimating one while keeping the others fixed. The latter consider algorithms
that alternate between the cointegrating vectors and their loadings: when one is kept fixed, the other
is identified. The drawback is that these algorithms can be very slow and occasionally terminate
prematurely. Doornik (2017) proposes improvements that can be applied to all switching algorithms.

Johansen (1995c) and Johansen (1997) extend the CVAR to allow for I(2) stochastic trends.
These tend to be smoother than I(1) stochastic trends. The I(2) model implies a second reduced rank
restriction, but this is now more complicated, and estimation under Gaussian errors can no longer
be performed by RRR. The basis of an algorithm for maximum likelihood estimation is presented in
Johansen (1997), with an implementation in Dennis and Juselius (2004).

Econometrics 2017, 5, 19 26 www.mdpi.com/journal/econometrics
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The general approach to handling the I(2) model is to create representations that introduce
parameters that vary freely without changing the nature of the model. This facilitates both the
statistical analysis and the estimation.

The contributions of the current paper are two-fold. First, we present the triangular representation
of the I(2) model. This is a new trilinear formulation with a block-triangular matrix structure at its core.
The triangular representation provides a convenient framework for imposing linear restrictions on
the model parameters. Next, we introduce several improved estimation algorithms for the I(2) model.
A simulation experiment is used to study the behaviour of the algorithms.

Notation

Let α (p × r) be a matrix with full column rank r, r ≤ p. The perpendicular matrix
α� (p × p−r) has α′�α = 0. The orthogonal complement α⊥ has α′⊥α = 0 with the additional property
that α′⊥α⊥ = Ip−r. Define α̃ = α(α′α)−1/2 and α = α(α′α)−1. Then, (α̃ : α⊥) is a p × p orthogonal
matrix, so Ip = α̃α̃′ + α⊥α′⊥ = αα′ + α⊥α′⊥ = αα′ + α⊥α′⊥.

The (thin) singular value decomposition (SVD) of α is α = UWV′, where U(p × r), V(r × r) are
orthogonal: U′U = V′V = VV′ = Ir, and W is a diagonal matrix with the ordered positive singular
values on the diagonal. If rank(α) = s < r, then the last r − s singular values are zero. We can find
α⊥ = U2 from the SVD of the square matrix (α : 0) = (U1 : U2)WV′ = (U1W1V′

1 : 0).
The (thin) QR factorization of α with pivoting is αP = QR, with Q(p × r) orthogonal and R upper

triangular. This pivoting is the reordering of columns of α to better handle poor conditioning and
singularity, and is captured in P, as discussed Golub and Van Loan (2013, §5.4.2).

The QL decomposition of A can be derived from the QR decomposition of JAJ: JAJ = QR,
so A = J JAJ J = JQJ JZJ = Q′L. J is the exchange matrix, which is the identity matrix with columns
in reverse order: premultiplication reverses rows; postmultiplication reverses columns; and J J = I.

Let α = Ω−1α
(
α′Ω−1α

)−1, then α′⊥Ωα = 0.
Finally, a ← b assigns the value of b to a.

2. The I(2) Model

The vector autoregression (VAR) with p dependent variables and m ≥ 1 lags:

yt = A1yt−1 + ... + Amyt−m + ΦxU
t + εt, εt ∼ IINp[0p, Ω],

for t = 1, ..., T, and with yj, j = −m + 1, ..., 0 fixed and given, can be written in equilibrium correction
form as:

Δyt = Πyyt−1 + Γ1Δyt−1 + ... + Γm−1Δyt−m+1 + ΦxU
t + εt,

without imposing any restrictions. The I(1) cointegrated VAR (CVAR) imposes a reduced rank
restriction on Πy(p × p): rankΠy = r; see, e.g., Johansen and Juselius (1990), Johansen (1995a).

With m ≥ 2, the model can be written in second-differenced equilibrium correction form as:

Δ2yt = Πyyt−1 − ΓyΔyt−1 + Ψ1Δ2yt−1 + ... + Ψm−2Δ2yt−m+2 + ΦxU
t + εt. (1)

The I(2) CVAR involves an additional reduced rank restriction:

rank(α′⊥Γyβy,⊥) = s,

where α′⊥α = 0. The two rank restrictions can be expressed more conveniently in terms of products of
matrices with reduced dimensions:

Πy = αβ′
y, (2)

α′⊥Γyβy,⊥ = ξη′
y, (3)
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where α and βy are p × r matrices. The second restriction needs rank s, so ξ and ηy are a (p − r)× s.
This requires that the matrices on the right-hand side of (2) and (3) have full column rank. The number
of I(2) trends is s2 = p − r − s.

The most relevant model in terms of deterministics allows for linearly trending behaviour:
ΦxU

t = μ0 + μ1t . Using the representation theorem of Johansen (1992) and assuming
E[yt] = a + bt imply:

μ1 = −αβ′
yb, (4)

μ0 = −αβ′
ya + Γyb, (5)

which restricts and links μ0 and μ1; we see that α′⊥μ1 = 0 and α′⊥μ0 = α′⊥Γyb.

2.1. The I(2) Model with a Linear Trend

The model (1) subject to the I(1) and I(2) rank restrictions (2) and (3) with ΦxU
t = μ0 + μ1t,

subject to (4) and (5) can be written as:

Δ2yt = αβ′
(

yt−1

t

)
− Γ

(
Δyt−1

1

)
+ Ψ1Δ2yt−1 + ... + Ψm−2Δ2yt−m+2 + εt, (6)

subject to:
α′⊥Γβ⊥ = ξη′, (7)

where β is p1 × r, Γ is p × p1 and η is (p1 − r)× s. In this case, p1 = p + 1. Because α is the leading
term in (4), we can extend βy by introducing β′

c = −β′
yb, so β′ = (β′

y : β′
c). Furthermore, Γ has been

extended to Γ = (Γy : Γc) = (Γy : −μ0).
To see that (6) and (7) remains the same I(2) model, consider α′⊥Γc and insert Ip = βyβ

′
y + βy⊥β′

y⊥:

α′⊥Γc = −α′⊥Γyβyβ′
yb − α′⊥Γyβy⊥β′

y⊥b = α′⊥Γyβyβ′
c − ξη′

yβ′
y⊥b = α′⊥Γyβyβ′

c + ξη′
c.

Using the perpendicular matrix:

β� =

(
βy⊥ −βyβ′

c

0 1

)
we see that the rank condition is unaffected:

α′⊥Γβ� =
(
α′⊥Γyβy⊥ : ξη′

c
)
=
(

α′⊥Γyβy⊥ : α′⊥[−Γyβyβ′
c + Γc]

)
= ξ

(
η′

y : η′
c

)
.

A more general formulation allows for restricted deterministic and weakly exogenous variables
xR

t and unrestricted variables xU
t :

Δ2yt = Π

(
yt−1

xR
t−1

)
− Γ

(
Δyt−1

ΔxR
t

)
+ Ψ1Δ2yt−1 + ... + Ψm−2Δ2yt−m+2 + ΦxU

t + εt,

= Πw2t − Γw1t + Ψw3t + εt,

where Δ2xR
t , and its lags are contained in xU

t ; this in turn, is subsumed under w3t = (Δ2y′t−1, ..., xU′
t )′.

The number of variables in xR
t is p1 − p, so Π and Γ always have the same dimensions. Ψ is unrestricted,

which allows it to be concentrated out by regressing all other variables on w3t:

z0t = αβ′z2t − Γz1t + εt, εt ∼ IINp[0p, Ω]. (8)
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To implement likelihood-ratio tests, it is necessary to count the number of restrictions:

restrictions on Π : (p − r)(p1 − r) restrictions,
restrictions on Γ : (p − r − s)(p1 − r − s) = s2s∗2 restrictions,

defining s∗2 = p1 − r − s. The restrictions on Π follow from the representation. Several representations
of the I(2) model have been introduced in the literature to translate the implicit non-linear restriction (3)
on Γ into an explicit part of the model. These representations reveal the number of restrictions imposed
on Γ, as is shown below.

First, we introduce the new triangular representation.

2.2. The Triangular Representation

Theorem 1. Consider the model:
z0t = Πz2t − Γz1t + εt,

with rank restrictions Π = αβ′ and α′⊥Γβ⊥ = ξη′ where α is a p × r matrix, β is p1 × r, ξ is (p − r)× s, η is
(p1 − r)× s. This can be written as:

z0t = AWB′z2t − AVB′z1t + εt, (9)

where:

W =

⎛⎜⎝ 0 0 0
0 0 0

W11 0 0

⎞⎟⎠ , V =

⎛⎜⎝ V31 0 0
V21 V22 0
V11 V12 V13

⎞⎟⎠ . (10)

A, B, W11, V22 are full rank matrices. A is p × p, and B is p1 × p1; moreover, A, B and the nonzero blocks in
W and V are freely varying. A and B are partitioned as:

A = (A2 : A1 : A0) , B = (B0 : B1 : B2) ,

where the blocks in A have s2, s, r columns respectively; for B, this is: r, s, s∗2 ; p1 = r + s + s∗2 . W and V are
partitioned accordingly.

Proof. Write α̃ = α(α′α)−1/2, such that α̃′α̃ = Ir. Construct A and B as:

A =
(

α⊥ξ⊥ : α⊥ ξ̃ : α̃
)

, B =
(

β̃ : β⊥η̃ : β⊥η⊥
)

.

Now, A′A = I and B′B = I. A(p × p) and B(p1 × p1) are full rank by design. Define V = A′ΓB:

V =

⎛⎜⎝ ξ ′⊥α′⊥Γβ̃ ξ ′⊥α′⊥Γβ⊥η̃ ξ ′⊥α′⊥Γβ⊥η⊥
ξ̃ ′α′⊥Γβ̃ ξ̃ ′α′⊥Γβ⊥η̃ ξ̃ ′α′⊥Γβ⊥η⊥

α̃′Γβ̃ α̃′Γβ⊥η̃ α̃′Γβ⊥η⊥

⎞⎟⎠ =

⎛⎜⎝ V31 0 0
V21 V22 0
V11 V12 V13

⎞⎟⎠ .

V22 = (ξ ′ξ) 1
2 (η′η) 1

2 is a full rank s × s matrix. The zero blocks in V arise because, e.g., ξ ′⊥α′⊥Γβ⊥ =

ξ ′⊥ξη′ = 0. Trivially:

Π = αβ′ = A

⎛⎜⎝ 0 0 0
0 0 0

W11 0 0

⎞⎟⎠ B′ = AWB′.

W11 = (α′α) 1
2 (β′β) 1

2 is a full rank r × r matrix. Both W and V are p × p1 matrices. Because A and B
are each orthogonal: Γ = AA′ΓBB′ = AVB′.

The QR decomposition shows that a full rank square matrix can be written as the product of an
orthogonal matrix and a triangular matrix. Therefore, AVB′ = ALaL−1

a VLbL−1
b B′ = A∗V∗B′∗ preserves
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the structure in V∗ when La, Lb are lower triangular, as well as that in W∗. This shows that (9) holds for
any full rank A and B, and the orthogonality can be relaxed.

Therefore, any model with full rank matrices A and B, together with any W, V that have the zeros
as described above, satisfies the I(2) rank restrictions. We obtain the same model by restricting A and
B to be orthogonal.

When Γ is restricted only by the I(2) condition: rankΓ = r + s + min(r, s2). Then, V varies freely,
except for the zero blocks, and the I(2) restrictions are imposed through the trilinear form of (9). Γ = 0
implies V = 0. Another way to have s = 0 is Γ = (α : 0)G; in that case, V �= 0.

The s2 restrictions on the intercept (5) can be expressed as A′
2(μ0 − μc) = 0, using μc = Γyβyβ′

c,
or μ0 = (A1 : A0)v + μc, for a vector v of length r + s.

2.3. Obtaining the Triangular Representation

The triangular representation shows that the I(2) model can be written in trilinear form:

z0t = AWB′z2t − AVB′z1t + εt,

where A and B are freely varying, provided W and V have the appropriate structure.
Consider that we are given α, β, Γ of an I(2) CVAR with rank indices r, s and wish to obtain the

parameters of the triangular representation. First compute α′⊥Γβ⊥ = ξη′, which can be done with the
SVD, assuming rank s. From this, compute A and B:

A = (A2 : A1 : A0) =
(

α⊥ξ⊥ : α⊥ ξ̃ : α
)

, B = (B0 : B1 : B2) = (β : β⊥η̃ : β⊥η⊥) .

Then, V = A−1ΓB−1′. Because Γ satisfies the I(2) rank restriction, V will have the corresponding
block-triangular structure.

It may be of interest to consider which part of the structure can be retrieved in the case where
rank(Π) = r, but rank(α′⊥Γβ⊥) = p − r, while it should be s. This would happen when using I(1)
starting values for I(2) estimation. The off anti-diagonal blocks of zeros:

V∗ =

⎛⎜⎝ V∗
31 V∗

32 V∗
33

V21 V22 V∗
23

V11 V12 V∗
13

⎞⎟⎠ →

⎛⎜⎝ V31 0 V33

V21 V22 0
V11 V12 V13

⎞⎟⎠ = V (11)

can be implemented with two sweep operations:⎛⎜⎝ Is2 −V∗
32V−1

22 0
0 Is 0
0 0 Ir

⎞⎟⎠V∗

⎛⎜⎝ Ir 0 0
0 Is −V−1

22 V∗
23

0 0 Is∗2

⎞⎟⎠ .

The offsetting operations affect A1 and B1 only, so Π and Γ are unchanged. However, we cannot
achieve V33 = 0 in a similar way, because it would remove the zeros just obtained. The V33 block has
dimension s2s∗2 and represents the number of restrictions imposed on Γ in the I(2) model. Similarly, the
anti-diagonal block of zeros in W captures the restrictions on Π.

Note that the r × s∗2 block V13 can be made lower triangular. Write the column partition of V as
(V·1 : V·2 : V·3), and use V13 = LQ to replace V·3 by V·3Q′ and B2 by B2Q′. When r < s∗2, the rightmost
s∗2 − r columns of L will be zero, and the corresponding columns of B2 are not needed to compute Γ.
This part can then be omitted from the likelihood evaluation. This is an issue when we propose an
estimation procedure in §4.2.1.
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2.4. Restoring Orthogonality

Although A and B are freely varying, interpretation may require orthogonality between column
blocks. The column blocks of A are in reverse order from B to make V and W block lower triangular.
As a consequence, multiplication of V or W from either side by a lower triangular matrix preserves
their structure. This allows for the relaxation of the orthogonality of A and B, but also enables us to
restore it again.

To restore orthogonality, let Γ = A∗V∗B′∗, where A∗, B∗ are not orthogonal, but with V∗
block-triangular. Now, use the QL decomposition to get A∗ = AL, with A orthogonal and L lower
triangular. Use the QR decomposition to get B∗ = BR, with B orthogonal and R upper triangular. Then,
A∗V∗B′∗ = ALV∗R′B′ = AVB′ with the blocks of zeros in V preserved. A∗W∗B′∗ must be adjusted
accordingly. When β is restricted, B0 cannot be modified like this. However, we can still adjust
(A2 : A1) = A∗ to get A′∗A∗ = Ip−r and A′

0 A∗ = 0; with similar adjustments to (B1 : B2).
The orthogonal version is convenient mathematically, but for estimation, it is preferable to use

the unrestricted version. We do not distinguish through notation, but the context will state when the
orthogonal version is used.

2.5. Identification in the Triangular Representation

The matrices A and B are not identified without further restrictions. For example, rescaling α and
β as in αW11β′ = α′c−1cW11dd−1β = α∗cW11dβ∗′ can be absorbed in V:⎛⎜⎝ V31d 0 0

V21d V22 0
cV11d cV12 cV13

⎞⎟⎠ .

When β is identified, W11 remains freely varying, and we can, e.g., set c = W−1
11 . However, it is

convenient to transform to W11 = I, so that A0 and B0 correspond to α and β. This prevents part of the
orthogonality, in the sense that A′

0 A0 �= I and B′
0B0 �= I.

The following scheme identifies A and B, under the assumption that B0 is already identified
through prior restrictions.

1. Orthogonalize to obtain A′
0 A1 = 0, A′

0 A2 = 0, A′
1 A2 = 0.

2. Choose s full rank rows from B1, denoted MB1 , and set B1 ← B1M−1
B1

. Adjust V accordingly.
3. Do the same for B2 ← B2M−1

B2
.

4. Set A1 ← A1V22, V21 ← V−1
22 V21 and V22 ← I.

5. A2 ← A2M−1
A2

.

The ordering of columns inside Ai, Bi is not unique.

3. Relation to Other Representations

Two other formulations of the I(2) model that are in use are the so-called τ and δ representations.
All representations implement the same model and make the rank restrictions explicit. However,
they differ in their definitions of freely-varying parameters, so may facilitate different forms of analysis,
e.g., asymptotic analysis, estimation or the imposition of restrictions. The different parametrizations
may also affect economic interpretations.

3.1. τ Representation

Johansen (1997) transforms (8) into the τ-representation:

z0t = α
(
�′τ′z2t + ψ′z1t

)
+ wκ′τ′z1t + εt, (12)
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where �(p1 × r+s) is used to recover β: β = τ�. The parameters (α, �, τ, ψ, κ) vary freely. If we
normalize on �′ = (Ir : 0) and adjust κ, τ accordingly, then τ = (β : β1), and:

z0t = α
(

β′z2t + ψ′z1t
)
+ wκ′τ′z1t + εt.

We shall derive the τ representation. The first step is to define a transformation of εt ∼ N[0, Ω]:

(
α⊥ α

)′
εt ∼ N

[
0,

(
α′⊥Ωα⊥ 0

0
(
α′Ω−1α

)−1

)]
. (13)

This splits the p-variate systems into two independent parts. The first has any terms with leading α

knocked out, while the second has all leading α’s cancelled. The inverse transformation is given by:
(α⊥ : α)−1 = (α⊥ − αα

′
α⊥ : α)′ = (w : α)′.

The next step is to apply (13) to (8) to create two independent systems and insert Ip = ββ′ + β⊥β′
⊥

in the ‘marginal’ equation:

(
α⊥ α

)′
z0t =

{
−α′⊥Γ(ββ′ + β⊥β′

⊥)z1t + ε1t = κ′(β : β⊥η)′z1t + ε1t,
β′z2t − α

′Γz1t + ε2t = β′z2t + ψ′z1t + ε2t.
(14)

where ψ′ = −α
′Γ and κ′ = −(α′⊥Γβ : ξ) are freely varying. Removing the transformation:

z0t = w′κ′(β : β⊥η)′z1t + α′(β′z2t + ψ′z1t) + εt

and introducing the additional parameters τ = (β : β⊥η) and � completes the τ-representation (12).
Table 1 provides definitions of the parameters that are used (cf. Johansen (1997, Tables 1 and 2)).

Table 1. Definitions of the symbols used in the τ and δ representations of the I(2) model.

Definition Dimension

τ = (β : β⊥η) when �′ = (I : 0) p1 × (r + s)
τ⊥ = β⊥η⊥ p1 × s∗2
ψ = −(α

′Γ)′ p1 × r
κ′ = −α′⊥Γτ = −(α′⊥Γβ : ξ) = (κ1 : κ2)

′ (p − r)× (r + s)
δ = −α′Γτ⊥ r × s∗2
ζ = −Γτ = (ζ1 : ζ2) p × (r + s)
w = α⊥ − αα

′
α⊥ = Ωα⊥

(
α′⊥Ωα⊥

)−1
= α⊥ p × (p − r)

d = τ⊥δ′ p1 × r
e = τζ ′ p1 × p

Corollary 1. Triangular representation (9) is equivalent to the τ-representation (12) when A′
0(A2 : A1) = 0.

Proof. Write A∗ = (A2 : A1), so A = (A∗ : A0). First, the system (9) is premultiplied by A−1 = A′

and subsequently with a lower triangular matrix L to create two independent subsystems. The matrix
L and its inverse are given by:

L =

(
Ip−r 0

−A′
0w∗ Ir

)
, L−1 =

(
Ip−r 0

A′
0w∗ Ir

)
,
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where w∗ = ΩA∗(A′
∗ΩA∗)−1, cf. (14). Because A′

0 A∗ = 0, we have
that A∗ + A0 A′

0w∗ = A∗ + (I − A∗A∗)′w∗ = w∗, so AL−1 = (w∗ : A0). Furthermore: LW = W.
The identity matrix L−1L can also be inserted directly in (9):

z0t = A0W11B′
0z2t − (w∗ : A0)LVB′z1t + εt

= A0W11B′
0z2t − w∗

(
V31 0
V21 V22

)
(B0 : B1)

′z1t + A0 A′
0w∗(V11 : V12 : V13)B′z1t + εt

= α
[
β′z2t + ψ′z1t

]
+ wκ′τ′z1t + εt,

where ψ′ = −A′
0w∗(V11 : V12 : V13)B′ and wκ′ = −w∗

(
V31 0
V21 V22

)
.

3.2. δ Representation

Paruolo and Rahbek (1999) and Paruolo (2000a) use the δ representation:

z0t = α
(

β′z2t + δτ′
⊥z1t

)
+ ζτ′z1t + εt. (15)

Here, (α, δ, ζ, τ = [β : β1]) vary freely. To derive the δ representation, use ττ′ + τ⊥τ′
⊥ = Ir+s:

−Γττ′ = −(Γβ : Γβ⊥η)τ′ = (ζ1 : ζ2)τ
′ = ζτ′,

−Γτ⊥τ′
⊥ = −αα′Γτ⊥τ′

⊥ − α⊥α′⊥Γτ⊥τ′
⊥ = αδτ′

⊥,

and insert in (8). The term with α′⊥Γτ⊥ disappears because τ⊥ = β⊥η⊥, so α′⊥Γτ⊥ = ξη′η⊥ = 0.
When β is identified both δτ′

⊥ and ζτ′ are unique, but not yet ζ or δ. In the τ representation,
the variable ψ is also unique with � chosen as (I : 0)′ and β identified. Table 2 relates the τ, δ and
triangular representations.

Table 2. Links between symbols used in the representations of the I(2) model, assuming W11 = Ir

and a′⊥a⊥ = I.

−Γ = αψ′ + wκ′τ′ = αδτ′
⊥ + ζτ′ = αd′ + e′

ζ = αψ′τ + wκ′ ( from Γτ)
d′ = ψ′τ⊥τ′

⊥ ( from Γτ⊥)
κ′ = α′⊥ζ ( from α′⊥Γ)
ψ′ = d′ + α

′
ζτ′ ( from α

′Γ)

α = A0
β = B0
d′ = −V13B′

2
e′ = −A(V.1 : V.2)(B0 : B1)

′
τ = (B0 : B1)

Corollary 2. Triangular representation (9) is equivalent to the δ-representation (15) when B′
2(B0 : B1) = 0.

Proof. Write B2 = τ� and (B0 : B1) = τ. Using the column partitioning if V = (V.1 : V.2 : V.3):
Γτ = AVB′τ = A(V.1 : V.2). From (9):

z0t = A0
[
W11B′

0z2t − V13τ′�z1t
]− A(V.1 : V.2)τ

′z1t + εt

= A0
[
W11B′

0z2t − V13τ′�z1t
]− Γττ′z1t + εt = α

[
β′z2t + δτ′

⊥z1t
]
+ ζτ′z1t + εt.
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4. Algorithms for Gaussian Maximum Likelihood Estimation

Algorithms to estimate the Gaussian CVAR are usually alternating over sets of variables. In the
cointegration literature, these are called switching algorithms, following Johansen and Juselius (1994).

The advantage of switching is that each step is easy to implement, and no derivatives are required.
Furthermore, the partitioning circumvents the lack of identification that can occur in these models
and which makes it harder to use Newton-type methods. The drawback is that progress is often slow,
taking many iterations to converge. Occasionally, this will lead to premature convergence. Although
the steps can generally be shown to be in a non-downward direction, this is not enough to show
convergence to a stationary point. The work in Doornik (2017) documents the framework for the
switching algorithms and also considers acceleration of these algorithms; both results are used here.

Johansen (1997, §8) proposes an algorithm based on the τ-representation, called τ-switching here.
This is presented in detail in Appendix B. Two new algorithms are given next, the first based on the
δ-representation, the second on the triangular representation. Some formality is required to describe
the algorithms with sufficient detail.

4.1. δ-Switching Algorithm

The free parameters in the δ-representation (15) are (α, δ, ζ, τ) with symmetric positive definite Ω.
The algorithm alternates between estimating τ given the rest and fixing τ. The model for τ given the
other parameters is linear:

1. To estimate τ = [β : β1], rewrite (15) as:

z0t = αβ′z2t + ζ1β′z1t + ζ2β′
1z1t + αdz1t + εt,

where d replaces δτ′
⊥. Then, vectorize, using αβ′z2t = vec(z′2tβα′) = (α ⊗ z′2t)vecβ:

z0t = (α ⊗ z′2t + ζ1 ⊗ z′1t)vecβ + (ζ2 ⊗ z′1t)vecβ1 +
(
α ⊗ z′1t

)
vec(d′) + εt. (16)

Given α, ζ1, ζ2, Ω, we can treat β, β1 and d as free parameters to be estimated by generalized least
squares (GLS). This will give a new estimate of τ.

We can treat d as a free parameter in (16). First, when r ≥ s∗2, δ has more parameters than
τ⊥. Second, when r < s∗2, then Γ is reduced rank, and s∗2 − r columns of τ⊥ are redundant.
Orthogonality is recovered in the next step.

2. Given τ and derived τ⊥, we can estimate α and δ by RRR after concentrating out τ′z1t.
Introducing ρ with dimension (r+s∗2)× r allows us to write (15) as:

z0t = α∗ρ′
(

β′z2t
τ′
⊥z1t

)
+ ζτ′z1t + εt. (17)

RRR provides estimates of α∗ and ρ′. Next, α∗ρ′ is transformed to α(Ir : δ), giving new estimates
of α and δ. Finally, ζ can be obtained by OLS from (17) given α, δ, τ, and hence, Ω.

The RRR step is the same as used in Dennis and Juselius (2004) and Paruolo (2000b). However,
the GLS step for τ is different from both. We have found that the specification of the GLS step can have
a substantial impact on the performance of the algorithm.

For numerical reasons (see, e.g. Golub and Van Loan (2013, Ch.5)), we prefer to use the QR
decomposition to implement OLS and RRR estimation rather than moment matrices. However,
in iterative estimation, there are very many regressions, which would be much faster using
precomputed moment matrices. As a compromise, we use precomputed ‘data’ matrices that are
transformed by a QR decomposition. This reduces the effective sample size from T to 2p1. The
regressions (16) and (17) can then be implemented in terms of the transformed data matrices; see
Appendix A.
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Usually, starting values of α and β are available from I(1) estimation. The initial τ is then obtained
from the marginal equation of the τ-representation, (14a), written as:

α′⊥z0t = κ′τ′z1t + ε1t = κ′1β′z1t + ξη′β′
⊥z1t + ε1t. (18)

RRR of α′⊥z0t on β′
⊥z1t corrected for β′z1t gives estimates of η, and so, τ.

δ-switching algorithm:
To start, set k = 1, and choose starting values α(0), β(0), tolerance ε1 and the maximum number of
iterations. Compute τ

(0)
c from (18) and α(0), δ(0), ζ(0), Ω(0) from (17). Furthermore, compute f (0) =

− log |Ω(0)|.

1. Get τ
(k)
c from (16); get the remaining parameters from (17).

2. Compute f (k)c = − log |Ω(k)
c |.

3. Enter a line search for τ.

The change in τ is ∇ = τ
(k)
c − τ(k−1) and the line search find a step length λ with τ(k) = τ(k−1) +

λ∇. Because only τ is varied, a GLS step is needed to evaluate the log-likelihood for each trial τ.
The line search gives new parameters with corresponding f (k).

T. Compute the relative change from the previous iteration:

c(k) =
f (k) − f (k−1)

1 +
∣∣ f (k−1)

∣∣ .

Terminate if:

|c(k)| ≤ ε1 and max
i,j

∣∣∣Π(k)
ij − Π(k−1)

ij

∣∣∣
1 +

∣∣∣Π(k−1)
ij

∣∣∣ ≤ ε1/2
1 . (19)

Else increment k, and return to Step 1. �

The subscript c indicates that these are candidate values that may be improved upon by the line
search. The line search is the concentrated version, so the I(2) equivalent to the LBeta line search
documented in Doornik (2017). This means that the function evaluation inside the line search needs
to re-evaluate all of the other parameters as τ changes. Therefore, within the line search, we effectively
concentrate out all other parameters.

Normalization of τ prevents the scale from growing excessively, and it was found to be beneficial
to normalize in the first iteration every hundredth or when the norm of τ gets large. Continuous
normalization had a negative impact in our experiments. Care is required when normalizing: if an
iteration uses a different normalization from the previous one, then the line search will only be effective
if the previous coefficients are adjusted accordingly.

The algorithm is incomplete without starting values, and it is obvious that a better start will lead
to faster and more reliable convergence. Experimentation also showed that this and other algorithms
struggled more in cases with s = 0. To improve this, we generate two initial values, follow three
iterations of the τ-switching algorithms, then select the best for continuation. The details are in
Appendix C.

4.2. MLE with the Triangular Representation

We set W11 = I. This tends to lead to slower convergence, but is required when both α and β are
restricted. V22 is kept unrestricted: fewer restrictions seem to lead to faster convergence. All regressions
use the data matrices that are pre-transformed by an orthogonal matrix as described in Appendix A.
In the next section, we describe the estimation steps that can be repeated until convergence.
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4.2.1. Estimation Steps

Equation (9) provides a convenient structure for an alternating variables algorithm. We can solve
three separate steps by ordinary or generalized least squares for the case with orthogonal A:

1. B-step: estimate B, and fix A, V, W, Ω at Ac, Vc, Wc, Ωc. The resulting model is linear in B:

z0t = AcWcB′z2t − AcVcB′z1t + εt. (20)

Estimation by GLS can be conveniently done as follows. Start with the Cholesky decomposition
Ωc = PP′, and premultiply (20) by P−1. Next take the QL decomposition of P−1 A as P−1 A = HL
with L lower diagonal and H orthogonal. Now, premultiply the transformed system by H′:

H′P−1z0t = LWcB′z2t − LVcB′z1t + ut = W̃cB′z2t − ṼcB′z1t + ut,

which has the unit variance matrix. Because the structures of W and V are preserved, this approach
can also be used in the next step.

2. V-step: estimate W, V,, and fix A, B, Ω. This is a linear model in (W, V), which can be solved by
GLS as in the B step.

3. A-step: estimate A, Ω and fix W, V, B at Wc, Vc, Bc:

z0t = A
(
WcB′

cz2t − VcB′
cz1t
)
+ εt

This is the linear regression of z0t on WcB′
cz2t − VcB′

cz1t.

The likelihood will not go down when making one update that consists of the three steps given
above, provided V is full rank. If that does not hold, as noted at the end of §2.3, some part of B2 or A2

is not identified from the above expressions. To handle this, we make the following adjustments to
steps 1 and 3:

1a. B-step: Remove the last s∗2 − min{r, s∗2} columns from B, V and W, as they do not affect the
log-likelihood. When iteration is finished, we can add columns of zeros back to W and V and the
orthogonal complement of the reduced B to get a rectangular B.

3a. A-step: we wish to keep A invertible and, so, square during iteration. The missing part of A2 is
filled in with the orthogonal complement of the remainder of A after each regression. This requires
re-estimation of V.1 by OLS.

4.2.2. Triangular-Switching Algorithm

The steps described in the previous section form the basis of an alternating variables algorithm:

Triangular-switching algorithm:
To start, set k = 1, and choose α(0), β(0) and the maximum number of iterations. Compute A(0), B(0),
V(0), W(0) and Ω(0).

1.1 B-step: obtain B(k) from A(k−1), V(k−1), W(k−1), Ω(k−1).
1.2 V step: obtain W(k), V(k) from A(k−1), B(k), Ω(k−1).
1.3 A step: obtain A(k), Ω(k) from B(k), V(k), W(k).
1.4 V.1 step: if necessary, obtain new V(k)

.1 from A(k), B(k), V(k)
.2 , V(k)

.3 , W(k).
2... As steps 2,3,T from the δ-switching algorithm. In this case, the line search is over all of the

parameters in A, B, V. �

The starting values are taken as for the δ-switching algorithm; see Appendix C. This means that
two iterations of δ-switching are taken first, using only restrictions on β.
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4.3. Linear Restrictions

4.3.1. Delta Switching

Estimation under linear restrictions on β or τ of the form:

β = (H1φ1 : ... : Hrφr) or τ = (H1φ1 : ... : Hr+sφr+s)

can be done by adjusting the GLS step in §4.1. However, estimation of α is by RRR, which is not
so easily adjusted for linear restrictions. Restricting δ requires replacing the RRR step by regression
conditional on δ, which makes the algorithm much slower. Estimation under δ = 0, which implies
d = 0, is straightforward.

4.3.2. Triangular Switching

Triangular switching avoids RRR, and restrictions on β = B0 or τ = (B0 : B1) can be implemented
by adjusting the B-step. In general, we can test restrictions of the form:

B =
(

H1φ1 : ... : Hp1 φp1

)
and A =

(
G1θ1 : ... : Gpθp

)
.

Such linear restrictions on the columns of A and B are a straightforward extension of the GLS steps
described above.

Estimation without multi-cointegration is also feasible. Setting δ = 0 corresponds to V13 = 0 in
the triangular representation. This amounts to removing the last s∗2 columns from B, V, W. Boswijk
(2010) shows that the test for δ = 0 has an asymptotic χ2(rs∗2) distribution.

Paruolo and Rahbek (1999) derives conditions for weak exogeneity in (15). They decompose
this into three sub-hypotheses: H0: b′α = 0, H1: b′(α⊥ξ) = 0, H2: b′ζ1 = 0. These restrictions, taking
b = ep,i, where ep,i is the i-th column of Ip, correspond to a zero right-hand side in a particular equation
in the triangular representation. First is e′p,i A0 = 0 creating a row of zeros in AWB′. Next is e′p,i A1 = 0,
which extends the row of zeros. However, A must be full rank, so the final restriction must be imposed
on V as e′p,i AV = (e′p,i A2 : 0 : 0)V = 0, expressed as e′p,i A2V31 = 0. Paruolo and Rahbek (1999) shows
that the combined test for a single variable has an asymptotic χ2(2r + s) distribution.

5. Comparing Algorithms

We have three algorithms that can be compared:

1. The δ-switching algorithm, §4.1, which can handle linear restrictions on β or τ.
2. The triangular-switching algorithm proposed in §4.2.2. This can optionally have linear restrictions

on the columns of A or B.
3. The improved τ-switching algorithm, Appendix B, implemented to allow for common restrictions

on τ.

These algorithms, as well as two pre-existing ones, have been implemented in Ox 7 Doornik (2013).
The comparisons are based on a model for the Danish data (five variables: m3 = log real money,

y = log real GDP, Δp = log GDP deflator, and rm, rb, two interest rates); see Juselius (2006, §4.1.1).
This has two lags in the VAR, with an unrestricted constant and restricted trend for the deterministic
terms, i.e., specification Hl . The sample period is 1973(3) to 2003(1). First computed is the I(2) rank
test table.

Table 3 records the number of iterations used by each of the algorithms; this is closely related
to the actual computational time required (but less machine specific). All three algorithms converge
rapidly to the same likelihood value. Although τ switching takes somewhat fewer iterations, it tends to
take a bit more time to run than the other two algorithms. The new triangular I(2) switching procedure
is largely competitive with the new δ-switching algorithm.
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Table 3. Estimation of all I(2) models by τ, δ and triangular switching; all using the same starting value
procedure. Number of iterations to convergence for ε1 = 10−14.

τ Switching δ Switching Triangular Switching
r\s2

4 3 2 1 4 3 2 1 4 3 2 1

1 19 25 36 34 15 24 37 30 31 31 39 32
2 18 32 25 18 32 34 22 27 50
3 37 23 42 38 50 59
4 29 28 85

To illustrate the advances made with the new algorithms, we report in Table 4 how the original
τ-switching, as well as the CATS2 version of δ-switching performed. CATS2, Dennis and Juselius
(2004), is a RATS package for the estimation of I(1) and I(2) models, which uses a somewhat different
implementation of an I(2) algorithm that is also called δ-switching. The number of iterations of that
CATS 2 algorithm is up to 200-times higher than that of the new algorithms, which are therefore much
faster, as well as more robust and reliable.

Table 4. Estimation of all I(2) models by old versions of τ, δ switching. Number of iterations to
convergence for ε1 = 10−14.

Old τ Switching CATS2 Switching
r\s2

4 3 2 1 4 3 2 1

1 126 198 338 201 5229 8329 8516 5371
2 79 211 229 7234 709 861
3 483 237 550 432
4 4851 5771

6. A More Detailed Comparison

A Monte Carlo experiment is used to show the difference between algorithms in more detail.
The first data generation process is the model for the Danish data, estimated with the I(1) and I(2)
restrictions r, s imposed. M = 1000 random samples are drawn from this, using, for each case,
the estimated parameters and estimated residual variance assuming normality. The number of
iterations and the progress of the algorithm is recorded for each sample. The maximum number of
iterations was set to 10 000, ε1 = 10−11, and all replications are included in the results.

Figure 1 shows the histograms of the number of iterations required to achieve convergence (or
10,000). Each graph has the number of iterations (on a log 10 scale) on the horizontal axis and the count
(out of 1000 experiments) represented by the bars and the vertical axis. Ideally, all of the mass is to
the left, reflecting very quick convergence. The top row of histograms is for δ switching, the bottom
row for triangular switching. In each histogram, the data generation process (DGP) uses the stated r, s
values, and estimation is using the correct values of r, s.
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Figure 1. Comparison of algorithms: δ-switching (top row) and triangular-switching (bottom row).
Simulating a range of r, s. Number of iterations on the horizontal axis, count (out of 1000) on the
vertical.

The histograms show that triangular switching (bottom row) uses more iterations than δ switching
(top row), in particular when s = 0. Nonetheless, the experiment using triangular switching runs
slightly faster as measured by the total time taken (and τ switching is the slowest).

An important question is whether the algorithms converge to the same maximum. The function
value that is maximized is:

f (θ) = − log |Ω(θ)|.
Out of 10,000 experiments, counted over all r, s combinations that we consider, there is only a single
experiment with a noticeable difference in f (θ̂). This happens for r = 3, s = 0, and δ-switching finds a
higher function value by almost 0.05. Because T = 119, the 0.05 translates to a difference of three in the
log-likelihoods.

A second issue of interest is how the algorithms perform when restrictions are imposed.
The following restrictions are imposed on the three columns of β with r = 3:

m3 y Δp rm rb t
β′

1 a −a 0 1 −1 ∗
β′

2 0 ∗ 1 −a a ∗
β′

3 0 0 1 ∗ 0 ∗

This specification identifies the cointegrating vectors and imposes two over-identifying restrictions.
For r = 3, s = 0 this is accepted with a p-value of 0.4, while for r = 3, s = 1, the p-value is 0.5 using the
model on the actual Danish data. Simulation is from the estimated restricted model.

In terms of the number of iterations, as Figure 2 shows, δ-switching converges more rapidly in
most cases. This makes triangular switching slower, but only by about 10%–20%.

Figure 3 shows f (θ̂δ)− f (θ̂triangular), so a positive value means that triangular switching obtained
a lower log-likelihood. There are many small differences, mostly to the advantage of δ-switching when
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s = 1 (right-hand plot), but to the advantage of triangular switching on the left, when s = 0. The latter
case is also much more noisy.

Figure 2. Comparison of algorithms: δ-switching (left two) and triangular-switching (right two).
Simulating a range of r, s. Number of iterations on the horizontal axis, count (out of 1000) on the
vertical.

Figure 3. δ-switching function value minus the triangular switching function value (vertical axis) for
each replication (horizontal axis). Both starting from their default starting values. The labels are the
cointegration indices (r, s, s2).

6.1. Hybrid Estimation

To increase the robustness of the triangular procedure, we also consider a hybrid procedure,
which combines algorithms as follows:

1. standard starting values, as well as twenty randomized starting values, then
2. triangular switching, followed by
3. BFGS optimization (the Broyden-Fletcher, Goldfarb, and Shanno quasi-Newton method) for a

maximum of 200 iterations, followed by
4. triangular switching.

This offers some protection against false convergence, because BFGS is based on first derivatives
combined with an approximation to the inverse Hessian.

More importantly, we add a randomized search for better starting values as perturbations of the
default starting values. Twenty versions of starting values are created this way, and each is followed
for ten iterations. Then, we discard half, merge (almost) identical ones and run another ten iterations.
This is repeated until a single one is left.
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Figure 4 shows that this hybrid approach is an improvement: now, it is almost never beaten by δ

switching. Of course, the hybrid approach is a bit slower again. The starting value procedure for δ

switching could be improved in the same way.

Figure 4. δ-switching function value minus the hybrid triangular-switching function value (vertical
axis) for each replication (horizontal axis).

7. Conclusions

We introduced the triangular representation of the I(2) model and showed how it can be used for
estimation. The trilinear form of the triangular representation has the advantage that estimation can
be implemented as alternating least squares, without using reduced-rank regression. This structure
allows us to impose restrictions on (parts of) the A and B matrices, which gives more flexibility than is
available in the δ and τ representations.

We also presented an algorithm based on the δ-representation and compared the performance to
triangular switching in an application based on Danish data, as well as a parametric bootstrap using
that data. Combined with the acceleration of Doornik (2017), both algorithms are fast and give mostly
the same result. This will improve empirical applications of the I(2) model and facilitate recursive
estimation and Monte Carlo analysis. Expressions for the computation of t-values of coefficients will
be reported in a separate paper.

Because they are considerably faster than the previous generation, bootstrapping the I(2) model
can now be considered, as Cavaliere et al. (2012) did for the I(1) model.
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Appendix A. Estimation Using the QR Decomposition

The data matrices in the I(2) model (8) are Z′
i = (zi1 : ... : ziT) for i = 0, 1, 2.

Take the QR decomposition of (Z2 : Z1) as (Z2 : Z1)P = QR = Qz(R2 : R1) where Q is a T × T
orthogonal matrix and R a T × 2p1 upper triangular matrix, while Qz are the T × 2p1 leading columns
of Q and (R2 : R1) a 2p1 × 2p1 upper triangular matrix. P is the orthogonal matrix that captures the
column reordering. Then:

Q′
z(Z2 : Z1) = (R2 : R1)P′ = (X2 : X1),

where (X2 : X1) is no longer triangular. Introduce:(
X0

X∗
0

)
= Q′Z0,
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where X0 = QzZ0 is 2p1 × 2p1, then:

Z′
i Zj = Z′

i QQ′Zj =

{
X′

0X0 + X∗′
0 X∗

0 if i = j = 0,
X′

i Xj otherwise.

Now, e.g., a regression of A′z0t on B′z1t for known A, B:

A′z0t = γB′z1t + εt, t = 1, ..., T, (A1)

has:
γ̂ = (B′Z′

1Z1B)−1B′Z′
1Z0 A = (B′X′

1X1B)−1B′X′
1X0 A.

This is a regression of X0 A on X1B. If such regressions need to be done often for the same Z’s, it is
more efficient to do them in terms of the Xi:

A′x0i = γB′x1i + ei, i = 1, ..., 2p1,

with estimated residual variance:

Ω̂e = T−1

(
A′X∗′

0 X∗
0 A +

2p1

∑
i=1

êi

)
.

This regression has fewer ‘observations’, while at the same time avoiding the creation of moment
matrices. Precomputed moment matrices would be faster, but not as good numerically. For recursive
estimation, it is useful to be able to handle singular regressions because dummy variables can be zero
over a subsample; this happens naturally in the QR approach. This approach needs to be adjusted
when (A1) also has z0t on the right-hand side, as happens for τ-switching in (A3).

Reduced Rank Regression

Let RRR(Z0, Z1|Zx) denote reduced rank regression of z0t on z1t corrected for zxt. Assume that
(Z0, Z1, Zx) have been transformed into (X0, X1, Xx) using the QR decomposition described
above. Concentrating Xx out can be done by regression of (X0, X1) on Xx, with residuals (Y, X).
Form S00 = Y′Y + X∗′

0 X∗
0 , and decompose using the Cholesky decomposition: S00 = LL′.

We need to solve the matrix pencil:

X′YS−1
00 Y′Xx = λX′Xx.

Start by using the QR decomposition X = QRP′, y = P′x:

R′Q′YL−1′L−1Y′QRy = λR′Ry,

R′W ′WRy = λR′Ry,

W ′Wz = λz,

UΣ2U′z = λz.

The second line introduces W = L−1Y′Q; the next line removes R; and the final line takes the SVD of
W ′. The eigenvalues are the squared singular values that are on the diagonal of Σ2, and the eigenvectors
are PR−1U.

When X is singular, as may be the case in recursive estimation, the upper triangular matrix R will
have rows and columns that are zero at the bottom and end. These are the same on the left and right of
the pencil, so they can be dropped. The resulting reduced dimension R is full rank, and we can set the
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corresponding rows in the eigenvectors to zero. When the regressors are singular, their corresponding
coefficients in β will be set to zero, just as in our regressions.

This approach differs somewhat from Doornik and O’Brien (2002) because of the different
structure of S00 as a consequence of the prior QR transformation.

Appendix B. Tau-Switching Algorithm

The algorithm of Johansen (1997, §8) is based on the τ-representation and involves three stages:

1. The estimate of τ is obtained by GLS given all other parameters except ψ. Johansen (1997,
p. 451) shows the GLS expressions using second moment matrices. Define the orthogonal matrix
A = (α⊥ : α), then using κ′τ′z1t = vec(z′1tτκ) = (κ′ ⊗ z1t)vecτ:

A′z0t =

(
κ′ ⊗ z1t
�′ ⊗ z2t

)
vecτ +

(
0

Ir ⊗ z1t

)
vecψ +

(
ε1t
ε2t

)

=

{(
κ′

0

)
⊗ z1t +

(
0
�′

)
⊗ z2t

}
vecτ +

{(
0
Ir

)
⊗ z1t

}
vecψ + ut. (A2)

The error term ut has variance A′ΩA, which is block diagonal. Given α, κ, ρ, Ω, (A2) is linear in τ

and ψ. The estimates of the latter are discarded.
2. Given just τ, reduced-rank regression of z0t corrected for τ′z1t on z0t corrected for z1t, τ′z2t is used

to estimate α. Details are in Johansen (1997, p. 450).
3. Given τ and α, the remaining parameters can be obtained by GLS. The equivalence α

′
= α′ − α′wα′⊥

is used to write the conditional equation as:

α′z0t = γ′α′⊥z0t + �′τ′z2t + ψ′z1t + ε2t, (A3)

from which � and ψ are estimated by regression. Then, κ is estimated from the marginal equation:

α′⊥z0t = κ′τ′z1t + ε1t. (A4)

Together, they give Ω and w. We always transform to set �′ = (I : 0), adjusting κ and τ accordingly.

τ-switching algorithm:
To start, set k = 1, and choose starting values α(0), β(0), tolerance ε1 and the maximum number of
iterations. Compute τ

(0)
c from (18) and κ(0), ψ(0), Ω(0) from (A3) and (A4). Furthermore, compute

f (0) = − log |Ω(0)|.

1. Get τ
(k)
c from (A2). Identify this as follows. Select the non-singular (r + s)× (r + s) submatrix from

τ with the largest volume, say M. We find M by using the first r + s column pivots that are chosen
by the QR decomposition of τ (Golub and Van Loan (2013, Algorithm 5.4.1) ). Set τ

(k)
c ← τ

(k)
c M.

Get α
(k)
c by RRR; finally, get the remaining parameters from (A3) and (A4).

2... As steps 2,3,T from the δ-switching algorithm. �

The line search is only for the p1s∗2 parameters in τ as part of it is set to a unit matrix every time.
The function evaluation inside the line search needs to obtain all of the other parameters as τ changes.

This is the algorithm of Johansen (1997) except for the normalization of τ and the line search.
The former protects the parameter values from exploding, while the latter improves convergence speed
and makes it more robust. Removing � is largely for convenience: it has little impact on convergence.
The τ-switching algorithm is easily adjusted for common restrictions on τ in the form of τ = Hτ̃.
However, � gets in the way of more general restrictions.
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Appendix C. Starting Values

The first starting value procedure is:

1. Set α(−1), β(−1) to their I(1) values (i.e., with full rank Γ).
2. Get τ(−1) from (A4), then Ω(−1) from (A3), ignoring restrictions.
3. Take two iterations with the relevant switching algorithm subject to restrictions.

The second starting value procedure is:

1. Get α(−2), β(−2) by RRR from the τ-representation using κ = 0:

z0t = α(β′z2t + ψ′z1t) + εt.

2. Get κ(−2), w(−2) from (A3), (A4).
3. Get α(−1), β(−1) by RRR from the τ-representation:

z0t − wκ′β′z1t = α(β′z2t + ψ′z1t) + εt.

4. Get τ(−1) from (A4), then Ω(−1) from (A3), ignoring restrictions.
5. Take two iterations with the relevant switching algorithm subject to restrictions.

Finally, choose the final starting values as those that have the highest function value.
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Abstract: Likelihood ratio tests of over-identifying restrictions on the common trends loading matrices
in I(2) VAR systems are discussed. It is shown how hypotheses on the common trends loading matrices
can be translated into hypotheses on the cointegration parameters. Algorithms for (constrained)
maximum likelihood estimation are presented, and asymptotic properties sketched. The techniques
are illustrated using the analysis of the PPP and UIP between Switzerland and the US.
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1. Introduction

The duality between the common trends representation and the vector equilibrium-correction
model-form (VECM) in cointegrated systems allows researchers to formulate hypotheses of
economic interest on any of the two. The VECM is centered on the adjustment with respect to
disequilibria in the system; in this way it facilitates the interpretation of cointegrating relations as
(deviations from) equilibria.

The common trends representation instead highlights how variables in the system as pushed
around by common stochastic trends, which are often interpreted as the main persistent economic
factors influencing the long-term. Both representations provide economic insights on the economic
system under scrutiny. Examples of both perspectives are given in Juselius (2017a, 2017b)

The common trends and VECM representations are connected through representation results such
as the Granger Representation Theorem, in the case of I(1) systems, see Engle and Granger (1987)
and Johansen (1991), and the Johansen Representation Theorem, for the case of I(2) systems,
see Johansen (1992). In particular, both representation theorems show that the loading matrix of
the common stochastic trends of highest order is a basis of the orthogonal complement of the matrix of
cointegrating relations. Because of this property, these two matrices are linked, and any one of them
can be written as a function of the other one.

This paper focuses on I(2) vector autoregressive (VAR) systems, and it considers the situation
where (possibly over-identifying) economic hypotheses are entertained for the factor loading matrix
of the I(2) trends. It is shown how they can then be translated into hypotheses on the cointegrating
relations, which appear in the VECM representation; the latter forms the basis for maximum likelihood
(ML) estimation of I(2) VAR models. In this way, constrained ML estimators are obtained and the
associated likelihood ratio (LR) tests of these hypotheses can be defined. These tests are discussed in
the present paper; Wald tests on just-identified loading matrices of the I(1) and I(2) common trends
have already been proposed by Paruolo (1997, 2002).

Econometrics 2017, 5, 28 46 www.mdpi.com/journal/econometrics
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The running example of the paper is taken from Juselius and Assenmacher (2015), which is the
working paper version of Juselius and Assenmacher (2017). The following notation is used: for a
full column-rank matrix a, col a denotes the space spanned by the columns of a and a⊥ indicates a
basis of the orthogonal complement of col a. For a matrix b of the same dimensions of a, and for
which b′a is full rank, let ba := b(a′b)−1; a special case is when a = b, for which ā := aa = a(a′a)−1.
Let also Pa := a(a′a)−1a′ indicate the orthogonal projection matrix onto col a, and let the matrix
Pa⊥ = I − Pa denote the orthogonal projection matrix on its orthogonal complement. Finally ej is used
to indicate the j-th column of an identity matrix of appropriate dimension.

The rest of this paper is organized as follows: Section 2 contains the motivation and the definition
of the problem considered in the paper. The identification of the I(2) common trends loading
matrix under linear restrictions is analysed in Section 3. The relationship between the identified
parametrization of I(2) common trends loading matrix and an identified version of the cointegration
matrix is also discussed. Section 4 considers a parametrization of the VECM, and discusses its
identification. ML estimation of this model is discussed in Section 5; the asymptotic distributions
of the resulting ML estimator of the I(2) loading matrix and the LR statistic of the over-identifying
restrictions are sketched in Section 6. Section 7 reports an illustration of the techniques developed in
the paper on a system of US and Swiss prices, interest rates and exchange rate. Section 8 concludes,
while two appendices report additional technical material.

2. Common Trends Representation for I(2) Systems

This section introduces quantities of interest and presents the motivation of the paper. Consider a
p-variate VAR(k) process Xt:

Xt = A1Xt−1 + . . . + AkXt−k + μ0 + μ1t + εt, (1)

where Ai, i = 1, . . . , k are p × p matrices, μ0 and μ1 are p × 1 vectors, and εt is a p × 1 i.i.d. N(0, Ω)

vector, with Ω positive definite. Under the conditions of the Johansen Representation Theorem,
see Appendix A, called the I(2) conditions, Xt admits a common trends I(2) representation of the form

Xt = C2S2t + C1S1t + Yt + v0 + v1t, (2)

where S2t := ∑t
i=1 ∑i

s=1 εs are the I(2) stochastic trends (cumulated random walks), S1t := ΔS2t =

∑t
i=1 εi is a random walk component, and Yt is an I(0) linear process.

Cointegration occurs when the matrix C2 has reduced rank r2 < p, such that C2 = ab′, where a
and b are p × r2 and of full column rank. This observation lends itself to the following interpretation:
b′S2t defines the r2 common I(2) trends, while a acts as the loading matrix of Xt on the I(2) trends.
The reduced rank of C2 implies that there exist m := p − r2 linearly independent cointegrating vectors,
collected in a p × m matrix τ, satisfying τ′C2 = 0; hence τ′Xt is I(1). Combining this with C2 = ab′,
it is clear that a = τ⊥, i.e., the columns of the loading matrix span the orthogonal complement of the
cointegration space col τ. Interest in this paper is on hypotheses on a = τ⊥1.

Observe that C2 = ab′ is invariant to the choice of basis of either col a and col b. In fact, (a, b) can
be replaced by (aQ, bQ′−1) with Q square and nonsingular without affecting C2. One way to resolve
this identification problem is to impose restrictions on the entries of a = τ⊥; enough restrictions of
this kind would make the choice of τ⊥ unique. Such an approach to identification is common in
confirmatory factor analysis in the statistics literature, see Jöreskog et al. (2016).

If more restrictions are imposed than needed for identification, they are over-identifying.
Such over-identifying restrictions on τ⊥ usually correspond to (similarly over-identifying) restrictions

1 In the I(2) cointegration literature, τ⊥ is also referred to as β2, see the Johansen Representation Theorem in Appendix A.
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on τ, see Section 3 below. Although economic hypotheses may directly imply restrictions on the
cointegrating vectors in τ, in some cases it is more natural to formulate restrictions on the I(2) loading
matrix τ⊥. This is illustrated by the two following examples.

2.1. Example 1

Kongsted (2005) considers a model for Xt = (mt : yn
t : pt)′, where mt, yn

t and pt denote the
nominal money stock, nominal income and the price level, respectively (all variables in logs); here ‘:’
indicates horizontal concatenation. He assumes that the system is I(2), with r2 = 1. Given the definition
of the variables, Kongsted (2005) considers the natural question of whether real money mt − pt and
real income yn

t − pt are at most I(1). This corresponds to an (over-identified) cointegrating matrix τ

and loading vector τ⊥ of the form

τ =

⎛⎜⎝ 1 0
0 1
−1 −1

⎞⎟⎠ , τ⊥ =

⎛⎜⎝ 1
1
1

⎞⎟⎠ .

The form of τ corresponds to the fact that the I(1) linear combinations τ′Xt are (linear combinations
of) ((mt − pt) : (yn

t − pt))′, as required. On the other hand, the restriction on τ⊥ says that each of
the three series have exactly the same I(2) trend, with the same scale factor. Both formulations are
easily interpretable.

Note that the hypothesis on τ⊥ involves two over-identifying restrictions (the second and third
component are equal to the first component), in addition to a normalization (the first component
equals 1). Similarly, the restriction that the matrix consisting of the first two rows of τ equals I2 is a
normalization; the two over-identifying restrictions are that the entries in both columns sum to 0.

As this first example shows, knowing τ is the same as knowing τ⊥ and vice versa2.

2.2. Example 2

Juselius and Assenmacher (2015) consider a 7-dimensional VAR with Xt = (p1t : p2t : e12t : b1t :
b2t : s1t : s2t)

′ with r2 = 2, where pit, bit, sit are the (log of) the price index, the long and the short
interest rate of country i at time t respectively, and e12t is the log of the exchange rate between country 1
(Switzerland) and 2 (the US) at time t. They expect the common trends representation to have a loading
matrix τ⊥ of the form:

τ⊥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ11 0
φ21 φ22

φ31 φ32

0 φ42

0 φ52

0 φ62

0 φ72

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

where φij indicates an entry not restricted to 0.
The second I(2) trend is loaded on the interest rates b1t, b2t, s1t, s2t, as well as on US prices p2t and

the exchange rate e12t; this can be interpreted as a financial (or ‘speculative’) trend affecting world
prices. The first I(2) trend, instead, is only loaded on p1t, p2t, e12t and embodies a ‘relative price’ I(2)
trend; it can be interpreted as the Swiss contribution to the trend in prices.

The cointegrating matrix τ in this example is of dimension 7 × 5. It is not obvious what type
of restrictions on τ correspond to the structure in (3). However, it is τ rather than τ⊥ that enters the
likelihood function (as will be analyzed in Section 4). The rest of the paper shows that the restrictions

2 Up to normalizations, see below.
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in (3) are over-identifying, how they can be translated into hypotheses on τ, and how they can be
tested via LR tests.

3. Hypothesis on the Common Trends Loadings

This section discusses linear hypotheses on τ⊥ and their relation to τ. First, attention is focused
on the case of linear hypotheses on the normalized version τ⊥c⊥ := τ⊥

(
c′⊥τ⊥

)−1 of τ⊥. Here c⊥ is
a full-column-rank matrix of the same dimension of τ⊥ such that c′⊥τ⊥ is square and nonsingular3.
This normalization was introduced by Johansen (1991) in the context of the I(1) model in order to
isolate the (just-) identified parameters in the cointegration matrix.

Later, linear hypotheses formulated directly on τ⊥ are discussed. The main result of this section is
the fact that the parameters of interest appears linearly both in τ⊥c⊥ and in τc in the first case; this is
not necessarily true in the second case.

The central relation employed in this section (for both cases), is the following identity:

τc := τ
(
c′τ
)−1

= (I − c⊥
(
τ′
⊥c⊥

)−1
τ′
⊥)c̄ = (I − c⊥τ′

⊥c⊥)c̄, (4)

where c̄ := c(c′c)−1. This identity readily follows from the oblique projections identity

I = τ
(
c′τ
)−1 c′ + c⊥

(
τ′
⊥c⊥

)−1
τ′
⊥,

see e.g. Srivastava and Kathri (1979, p. 19), by post-multiplication by c̄.

3.1. Linear hypotheses on τ⊥c⊥

Johansen (1991) noted that the function ab := a(b′a)−1 is invariant with respect to the choice of
basis of the space spanned by a. in fact, consider in the present context any alternative basis τ�

⊥ of the
space spanned by τ⊥; this has representation τ�

⊥ = τ⊥Q for Q square and full rank. Inserting τ�
⊥ in

place of τ⊥ in the definition of τ⊥c⊥ := τ⊥
(
c′⊥τ⊥

)−1, one finds

τ�
⊥c⊥ = τ�

⊥
(
c′⊥τ�

⊥
)−1

= τ⊥Q
(
c′⊥τ⊥Q

)−1
= τ⊥c⊥ .

Hence τ⊥c⊥ , similarly to the cointegration matrix in the I(1) model in Johansen (1991), is (just-)identified.
To facilitate stating hypotheses on the unconstrained elements of τ⊥c⊥ , the following

representation of τ⊥c⊥ appears useful:

τ⊥c⊥ = c̄⊥ + c ϑ (5)

where ϑ is an m × r2 matrix of free coefficients in τ⊥4. For example, one may have

c⊥ =

(
03×2

I2

)
, c =

(
I3

02×3

)
, τ⊥c⊥ = c̄⊥ + c

⎛⎜⎝ ϑ11 ϑ12

ϑ21 ϑ22

ϑ31 ϑ32

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ϑ11 ϑ12

ϑ21 ϑ22

ϑ31 ϑ32

1 0
0 1

⎞⎟⎟⎟⎟⎟⎠ (6)

with p = 5, m = 3, r2 = 2.

3 When c′⊥τ⊥ is square and nonsingular, then one can prove that also c′τ is square and nonsingular, see e.g., Johansen (1996,
Exercise 3.7).

4 This equation is obtained by using orthogonal projection of τ⊥c⊥ on the columns spaces of c and c⊥, and applying the
equality c′⊥τ⊥c⊥ = Ir2 which follows by definition.
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Consider over-identifying linear restrictions on the columns of ϑ in (5). Typically, such restrictions
will come in the form of zero (exclusion) restrictions or unit restrictions, where the latter would indicate
equal loadings of a specific variable and the variable on which the column of τ⊥c⊥ has been normalized.
The general formulation of such restrictions is

ϑi = ki + Kiφi, i = 1, . . . , r2, (7)

where ϑi is the i-th column vector of ϑ, ki and Ki are conformable vectors and matrices, and φi contains
the remaining unknown parameters in ϑi. If only zero restrictions are imposed, then ki = 0m.

The formulation in (7) includes several notable special cases. For instance, if all Ki = K
and ki = 0m, one obtains the hypothesis that ϑ is contained in a given linear space, ϑ = Kφ.
Another example is given by the case where one column ϑ1 is known, ϑ = (k1 : φ); this corresponds to
the choice ϑ1 = k1 with K1 and φ1 void and k2 = . . . = kr2 = 0, K2 = . . . = Kr2 = I.

The restrictions in (7) may be summarized as

vec ϑ = k + Kφ, (8)

where k = (k′1 : . . . : k′r2
)′, K = blkdiag(K1, . . . , Kr2) and φ = (φ′

1 : . . . : φ′
r2
)′.

Here blkdiag(B1, B2, . . . , Bn) indicates a matrix with the (not necessarily square) blocks B1, B2, . . . , Bn

along the main diagonal. Formulation (8) generalises (7).
The main result of this section is stated in the next theorem.

Theorem 1 (Hypotheses on τ⊥c⊥ ). Assume that ϑ satisfies linear restrictions of the type (8); then these
restrictions are translated into a linear hypothesis on vec τc via

vec τc = (vec c̄ − (Im ⊗ c⊥)Km,r2 k)− (Im ⊗ c⊥)Km,r2 Kφ, (9)

where Km,n is the commutation matrix satisfying Km,n vec A = vec A′, with A of dimensions m × n,
see Magnus and Neudecker (2007).

Proof. Substitute (8) into (4) and vectorize using standard properties of the vec operator, see Magnus
and Neudecker (2007).

The previous theorem shows that, when one can express a linear hypothesis on the coefficients in
ϑ that are unrestricted in τ⊥c⊥ , then the same linear hypothesis is translated into a restriction on vec τc.
Note that the proof simply exploits (4).

Identification of the restricted coefficients φ under these hypothesis can be addressed in a
straightforward way. In fact, the parameters in ϑ are identified; hence φ is identified provided
that the matrix K is of full column rank, which in turn will imply that the Jacobian matrix
∂ vec τc/∂φ′ = −(Im ⊗ c⊥)Km,r2 K in (9) has full column rank.

Because, in practice, econometricians may explore the form of τ⊥ via unrestricted estimates of
τ⊥c⊥ , see Paruolo (2002), before formulating restrictions on τ⊥, using hypothesis on the unrestricted
coefficients in τ⊥c⊥ appears a natural sequential step.

The next subsection discusses the alternative approach of specifying hypotheses directly on τ⊥.

3.2. Linear Hypotheses on τ⊥

In case placing restrictions on the unrestricted coefficients in τ⊥c⊥ is not what the econometrician
wants, this subsection considers linear hypothesis on τ⊥ directly. It is shown that sometimes it is
possible to translate linear hypothesis on τ⊥ into linear hypothesis on τ⊥c⊥ for some c⊥. It is also
shown that this is always possible for r2 = 2, for which a constructive proof is provided.
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Analogously to (7), consider linear hypotheses on the columns of τ⊥, of the following type:

τ⊥,i = hi + Hiφi, i = 1, . . . , r2, (10)

summarized as
vec τ⊥ = h + Hφ. (11)

In this case, non-zero vectors hi represent normalizations of the columns of the loading matrix, and as
before, φi collects the unknown parameters in τ⊥,i.

Theorem 2 (Hypotheses on τ⊥). Assume that τ⊥ = τ⊥(φ) satisfies linear restrictions of the type (11),
then these restrictions are translated in general into a non-linear hypothesis on vec τc via

τc = (I − c⊥
(
τ⊥(φ)′c⊥

)−1
τ⊥(φ)′)c̄ (12)

and the Jacobian of the transformation from φ to vec τc is

J (·) :=
∂ vec τc (·)

∂φ′ = −(τc(·)′ ⊗ c⊥(τ⊥(·)′c⊥)−1)Kp,r2 H. (13)

This parametrization is smooth on an open set in the parameter space Φ of φ where c′⊥τ⊥ is of full rank.

Proof. Equation (12) is a re-statement of (4). Differentiation of (12) delivers (13).

One can note that the Jacobian matrix in (13) can be used to check local identification using the
results in Rothenberg (1971).

The result of Theorem 2 is in contrast with the result of Theorem 1, because the latter delivers a
linear hypothesis for τc while Theorem 2 gives in general non-linear restrictions on τc. One may hence
ask the following question: when is it possible to reduce the more general linear hypothesis on τ⊥
given in (11) to the simpler linear hypothesis on ϑ given in (8)?

In the special case of r2 = 2, the following theorem states that this can be always obtained.
This applies for instance to the motivating example (3), where one can choose some c⊥ so that τ′

⊥c⊥
is equal to the identity, as shown below. Consider the formulation (10) with r2 = 2, and assume
that no normalizations have been imposed yet, such that h1 = h2 = 0. It is assumed that τ⊥,
under the equation-by-equation restrictions, satisfies the usual rank conditions for identification,
see Johansen (1995, Theorem 1) :

rank R′
iτ⊥ = 1 for i = 1, 2, (14)

where Ri = Hi,⊥.

Theorem 3 (Case r2 = 2). Let τ⊥ obey the restrictions τ⊥ = (H1φ1 : H2φ2) satisfying the rank conditions
(14); then one can choose normalization conditions on φ1 and φ2 so that there exists a matrix c⊥ such that
c′⊥τ⊥ = I. This implies that a hypotheses on τ⊥ can be stated in terms of ϑ in (5), and, by Theorem 1, a linear
hypotheses on vec ϑ corresponds to linear hypothesis on vec τc.

Proof. Because R′
1τ⊥ = (0 : R′

1H2φ2) has rank 1, one can select (at least) one linear combination of
R1, R1a1 say, so that φ2 is normalized to be one in the direction b′2 := a′1R′

1H2, i.e., b′2φ2 = 1. Similarly,
R′

2τ⊥ = (R′
2H1φ1 : 0) has rank 1, and one can select (at least) one linear combination of R2, R2a2

say, so that φ1 is normalized to be one in the direction b′1 := a′2R′
2H1, i.e., b′1φ1 = 1. Next define

c⊥ = (R2a2 : R1a1) which by construction satisfies c′⊥τ⊥ = I2.
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The proof of the previous theorem provides a way to construct c⊥ when r2 = 2 and the usual
rank condition for identification (14) holds. The rest of the paper focuses attention on the case of linear
restrictions on ϑ in (8), which can be translated linearly into restrictions on τc as shown in Theorem 1.

3.3. Example 2 Continued

Consider (3); this hypothesis is of type τ⊥ = (H1φ1 : H2φ2) with

H1 =

(
I3

04×3

)
, H2 =

(
01×6

I6

)
,

and hence R′
1 = (I4 : 04×3) and R′

2 = (I6 : 06×1). In this case one can define c = (e2 : e3 : e5 : e6 : e7)

and c⊥ = (e1 : e4) where ej is the j-th column of I7.
It is simple to verify that, under the additional normalization restrictions φ11 = 1 and φ42 = 1, τ⊥

in (3) satisfies c′⊥τ⊥ = I2. Therefore, define τ⊥c⊥ as (3) under these normalization restrictions. Using
formula (4) one can see that

τc = (I − c⊥τ′
⊥c⊥)c̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ21 −φ31 0 0 0
1 0 0 0 0
0 1 0 0 0

−φ22 −φ32 −φ52 −φ62 −φ72

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

so that vec τc is linear in φ, as predicted by Theorem 3.

4. The VECM Parametrization

This section describes the I(2) parametrization employed in the statistical analysis of the
paper. Consider the following τ-parametrization (τ-par) of the VECM for I(2) VAR systems5.
See Mosconi and Paruolo (2017):

Δ2Xt = α
(
ρ′τ′Xt−1 + ψ′ΔXt−1

)
+ λτ′ΔXt−1 + ΥΔ2Xt−1 + εt, (16)

with ΥΔ2Xt−1 = ∑k−2
j=1 ΥjΔ2Xt−j. Recall that m = p − r2 is the total number of cointegrating relations,

i.e., the number of I(1) linear combinations τ′Xt. The number of linear combinations of τ′Xt that
cointegrate with ΔXt to I(0), i.e., the number of I(0) linear combinations ρ′τ′Xt + ψ′ΔXt, is indicated6

by r ≤ m. Here α is p × r, τ is p × m and the other parameter matrices are conformable; the parameters
are α, ρ, τ, ψ, λ, Υ, Ω, all freely varying, and Ω is assumed to be positive definite. When λ is restricted
as λ = Ωα⊥(α′⊥Ωα⊥)−1κ′ with κ′ a (p − r)× m matrix of freely varying parameters, the τ-par reduces
to the parametrization of Johansen (1997); this restriction on λ is not imposed here.

4.1. Identification of τ

The parameters in the τ-par (16) are not identified; in particular τ′ can be replaced by Bτ′ with B
square and nonsingular, provided ρ and λ are simultaneously replaced by B−1′ρ and λB−1. This is
because τ enters the likelihood only via (16) in the products ρ′τ′ = ρ′B−1Bτ′ and λτ′ = (λB−1)(Bτ′).
The transformation that generates observationally equivalent parameters, i.e., the post multiplication
of τ by a square and invertible matrix B′, is the same type of transformation that induces observational

5 In the general VAR(k) model (1), εt in (16) is replaced by μ0 + μ1t + εt; see Section 4.3 below.
6 The difference m − r = p − r − r2 is referred to as either s or r1 in the I(2) cointegration literature, see Appendix A.
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equivalence in the classical system of simultaneous equations, see Sargan (1988), or to the set of
cointegrating equations in I(1) systems, see Johansen (1995). This leads to the following result.

Theorem 4 (Identification of τ in the τ-par). Assume that τc is specified as the restricted τc in (9), which is
implied by the general linear hypothesis (8) on τ⊥c⊥ ; then the restricted τc is identified within the τ-par if and
only if

rank
(

R′
τ(Im ⊗ τ)

)
= m2, Rτ

mp×mτ

= G⊥, G := −(Im ⊗ c⊥)Km,r2 K (17)

(rank condition), where mτ = mp − dim φ. The corresponding order condition is mτ ≥ m2, or equivalently
mr2 ≥ dim φ.

Alternatively, consider the general linear hypothesis (11) on τ⊥; then the constrained τc in (12) is identified
in a neighborhood of the point φ = φ� provided the Jacobian J (φ�) := ∂ vec τc(φ�)/∂φ′ in (13) is of full rank.

Proof. The rank condition follows from Sargan (1988), given that the class of transformation that
induce observational equivalence is the same as the classical one for systems of simultaneous equations.
The local identification condition follows from Rothenberg (1971).

4.2. The Identification of Remaining Parameters

This subsection discusses conditions for remaining parameters of the τ-par to be identified, when
τ is identified as in Theorem 4. These additional conditions are used in the discussion of the ML
algorithms of the next section.

The VECM can be rewritten as

Δ2Xt = νς′
(

τ′Xt−1

ΔXt−1

)
+ ΥΔ2Xt−1 + εt, with ς′ :=

(
ρ′ ψ′

0 τ′

)
, ν := (α : λ) .

One can see that the equilibrium correction terms νς′
(
(τ′Xt−1)

′ : ΔX′
t−1
)′ may be replaced by

ν◦ς′◦
(
(τ◦′Xt−1)

′ : ΔX′
t−1
)′ without changing the likelihood, where ν◦ := νQ−1 = (αA−1 : λB−1 −

αA−1C), ς′◦ := Qς′W−1 and

Q :=

(
A CB
0 B

)
, W :=

(
B 0
0 Ip

)
, ς′◦ := Qς′W−1 =

(
Aρ′B−1 Aψ′ + CBτ′

0 Bτ′

)
;

here A and B are square nonsingular matrices, and C is a generic matrix. Hence one observes that
(α, ρ, τ, ψ, λ, Υ, Ω) is observationally equivalent to (α◦, ρ◦, τ◦, ψ◦, λ◦, Υ, Ω). A, B and C define the
class of observationally equivalent transformations in the τ-par for all parameters, including τ. When
τ is identified one has B = Im in the above formulae.

Consider additional restrictions on ϕ of the type:

R′
ϕ

mϕ× fϕ

vec ϕ′ = qϕ, ϕ′ :=
(
ρ′ : ψ′) . (18)

where fϕ = r(p + m). The next theorem states rank conditions for these restrictions to identify the
remaining parameters.

Theorem 5 (Identification of other parameters in the τ-par). Assume that τ is identified as in Theorem 4;
the restrictions (18) identify ϕ and all other parameters in the τ-par if and only if (rank condition)

rank R′
ϕ (ς ⊗ Ir) = r(r + m). (19)
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A necessary but not sufficient condition (order condition) for this is that

mϕ ≥ r(r + m). (20)

Proof. Because τ is identified, one has B = Im in Q. For the identification of ϕ, observe that ς − ς◦ =
ς(I − Q′). One finds ϕ − ϕ◦ = (ς − ς◦)(Ir : 0)′ = ς(Im+r − Q′)(Ir : 0)′. Because both ϕ and ϕ◦

satisfy (18), one has 0 = R′
ϕ vec (ϕ′ − ϕ◦′) = R′

ϕ(ς ⊗ Ir) vec ((Ir : 0)(Ir+m − Q)). This implies that
(Ir : 0)(Im+r − Q) = 0, i.e., that both A = Ir and C = 0r×m, and that ϕ is identified, if and only if
rank R′

ϕ(ς ⊗ Ir) = r(r + m). This completes the proof.

Observe that the identification properties of the τ-par differ from the ones of the parametrization
of Johansen (1997), where λ = Ωα⊥(α′⊥Ωα⊥)−1κ′ is restricted, and hence the adding-and-subtracting
associated with C above is not permitted.

4.3. Deterministic Terms

The τ-par in (16) does not involve deterministic terms. Allowing a constant and a trend to enter
the VAR Equation (1) in a way that rules out quadratic trends, one obtains the following equilibrium
correction I(2) model—for simplicity still called the τ-par below:

Δ2Xt = α
(
ρ′τ�′X�

t−1 + ψ�′ΔX�
t−1
)
+ λτ�′ΔX�

t−1 + ΥΔ2Xt−1 + εt. (21)

Here X�
t−1 = (X′

t−1 : t)′ so that ΔX�
t−1 = (ΔX′

t−1 : 1)′; and τ� = (τ′ : τ1) and ψ� = (ψ′ : ψ0)
′.

This parametrization satisfies the conditions of the Johansen Representation Theorem and it
generates deterministic trends up to first order, as shown in Appendix A. This is the I(2) model used in
the application, with the addition of unrestricted dummy variables.

5. Likelihood Maximization

This section discusses likelihood maximization of the τ-par of the I(2) model (16) under linear,
possibly over-identifying, restrictions on τ⊥c⊥ , i.e., on ϑ in (5). The same treatment applies to (21)
replacing (Xt−1, ΔXt−1) with (X�

t−1, ΔX�
t−1), and (τ, ψ), with (τ�, ψ�). The formulation (16) is preferred

here for simplicity in exposition.
The alternating maximization procedure proposed here is closely related, but not identical, to the

algorithms proposed by Doornik (2017b); related algorithms were discussed in Paruolo (2000b).
Restricted ML estimation in the I(1) model was discussed in Boswijk and Doornik (2004).

5.1. Normalizations

Consider restrictions (8), which are translated into linear hypotheses on τc in (9) as follows

vec τc = (vec c̄ − (Im ⊗ c⊥)Km,r2 k)− (Im ⊗ c⊥)Km,r2 Kφ =: g + Gφ,

where by construction g and G satisfy (Im ⊗ c′)g = vec Irm and (Im ⊗ c′)G = 0 such that c′τc = Im.
Next, consider just-identifying restrictions on the remaining parameters. For ψ, the linear

combinations of first differences entering the multicointegration relations, one can consider

c′ψ = 0 ⇐⇒ ψ = c⊥δ′, (22)

where δ is the r× r2 matrix of multicointegration parameters. This restriction differs from the restriction
ψ = τ⊥δ′ which is considered e.g., in Juselius (2017a, 2017b), and it was proposed and analysed
by Boswijk (2000).

Furthermore, the m × r matrix ρ can be normalized as follows

d′ρ = Ir ⇐⇒ ρ = d̄ + d⊥�, (23)
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where d is some known m × r matrix, and where �, of dimension (m − r) × r, contains freely
varying parameters.

It can be shown that restrictions (22) and (23) identify the remaining parameters using Theorem 5.
In fact, (22) and (23) can be written as ϕ′V = v where V := blkdiag(d, c) and v := (Ir : 0r×m).
Vectorizing, one obtains an equation R′

ϕ vec ϕ′ = qϕ of the form (18) with Rϕ = (V ⊗ Ir) and
qϕ = vec v. The rank condition (19) is satisfied, since R′

ϕ (ς ⊗ Ir) = (V′ς ⊗ Ir) = Ir(m+r) because

V′ς =

(
d′ρ 0
c′ψ c′τ

)
=

(
Ir 0
0 Im

)
,

where the last equality follows from (22) and (23) and τ = τc.

5.2. The Concentrated Likelihood Function

The model (16), after concentrating out the unrestricted parameter matrix Υ, can be represented
by the equations

Z0t = α(ρ′τ′Z2t + ψ′Z1t) + λτ′Z1t + εt (ξ) , (24)

where ξ indicates the vector of free parameters in (α, �, φ, δ, λ), Z0t, Z1t and Z2t are residual vectors
of regressions of Δ2Xt, ΔXt−1 and Xt−1, respectively, on Xt−1;7 this derivation follows similarly to
Chapter 6.1 in Johansen (1996). The associated log-likelihood function, concentrated with respect to Υ,
is given by

�(ξ, Ω) = −T
2

log |Ω| − 1
2

T

∑
t=1

εt (ξ)
′ Ω−1εt (ξ) ,

In the rest of this section, εt is used as shorthand for εt (ξ).
Algorithms for the maximization of the concentrated log-likelihood function �(ξ, Ω) are proposed

below. The first one, called AL1, considers the alternative maximization of �(ξ, Ω) over (α, �, δ, λ, Ω) for
a fixed value of φ (called the α-step), and over (φ, δ) for a given value of (α, �, λ, Ω) (called the τ-step).

A variant of this algorithm, called AL2, can be defined fixing δ in the τ-step to the value of δ

obtained in the α-step. It can be shown that the increase in �(ξ, Ω) obtained in one combination of
α-step and τ-step of AL1 is greater or equal to the one obtained by AL2. The proof of this result is
reported in Proposition A1 in Appendix B. Because of this property, and because AL2 may display
very slow convergence properties in practice, AL1 is implemented in the illustration below.

The rest of this section presents algorithms AL1 and AL2, defining first the τ-step, then the α-step
and finally discussing the starting values, a line search and normalizations.

5.2.1. τ Step

Taking differentials, one has d� = −∑T
t=1 ε′tΩ−1dεt. Keeping (α, �, λ) fixed, one finds

−dεt = d
(
αρ′τ′Z2t + αψ′Z1t + λτ′Z1t

)
=
(
(Z′

2t ⊗ αρ′) + (Z′
1t ⊗ λ)

)
d vec τ′ + (Z′

1t ⊗ α)d vec ψ′

=
(
(Z′

2t ⊗ αρ′) + (Z′
1t ⊗ λ)

)Km,r1 Gdφ + (Z′
1tc⊥ ⊗ α)d vec δ.

Writing εt in terms of φ and vec δ, i.e., εt = Z0t − (
(
Z′

2t ⊗ αρ′) + (Z′
1t ⊗ λ)

)Km,r1(Gφ + g) −
(Z′

1tc⊥ ⊗ α) vec δ, the first-order conditions ∂�/∂φ = 0 and ∂�/∂ vec δ = 0 are solved by

7 If a restricted constant and linear trend are included in the model, as in (21), then Z1t and Z2t are defined as the residual
vectors of regressions of ΔX�

t−1 and X�
t−1, respectively, on Xt−1.
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(
φ̂

vec δ̂′

)
=

(
G′U′

1
(
Ω−1 ⊗ IT

)
U1G G′U′

1
(
Ω−1 ⊗ IT

)
U2

U′
2
(
Ω−1 ⊗ IT

)
U1G U′

2
(
Ω−1 ⊗ IT

)
U2

)−1

·

·
(

G′U′
1
(
Ω−1 ⊗ IT

)
U′

2
(
Ω−1 ⊗ IT

) )
(vec Z0 − U1g) , (25)

where Zj =
(
Zj1 : . . . : ZjT

)′, j = 0, 1, 2, and where U1 = (αρ′ ⊗ Z2) + (λ ⊗ Z1), and U2 = (α ⊗ Z1c⊥).
Note that (25) is the GLS estimator in a regression of vec Z0 − U1g on (U1G : U2). This defines the
τ-step for AL1.

The τ-step for AL2 is defined similarly, but keeping δ fixed. In this case it is simple to see that

φ̂ =
(

G′U′
1

(
Ω−1 ⊗ IT

)
U1G

)−1
G′U′

1

(
Ω−1 ⊗ IT

) (
vec Z0 − U1g − vec

(
Z1ψα′

))
.

5.2.2. α Step

When φ is fixed (and hence τ is fixed), one can construct Z3t = τ′Z1t and

Z4t =

⎛⎜⎝ d̄′τ′Z2t
d′⊥τ′Z2t
c′⊥Z1t

⎞⎟⎠ , γ =

⎛⎜⎝ Ir

�

δ′

⎞⎟⎠ .

The concentrated model (24) can then be written as a reduced rank regression:

Z0t = αγ′Z4t + λZ3t + εt,

for which the Guassian ML estimator for α, γ, λ has a closed-form solution, see Johansen (1996).
Specifically, let Mij := T−1 ∑T

t=1 ZitZ′
jt, i, j = 0, 3, 4 and Sij := Mij − Mi3M−1

33 M3j, i, j = 0, 4. If vi,
i = 1, . . . , r, are the eigenvectors corresponding to the largest r eigenvalues of the problem

(μS44 − S40S−1
00 S04)v = 0,

and v = (vi, . . . , vr) is the matrix of the corresponding eigenvectors, then the optimal solutions for �, δ,
α, λ is given by

γ̂ =

⎛⎜⎝ Ir0

�̂

δ̂′

⎞⎟⎠ = v(e′v)−1, α̂ = S04γ̂(γ̂′S44γ̂)−1, λ̂ = (M03 − α̂γ̂′M43)M−1
33 ,

where e′ = (Ir : 0). Optimization with respect to Ω̂ is performed using Ω (ξ) = T−1 ∑T
t=1 εt(ξ)εt(ξ)′

replacing ξ with ξ̂ formed from the previous expressions, namely taking (α, �, δ, λ) equal to (α̂, �̂, δ̂, λ̂)

in the above display and φ = φ̂ from the τ-step. Using the Sij matrices, one can also compute Ω̂
directly as Ω̂ = S00 − S04γ̂(γ̂′S44γ̂)−1γ̂′S40. This completes the definition of the α-step.

5.2.3. Starting Values and Line Search

If the system is just-identified, consistent starting values for all parameters can be obtained
by imposing the identifying restrictions on the two-stage estimator for the I(2) model (2SI2),
see Johansen (1995) and Paruolo (2000a). In case of over-identification, this method may be used to
produce starting values for (α, �, λ), which may then be used as input for the first τ-step to obtain
starting values for φ and δ.

Let η be the vector containing all free parameters in (α, �, δ, λ), and let ξ := (φ′ : η′)′. Denote by
ξ j−1 = (φ′

j−1 : η′
j−1)

′ the value of ξ in iteration (j − 1) of algorithms. Denote as ξ̂ j = (φ̂′
j : η̂′

j)
′ the value

of ξ obtained by the application of a τ-step and α-step of algorithms AL1 and AL2 at iteration j starting
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from ξ j−1. In an I(1) context, Doornik (2017a) found that better convergence properties can be obtained
if a line search is added. For this purpose, define the final value of the j-th iteration as

ξ j(ω) = ξ j−1 + ω(ξ̂ j − ξ j−1)

where ω is chosen in R+ = (0, ∞) using a line search; note that values of ω greater than 1
are admissible. A simple (albeit admittedly sub-optimal) implementation of the line search is
employed in Doornik (2017a); it consists of evaluating the log-likelihood function �(ξ, Ω(ξ)) with
Ω (ξ) = T−1 ∑T

t=1 εt(ξ)εt(ξ)′ setting ξ equal to ξ j(ω) for ω ∈ {1.2, 2, 4, 8}, and in choosing the value of
ω with the highest loglikelihood �. This simple choice of line search is used in the empirical illustration.

5.3. Standard Errors

The asymptotic variance matrix of the ML estimators may be obtained from the inverse observed
(concentrated) information matrix as usual. Writing (24) as Z0t = ΠZ2t + ΓZ1t + εt, and letting
θ = (vec (Π′)′ : vec (Γ′)′)′, the observed concentrated information matrix for the reduced-form
parameter vector θ is obtained from

Iθ = −∂2�(θ)

∂θ∂θ′ =

(
Ω−1 ⊗ Z′

2Z2 Ω−1 ⊗ Z′
2Z1

Ω−1 ⊗ Z′
1Z2 Ω−1 ⊗ Z′

2Z2

)
.

This leads to the following information matrix in terms of the parameters (φ, η):

Iφ,η =

(
J′φ
J′η

)
Iθ

(
Jφ Jη

)
,

where Jφ = ∂θ/∂φ′ and Jη = ∂θ/∂η′. From Π = αρ′τ′ and Γ = αψ′ + λτ′, one obtains

Jφ =

(
αρ′ ⊗ Ip

λ ⊗ Ip

)
G.

Define η = (vec (α′)′ : vec (�)′ : vec (δ′)′ : vec (λ′)′)′, so that Jη = [Jα : J� : Jδ : Jλ], with

Jα =

(
Ip ⊗ τρ

Ip ⊗ ψ

)
, J� =

(
α ⊗ τd⊥

0

)
, Jδ =

(
0

α ⊗ c⊥

)
, Jλ =

(
0

Ip ⊗ τ

)
.

With these ingredients, one finds

v̂ar(φ̂) =
(

Ĵ′φÎθ Ĵφ − Ĵ′φÎθ Ĵη( Ĵ′η Îθ Ĵη)
−1 Ĵ′η Îθ Ĵφ

)−1
,

where Îθ , Ĵφ and Ĵη are the expressions given above, evaluated at the ML estimators. Standard errors
of individual parameters estimates are obtained as the square root of the diagonal elements of v̂ar(φ̂).
Asymptotic normality of resulting t-statistics (under the null hypothesis), and χ2 asymptotic null
distributions of likelihood ratio test statistics for the over-identifying restrictions, depend on conditions
for asymptotic mixed normality being satisfied; this is discussed next.

6. Asymptotics

The asymptotic distribution of the ML estimator in the I(2) model has been discussed in
Johansen (1997, 2006). As shown there and discussed in Boswijk (2000), the limit distribution of
the ML estimator is not jointly mixed normal as in the I(1) case. As a consequence, the limit distribution
of LR test statistics of generic hypotheses need not be χ2 under the null hypothesis.
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In some special cases, the asymptotic distribution of the just-identified ML estimator of the
cointegration parameters can be shown to be asymptotically mixed normal. Consider the case r1 = 0
(i.e., r = m), and assume as before that no deterministic terms are included in the model. In this case,
the limit distribution of the cointegration parameters in Theorem 4 in Johansen (2006), J06 hereafter,
can be described in terms of the estimated parameters B̂0 := τ̄′

⊥(ψ̂ − ψ) and B̂2 := τ̄′
⊥(τ̂ − τ), where τ̂

is identified as τc with c = τ. Note that the components C and B1 in the above theorem do not appear
here, because r1 = 0. One has(

TB̂0

T2B̂2

)
w→ B∞ :=

(∫ 1

0
H∗(s)H∗(s)′ds

)−1 ∫ 1

0
H∗(s)dW1(s)

with H∗(u) := (H0(u)′ : H2(u)′)′,

H2u :=
∫ u

0
H0(s)ds, H0(u) := τ′

⊥C2W(u), W1(u) :=
(

α′Ω−1α
)−1

α′Ω−1W(u),

and where T− 1
2 ∑

�Tu�
i=1 εi

w→ W(u), a vector Brownian motion with covariance matrix Ω8.
As noted in J06, B∞ has a mixed normal distribution with mean 0, because H∗(u) is a function of

α′⊥W(u), which is independent of W1(u). Moreover in the case r1 = 0, the C∞ component of the ML
limit distribution does not appear, so that the whole limit distribution of the cointegration parameters
is jointly mixed normal, unlike in the case r1 > 0.

One can see that hypothesis (8) defines a smooth restriction of the B2 parameters9. More precisely
B2 depends smoothly only on φ2, B2 = B2(φ2), where φ2 contains the φ parameters in (8). Note also
that B0 depends on the parameters in ψ, which are unrestricted by (8); hence B0 depends only on φ1,
B0 = B0(φ1), where φ1 contains the parameters in δ in (22).

The conditions of Theorem 5 in J06 are next shown to be verified, and hence the LR
test of the hypothesis (8) is asymptotically χ2 with degrees of freedom equal to the number
of constraints, in case r1 = 0. In fact, B0(φ1), B2(φ2) are smoothly parametrizated by the
continuously identified parameters φ1 and φ2. Because B2 does not depend on φ1, one easily deduces
∂B2/∂φ1 = ∂2B2/∂φ2

1 = 0 in (37) of J06. Similarly, one has φ1 = φ1B with ∂B0/∂φ1 and ∂B2/∂φ2 of full
rank; hence (38) of J06 is satisfied. This shows that the LR statistic is asymptotically χ2 under the null,
for r1 = 0.

In case r1 = (m − r) > 0, the asymptotic distribution of τ̂ is defined in terms of (B∞, C∞) in J06
p. 92, which is not jointly mixed normal. In such cases, Boswijk (2000) showed that inference is mixed
normal if the restrictions on τ̂c can be asymptotically linearized in (B∞, C∞), and separated into two
sets of restrictions, the first group involving B∞ only, and the second group involving C∞ only. Because
the conditions of Theorem 5 in J06 cannot be easily verified for general linear hypotheses of the form
(8) in this case, they will need to be checked case by case. The authors intend to develop more readily
verifiable conditions for χ2 inference on τ in their future research.

7. Illustration

Following Juselius and Assenmacher (2015), consider a 7-dimensional VAR with

Xt = (p1t : p2t : e12t : b1t : b2t : s1t : s2t)
′,

where pit, bit, sit are the (log of) the price index, the long and the short interest rate of country i at time
t respectively, and e12t is the log of the exchange rate between country 1 (Switzerland) and 2 (the US)

8 Here w→ indicates weak convergence and �·� denotes the greatest integer part.
9 In the rest of this section the notation φ1, φ2 and ∂Bi/∂φj are used in accordance to the notation in J06.
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at time t. The results are based on quarterly data over the period 1975:1–2013:3. The model has two
lags, a restricted linear trend as in (21), which appears in the equilibrium correction only appended to
the vector of lagged levels, and a number of dummy variables; see Juselius and Assenmacher (2017),
which is an updated version of Juselius and Assenmacher (2015), for further details on the empirical
model. The data set used here is taken from Juselius and Assenmacher (2017).

Specification (3) is based on the prediction that r2 = 2. Based on I(2) cointegration tests,
Juselius and Assenmacher (2017) choose a model with r = m = 5, which indeed implies r2 = 2,
but also r1 = m − r = 0; arguably, however, the test results in Table 1 of their paper also support the
hypothesis (r, r1) = (4, 1), which has the same number r2 = 2 of common I(2) trends. The latter model
would be selected applying the sequential procedure in Nielsen and Rahbek (2007) using a 5% or 10%
significance level in each test in the sequence.

Consider the case (r, r1) = (5, 0). The over-identifying restrictions on τ⊥ implied by (3) are
incorporated in the parametrization (3), with normalizations φ11 = φ42 = 1, which in turn leads to the
over-identified structure for τc in (15), to be estimated by ML. The restricted ML estimate of τ⊥c⊥ is
(standard errors in parentheses):

τ̂⊥c⊥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1.49
(0.11)

−25.14
(5.23)

−1.88
(0.72)

−35.70
(29.81)

0 1
0 −1.91

(0.53)

0 1.23
(0.29)

0 −3.02
(0.95)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The LR statistics for the 3 over-identifying restrictions equals 16.11. Using the χ2(3) asymptotic limit
distribution, one finds an asymptotic p-value of 0.001, and hence a rejection of the null hypothesis.
This indicates that the hypothesized structure on τ⊥ is rejected.

For comparison, consider also the case (r, r1) = (4, 1), for which the LR test for cointegration
ranks has a p-value of 0.13. The resulting restricted estimate of τ⊥c⊥ is:

τ̂⊥c⊥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1.38
(0.09)

−24.67
(5.22)

−1.07
(0.56)

−30.10
(22.42)

0 1
0 −1.75

(0.52)

0 1.20
(0.28)

0 −2.97
(1.02)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The estimates and standard errors are similar to those obtained under the hypothesis (r, r1) = (5, 0).
The LR statistic for the over-identifying restrictions now equals 10.08. If one conjectured that the limit
distribution of the LR test is also χ2(3) in this case, one would obtain an asymptotic p-value of 0.018,
so the evidence against the hypothesized structure of τ appears slightly weaker in this model.

The results for both model (r, r1) = (5, 0) and for model (r, r1) = (4, 1) are in line with the
preferred specification of Juselius and Assenmacher (2017), who select an over-identified structure for
τ, which is not nested in (15), and therefore implies a different impact of the common I(2) trends.
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8. Conclusions

Hypotheses on the loading matrix of I(2) common trends are of economic interest. They are
shown to be related to the cointegration relations. This link is explicitly discussed in this paper, also for
hypotheses that are over-identifying. Likelihood maximization algorithms are proposed and discussed,
along with LR tests of the hypotheses.

The application of these LR tests to a system of prices, exchange rates and interest rates for
Switzerland and the US shows support for the existence of two I(2) common trends. These may
represent a ‘speculative’ trend and a ‘relative prices’ trend, but there is little empirical support for the
corresponding exclusion restrictions in the loading matrix.
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Appendix A

Theorem A1 (Johansen Representation Theorem). Let the vector process Xt satisfy A(L)Xt = μ0 + μ1t +
εt, where A(L) := Ip − ∑k

i=1 AiLi, a matrix lag polynomial of degree k, and where εt is an i.i.d. (0, Ω) sequence.
Assume that A(z) is of full rank for all |z| < 1 + c, c > 0, with the exception of z = 1. Let A, Ȧ and Ä denote
A(1), the first and second derivative of A(z) with respect to z, evaluated at z = 1; finally define Γ = Ȧ − A.
Then Xt is I(2) if and only if the following conditions hold:

(i) A = −αβ′ where α, β are p × r matrices of full column rank r < p,
(ii) Pα⊥ΓPβ⊥ = α1β′

1 where α1, β1 are p × r1 matrices of full column rank r1 < p − r,
(iii) α′2Θβ2 is of full rank r2 := p − r − r1, where Θ := 1

2 Ä + Ȧβ̄ᾱ′ Ȧ, α2 := (α, α1)⊥ and β2 := (β, β1)⊥,
(iv) μ1 = αβD for some βD,
(v) α′2μ0 = α′2Γβ̄βD.

Under these conditions, Xt admits a common trends I(2) representation of the form

Xt = C2

t

∑
i=1

i

∑
s=1

εs + C1

t

∑
i=1

εi + C�(L)εt + v0 + v1t, (A1)

where
C2 = β2(α

′
2Θβ2)

−1α′2, (A2)

C�(L)εt is an I(0) linear process, and v0 and v1 depend on the VAR coefficients and on the initial values of
the process.

Proof. See Johansen (1992), Johansen (2009) and Rahbek et al. (1999), which also contain expressions
for C1, C∗(L) and (v0, v1).

It is next shown that conditions (iv) and (v) are satisfied by the τ-par (21). In fact, condition (iv)
holds for βD = ρ′τ1. Note that Γ = αψ′ + λτ′, β = τρ and Pα⊥ΓPβ⊥ = Pα⊥λτ′Pβ⊥ = α1β′

1. The l.h.s.
of (v) is

α′2μ0 = α′2λτ1. (A3)

Next write the r.h.s. of (v) using τ′τρ(ρ′τ′τρ)−1ρ′ = I − ρ⊥(ρ′⊥(τ
′τ)−1ρ⊥)−1ρ′⊥(τ

′τ)−1 by oblique
projections; one finds

α′2Γβ̄βD = α′2λτ′τρ(ρ′τ′τρ)−1ρ′τ1

= α′2λτ1 − α′2λρ⊥(ρ′⊥(τ
′τ)−1ρ⊥)−1ρ′⊥(τ

′τ)−1τ1 = α′2λτ1 (A4)
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where the last equality holds because α′2λρ⊥ = 0, as shown below. Note in fact that β1 = τ̄ρ⊥ lies in
col β⊥ and α2 lies in col α⊥; hence one can write

α′2λρ⊥ = α′2λτ′τ̄ρ⊥ = α′2Pα⊥λτ′Pβ⊥ β1 = α′2Pα⊥ΓPβ⊥ β1 = α′2α1β′
1β1 = 0.

Hence, because (A3) equals (A4), condition (v) is satisfied.

Appendix B

This Appendix contains a proof that the increase in � in one combination of α-step and τ-step
of AL1 is greater or equal to the one obtained by AL2. In order to state the argument in somewhat
greater generality, define a parameter vector θ partitioned in 3 components, denoted (θ1, θ2, θ3), where
each θj represents a subvector of parameters, respectively of dimensions n1, n2, n3. Let �(θ) be the
log-likelihood function. Define also the following switching algorithms, both starting at the same
initial value (θ

(j−1)
1 , θ

(j−1)
2 , θ

(j−1)
3 ):

Definition A1. ALGO1 (3 way switching)

Step 1: for fixed θ1, maximize � with respect to (θ2, θ3);
Step 2: for fixed θ2, maximize � with respect to (θ1, θ3).

Let �(θ(1,j)) be the value of � corresponding to the application of step 1 and 2 of ALGO1.

Definition A2. ALGO2 (Pure switching)

Step 1: for fixed θ1, maximize � with respect to (θ2, θ3);
Step 2: for fixed (θ2, θ3), maximize � with respect to θ1.

Let �(θ(2,j)) be the value of � corresponding to the application of step 1 and 2 of ALGO2.

Proposition A1 (Pure versus 3-way switching). One has �(θ(1,j)) ≥ �(θ(2,j)).

Proof. In order to see this, let

(θ�2 , θ�3 ) = arg max
θ2,θ3

�(θ
(j−1)
1 , θ2, θ3).

Step 1 is the same for ALGO1 and ALGO2. In the second step of ALGO1 one considers

�(θ(1,j)) = max
θ1,θ3

�(θ1, θ�2 , θ3), (A5)

while for ALGO2 one considers
�(θ(2,j)) = max

θ1
�(θ1, θ�2 , θ�3 ). (A6)

The conclusion that �(θ(1,j)) ≥ �(θ(2,j)) follows from the fact that the maximization problem (A6) is a
constrained version of (A5) under θ3 = θ�3 .

It is simple to observe that the argument of the proof implies that the larger the dimension of n3,
the better.
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Abstract: The long and persistent swings in the real exchange rate have for a long time puzzled
economists. Recent models built on imperfect knowledge economics seem to provide a theoretical
explanation for this persistence. Empirical results, based on a cointegrated vector autoregressive
(CVAR) model, provide evidence of error-increasing behavior in prices and interest rates, which is
consistent with the persistence observed in the data. The movements in the real exchange rate
are compensated by movements in the interest rate spread, which restores the equilibrium in
the product market when the real exchange rate moves away from its long-run benchmark value.
Fluctuations in the copper price also explain the deviations of the real exchange rate from its long-run
equilibrium value.
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1. Introduction

The purchasing power parity (PPP) theory establishes that identical goods will have the same
price in different economies when prices are expressed in the same currency (Krugman et al. 2011).
In other words, the aggregate relative prices between two countries should be equal to the nominal
exchange rate between them (Taylor and Taylor 2004).1

The PPP has been broadly used in economics, in both theoretical models and empirical
applications. For instance, a number of general equilibrium models use the PPP as an equilibrium
condition; that is, the PPP is assumed to hold over time, and the main results in these models rely
on the PPP assumption (Duncan and Calderón 2003). In addition, estimates of PPP exchange rates
are used to compare national income levels, determining the degree of misalignment of the nominal
exchange rate around relative prices and the appropriate policy response (Sarno and Taylor 2002).

However, empirical evidence shows that over time, the nominal exchange rate exhibits long and
persistent swings around relative prices. Specifically, while the ratio of domestic to foreign good prices
changes slowly over time, the nominal exchange rate exhibits long and persistent swings away from
its benchmark value. Consequently, these persistent swings are observed in the real exchange rate.
See Figure 1 for the Chilean case.

Long and persistent fluctuations in the real exchange rate (RER) may generate allocative effects
on the economy. Indeed, the competitiveness of a country might be negatively affected by a prolonged
real appreciation (Mark 2001). Furthermore, these fluctuations might affect domestic real interest rates,
wages, unemployment, and output, generating structural slumps in economies (Phelps 1994).

1 This concept is known as absolute PPP.
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Frydman and Goldberg (2007) developed a monetary model based on imperfect knowledge
economics (IKE), know as IKE-based model, that was proposed as a solution to the puzzle of the
long swings in exchange rates. Its empirical validity has been tested by Johansen et al. (2010),
Juselius (2017a), and Juselius and Assenmacher (2017). For instance, using a cointegrated vector
autoregressive (CVAR) scenario,2 Juselius (2017a) argues, based on German-US data, that the
IKE-based scenario is empirically supported by every testable hypothesis that describes the underlying
assumptions of this model.

Departures from PPP have also been related to theories were the markup over costs of firms
operating on imperfectly competitive markets is negatively affected by the inflation rate. For instance,
Bacchiocchi and Fanelli (2005) found that persistent deviations from PPP in France, the United Kingdom
and Germany, versus the United States, might be attributed to the presence of I(2) stochastic trends in
prices which can be associated with inflation rates that reduces the markup of profit-maximizing firms
acting on imperfectly competitive markets.

The evidence on PPP is generally mixed and the results depend on the covered period, the
variables included in the analysis, and the econometric methodology used to test the PPP hypothesis.3

In the case of Chile, the evidence is also mixed, and the results depend primarily on the
methodology used to test the PPP hypothesis. On the one hand, when augmented Dickey-Fuller
(ADF) test is used in a single equation that includes the nominal exchange rate, domestic price, and
foreign price, the PPP hypothesis seems to hold. That is, RER is found to be a stationary process
(Délano and Valdés 1998; Duncan and Calderón 2003). On the other hand, if multivariate cointegration
techniques are used, the results show that RER behaves as a nonstationary I(1) process. However, it
cointegrates with other I(1) variables to a stationary process. Indeed, there is evidence of cointegration
between RER, productivity, net foreign assets, government expenditures, and terms of trade (Céspedes
and De Gregorio 1999) and between RER and black exchange rates (parallel market) (Diamandis 2003).
It also seems that the stationarity of RER depends on the analyzed period; for instance, Délano and
Valdés (1998) shows that RER behaves as an I(0) process when the period 1830–1995 is considered but
as an I(1) process in the period 1918–1995.

The Chilean economy, similar to other economies in South America, depends strongly on its
commodities prices. Copper is the main export commodity in Chile; it accounted for 54% of Chile’s
exports, 14% of fiscal revenue, and 13% of nominal GDP in 2012 (Wu 2013). Chile has become
increasingly important in the world copper market because its share of global production has increased
to somewhat more than a third since the late 1960s (De Gregorio and Labbé 2011).

A number of studies have analyzed how copper prices affect the Chilean economy through its
effects on nominal exchange rates, terms of trade, and business cycles. The results suggest that a
positive shock to the copper price leads to appreciation in nominal and real exchange rates, output
expansion, and an increased inflation rate (Cowan et al. 2007; Medina and Soto 2007).

In the long run, copper prices appear to explain most of the fluctuations in the Chilean peso, but in
the short run, other factors, including interest rate spread, global financial risk, and local pension funds
foreign exchange derivative position, may explain these fluctuations (Wu 2013). The fact that RER has
acted as a shock absorber due to the flexible exchange rate regime, a rule-based fiscal policy, and a
flexible inflation targeting system might explain why the Chilean economy has become increasingly
resilient to copper price shocks in the last 25 years (De Gregorio and Labbé 2011).

This paper finds, based on the estimation of a CVAR model, that the long and persistent swings
in the real exchange rate are compensated by movements in the interest rate spread, which restores
the equilibrium in the product market when the real exchange rate moves away from its long-run
benchmark value. Fluctuations in the copper price also explain the deviations of the real exchange

2 A CVAR scenario tests the empirical consistency of the basic underlying assumptions of a model rather than imposing them
on the data from the outset (Juselius 2017a).

3 Duncan and Calderón (2003), and Froot and Rogoff (1995) present a thorough review of the literature on PPP testing.
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rate from its long-run equilibrium value. The latter is consistent with the finding that in commodity
exporters economies, variations in exchange rates are not random, but tightly linked to movements in
commodity prices (Kohlscheen et al. 2017). Additionally, the results indicate error-increasing behavior
in prices and interest rates, which is consistent with the persistence in the data.

The paper is organized as follows. Section 2 presents a theoretical framework based on IKE for
exchange rate determination. Section 3 introduces the cointegrated vector of autoregressive model
for variables that are integrated of order 2, I(2). Section 4 presents stylized facts about Chilean data.
Section 5 shows an empirical analysis of the data and presents a long-run structure. Section 6 concludes.

2. Theoretical Framework

2.1. Parity Conditions

This subsection introduces one of the most important parity conditions of open-economy
macroeconomic models: the purchasing power parity (PPP) condition. This parity condition states
that once converted to a common currency, via nominal exchange rate, national price levels should
equalize (Bacchiocchi and Fanelli 2005). The absolute form (or strong form) of the PPP condition is
expressed as:

Pd,t = StPf ,t (1)

where Pd,t is the domestic price level, Pf ,t is the foreign price level, St is the nominal exchange rate
defined as the domestic-currency price in a unit of foreign currency, and t stands for time.

If pd, p f and s are, respectively, the natural logarithm of Pd, Pf , and S, Equation (1) can be
rewritten as:

pd,t = p f ,t + st (2)

and the long-run PPP condition is expressed as:

pd,t − p f ,t − st = μ + pppt (3)

where μ is a constant that reflects differences both in units of measure and in base-year normalization
of price indices (Mark 2001), and pppt is a stationary error term that represents the deviations from
PPP.4 If the PPP condition holds in the goods market, then by definition, the log of the real exchange
rate,5 qt, behaves as a stationary process, that is:

qt = st + p f ,t − pd,t ∼ I(0). (4)

Moreover, deviations from the uncovered interest parity (UIP) condition, that is, the excess returns
on foreign exchange, ert, would be stationary,6 so that:

ert =
(

id − i f

)
− (se

t+1 − st
) ∼ I(0) (5)

where id and i f are, respectively, the domestic and foreign interest rated and the superscript e denotes
an expected value.

Empirical evidence finds, however, that the real exchange rates and excess returns behave
as nonstationary processes, suggesting that the assumptions behind Equations (4) and (5) are

4 In empirical testing, the PPP condition is normally replaced by st = μ + γ1 pd,t + γ2 p f ,t + pppt, where γ1 = −γ2 = 1
is expected.

5 The real exchange rate is defined as Qt = St
Pf ,t
Pd,t

. It corresponds to the ratio of the foreign price level and the domestic price
level, once the foreign price has been converted to the domestic currency through the nominal exchange rate.

6 If deviations from PPP are assumed to be near I(1), the deviations from UIP also behave as nonstationary, near-I(1) processes.
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untenable when using real data (see Juselius 2010, 2017a, 2017b; Juselius and Assenmacher 2017;
Johansen et al. 2010; and Frydman and Goldberg 2007).

2.2. Persistence in the Data

This subsection7 presents a theoretical framework, developed in Juselius (2017a) and based on
IKE, that is consistent with the long and persistent swings in the real exchange rate. The model assumes
that the nominal exchange rate is mainly driven by relative prices, that is:

st = B0 + B1,t

(
pd − p f

)
t
+ νt (6)

where νt is a standard i.d.d. Gaussian error term that captures changes in interest rates and income.
B0 is a constant term, and B1,t is a time-varying coefficient that represents the weight to relative prices
in financial actors’ forecasts. Generally, the weight depends on how far the nominal exchange is from
its long-run benchmark value. Based on (6), changes in the nominal exchange can be expressed as:

�st = B1,t�
(

pd − p f

)
t
+�B1,t

(
pd − p f

)
t
+�νt. (7)

One can assume, as in Frydman and Goldberg (2007), that
∣∣∣B1,t�

(
pd − p f

)
t

∣∣∣ �∣∣∣�B1,t

(
pd − p f

)
t

∣∣∣,8 so that:

�st � B1,t�
(

pd − p f

)
t
+�νt. (8)

Before estimating the above model using the CVAR, the issue of time-varying parameters must be
addressed. Tabor (2014) simulates data for the process yt = β′

txt + εt where xt is nonstationary I(1), εt is
an i.i.d. Gaussian error term and βt = β + Zt where Zt = �Zt−1 + εZ,t and � < 1. Tabor (2014) showed
that when a CVAR model is applied to the simulated data, the estimated cointegrated coefficient
corresponds to E (βt). Hence, based on this result, one can argue that the CVAR model may be used
to estimate average long-run relationships when the underlying data-generating process involves
bounded-parameter instability.

Then, the change in the real exchange rate should behave as a near I(1) process provided that
B1,t = B + ρB1,t−1 + εB1,t with ρ < 1, but close to one. Juselius (2014) argues that the latter behavior
can be used to approximate the the change in the real exchange rate through the following process:

�qt = at + νq,t (9)

where νq,t is an i.i.d. Gaussian error term and the time-varying drift term, at, measures the appreciation
or depreciation of the real exchange rate due to changes in individual forecasting strategies.9 This drift
is assumed to follow a mean zero stationary autoregressive process, so that:

at = ρtat−1 + νa,t (10)

7 This subsection is based mainly on Juselius (2017a), Juselius and Assenmacher (2017), and Frydman and Goldberg (2007, 2011).
8 This assumption is based on simulations that show that �B1,t has to be extremely large for �B1,t

(
pd − p f

)
t to have a

marked effect on �st. Frydman and Goldberg (2007) use this assumption (“conservative revision”) in their IKE-based
monetary model to illustrate the fact that forecasting behavior is led by new realizations of the causal variables, � (pd − p f

)
t,

rather than revision of forecasting strategies, �B1,t.
9 This is consistent with the FG IKE-based model developed by Frydman and Goldberg (2007), which assumes that individuals

recognize their imperfect knowledge about the underlying processes that drive outcomes. Thus, they use a multitude of
forecasting strategies that are revised over time in a way that cannot be fully prespecified. Indeed, given the diversity of
forecasting strategies, this model assumes two kinds of individuals in the foreign currency market: bulls, who speculate on
the belief that the asset price will rise, and bears, who speculate on its fall.
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where νa,t is an i.i.d. Gaussian error term and ρt is a time-varying coefficient that is close to one when
the real exchange rate is in the vicinity of its long-run benchmark value, and otherwise ρt � 1.10

The average of this coefficient, ρ̄, is generally close to one whenever the sample period is sufficiently
long (Juselius 2017a). Then, at describes a persistent near I(1) process, and modeling the real exchange
rate as a near I(2) process is consistent with swings of shorter and longer duration, implying that the
length of these swings is not predictable (Frydman and Goldberg 2007).

Since excess return on the foreign exchange rate is often found to behave like a nonstationary
process—the excess return puzzle—it has been argued that volatility in the foreign currency market
should be taken into account. Specifically, a risk premium, rp, might be added to (5) to obtain a
stationary relationship. However, it is unlikely that a risk premium, assumed to be stationary, accounts
for the persistent swings in the real interest rate spread. Frydman and Goldberg (2007), in their FG
IKE-based model, proposed to replace the uncovered interest rate parity, UIP, condition—the market
clearing mechanism between the expected change in the nominal exchange rate and the nominal
interest rate spread—by an uncertainty adjusted uncovered interest rate parity (UA-UIP) condition,
that is defined as: (

id − i f

)
t
=
(
se

t+1 − st
)
+ rpt + upt (11)

where upt stands for an uncertainty nonstationary premium, a measure of agents’ loss averseness.11

The interest rate spread corrected for the uncertainty premium is a minimum return that agents
require to speculate in the foreign exchange market. This premium starts increasing when the nominal
exchange rate moves away from its long-run benchmark value and decreases when the nominal
exchange rate moves toward equilibrium. In the foreign exchange market, the uncertainty premium is
related to the PPP gap (Frydman and Goldberg 2007). Then, the UA-UIP is formulated as:(

id − i f

)
t
=
(
se

t+1 − st
)
+ rpt + f

(
pd − p f − st

)
. (12)

This equation suggests that in a world of imperfect knowledge, the expected change in the nominal
exchange rate may not be directly related to the interest rate spread, but to the spread corrected by
the PPP gap and the risk premium. The latter might be associated with short-term changes in interest
rates, inflation rates and nominal exchange rates (Juselius 2017a).

2.3. Theory-Consistent CVAR Scenario Results

A consequence of the UA-UIP condition is that both domestic and foreign interest rates are
affected by the uncertainty premium. Juselius (2017a) suggests the following data-generating process
to describe changes in the interest rate:

�ij,t = ωj,t +�rpj,t + νj,t (13)

where νj,t is a white nose error term and j = d, f . The term ωj,t stands for changes in the
domestic uncertainty premium, ωj,t = �upj,t, and is assumed to follow a mean zero stationary
autoregressive process:

ωj,t = ρω
j,tωj,t−1 + νω

j,t (14)

where νω
j,t is a stationary error term. The time-varying autoregressive coefficient, ρω

j,t, is assumed
to be almost on the unit circle when the nominal exchange rate is in the vicinity of its long-run

10 When periods where at is far from its benchmark value are shorter compared with the near vicinity periods, it describes a
persistent but mean-reverting process.

11 Frydman and Goldberg (2007) extend the concept of loss aversion given by Kahneman and Tversky (1979) to the concept of
endogenous loss aversion, which says that the greater the potential loss, the higher the degree of loss aversion. This definition
establishes that the UA-UIP equilibrium exists.
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benchmark value—the relative price—otherwise the coefficient is strictly less than one. Nevertheless,
ρ̄ω

j ≈ 1 provided that periods where the coefficient is close to one are much longer than otherwise.
When ρ̄ω

j ≈ 1, (14) describes a near I(1) domestic uncertainty premium. Consequently, under IKE,
the interest rate change behaves as a persistent near I(1) process, implying that nominal interest rates
are near I(2).

Using a CVAR scenario, Juselius (2017a) demonstrates that the following hypotheses are consistent
with IKE:

st ∼ near I(2) (15)(
pd,t − p f ,t

)
∼ near I(2) (16)(

id,t − i f ,t

)
∼ near I(2) (17)(

st + p f ,t − pd,t

)
∼ near I(2) (18){(

id,t − i f ,t

)
− c

(
st + p f ,t − pd,t

)}
∼ near I(1) (19)

where c is a constant coefficient. These relationships show that when allowing for IKE, real exchange
rate, interest rate spread, and relative price are likely to behave as near I(2).

3. The CVAR Model and the I(2) Representation

A VAR model in second order differences is expressed as:12

�2xt = Πxt−1 − Γ�xt−1 +
k−2

∑
i=1

Ψi�2xt−1 + ΦDt + μ0 + μ1t + εt (20)

where x′t =
[
x1,t, x2,t, . . . , xp,t

]
is a p-dimensional vector of stochastic variables, Dt is a matrix of

deterministic terms (shift dummies, seasonal dummies, etc) with coefficient matrix Φ. Π, Γ are p × p
coefficient matrices, μ0 is an unrestricted constant, t is an unrestricted trend with coefficient matrix μ1,
and εt is a multivariate white noise process, that is εt ∼ i.i.d.Np (0, Ω).

If Π has reduced rank, 0 < r < p, it can be decomposed into Π = αβ′, where α and β are
p × r matrices of full column rank. The orthogonal complement of matrix z is denoted as z⊥,
and z̄ = z (z′z)−1 . Structuring the I(2) representation of the CVAR model is a bit more complicated,
and additional definitions must be given. The I(2) model is defined by the two following reduced
rank restrictions:

Π = αβ′

α′
⊥Γβ⊥ = ξη′

(21)

where ξ and η are (p − r)× s1 matrices, s1 is the number of I(1) trends, or unit root processes, and it
is such that p − r = s1 + s2, where s2 is the number of I(2) trends, or double unit root processes,
in vector xt. Whereas the first rank condition in (21) is associated with the variables in levels, the
second rank condition is related to the differentiated variables.

β⊥ and α⊥ can, respectively, be decomposed into β⊥ = [β⊥1, β⊥2] and α⊥ = [α⊥1, α⊥2].
Matrices α⊥1 = α⊥η and β⊥1 = β⊥η are of dimension p × s1. Matrices α⊥2 = α⊥ξ⊥ and β⊥2 = β⊥η⊥
have dimension p × s2.

12 This section is based mainly on Doornik and Juselius (2017) and Juselius (2006).
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Using the Johansen (1997) parametrization, model (20) can be written as follows:

�2xt =α
(
ρ′τ′xt−1 + d′�xt−1

)
+ ζ′τ′�xt−1 +

k−2

∑
i=1

Λi�2xt−i+

ΦDt + μ0 + μ1t + εt

(22)

where ρ = [I, 0]′, τ = [β, β⊥1], d′ = −
((

α′Ω−1α
)−1

αΩ−1Γ

)
τ⊥
(
τ′
⊥τ⊥

)−1
τ′
⊥, ζ = [ζ1, ζ2]

′ is a

matrix of medium-run adjustment.
In this model, the term in (·) represents the long-run equilibrium or polynomially cointegrating

relationships. The term ζ′τ′�xt−1 can be interpreted as a medium-run equilibrium relationship,
defining the r + s1 relationship that needs to be differentiated to become stationary.

The moving average (MA) representation of the I(2) model is expressed as:

xt =C2

t

∑
i=1

i

∑
s=1

(εs + ΦDs + μ0 + μ1s)︸ ︷︷ ︸
εs

+ C1

t

∑
i=1

(εi + ΦDi + μ0 + μ1i)︸ ︷︷ ︸
εi

+

C∗ (L) (εt + ΦDt + μ0 + μ1t) + A + Bt

(23)

where C2 = β⊥2
(
α′
⊥2Θβ⊥2

)−1
α′
⊥2, β′C1 = α′ΓC2, β′

⊥1C1 = α⊥1
′ (Ip − ΘC2

)
, and

Θ = Γβα′Γ +
(

Ip − ∑k−2
i=1 Λi

)
. A and B are functions of both the initial values and the

model parameters (Johansen 1992).13

Matrix C2 can be expressed as C2 = β̆⊥2α′
⊥2, where β̆⊥2 = β⊥2

(
α′
⊥2Θβ⊥2

)−1, so that
α′
⊥2 ∑t

i=1 ∑i
s=1 εs can be interpreted as the measure of the s2 trends which load into the variables

in xt with the weights β̆⊥2 (Juselius 2006).
The likelihood ratio test for the joint hypothesis of r cointegrating relationships and s1 and s2

trends, labeled H (r, s1, s2), versus H (p) is given by:

− 2logQ (H (r, s1, s2) | H (p)) = −Tlog
∣∣∣Ω̃−1

Ω̂
∣∣∣ (24)

where Ω̃ and Ω̂ are, respectively, the covariance matrices estimated under H (r, s1, s2) and H (p).14

4. Stylized Facts

Figure 1a shows the evolution of the natural logarithm (log) of the nominal exchange rate,
measured as Chilean pesos (CLP) per US dollar (USD) and the log of the relative prices, measured
as the ratio between the Chilean consumer price index (CPI) and the US CPI. Relative prices exhibit
a positive but decreasing slope, reflecting the fact that from 1986 until 1999, Chilean prices were
growing faster than US prices, but after 1999 the growth in relative prices decreased. This might
be associated with the partial implementation of inflation targeting in Chile in 1990, which reduced
annual inflation from 26% in 1990 to 3% in 1997. In the same panel, the nominal exchange rate
undergoes long and persistent swings around relative prices, suggesting that PPP may hold only as a
very long-run condition.

13 From the MA representation (23), it follows that the unrestricted constant, μ0, cumulates once to a linear trend and twice
to a quadratic trend. In addition, the unrestricted trend, μ1, cumulates once to a quadratic trend and twice to a cubic
trend. To avoid the latter, quadratic and cubic trends have been restricted to zero in the subsequent analysis. For further
information, see Chapter 17 in Juselius (2006).

14 The distribution of the this is found in Johansen (1995) provided that model (22) does not restrict deterministic components;
otherwise see Rahbek et al. (1999).
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Figure 1b shows the PPP gap, defined as the difference between the log of relative prices and the
log of the nominal exchange rate. The deviations exhibit long persistent swings, but it seems that the
upward trend in relative prices is canceled by the upward trend in nominal exchange rate.

Figure 1. (a) Nominal exchange rate (CLP/USD) and relative prices (Chilean CPI/US CPI);
(b) Deviations from PPP. Monthly data 1986:1–2013:04. CLP: Chilean peso, USD: U.S. dollar.

Figure 2a shows that relative inflation rates exhibit a high persistence, which is corroborated by
the 12-month moving average. This persistence seems, however, to decrease steadily beginning in 1990,
which may be associated with the implementation of inflation targeting in Chile in 1990. In Figure 2b
shows the changes in the nominal exchange rate, which seems stationary. Nevertheless, the 12-month
moving average exhibits some persistence around the mean. It also appears that appreciations and
depreciations are more volatile since 2000, which might be related to the free-floating exchange rate
regime that was implemented by the Central Bank of Chile in September 1999. Figure 2c, shows that
changes in the PPP gap behave as a persistent but mean-reverting process. The 12-month moving
average exhibits persistence around the mean that seems higher since 2000.

Figure 3a,b show, respectively, the Chilean interest rate and its first difference. The latter exhibits
a large decrease in volatility since 2000. This might be associated with two major reforms that were
introduced in the Chilean financial market between 2000 and 2001. While the first reform, promulgated
in 2000, gave greater protection to both domestic and foreign investors, the second reform, enacted
in 2001, liberalized the financial system, implying, among other things, capital account deregulation.

When the Chilean interest rate and its first difference are compared with their US counterparts,
which are shown in Figure 3c,d, an important difference in levels and volatility is noticeable.
The Chilean interest rate has been historically higher than the US interest rate, and this seems to
have changed since 2000. The latter is clearly reflected in the interest rate spread shown in Figure 3e.
The changes in the interest rate spread shown in Figure 3f seem to mimic the changes in the Chilean
interest rate volatility.

Figure 4a plots the copper price and the PPP gap. Two facts are noticeable. First, it seems that
both variables are positively co-moving over time, suggesting that there is a negative relationship
between copper prices and real exchange rates. Second, since 2005, the copper price has been higher
than in the previous years, which might be associated with an increase in world copper demand.
The decrease of in the copper price observed in 2008 was mainly caused by lower copper demand due
to the international financial crisis. Figure 4b shows that the copper price was more volatile at the

70



Econometrics 2017, 5, 29

beginning and end of the sample, and its 12-month moving average suggests some persistence around
its mean.

Figure 2. (a) Relative inflation rates (Chile/US); (b) Changes in nominal exchange rate (CLP/USD);
(c) Change in the PPP gap. Monthly data 1986:1–2013:4. MAV is the 12-month moving average process.
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Figure 3. (a) Chilean interest rate; (b) Changes in Chilean interest rate; (c) US interest rate; (d) Changes
in US interest rate; (e) Interest rate spread (Chile-US); (f) Changes in interest rate spread. Monthly data:
1986:1–2013:4.

Figure 4. (a) Copper price and PPP gap; (b) Changes in the copper price. Monthly data 1986:1–2013:4.
MAV is the 12-month moving average of the changes in copper price. PPP gap is calculated as the
difference between the log of relative prices and the log of the nominal exchange rate.

This section discussed the pronounced persistence exhibited in the data. For instance,
the graphical analysis seems to suggest that nominal exchange rate, real exchange rate, and relative
prices behave as a nonstationary near I(2) process. However, this persistence has to be formally tested,
which is done in Section 5.

5. Empirical Model Analysis

The monthly data cover the period 1986:1–2013:4 and the baseline model, which contains three
lags,15 is expressed as:

15 Appendix B presents the selection of the number of lags.
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�2xt =α

⎡⎢⎢⎢⎢⎢⎣ρ̃′
(

τ

τ0

)′

︸ ︷︷ ︸
τ̃′

(
xt−1

t − 1

)
︸ ︷︷ ︸

x̃t−1

+

(
d
d0

)′

︸ ︷︷ ︸
d̃′

(
�xt−1

1

)
︸ ︷︷ ︸

�x̃t−1

⎤⎥⎥⎥⎥⎥⎦+ ζ′τ̃′�x̃t−1+

Λ1�2xt−1 + ΦpDp,t + ΦsDs,t + εt

(25)

where x′t =
[

pd,t, p f ,t, st, cpt, id,t, i f ,t

]
, pd,t is the Chilean CPI, p f ,t is the US CPI, st is the nominal

exchange rate, defined as CLP per USD, cpt is the copper price, id,t is the Chilean interest rate, and i f ,t
is the US interest rate.16 All variables except interest rates are in natural logarithms. ρ̃ = [ρ, 0] and
picks out the r cointegrating vectors, including the restricted trend, 1 is a vector of constant terms and
t is a linear trend. Dp,t is a (9 × 1) vector of intervention dummies,17 and Ds,t is a (11 × 1) vector of
centered seasonal dummies.18 The software CATS 3 for OxMetrics (Doornik and Juselius 2017) was
used in the econometric analysis.

Table 1 reports the residual misspecification tests of model (25).19 The upper part indicates that
the hypotheses of normality and non-ARCH of orders 1 and 2 can be rejected but not the hypothesis of
non-autocorrelation. The univariate tests, reported in the lower part, show that all equations exhibit
residual non-normality and that only the residuals of the copper price do not show ARCH effects.
It appears that the normality problem is due to excess kurtosis rather than excess skewness. Financial
variables usually exhibit non-normality and ARCH problems, but adding more dummy variables is
not necessarily a solution (Juselius 2010). Moreover, VAR estimates are robust for moderately excess
kurtosis (Gonzalo 1994; Juselius 2006).

Table 1. Misspecification tests for CVAR model (25).

Multivariate Specification Tests

Autocorrelation Normality ARCH

Order 1:

χ2 (36)

Order 2:

χ2 (36)

χ2 (12) Order 1:

χ2 (441)

Order 2:

χ2 (882)

45.25
[0.14]

41.66
[0.24]

128.94
[0.00]

514.01
[0.01]

1007.42
[0.00]

Univariate Specification Tests

Equation �2 pd,t �2 p f ,t �2st �2cpt �2id,t �2i f ,t
ARCH

Order 2: χ2 (2)

27.92
[0.00]

11.15
[0.00]

6.57
[0.04]

0.88
[0.64]

21.93
[0.00]

23.27
[0.00]

Normality
χ2 (2)

12.83
[0.00]

15.99
[0.00]

12.86
[0.00]

34.31
[0.00]

36.05
[0.00]

6.26
[0.04]

Skewness 0.23 0.07 −0.12 0.03 0.02 −0.17
Kurtosis 3.99 4.12 3.98 4.81 4.87 3.60
S.E.×103 4.38 1.96 16.68 52.17 1.51 0.15

[·] is the p-value of the test; S.E. is the residual standard error.

16 Appendix A presents the source, description, and transformation of the data. Dataset and code to replicate the results are
available from the author.

17 Appendix C specifies the intervention dummies and their estimated coefficients.
18 Initially, the cointegration space considered a broken linear trend that started in September 1999, corresponding to the

beginning of the floating exchange rate regime in Chile. However, this broken linear trend was revealed to be non-significant.
The potential effect of the new regime on the nominal exchange rate was, possibly, offset by changes in the Chilean inflation
rate and/or interest rate.

19 For a thorough description of the tests see Doornik and Juselius (2017).
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5.1. Rank Determination

Table 2 reports the I(2) trace test and shows the maximum likelihood test of the joint hypothesis
of (r, s1), which corresponds to the two rank restrictions in (21), together with simulated p-values of the
trace test. The standard test procedure starts with the most restricted model, (r = 0, s1 = 0, s2 = 6),
which is reported in the first row with a likelihood ratio test of 1120.90; it then continues from this
point to the right, and row by row, until the first joint hypothesis is not rejected. The first rejection
corresponds to the case (r = 2, s1 = 2, s2 = 2) with a p-value of 0.12. The case (r = 1, s1 = 4, s2 = 1)
is also not rejected, though with a lower p-value of 0.07.

Table 2. Simulated asymptotic distribution of the cointegration rank indices model (25).

p − r r s2 = 6 s2 = 5 s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0

6 0 1120.90
[0.00]

797.61
[0.00]

582.76
[0.00]

425.17
[0.00]

314.38
[0.00]

232.61
[0.00]

195.29
[0.00]

5 1 579.62
[0.00]

413.11
[0.00]

289.11
[0.00]

179.09
[0.00]

96.24
[0.07]

92.28
[0.01]

4 2 286.97
[0.00]

169.23
[0.00]

84.13
[0.12]

59.00
[0.39]

53.96
[0.18]

3 3 76.83
[0.17]

47.78
[0.61]

31.90
[0.77]

28.59
[0.48]

2 4 26.20
[0.86]

18.59
[0.74]

16.60
[0.37]

1 5 9.31
[0.65]

7.13
[0.28]

p is the number of variables in vector x; r is the number of cointegrating relationships; s1 and s2 are,
respectively, the number of I(1) and I(2) trends.

As a robustness check, Table 3 reports the seven largest characteristic roots for r = 2, and r = 6.
The unrestricted model, (r = 6, s1 = 0, s2 = 0), has six large roots: five almost on the unit circle and
one large but less close to 1 (0.82). Under the assumption that xt ∼ I(1), that is (r = 2, s1 = 4, s2 = 0),
there would be two large roots (0.98 and 0.82) in the model. Under such persistence, treating the
process xt as I(1) is likely to yield unreliable inference (Johansen et al. 2010).

Therefore, the reduced rank model should account for 6 unit roots. The case (r = 2, s1 = 2, s2 = 2)
implies six characteristic roots to be on the unit circle and leaves 0.56 as the largest unrestricted root.
Thus, based on the above discussion, the analysis considers the case (r = 2, s1 = 2, s2 = 2), which
implies xt ∼ near I(2).

Table 3. Model adequacy.

Seven Largest Characteristic Roots

Model Moduli

(r = 6, s1 = 0, s2 = 0) 0.98 0.98 0.98 0.95 0.95 0.82 0.56
(r = 2, s1 = 4, s2 = 0) 1.00 1.00 1.00 1.00 0.98 0.82 0.56
(r = 2, s1 = 2, s2 = 2) 1.00 1.00 1.00 1.00 1.00 1.00 0.56

r is the number of cointegrating relationships; s1 and s2 are, respectively, the number of I(1) and I(2) trends.

5.2. Partial System

The copper price was found to be a strong exogenous variable based on χ2 (15) = 13.83 with
p-value of 0.05. Thus, copper price is pushing the system but not adjusting to it. Because the copper
price is internationally determined, this finding is economically plausible. Therefore, a partial system
can be modeled with vector x′t =

{
x′1,t, x′2,t

}
, where x′1,t =

[
pd,t, p f ,t, st, id,t, i f ,t

]
and x′2,t = [cpt] . Then,

Equation (25) is reformulated as:
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�2x1,t =α
(

ρ̃′τ̃′ x̃t−1 + d̃′�x̃t−1

)
+ ζ′τ̃′�x̃t−1+

+ Λ1�2x1,t−1 +
1

∑
j=0

π j�2x2,t−i + ΦpDp,t + ΦsDs,t + εt
(26)

where the left-hand side excludes the acceleration rate of the copper price and the right-hand side
adds two second-order lagged differences of the copper price.

In the full model (25) the number of I(2) trends was s2 = 2. In the partial model (26) the number
of I (2)trends decreases by one because the copper price was found to be an exogenous variable.
This suggests that one of the previous two I (2) trends is now accounted for the exogenous copper
price. Therefore, the following analysis considers the case (r = 2, s1 = 2, s2 = 1).

5.2.1. Testing Non-Identifying Hypotheses in the I(2) Model

• Same restrictions on all τ̃

The hypothesis of same restrictions on all τ̃ is formulated as R′τ̃ = 0, where R is of dimension
p1 × (p1 − m), p1 is the dimension of x̃ and m is the number of free parameters. The test is
asymptotically χ2 ((r + s1) (p1 − m)) distributed (Johansen 2006).

The upper part of Table 4 reports three hypothesis restrictions on all τ̃. The null hypothesis
H1 entails that the nominal to real transformation may be used (Kongsted 2005). That is, xt that is
near I(2) can be transformed into the I(1) vector x̌′t =

[
pppt,�pd,t,�p f ,t, id,t, i f ,t, cpt

]
without loss of

information (Johansen et al. 2010). The result of H1 indicates that the PPP restriction can be rejected;
that is, the transformation

(
pd,t − p f ,t − st

)
is not statistically supported.

The null hypothesis H2 entails price homogeneity. That is, vector xt can be transformed into
ˇ̌x′t =

[
pd,t − p f ,t, st,�pd,t, id,t, i f ,t, cpt

]
without loss of information. The result of H2 indicates that

price homogeneity can be rejected; that is, the transformation
(

pd − p f

)
t

is not statistically supported.
Finally, the result of hypothesis H3 indicates that the restricted linear trend is no long-run excludable.

• A known vector in τ̃

In this case, a variable or relationship can be tested to be I(1) in the I(2) model. The restriction is
expressed as τ̃ = (b, b⊥ϕ) where b is a p1 × n known vector, n is the number of known vectors in τ̃,
and ϕ is a matrix of unknown parameters. The test is asymptotically χ2 ((p1 − r − s1) n) distributed
unless b is also a vector in β̃ (Johansen 1996). Thus, b ∈ sp

(
β̃
)

must be checked to ensure the correct
distribution of the test. If the hypothesis τ̃ = (b, b⊥ϕ) is not rejected and b /∈ sp

(
β̃
)
, then the analyzed

variable, or relationship, can be considered I(1).
The lower part of Table 4 reports the test results20 of which hypotheses H4 to H7 and H9 are

consistent with the CVAR scenario based on IKE under which nominal exchange rate, prices, relative
prices, and nominal interest rate are likely to behave as a near I(2) process. According to IKE, the real
exchange rate is likely to behave as a near I(2) process, but the result of H8 indicates that the hypothesis
of the real exchange rate being I(1) cannot be rejected based on a p-value of 0.11. This is, nevertheless,
consistent with the high persistence observed in the real exchange rate. In addition, the result of H10

indicates that the copper price is likely to behave as near I(2).

20 The hypothesis bi ∈ sp
(

β̃
)

was rejected in all cases, except for the Chilean interest rate based on χ2 (5) = 10.42 with a
p-value of 0.06 and for the interest rate spread based on χ2 (5) = 6.80 with a p-value of 0.23. Thus, the hypotheses id,t ∼ I(1)
and

(
id,t − i f ,t

) ∼ I(1) are not presented because the distribution of the test is not necessarily χ2.
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Table 4. Restrictions on τ̃.

Hypothesis Matrix Restriction Design Distribution p-Value

PPP restriction
H1 : R′

1τ̃ = 0
R′

1 =

[
1 1 0 0 0 0 0
1 0 1 0 0 0 0

]
χ2 (8) = 40.70 0.00

Price homogeneity
H2 : R′

2τ̃ = 0
R′

2 = [1, 1, 0, 0, 0, 0, 0] χ2 (4) = 38.66 0.00

Excludable trend
H3 : R′

3τ̃ = 0
R′

3 = [0, 0, 0, 0, 0, 0, 1] χ2 (4) = 39.14 0.00

Chilean price
H4 : τ̃ = (b1, b1⊥ϕ)

b1 = [1, 0, 0, 0, 0, 0, 0] χ2 (3) = 25.15 0.00

US price
H5 : τ̃ = (b2, b2⊥ϕ)

b2 = [0, 1, 0, 0, 0, 0, 0] χ2 (3) = 27.19 0.00

Relative price
H6 : τ̃ = (b3, b3⊥ϕ)

b3 = [1,−1, 0, 0, 0, 0, 0] χ2 (3) = 24.74 0.00

Nominal exchange rate
H7 : τ̃ = (b4, b4⊥ϕ)

b4 = [0, 0, 1, 0, 0, 0, 0] χ2 (3) = 14.15 0.00

PPP gap
H8 : τ̃ = (b5, b5⊥ϕ)

b5 = [1,−1,−1, 0, 0, 0, 0] χ2 (3) = 6.01 0.11

US interest rate
H9 : τ̃ = (b6, b6⊥ϕ)

b6 = [0, 0, 0, 0, 1, 0, 0] χ2 (3) = 10.07 0.01

Copper price
H10 : τ̃ = (b7, b7⊥ϕ)

b7 = [0, 0, 0, 0, 0, 1, 0] χ2 (3) = 28.25 0.00

5.2.2. Testing Identifying Restrictions on the Long-Run Structure

To identify plausible economic relationships among the variables, a set of restrictions, Hβ̃ : β̃ =

(H1ϑ1, . . . , Hrϑr), must be imposed on β̃ = τ̃ρ̃, where Hi is a p1 × mi restriction matrix, ϑi is a mi × 1
vector of unknown parameters, and mi is the number of free parameters in β̃i. The test is asymptotically
χ2 distributed with degrees of freedom equal to ∑r

i=1 ((p1 − mi)− (r − 1)) (Johansen et al. 2010).
Furthermore, to understand the persistence observed in the variables in the system, it is useful

to study the signs and significance of the coefficients in β, d, and α. Juselius and Assenmacher (2017)
suggest that the different types of adjustment for the variable xi,t, i = 1, 2, . . . , p, may be illustrated
using the expression �2xit = ∑r

j=1 αij ∑
p
m=1

(
βmjxm,t−1 + dmj�xm,t−1

)
+ · · ·+ εit, which corresponds

to the i-th equation in the baseline empirical model (25). The error correcting- and error-increasing
behavior of the variables can be analyzed using the following rules:

• If dijβij > 0 (given αij �= 0), then �xi,t is equilibrium error correcting to β′
jxt−1 (medium run).

• If αijβij < 0, then the acceleration rate �2xi,t is equilibrium error correcting to the polynomially

cointegrated relation
(

β′
jxt−1 + d′

j�xt−1

)
(long run).

In all other cases, there is equilibrium error increasing behavior.
The selected case, (r = 2, s1 = 2, s2 = 1), entails two stationary polynomially cointegrating

relationships, β̃
′
i x̃t + d̃′

i�x̃t, where β̃
′
i = ρ̃′

iτ̃
′
i and i = 1, 2. Table 5 reports an identified long-run

structure on β̃, together with unrestricted estimates of d̃ and restricted estimates of α, which could not
be rejected based on χ2 (9) = 6.75 with a p-value of 0.66.21 To facilitate interpretation, a coefficient in
boldface (italics) stands for equilibrium error-correcting (increasing) behavior. Table 3 showed that all
eigenvalues are inside the unit circle, so that the system is stable and any error-increasing behavior is
compensated by error-correcting behavior.

21 The estimated long-run β̃ structure is identified. That is, r − 1 restrictions were imposed, at least, on each of the vectors.
See Doornik and Juselius (2017) for further information.
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Table 5. The estimated long-run β̃ structure
(
χ2(9) = 6.75 [0.66]

)
. t-values are given in (·),

“-” is a zero restriction. A coefficient in boldface (italics) stands for equilibrium error-correcting
(increasing) behavior.

pd,t p f ,t st id,t i f ,t cpt t × 103 c

β̃
′
1 −0.01

(−3.9)
0.01
(3.9)

0.01
(3.9)

1.00 −1.00 0.002
(2.8)

-

d̃′
1 −0.52

(−8.5)
−0.07
(−8.5)

−0.44
(−8.6)

0.0006
(8.5)

0.0006
(8.6)

−0.03
(−1.8)

−0.06
(−4.2)

α′
1 −0.36

(−3.0)
- - −0.26

(−5.9)
-

β̃
′
2 −0.03

(−14.2)
0.28
(17.4)

- 1.00 −1.00 - −0.47
(−16.3)

d̃′
2 −1.21

(−8.4)
−0.17
(−8.5)

−1.01
(−8.4)

0.001
(8.3)

0.001
(8.7)

−0.05
(−1.6)

−1.13
(−16.8)

α′
2 0.58

(9.7)
0.05
(3.0)

0.37
(2.5)

0.06
(3.0)

-

The first polynomially cointegrating relationship, β̃
′
1 x̃t + d̃′

1�x̃t, is interpreted as the UA-UIP
condition:22 (

id − i f

)
t
= 0.01pppt − 0.002cpt + 0.52�pd,t − 0.0006�id,t + 0.06 + v̂1,t (27)

where v̂1,t ∼ I(0) is the equilibrium error. The equation shows that the interest rate spread
has been positively co-moving with the PPP gap—a measure of the risk premium—and the
copper price. This relationship resembles the UA-UIP condition, Equation (12), where the term
(0.51�pd − 0.0007�id)t is likely to be related to the expected change in the nominal exchange rate and
to a risk premium. Moreover, Equation (27) indicates that the uncovered interest parity is stationary
after being adjusted by the PPP gap—the uncertainty premium—and copper price.

Equation (27) shows that, exactly as the IKE theory predicts, movements in the interest rate
spread co-move with swings in the real exchange rate. That is, the interest rate spread moves in a
compensatory manner to restore the equilibrium in the product market when the nominal exchange
rate has been away from its benchmark value.

The copper price also enters the relationship that describes the excess returns under IKE, though
with a small coefficient. A higher copper price increases the dollar supply in Chile, generating an
appreciation of the exchange rate and, consequently, a larger PPP gap. This indicates that the Chilean
economy might be affected by the so called commodity super-cycle (Erten and Ocampo 2013) through
the effects that fluctuations in the copper price have on the real exchange rate and, consequently,
on competitiveness.

The adjustment coefficients show that the Chilean interest rate is equilibrium error correcting
in the long and medium run. The domestic price is equilibrium error increasing in the long run but
equilibrium error correcting in the medium run. Thus, if the domestic price is above its long-run
benchmark value, in the medium run both the domestic inflation rate and changes in the domestic
interest rate will tend to increase, generating an increase in the equilibrium error term v̂1,t. In the long
run, however, the domestic price will tend to increase, which generates a decrease in v̂1,t. To restore
the long-run equilibrium, the domestic interest rate starts increasing.

The second polynomially cointegrating relationship, β̃
′
2 x̃t + d̃′

2�x̃t, can be interpreted as a
long-run relationship between the interest rate spread, trend-adjusted prices, and changes in the
nominal exchange rate and is expressed as:

22 When αij = 0, the corresponding dij is not shown in Equations (27) and (28). Furthermore, only dij coefficients with a
|t-value| ≥ 2.5 are shown.

77



Econometrics 2017, 5, 29

(
id,t − i f ,t

)
= 0.03p̃d,t − 0.28p̃ f ,t + 1.21�pd.t + 0.17�p f ,t + 1.01�st − 0.001�id,t + 1.13 + v̂2,t (28)

where p̃ f ,t and p̃d,t are, respectively, the trend-adjusted prices in US and Chile and v̂2,t ∼ I(0) is the
equilibrium error. The equation shows that the interest rate spread is positively co-moving with
the relative trend-adjusted level of prices, domestic and foreign inflation rates, and changes in both
nominal exchange rate and domestic interest rate. This relationship might describe a central bank’s
reaction rule.

The Chilean trend-adjusted price, p̃d,t, might tentatively be interpreted as a proxy for a long-run
indicator of the inflation target. That is, given the US interest rate and US trend-adjusted price,
if the domestic price is above (below) its long-run trend, the central bank may use contractionary
(expansionary) monetary policy that increases (decreases) the domestic interest rate. The above
argument may be used to explain the relationship between the interest rate spread and the changes in
the nominal exchange rate. For example, the central bank may use contractionary monetary policy to
counteract inflationary pressures due to exchange rate depreciation.

The adjustment coefficients show that when the interest rate spread has been under its long-run
value, the domestic inflation rate and the domestic interest rate will tend to decrease in the medium
run. Furthermore, the domestic price is equilibrium error correcting to the central bank’s reaction rule
in the long run, whereas the domestic interest rate is equilibrium error increasing in the long run. Then,
if the interest rate spread is under its long-run equilibrium value, the domestic interest rate will tend
to decrease. This generates further decreases in the equilibrium error v̂2,t. However, at the same time,
the domestic price will tend to decrease, so it starts to restore the equilibrium.

Figure 5 shows the graph of the polynomial cointegration relationships and despite some signs of
volatility change, they seem mean-reverting.

(a)

(b)

Figure 5. Polynomial cointegrating relationships. The graphs are corrected by short-run effects
(for further details, see Juselius (2006)). (a) β̃

′
1 x̃t + d̃′

1�x̃t: UA-UIP condition; (b) β̃
′
2 x̃t + d̃′

2�x̃t: Central
bank reaction’s rule.
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5.2.3. The Common Stochastic Trends

Table 6 reports the estimated I(2) trend, α⊥2, and its respective estimated loading, β̆⊥2. The former
may be interpreted as a relative price shock because it loads into prices and exchange rate rather than
into exchange rate and interest rates. The estimate of α⊥2 suggests, however, that only shocks to the
US price have generated the I(2) trend. The coefficients in β̆⊥2 indicate that the I(2) trend loads into
nominal exchange rate and relative prices with coefficients of the same sign but different magnitude,
which is consistent with the results of hypotheses H4, H5, and H7 in Table 4 that prices and exchange
rate behave as a near I(2) process. Equations (29) and (30) show, respectively, the I(2) properties of
the relative price and PPP gap.

The relative price is expressed as:

(
pd,t − p f ,t

)
= (0.25 − 0.03) α′

⊥2

t

∑
i=1

i

∑
s=1

ε̂s. (29)

The loading coefficients to the Chilean CPI and US CPI have the same sign but not the same size.
Its difference, 0.22, has to be significant because the result of hypothesis H6 in Table 4 showed that
the relative price is likely to behave as a near I(2) process. The positive loading is consistent with the
upward sloping trend in Figure 1a.

The PPP gap is expressed as:

(
pd,t − p f ,t − st

)
= (0.25 − 0.03 − 0.22) α′

⊥2

t

∑
i=1

i

∑
s=1

ε̂s. (30)

The long-run stochastic trend in relative prices and nominal exchange rate cancels out. This is
consistent with both the result of hypothesis H8 in Table 4, which showed that deviations from PPP
are likely to behave as an I(1) process, and the long swings in Figure 1b.

The MA representation suggests that the Chilean economy is primarily affected by external shocks,
which is natural when a small and open economy is participating in global markets. Chile has one
of the most open economies in the world and also a developed financial market that is almost fully
integrated into international markets.

Table 6. MA representation. (·) is the t-value. cij are constant terms.

⎡⎢⎢⎢⎢⎣
pd
p f
s
id
i f

⎤⎥⎥⎥⎥⎦
t

=

⎡⎢⎢⎢⎢⎣
0.25
0.03
0.22
−0.00
−0.00

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

β̆⊥2

[
α′
⊥2 ∑t

i=1 ∑i
s=1 ε̂s

]
+

⎡⎢⎢⎢⎢⎣
c11 c12 c13
c21 c22 c23
c31 c32 c33
c41 c42 c43
c51 c53 c53

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ α′

⊥2 ∑t
i=1 ε̂i

α′
⊥1,1 ∑t

i=1 ε̂i
α′
⊥1,2 ∑t

i=1 ε̂i

⎤⎥⎦+

⎡⎢⎢⎢⎢⎣
b11
b21
b31
b41
b51

⎤⎥⎥⎥⎥⎦ t

α′
⊥2 =

[
−0.07
(−0.7)

1.00 −0.03
(−0.3)

0.16
(1.1)

0.33
(0.3)

]

6. Conclusions

The long and persistent swings of the real exchange rate have for a long time puzzled economists.
Recent models that build on IKE seem to provide theoretical explanations for this persistence.

This paper has analyzed the empirical regularities behind the PPP gap and the uncovered
interest rate parity in Chile. The results, based on an I(2) cointegrated vector autoregressive model,
gave support for the theoretical exchange rate model based on imperfect knowledge, which assumes
that individuals use a multitude of forecasting strategies that are revised over time in ways that
cannot be fully prespecified. This is further supported by the results that showed a complex and fairly
informative mix of error-increasing and error-correcting behavior.
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The results showed that, exactly as the IKE theory predicts, movements in the interest rate
spread co-move with swings in the real exchange rate. That is, the interest rate spread moves in a
compensatory manner to restore the equilibrium in the product market when the real exchange rate has
been away from its long-run value. The copper price also explain the deviations of the real exchange
rate from its long-run equilibrium value. Copper is the main export commodity in Chile and accounts
for a large share in total exports; its price fluctuations seems to affect the real exchange rate through its
effect on the exchange market.

Altogether, the results indicate that when the interest rate spread is corrected by the uncertainty
premium (the PPP gap) and by the fluctuations in the copper price one gets a stationary
market-clearing mechanism.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Data

Table A1 describes the variables used in this study, their sources, notations, and transformations.

Table A1. Data Description.

Variable Description Source Transformation

pd,t Chilean Consumer Price Index Central Bank of Chile Natural logarithm

p f ,t US Consumer Price Index
Bureau of Labor

Statistics, United States
Natural logarithm

st
Nominal exchange rate (Chilean pesos
per US dollar)

Central Bank of Chile Natural logarithm

id,t

1-year Chilean average weighted rates of
all transactions in the month by financial
commercial banks in Chilean pesos
(nominal). Nominal interest rates are
annualized (base 360 days) using the
conversion of simple interest.

Own elaboration based
on data from the Central

Bank of Chile

The original variable
was divided by 1200 to

make it comparable
with monthly data

i f ,t
United States interest rate, Constant
Maturity Yields, 1 Year, Average, USD

Own elaboration based
on data from the

International
Monetary Fund

The original variable
was divided by 1200 to

make it comparable
with monthly data

cpt Real copper price (USD cents./lb.)
Comisión Chilena

del Cobre
Natural logarithm

Appendix B. Lag-Length Selection

Table A2 reports the lag-length selection and lag reduction test. The upper part suggests that
k = 2 should be selected based on SC and H-Q criteria. However, there is evidence of autocorrelation
of order 1 and 2 when k = 2. If k = 3 is selected, the hypotheses of autocorrelation of orders 1 and
3 can be rejected. The lower part of Table A2 shows that only the reduction from 4 to 3 lags cannot
be rejected.

Table A2. Lag-length selection model and lag reduction test.

Lag-Length Selection

Lag: k SC H-Q LM(1) LM(k)

4 −63.42 −65.35 0.34 0.52
3 −63.97 −65.62 0.13 0.38
2 −64.28 −65.71 0.05 0.04
1 −64.02 −65.20 0.00 0.00
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Table A2. Cont.

Lag Reduction

Reduction from - to Test p-Value

VAR(4) - VAR(3) χ2 (36) = 41.55 0.24
VAR (3) - VAR(2) χ2 (36) = 95.74 0.00
VAR(2)-VAR(1) χ2 (36) = 291.88 0.00

SC: Schwarz Criterion, H-Q: Hannan-Quinn Criterion; LM(i) stands for a LM-test for autocorrelation of order
i; a number in boldface stands for the lowest criteria value.

Appendix C. Dummy Variables

In model (25), nine dummies were incorporated. Table A3 describes the economic facts that justify
the dummies, and Table A4 reports its estimated coefficients.

Table A3. Dummy justification.

Dummy Variable Justification

P 1990:9 +pd
The Central Bank of Chile started the partial implementation of an
inflation targeting system

T 1990:11 +id INA

P 1993:12 −id INA

P 1998:9 +id
Central Bank of Chile increased the real monetary policy interest rate
from 8.5% to 14%

P 2005:9 +p f
Energy costs increased sharply. Overall, the index for energy
commodities (petroleum-based energy)

P 2006:04 +cp The copper price increased in 30% in April triggered by the lower
inventories and higher demand

P 2008:10 −p f , +s
The energy index fell 8.6% and the transportation index fell in 5.4% in
October . The nominal exchange rate depreciated 12% due to the dollar
strengthening in international markets

P 2008:11 −p f
The overall CPI index decreased mainly due to a decrease in energy
prices, particularly gasoline .

P 2010:2 +s, +pd
The nominal exchange rate depreciated due to changes in the forward
position of the pension funds

P and T stand for a permanent dummy, (0, . . . , 0, 1, 0, . . . , 0), and a transitory dummy, (0, . . . , 0, 1,−1, 0, . . . , 0),
respectively. The signs “−” and “+” stand for decreases and increases, respectively; INA official information
regarding the variable increase or decrease is not available.

Table A4. Estimated outlier coefficients.

Dummy �2 pd �2 p f �2s �2cp �2id �2i f

P 1990:9 0.01
(5.08)

* * * * *

T 1990:11 * * * * 0.02
(18.44)

*

P 1993:12 * * * * −0.009
(−5.68)

*

P 1998:9 * * * * 0.005
(3.32)

*

P 2005:9 * 0.01
(4.62)

* * * *

P 2006:4 * * * 0.21
(3.98)

* *

P 2008:10 * −0.01
(−5.361)

0.14
(8.48)

−0.25
(−4.54)

* *

P 2008:11 * −0.01
(−6.73)

* * * *

P 2010:2 0.01
(2.88)

* 0.07
(4.18)

* * *

.

(·) is the t-value. * stands for a |t-value| ≤ 2.0; P and T stand, respectively, for a permanent and a transitory dummy.
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Abstract: The primary contribution of this paper is to establish that the long-swings behavior
observed in the market price of Danish housing since the 1970s can be understood by studying
the interplay between short-term expectation formation and long-run equilibrium conditions.
We introduce an asset market model for housing based on uncertainty rather than risk, which under
mild assumptions allows for other forms of forecasting behavior than rational expectations. We test
the theory via an I(2) cointegrated VAR model and find that the long-run equilibrium for the
housing price corresponds closely to the predictions from the theoretical framework. Additionally,
we corroborate previous findings that housing markets are well characterized by short-term
momentum forecasting behavior. Our conclusions have wider relevance, since housing prices
play a role in the wider Danish economy, and other developed economies, through wealth effects.

Keywords: asset pricing; cointegration; I(2) analysis; housing market; imperfect knowledge;
Knightian uncertainty; long swings
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1. Introduction

Changes in housing prices, and in turn changes in housing wealth, exert substantial effects on
the economy: increased housing wealth is strongly associated with increased aggregate consumption,
cf. Case et al. (2005), and vice versa, cf. Case et al. (2013). Housing wealth has (together with pension
wealth) also been found to be a primary driver of the share of total wealth accruing to the middle class,1

cf. Saez and Zucman (2016). For example, higher housing prices have historically been associated with
the middle class owning a greater share of total wealth, and thereby with a lower level of inequality.
Consequently, understanding the drivers and dynamics of housing prices is of material importance to
economists and policy makers alike.

The market price of housing has a tendency to undergo prolonged periods of increases that
outpace both incomes and other prices, see e.g., Case et al. (2003) for a study of the US housing
market. We have observed similar long-swings patterns in the Danish housing market, see Figure 1.2

The Danish national price index for housing increased by 65% between 2003:Q1 and 2007:Q4, while
the general price level increased by only 8% over the same period, meaning that housing outpaced
inflation by 57 percentage points. In 2008, the housing boom turned to bust as the global economy fell
in to recession. Danish house prices fell by 17% between 2008:Q1 and 2012:Q4, while the general price
level increased by 10%, closing most of the gap created during the boom years. Moreover, prolonged

1 Defined by the authors as the share of total wealth owned by the bottom 90% of the population.
2 The data we use has been provided by the Danish Central Bank. We refer to Section 3.1 for further details.
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deviations are not just a phenomenon of the relatively recent past. Housing price changes have either
persistently outpaced or fallen behind consumer price inflation since the late 1970s. For example,
housing prices slumped during the late 1980s and early 1990s, with inflation outpacing house price
increases by 43 percentage points between 1986:Q1 and 1993:Q2. The house price increases then
accelerated and had completely closed the gap by 1998:Q2.

House prices (LHA) Consumer prices (RHA) 
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Figure 1. Danish house and consumer price indices between 1971:Q1 and 2015:Q3, log-levels.

Given that housing prices play an important role in the wider economy, the determinants of the
market price of housing have been the focus of numerous studies. In this paper, we focus on the
approach which treats housing as a carry-generating physical asset that can be reproduced at the
cost of construction, cf. Poterba (1984). This approach falls under the general asset pricing theory,
which typically represents the uncertainty associated with the future value of an asset in the form of
a probability distribution, cf. e.g., Björk (2009). Investors’ expectation of the future value of the asset is
then assumed to follow the mathematical expectation with respect to this probability distribution. This
is known as rational expectations in the wider context of economic modelling, cf. e.g., Muth (1961)
and Sargent and Wallace (1975). However, in the case of housing, several studies from the US have
found evidence in support of individual investors forming their expectations based on extrapolation
of recent price changes, see Case and Shiller (1989), Poterba (1991), Case et al. (2003), Shiller (2008),
and Piazzesi and Schneider (2009). As remarked in these studies, the observed momentum-based
expectation formation appears incompatible with the assumption of rational expectations.

Some have argued that rational expectations-based approaches conflate the fundamentally
different notions of risk and uncertainty, where the former may be expressed as a probability
distribution while the latter cannot, see e.g., Savage (1951), Rutherford (1984), Lawson (1988) and
Binmore (2009). This distinction has important implications for the appropriateness of rational
expectations, and has gained traction with central bank economists in recent years, see e.g., King (2004),
Carney (2016) and ECB (2016). More generally this type of thinking has led to alternative paradigms
for expectation formation. For example, Akerlof and Shiller (2009) argue that investor psychology is
driven by “animal spirits” such as confidence, money illusion and narratives. Frydman et al. (2007)
advances the imperfect knowledge economics theory, in which individuals change their forecasting
strategies in ways that need not be given by expectations with respect to a model-implied probability
distribution. Elsewhere in the field of psychology, large-scale forecasting experiments have led to the
finding that while “forecasting is often viewed as a statistical problem, [...] forecasts can be improved
with behavioural interventions [... such as] training, teaming, and tracking.”, cf. Mellers et al. (2014),
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which suggests that, in practice, expectation formation for macroeconomic outcomes goes beyond the
problem of identifying an appropriate statistical model.

In this paper we seek to explain the long-swings dynamic in Danish housing prices (Figure 1).
We do this by developing an asset market model based on uncertainty rather than risk, which allows
other forms of forecasting behavior than rational expectations, such as momentum-based forecasting
(cf. e.g., Case et al. (2003)). However, since we do not have survey data of individual expectations in
the Danish housing market, we introduce the assumption that the expectation errors are stationary
(Assumption A in Juselius (2017b)). Additionally, we introduce the notion of a gap effect as a measure
of the required uncertainty premium, cf. Frydman et al. (2007), specified in terms of Tobin’s q,
cf. Tobin (1969). This uncertainty-based asset market approach produces a set of testable hypotheses
on the long-run relationships governing the Danish housing prices, which we confront with the data
via a cointegrated vector autoregressive (CVAR) model, see e.g., Juselius (2007) and Johansen (1996).
The CVAR model provides a general-to-specific framework, which allows us to start the empirical
analysis with a sufficiently well-specified, unrestricted VAR model of the Danish housing market,
and then impose restrictions corresponding to hypotheses arising from the theoretical model, cf. e.g.,
Hoover et al. (2008). Importantly, this approach also allows us to infer the process by which the
market adjusts when out of equilibrium; specifically, the interplay between long-run and medium-run
dynamics may be able to explain long swings around the equilibrium, cf. Juselius and Assenmacher
(2016, Section 5) .

The paper proceeds as follows: in Section 2, we introduce the theoretical framework for the
uncertainty-based no-arbitrage condition, and derive a set of empirically testable hypotheses. Section 3
specifies an I(2) CVAR model and tests the hypotheses presented in Section 2. Finally, we conclude
in Section 4.

2. The Theoretical Framework

We here develop an uncertainty-based theoretical framework for housing markets with the
purpose of guiding us to a set of testable hypotheses on the long-run equilibrium for housing prices.
Our framework is based on uncertainty rather than risk for the reasons outlined in Section 1, and the
aim is to develop a model which is simple, yet realistic enough to be empirically relevant. In the
following we: introduce the classic deterministic asset-market approach to the housing market in
Section 2.1; incorporate risk into the asset market model in Section 2.2; further amend the model to allow
for uncertainty in Section 2.3; and finally we derive testable hypotheses from the uncertainty-based
model in Section 2.4. We will confront these with historical data for the Danish housing market
in Section 3.

2.1. An Asset-Market Approach to Housing

We follow the asset-market approach to modeling the price of residential housing, which was
originally introduced in Poterba (1984), and rests on the premise that the price of an asset should be
characterized by the absence of arbitrage opportunities. This approach centers on the equilibrium
condition that individuals invest in housing until the marginal value of housing equals its cost. In line
with Poterba (1984), we make several simplifying assumptions to make this condition explicit: at each
point in time t, the housing stock depreciates at a rate of δt; housing is taxed at a rate of μt; all investors
face a marginal income tax rate θt, from which they may deduct property taxes; investors may borrow
or lend any amount at a nominal interest rate it. We assume for ease of presentation that each of these
quantities are constant between periods.

The cost of a single unit of housing with nominal price, denoted Ph,t (not in logarithmic terms),
is ωtPh,t, where ωt is the sum of after-tax depreciation, property taxes, mortgage interest payments,
and the opportunity cost of owning housing stock, minus the nominal capital gain

ωt = δt + (1 − θt) (it + μt)− πh,t , (1)
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where πh,t := dPh,t/Ph,tdt. The benefit of owning a unit of housing is the nominal rental income,
Rt, produced (or saved in the case of owner-occupied housing). In the housing market equilibrium,
investors (including home owners) will price housing such that the marginal cost equals the marginal
benefit of housing; formally Rt = ωtPh,t, which we can rewrite as the first-order differential equation
for changes in the nominal housing price

dPh,t = ctPh,tdt , (2)

where we have defined the user cost rate ct := δt + (1 − θt) (it + μt)− Rt/Ph,t. We assume that the
ratio Rt/Ph,t is constant to simplify the exposition. For a given initial house price Ph,0, Equation (2)
determines the nominal capital gain needed to induce investors to hold the existing housing stock.

2.2. A Risk-Based Asset-Market Approach

We next extend the no-arbitrage condition given by Equation (2) to a simple setting involving
market risk. Specifically, we consider the simple case where the price of housing is given by the
geometric Brownian motion

dPh,t = (ct + rpt) Ph,tdt + ωtPh,tdWt , (3)

where rpt denotes a risk premium, dWt is a Wiener process under the physical measure, denoted P,
and ωt denotes the volatility of the house price changes. Investors require the risk premium rpt to
undertake the risk ωt; the larger the risk, the larger the required premium.

Omitting here the full details, the fundamental theorem of asset pricing, see e.g.,
Björk (2009, Section 5.5), implies that if, and only if, there is no arbitrage in the housing market,
then the current price of housing, Ph,t, must satisfy

Ph,t = EQ
[
Ph,t+1

∣∣ Ft
]

e−ct , (4)

where Q denotes the risk-neutral measure. That is, Equation (4) states the current price of housing
is equal to the discounted expected future price under the risk-neutral measure, conditional on the
available information, Ft.

Under standard regularity conditions, Girsanov’s theorem tells us we can re-weigh the expectation
in Equation (4) from the risk-neutral measure, Q, to the physical measure, P. If the investor preferences
are not risk neutral then P will be different from Q, such that an additional term compensating for
taking on market risk enters the discount factor

Ph,t = EP
[
Ph,t+1

∣∣ Ft
]

e−ct−rpt . (5)

Next, we apply the log-transformation to Equation (5).3 Noting that we have assumed the user cost
rate and risk premium to be constant between periods, we have that

pe,P
h,t+1|t − ph,t = ct + rpt , (6)

where we have denoted the logarithm of the expected price by pe,P
h,t+1|t := log EP

[
Ph,t+1

∣∣ Ft
]
.

Equation (6) constitutes what we will refer to as the risk-adjusted no-arbitrage condition from
standard asset pricing theory. This equation states that for there to be no arbitrage opportunities in the
housing market, the price of housing must be given by the present value of the expected price one
period in the future, where the expectation is with respect to the physical measure P, which follows

3 We generally let lower case letters denote logarithmic values, e.g., ph,t := log(Ph,t). The exception being rates, e.g., ct.
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from our simple model given by Equation (3). The discount factor reflects the opportunity cost under
the physical measure, i.e., the user cost rate plus a premium demanded for undertaking risk.

While this risk-based asset price model is a stepping stone on our way to introduce uncertainty,
we note that richer and more realistic dynamics are also possible in risk-based settings. For example,
the P-dynamics in Equation (3) may depend on the other variables such as net investments. We will
not pursue these here.

2.3. An Uncertainty-Based Asset-Market Approach

If the housing market is better characterized by uncertainty than risk, then it becomes necessary to
revisit the no-arbitrage condition in Equation (6). Recall that recognizing that a setting involves
uncertainty implies that it is not feasible to attribute the known outcomes with unambiguous
probabilities; in turn, the mathematical expectation operator in Equation (6) is not defined. We assume
that investors form subjective expectations under uncertainty, but these do not necessarily follow
from a model such as Equation (3). We return to the expectations formation under uncertainty in
Section 2.3.1. For now, we simply denote the subjective expectations of the future house prices given
the information available at time t as pe

h,t+1|t. Based on this, we re-formulate Equation (6) as

pe
h,t+1|t − ph,t = ct + upt , (7)

where upt denotes an uncertainty premium. We will refer to Equation (7) as the uncertainty-adjusted
no-arbitrage (UANA) condition. This equation states that for there to be no arbitrage in the
housing market, the subjective expectation of the one-period return must equal the user cost rate
plus a premium compensating for undertaking uncertainty, which is conceptually similar to the
risk-adjusted no-arbitrage condition in Equation (6), except in Equation (7) the expectations are not
generated by solving a stochastic model.

2.3.1. Expectation Formation under Uncertainty

Investors form subjective expectations of future house price changes, but these expectations are
inherently unobservable. To relate the expectations in Equation (7) to the realized prices, we introduce
Assumption A from Juselius (2017a).

Assumption A: The expectation errors of the future price levels, defined as

et+1 := pe
h,t+1|t − ph,t+1 , (8)

are stationary; more precisely, et+1 ∼ I(0).

This assumption implies that investors are able to assess the order of integration of house prices,
ph,t, such that the expectation errors are stationary, but not necessarily uncorrelated over time.
This specification of investors’ expectation formation is far less restrictive than rational expectations,
and so does not preclude e.g., momentum-based forecasting.

2.3.2. The Uncertainty Premium and the Gap Effect

In a similar type of uncertainty-based asset pricing framework, Frydman et al. (2007) have
introduced the notion of a gap effect to characterize the uncertainty premium. In general terms, the gap
effect is defined as the difference between the current asset price and its perceived long-run fair value.
In the context of housing, the Tobin’s q measure, which is the ratio of the price to reproduction cost,
cf. Tobin (1969), is an appropriate long-term benchmark. In the following, we will refer to Tobin’s q in
logarithmic terms, i.e., the difference ph,t − pb,t. Intuitively, if the price of a unit of housing is above the
cost of building such a unit, then there is an incentive to construct and sell new houses until either
the increased demand for construction supplies and labor pushes the cost up, the increased supply of
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homes pushes the price of housing down, or a combination of both. All else equal, this dynamic will
tend to pull the Tobin’s q ratio towards unity in the long run.

We specify the uncertainty premium as being proportional to Tobin’s q (in logarithmic terms),
measured using the nominal housing index, ph,t, and the nominal price index for construction costs,
pb,t. Specifically,

upt = σ(ph,t − pb,t) , (9)

where σ is a positive scalar; that is, the further in excess of a Tobin’s q value of one, the higher the
required premium. When Tobin’s q is less than unity, the premium will be negative, i.e., the required
expected return will be less than the user cost rate, ct. Substituting Equation (9) into the UANA
condition in Equation (7) yields,

pe
h,t+1|t − ph,t = ct + σ(ph,t − pb,t) . (10)

In conclusion, introducing uncertainty in terms of subjective expectations and potential loss,
as measured by the gap effect, results in an equilibrium condition remarkably similar to that arising
from the deterministic framework originally introduced in Poterba (1984), but with an additional term
accounting for the uncertainty premium as measured by Tobin’s q. We now turn our attention to the
testable hypotheses arising from the above framework.

2.4. Testable Hypotheses

We use Assumption A combined with with the gap effect to restate the UANA condition in terms
of realized, contemporary price changes. We first rewrite the left-hand side of Equation (10) as

pe
h,t+1|t − ph,t = Δph,t + Δ2 ph,t+1 + et+1 , (11)

noting that Δ2 ph,t+1 = Δph,t+1 −Δph,t. If the price of housing ph,t is non-stationary in the sense that it is
integrated of order one or two, then the term Δ2 ph,t+1 will be stationary. As such, under Assumption A,
Equations (10) and (11) suggest the cointegration relation

Δph,t = ct + σ(ph,t − pb,t) + wt , (12)

where wt := − (Δ2 ph,t+1 + et+1
) ∼ I(0) denotes stationary deviations from the long-run equilibrium.

Considering the potential for each of the variables ph,t, pb,t and ct to be either I(1) or I(2),
there are eight different potentially relevant scenarios. We here limit our attention to scenarios
where cointegration to stationarity remains a possibility, and where the price indices have the same
order of integration. This leaves three different relevant scenarios.

In the first scenario, we have that ph,t ∼ I(1), pb,t ∼ I(1) and ct ∼ I(1), such that

Δph,t
I(0)

= ct
I(1)

+ σ(ph,t − pb,t
I(1)

) + wt
I(0)

, (13)

where the user cost rate, ct, cointegrates with Tobin’s q from I(1) to stationarity.
In the second scenario, if ph,t ∼ I(2), pb,t ∼ I(2) and ct ∼ I(1) then

Δph,t
I(1)

= ct
I(1)

+ σ(ph,t − pb,t
I(1)

) + wt
I(0)

, (14)

where the house and construction prices, ph,t and pb,t, cointegrate from I(2) to I(1), such that Tobin’s q
is I(1) and cointegrates with the user cost rate, ct, and the house price changes Δph,t to stationarity.
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Third, and last, if ph,t ∼ I(2), pb,t ∼ I(2) and ct ∼ I(2) then

Δph,t
I(1)

= ct
I(2)

+ σ(ph,t − pb,t
I(2)

) + wt
I(0)

, (15)

where the user cost rate, ct, cointegrates with Tobin’s q from I(2) to I(1), which in turn cointegrates
with the changes in house prices, Δph,t to stationarity. Only one, if any, of the three scenarios will find
empirical support. We will introduce the cointegrated VAR model to investigate which one in the
following section.

3. Specifying an I(2) CVAR Model for the Danish Housing Market

We now turn our attention to confronting the hypotheses derived from the theoretical framework
presented in Section 2 with historical data for the Danish housing market. Specifically, to investigate
the empirical relevance of the cointegrating relations in Section 2.4, we here introduce the I(2)
cointegrated vector autoregressive (CVAR) model. The method applied to arrive at a well-specified,
properly identified system is outlined in Juselius (2007), while a mathematical exposition of the
model, estimation and inference can be found in Johansen (1996). An appealing feature of the CVAR
framework is that through testing and subsequently imposing restrictions on an unrestricted VAR,
such as rank restrictions, zero parameter restrictions, and other restrictions, we arrive at a more
parsimonious model with economically interpretable coefficients. As such, specifying a CVAR with
an over-identified long-run structure adheres to the general-to-specific procedure outlined in e.g.,
Campos et al. (2005).

In the following we: introduce the information set in Section 3.1; define the I(2) cointegrated VAR
model in Section 3.2; develop a sufficiently well-specified unrestricted VAR model in Sections 3.3–3.5;
determine the cointegration rank in Section 3.6; test the theory-derived hypotheses and interpret
the over-identified long-run structure of the cointegrated VAR model in Sections 3.7–3.9; finally,
we summarize the empirical findings in Section 3.10.

3.1. The Information Set

Our empirical analysis is based on variables that are part of the “MONA” database maintained
by the Danish Central Bank, cf. Danmarks Nationalbank (2003). This database contains quarterly
observations of variables for the Danish economy from 1971:Q1 to 2015:Q3.4 We define the information
set for our empirical analysis as: the nominal price index for goods, measured as the GDP deflator,
denoted pc,t; the nominal price index for construction costs, pb,t; and the nominal price index for single
family houses in Denmark, ph,t. We also include the user cost rate of housing investments, ct, which is
the post-tax nominal interest rate on a highly rated bond. Since this rate represents the opportunity
costs of investing in housing (i.e., the carry), depreciation and convenience yield are included and
have been assumed to stay constant at 1% and 4%, respectively; an assumption similar to those made
in Danmarks Nationalbank (2003, chp. 3). Finally, we also include the net investments in housing in
fixed prices, Δht, i.e., the first-differenced real housing stock in log terms, ht. All variables, apart from
the user cost rate, ct, are transformed with the natural logarithm. We combine these five variables in
our data column vector, xt, which we define as

xt = [ pc,t pb,t ph,t ct Δht ]′ . (16)

The levels, first-, and second differences of the data is shown in Figure A1 in Appendix A.

4 The dataset and variable definitions are available from the authors on request. The empirical analysis is carried out in
OxMetrics v.7.1 using the Cointegration Analysis of Time Series (CATS) package v.3C.
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3.2. The I(2) Cointegrated VAR Model

We formulate the I(2) CVAR model in terms of acceleration rates, changes and levels
(see Juselius (2007)), and use the maximum likelihood parametrization introduced by Johansen (1997).
The model is shown here with k = 2 lags to simplify the presentation

Δ2xt = α
(

β′xt−1 + d′Δxt−1
)
+ ζτ′Δxt−1

+ μ0 + μ1t + ΦsDs,t + ΦpDp,t + ΦtrDtr,t + εt (17)

εt ∼ Np(0, Ω), t = 1, . . . , T .

Here α is a p × r matrix of adjustment coefficients, β is a p × r matrix describing long-run
relationships among the variables, p is the dimension of the data vector, r is the number of
multicointegration relations, s1 is the number of cointegration relations that only become stationary
by differencing, s2 is the number of stochastic I(2) trends, and p = r + s1 + s2. Moreover,
d = −((α′Ω−1α)−1α′Ω−1Γ)τ⊥(τ′

⊥τ⊥)−1τ′
⊥ is a p × r matrix of coefficients, where Γ = −(αd′ + ζτ′).

The d matrix is determined such that (β′xt−1 + d′Δxt−1) ∼ I(0). Additionally, τ = [β, β⊥1] is
a (p + 1)× (r + s1) matrix which describe stationary relationships among the differenced variables,
where β⊥1 is the orthogonal complement of [β, β⊥2]. Finally, ζ is a p × (p − s2) matrix of restricted
medium-run adjustment coefficients. We follow Rahbek et al. (1999) and restrict the constant term to
be in d′Δxt−1 and the deterministic trend to be in β′xt−1.

3.3. Lag Length Selection

Given the data vector defined in Equation (16) for the period 1971:Q1–2015:Q3 we determine
the appropriate number of lags and deterministic components required to obtain a sufficiently
well-specified model. First, we choose the lag length by starting with a model with k = 4 lags
and then reduce the number of lags by removing one at a time until a LM-test is rejected and the
Schwarz, Hannan-Quinn and Akaike information criteria are minimized (these are given in Table A1
in Appendix A). Based on this procedure, we choose the lag length k = 2. Secondly, fitting the CVAR
model commonly requires a number of deterministic components to obtain a sufficiently well-specified
model, e.g., shift, permanent, and/or transitory dummies. These components become necessary when
the structure captured by the unrestricted VAR model falls short of explaining large movements in the
data. Such a large movement could for instance be the enactment of a political reform, which changes
the institutional features of the economy, or it could be a natural event affecting the economy.

3.4. Dummy Specification

We follow the method of Juselius (2007, chp. 6.6) to determine which dummies to include.
This approach is based on the sequential identification of large outliers (defined as a standardized
residual greater than 3.5) until a sufficiently well-specified model has been obtained. In an iterative
manner, we include one dummy at a time to investigate if the specified dummy results in
a well-specified model. Following this method, our final specification includes six permanent
intervention dummies,5 two transitory dummies, and three centered quarterly dummies to control for
seasonality at the quarterly frequency. We specify the dummies as follows (omitting seasonal dummies)

D′
s = 0 , D′

p =
[
Dp75:1,t Dp82:1,t Dp83:1,t Dp87:1,t Dp93:1,t Dp93:3,t

]
and D′

tr = [Dtr00:1,t Dtr08:1,t] . (18)

5 In this specification there are still two large outliers remaining; 1972 Q2 and 1994 Q1, respectively. We have chosen not
to include dummies for these outliers as this re-introduces residual autocorrelation. We find that including additional
dummies does not produce a better model specification than the one presented here.
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Reassuringly, most of the dummies coincide with economic events that we would not expect to
be captured by the structure of the unrestricted VAR model. The dummies Dp75:1,t and Dp83:1,t are
included to reduce skewness in ct; the latter is included due to a big drop in the interest rate following
the transition to a fixed exchange rate regime in 1983, whereas the former accounts for a correction
from a spike in interest rates in 1975 following turbulence in the money market. The dummy Dp87:1,t
accounts for the tax reform enacted that year, which is significant in both ct and ph,t. The dummy
Dp93:3,t is included to correct for a large outlier in pb,t in the third quarter of 1993, which coincides
with the abolishment of mixed loans. The dummy, Dtr00:1,t, accounts for the December storm of 1999,
which caused a rise and a drop in Δht. The final dummy, Dtr08:1,t accounts for the initial shocks of the
financial crisis which caused a large transitory shock to Δht. As a robustness measure, we have also
estimated the model without any dummies (included in Appendix B), where we are able to retrace the
main conclusions from the analysis.

3.5. Misspecification Tests

Once the lag length and deterministic components have been chosen, we examine if the
assumption on IID multivariate normality of the model innovations holds. To this end, we present
a selection of common misspecification tests for the unrestricted VAR(2) in Table 1.

Table 1. Misspecification tests for the unrestricted VAR(2) model.

Multivariate Tests

No-autocorrelation LM(1) χ2(25) = 34.46 p = 0.10
LM(2) χ2(25) = 24.82 p = 0.47

Normality Doornik-Hansen χ2(10) = 90.16 p = 0.00
No-ARCH LM(1) χ2(225) = 481.45 p = 0.00

LM(2) χ2(450) = 721.72 p = 0.00

Univariate Tests

Δ2 pc,t Δ2 pb,t Δ2 ph,t Δ2ct Δ3ht
No-ARCH 17.34

[0.00]
3.06
[0.22]

3.52
[0.17]

30.13
[0.00]

24.77
[0.00]

Skewness −0.25 0.22 0.01 −0.29 0.37
Kurtosis 4.85 5.55 4.19 4.33 4.68
Normality 20.67

[0.00]
33.95
[0.00]

11.54
[0.00]

27.14
[0.00]

21.18
[0.00]

R2 63% 54% 57% 58% 48%

Notes: Bold font indicates that the hypothesis is rejected at the 5% significance level. Graphical representations
of the residual analysis can be found in Figure A2 in Appendix A. We use the multivariate tests for
ARCH-effects and autocorrelation presented in Godfrey (1988) and the univariate and multivariate normality
test from Doornik and Hansen (2008). The p-values for the univariate tests are shown in square brackets.

The hypotheses of no residual autocorrelation of order 1 and 2 are not rejected, which is necessary
for a model to be dynamically complete. The residuals for the construction costs, pb,t, and housing
price, ph,t, show no signs of ARCH effects. However, the residuals for the consumer price index, pc,t,
the user cost rate, ct, and the net investments, Δht, do not pass the no-ARCH test. The ARCH effects
in the consumer prices, pc,t, may in part be attributed to the regime change in 1983, before which
there were higher, more volatile price changes than after. The inference is robust to moderate ARCH
effects, cf. Rahbek et al. (2002) and Cavaliere et al. (2010), and as such the presence ARCH effects
should not invalidate inference based on our unrestricted VAR model. We note that the presence
of ARCH effects is likely to contribute to excess kurtosis, and as such it is not surprising that the
univariate tests of non-normality are rejected primarily due to excess kurtosis. Non-normality due
to skewness is, on the other hand, a concern for inference, cf. Juselius (2007, chp. 4.3). That said, not
much skewness remains in the residuals, indicating that the rejection of normality is not sufficient
to invalidate inference. In sum, considering that the unrestricted VAR model is only misspecified in
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terms of ARCH effects and kurtosis-induced non-normality, to which the inference is robust, and given
that inclusion of further dummies does not resolve these issues, we conclude that this specification
constitutes an appropriate basis for further analysis.

3.6. Rank Determination

Given our sufficiently well-specified unrestricted VAR model, we proceed to determine the
appropriate reduced ranks of the Π and Γ matrices. Similar to the I(1) analysis, exploring whether
xt ∼ I(1) is facilitated by the reduced rank hypothesis Π = αβ′, implicitly assuming that Γ is full rank.
Examining whether xt ∼ I(2) is facilitated by the additional reduced rank hypothesis α′⊥Γβ⊥ = ξη′,
where α⊥ and β⊥ are the orthogonal complements of α and β, respectively. The determination of
the reduced rank indices is based on the maximum likelihood trace test procedure proposed by
Bohn Nielsen and Rahbek (2007).6 As an alternative to the analytical distribution of the rank test,
one can also use critical values from a bootstrap procedure, which is outlined for the I(1) model
in Cavaliere et al. (2012). We refrain from using the bootstrap procedure here, as the asymptotic
properties have not been shown for the I(2) model yet.

Table 2 presents the I(2) trace tests for rank r equal to 2 and 3, as well as the modulus of the
six largest characteristic roots of the model. The trace test starts with the most restricted model
{r = 0, s1 = 0, s2 = 5}, recalling that s2 is the number of I(2) trends, and proceeds until a reduced
rank specification not rejected, and is nested in models that are also not rejected. The most restricted
model we show in Table 2 is {r = 2, s1 = 0, s2 = 3}. The models become less and less restricted as the
table is read row-wise.

Table 2. Determination of the two rank indices.

Rank Test Statistics

p − r r s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0

3 2 134.9
[0.00]

69.8
[0.05]

55.2
[0.04]

53.4
[0.00]

2 3 44.3
[0.13]

28.6
[0.23]

23.2
[0.10]

Six Largest Roots

Unrestricted VAR 0.98 0.94 0.92 0.92 0.65 0.42
Case 1: r = 2
r = 2, s1 = 1, s2 = 2 1.00 1.00 1.00 1.00 1.00 0.47
r = 2, s1 = 2, s2 = 1 1.00 1.00 1.00 1.00 0.79 0.51
r = 2, s1 = 3, s2 = 0 1.00 1.00 1.00 0.99 0.79 0.51
Case 2: r = 3
r = 3, s1 = 0, s2 = 2 1.00 1.00 1.00 1.00 0.66 0.53
r = 3, s1 = 1, s2 = 1 1.00 1.00 1.00 0.87 0.72 0.51
r = 3, s1 = 2, s2 = 0 1.00 1.00 0.98 0.88 0.65 0.52

Note: The p-values for the I(2) rank test are given in square brackets below the test result.

The trace test suggests either {r = 2, s1 = 1, s2 = 2} or {r = 3, s1 = 0, s2 = 2}. The first
specification is borderline rejected (p-value of 4.6%), and it is nested in two models that are rejected
(p-values of 4.0% and 0.0% respectively). The second specification is not rejected (p-value of 12.6%)
and is nested in models that are also not rejected. Both specifications leave no large characteristic
roots; the largest remaining root has modulus 0.47 and 0.66, respectively, indicating no residual unit
roots. The first specification points to five unit roots, whereas the second specification points to four

6 Earlier work on I(2) rank tests include Rahbek et al. (1999) and Johansen (1995). Work on the distribution for the I(2) rank
test include Doornik (1998) and Johansen (1996).
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unit roots. The modulus of the unrestricted VAR points to four unit roots, corresponding to the
second specification.

Taking this into account, we proceed with the second specification, as the rank test is not rejected
nor nested in models which are rejected. Moreover, there is significant error correction and stationarity
in all cointegrating relations (we return to this point in Section 3.8). The chosen specification implies
two stochastic I(2) trends (s2 = 2) and three polynomially cointegrating relations (r = 3), β′xt + d′Δxt,
which achieve stationarity.

3.7. Hypothesis Testing

Before identifying a long-run structure, we examine if certain variables, or linear combinations of
variables, relating to the UANA condition outlined in Equations (13)–(15), are found to be I(1). This is
done by estimating the CVAR under the reduced rank conditions, {r = 3, s1 = 0, s2 = 2}, also using
the numerical maximum likelihood procedure outlined by Johansen (1997). Following the estimation,
we impose restrictions on the τ = [β, β⊥1] vectors (see Johansen (2006, Proposition II)). This lets us
examine the persistency properties of the different variables in the information set and allows us to
examine how the UANA condition outlined in Section 2.4 may hold.

First, we examine if any of the variables are I(1), by imposing restrictions on one τ vector. The test
results are displayed in the upper half of Table 3 and we note all variables seem to be driven by one or
more I(2) trends, as all the hypotheses are rejected. This indicates that ct, ph,t, and pb,t are driven by
I(2) trends, and that they may cointegrate from I(2) to I(1) to form the right hand side of the UANA
condition in Equation (15).

Table 3. Hypotheses.

Hypothesis Test Statistic p-Value

pc,t ∼ I(1) χ2(3) = 21.83 p = 0.00
pb,t ∼ I(1) χ2(3) = 21.17 p = 0.00
ph,t ∼ I(1) χ2(3) = 14.86 p = 0.00
ct ∼ I(1) χ2(3) = 15.31 p = 0.00

Δht ∼ I(1) χ2(3) = 14.47 p = 0.00

Long-run price homogeneity χ2(4) = 25.57 p = 0.00
pb,t − pc,t ∼ I(1) χ2(2) = 9.28 p = 0.01
ph,t − pc,t ∼ I(1) χ2(2) = 11.49 p = 0.00
ph,t − pb,t ∼ I(1) χ2(2) = 10.14 p = 0.01

ct + σ(ph,t − pb,t) ∼ I(1) χ2(1) = 0.30 p = 0.58

Note: We allow for a restricted trend in the lower half of the table. Bold font indicates that the hypothesis is
rejected at the 5% significance level.

Next, by imposing restrictions on multiple τ vectors, we examine if any linear combinations
of the variables in xt are I(1). The test results are shown in the bottom half of Table 3. The first
test is a joint test for long-run price homogeneity; that is, we test whether pb,t − pc,t ∼ I(1) and
ph,t − pc,t ∼ I(1) hold jointly. The nominal price indices would then share the same nominal I(2) trend,
while the real house and construction prices would be I(1), which corresponds to classical dichotomy
holding in the long-run, cf. Kongsted (2005). However, the joint test for long-run price homogeneity is
rejected with a test statistic of χ2(4) = 25.57 and a p-value of practically zero. Testing the hypothesis
for pb,t − pc,t ∼ I(1) returns a test statistic of χ2(2) = 9.28 with a p-value of p = 0.01, which we
reject at a 5% critical level. The hypothesis for ph,t − pc,t ∼ I(1) is rejected with a test statistic of
χ2(2) = 11.49 and a p-value of practically zero. The hypothesis for ph,t − pb,t ∼ I(1) corresponds to
the second scenario for the UANA condition, given in Equation (14). In this scenario ph,t − pb,t would
cointegrate from I(2) to I(1), which could cointegrate with ct and Δph,t to stationarity. This scenario
is based on the premise that ct ∼ I(1), which we have already rejeced, and we likewise reject the
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test for ph,t − pb,t ∼ I(1) with a test statistic of χ2(2) = 10.14 and the p-value of p = 0.01. Therefore,
the hypothesis for the UANA condition in Equation (14) is rejected.

The final hypothesis test corresponds to the third scenario for the UANA condition in Section 2.4,
seen in Equation (15). Given the premises that ct ∼ I(2), ph,t − pb,t ∼ I(2), and Δph,t ∼ I(1), we may
still find that there is cointegration between the user cost rate and the relation for Tobin’s q expressed
in the price indices. The test for whether ct + σ(ph,t − pb,t) ∼ I(1) is not rejected with a p-value of
p = 0.58. Based on this test, it appears that there is support for the UANA condition proposed in
Equation (15). However, we still have to establish that ct + σ(ph,t − pb,t) cointegrates with Δph,t from
I(1) to I(0) for the UANA condition in Equation (15) not to be rejected by the data.

We are now ready to specify an over-identified long-run structure. This will allow us to
investigate if the UANA condition in Equation (15) holds empirically, and we may examine if the
equilibrium-correcting behavior of the UANA condition can explain the long-swings dynamic in the
housing prices introduced in Section 1.

3.8. An Over-Identified Long-Run Structure

For the chosen rank specification, {r = 3, s1 = 0, s2 = 2}, there will be three polynomially
cointegrating relations, β′

ixt + d′iΔxt for i = 1, 2, 3, but no stationary medium-run relations in the
growth rates, β′

⊥1Δxt, due to no cointegration in the differences, s1 = 0. We impose over-identifying
restrictions on β′ by testing reduced rank hypotheses on Π = αβ′ in a fashion parallel to that of an I(1)
analysis. We obtain an identified long-run structure by first imposing the UANA condition from
Section 2.4. The UANA condition in itself is is not rejected, and we identify the second and third
cointegrating relations by applying an inductive approach, in which we restrict a single variable at
a time until we cannot restrict the system further.

The data lends support to a relation between the user cost rate, ct, the price of construction,
pb,t, and the price of housing, ph,t, in line with Equation (15); a relation between the net housing
investments, Δht, the price of construction, pb,t, and the price of housing, ph,t; and a relation between
the net housing investments, Δht, the consumer price level, pc,t, and the user cost rate, ct. We determine
the over-identified long-run structure to be⎡⎢⎣ β′

1
β′

2
β′

3

⎤⎥⎦ =

⎡⎢⎣ 0 β12 −β12 β14 0 β16

0 β22 β23 0 β25 β26

β31 0 0 β34 β35 β36

⎤⎥⎦ , (19)

with the test statistic χ2(1) = 0.30, corresponding to p = 0.58. The cointegrating relations are shown
graphically in Figures 2 and 3. We return to the intuition of this specification in the interpretations of
the cointegrating relations in Section 3.9.

Imposing the identification scheme on the I(2) model in Equation (17) results in the estimated
long-run structure presented in Table 4. The asymptotic distribution of the standard errors for β are
derived in Johansen (1997) and the standard errors for d are calculated using the delta method
in Doornik (2016). Unfortunately, we are unable to test joint restrictions on the elements in d,
which prevents us from assessing whether we can reduce the presence of first differences further.7

7 An anonymous referee kindly made us aware of a recently published alternative identification scheme, which allows for
more restrictions in the over-identified long-run structure, cf. Mosconi and Paruolo (2017). Unfortunately, this procedure
has not yet been implemented in the software at our disposal, but it is of interest for future research.
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Table 4. An identified long-run structure in β.

pc,t pb,t ph,t ct Δht Det a)

β′1 0.000
[−]

0.025
[10.2]

−0.025
[−10.2]

1.000
[−]

0.000
[−]

6.28 × 10−4

[12.4]
d′1 −0.077

[−0.5]
0.073
[0.7]

0.683
[6.8]

0.016
[3.8]

0.009
[2.3]

−0.187
[−24.3]

α1 −0.473
[−0.6]

10.500
[4.9]

10.600
[5.0]

−0.776
[−2.6]

−0.196
[−3.6]

β′2 0.000
[−]

0.030
[21.0]

−0.017
[−21.0]

0.000
[−]

1.000
[−]

3.97 × 10−5

[2.1]
d′2 0.357

[8.6]
0.260
[9.3]

0.050
[1.9]

−0.005
[−5.2]

−0.007
[−7.0]

−0.013
[−4.5]

α2 −0.487
[−0.4]

−15.500
[−5.2]

−15.700
[−5.3]

1.160
[2.8]

0.255
[3.4]

β′3 0.012
[13.2]

0.000
[−]

0.000
[−]

−0.535
[−89.6]

1.000
[−]

−3.04 × 10−3

[−13.6]
d′3 0.321

[4.6]
0.160
[3.4]

−0.353
[−8.2]

−0.013
[−7.5]

−0.011
[−6.3]

0.090
[26.2]

α3 −1.240
[−0.9]

18.700
[4.9]

19.300
[5.1]

−1.230
[−2.3]

−0.346
[−3.6]

Notes: t-statistics are given in brackets below the estimate. a) A restricted trend is included in β′ and
a restricted constant in d′.

3.9. Interpreting the Long-Run Structure

We interpret a polynomially cointegrating relation as a dynamic equilibrium the same way as
Juselius (2007): if xt ∼ I(2), then β′xt ∼ I(1) and we can interpret it as an equilibrium error with
a high degree of persistence. This means that we can interpret α and d as two levels of equilibrium
correction: α describes how the acceleration rates, Δ2xt, adjust to the dynamic equilibrium relations,
β′xt + d′Δxt, and d describes how the growth rates, Δxt, adjust to the long-run equilibrium error,
β′xt (i.e., describing a medium-run adjustment, conditional on α �= 0). We say that a variable xj,t,
for j = 1, 2, . . . , 5, is equilibrium error correcting in the long run if αijβij < 0 and/or αijdij < 0,
and it is error correcting in the medium run if dijβij > 0. If we reverse the inequalities, the system
is equilibrium error increasing. It is of particular interest that a variable can be error correcting in
the long run (αijβij < 0), while being error increasing in the medium run (dijβij < 0), or vice versa.
This type of interplay between long-run and medium-run dynamics can lead to persistent swings
around the long-run equilibrium, which we refer to as “long-swings dynamics” in line with Juselius
and Assenmacher (2016, Section 5).

We translate the parameter estimates in Table 4 into three univariate equations, which govern
the long-run error-correction mechanisms of the system, i.e., the cointegrating relations. These can be
rearranged to facilitate interpretation. We do this in the following subsections.

3.9.1. The Uncertainty-Adjusted No-Arbitrage Condition

We interpret the first of the three cointegrating relations in terms of the uncertainty-adjusted
no-arbitrage condition presented in Section 2.4, specifically Equation (15). The first cointegrating
relation is given by

0.025pb,t − 0.025ph,t + ct + 6.28 × 10−4t + 0.683Δph,t + 0.016Δct + 0.009Δ2ht + 0.187 ∼ I(0), (20)

where we include the levels from β′
1 and first differences from d′1 that are significant at the 95% critical

level. We rearrange the terms in Equation (20) to relate it to the UANA condition in Equation (15):

Δph,t =− 1.464ct + 0.037(ph,t − pb,t)

− 0.013Δ2ht − 0.023Δct + 0.274 − 6.28 × 10−4t + u1,t , (21)
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where u1,t ∼ I(0) denotes the stationary error component. As suggested by the uncertainty-based asset
price approach presented in Section 2.3, the price level of housing, ph,t, and the cost of construction, pb,t,
enter with the same coefficient and opposite sign to form Tobin’s q. The user cost rate, ct, is also present
but enters with a negative coefficient. Based on asset pricing theory the user cost rate, ct, should have
entered with a positive coefficient as it represents the carry, or opportunity cost, of buying the asset.
We may attempt to understand the negative coefficient on ct by the dynamic that, in practice, a higher
user cost rate would make housing less affordable, which in turn would preclude some investors from
entering the housing market as they will be able to borrow less, all else equal. In addition to the levels
predicted by the theory, we also find that the changes in net housing investments, Δ2ht, and the user
cost rate Δct are significant.

As such, we reject the exact specification of the UANA condition as it is presented in Equation (15),
noting that the primary implication from the original framework resulting in Equation (2) appears
to be inconsistent with the data. However, we do find that realized changes in the price of housing,
Δph,t, are positively related to Tobin’s q. This is in support of the contribution made to the theory
by specifying the uncertainty premium in terms of a gap effect. That said, while there are more
terms present in Equation (21) than predicted, the cointegrating relation does indicate that the UANA
condition in Equation (15) provides an empirically relevant characterization of the price formation in
the Danish housing market over the period under consideration.

Turning our attention to the medium- and long-term dynamics, the α1 and d′1 coefficients
reveal that the price of housing, ph,t, is strongly error correcting in the long run with respect to
this cointegrating relation, but the d′ coefficient suggests that the change in the price of housing, Δph,t,
is error increasing in the medium run. This dynamic implies that the price of housing is prone to
overshooting its long-term equilibrium level given by Equation (21). This type of overshooting is
consistent with momentum-based forecasting behavior. That is, if investors base their expectations
on recent price changes, then the persistence in the realized price changes will increase, cf. e.g.,
Shiller (2008), leading to overshooting behavior in the medium run. We return to this point in
Section 3.10. We also note that the construction price index, pb,t, is error increasing in the long
run, and the change in the housing stock, Δht is (borderline) error correcting in the long run. Finally,
the user cost rate, ct, is (borderline) error correcting in both the medium- and long run. Moreover,
graphical inspection of the cointegrating relation in the sample reveals that the relation is stationary
and it exhibits relatively little persistence, see Figure 2.

β1’Z2t+d1’Z1t 

1975 1980 1985 1990 1995 2000 2005 2010 2015
-0.02
-0.01
0.00
0.01
0.02

β1’Z2t+d1’Z1t 

Figure 2. The first cointegration relation, see Equation (21).

3.9.2. Net Housing Investments

We interpret the second and third cointegrating relations as characterizing the long-run
equilibrium of net housing investments. These relations are not implied by our theoretical framework
in Section 2, instead we have identified them inductively by imposing zero restrictions on the long-run
structure. In the Equations (22) and (23), we include the levels from β′ and differences from d′ that are
significant at the 95% critical level.
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The second of the three cointegrating relations is given by,

Δht =+ 0.017(ph,t − pb,t)− 0.013pb,t

− 0.357Δpc,t − 0.260Δpb,t + 0.005Δct + 0.007Δ2ht

+ 0.010 − 3.97 × 10−5t + u2,t , (22)

where u2,t ∼ I(0) denotes the stationary error component. We interpret Equation (22) as characterizing
the net housing investment in equilibrium as approximately proportional to Tobin’s q. The levels of the
variables {ph,t, pb,t, Δht} cointegrate from I(2) to I(1), and in turn with the significant first-differences,
{Δpc,t, Δpb,t, Δct, Δ2ht}, from I(1) to I(0) to achieve stationarity. While ph,t and pb,t do not enter with
the same coefficient, they are of roughly the same magnitude and enter with opposite signs. The α2

and d′2 coefficients reveal that the net housing investments, Δht, exhibits error-increasing behavior with
respect to this cointegrating relation in both the long and medium run. If there is a positive deviation
from the cointegrating relation as a result of Tobin’s q being above unity, then we would expect this to
cause the net investments to increase. We note that the price level of housing, ph,t, is error increasing
with respect to the this cointegrating relation in the long run. On the other hand, the price index of
building costs, pb,t, is error correcting in both the long and medium run. Finally, the user cost, ct is
(borderline) error correcting in the long run. Figure 3a shows this cointegrating relation.
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0.00
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(a)
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β3’Z2t+d3’Z1t 

(b)

Figure 3. The second and third cointegration relations. (a) The second cointegration relation,
see Equation (22). (b) The third cointegration relation, see Equation (23).

The third and final cointegration relation is a linear combination of the housing prices, pc,t,
the building costs, pb,t, and the net investment in housing, Δht, which cointegrate to cancel out the I(2)
trends, and in turn cointegrate with the first differences to I(0). The cointegrating relation is given by,

Δht =− 0.012pc,t + 0.535ct

− 0.321Δpc,t − 0.160Δpb,t + 0.353Δph,t + 0.013Δct + 0.011Δ2ht

− 0.090 + 3.04 × 10−3t + u3,t , (23)

where u3,t ∼ I(0) denotes the stationary error component. Equation (23) is somewhat difficult to
interpret in isolation. Considering the error-correcting properties, α3 and d′3 reveal that the housing
investments, Δht, error correct in the long run, and error increases in the medium run with respect
to this cointegrating relation. Furthermore, the user cost rate, ct is error increasing in the long run,
and error correcting in the medium run. Intuitively, if the user cost rate rises above its long-run value
relative to the housing investments, we expect a negative effect on the housing investments, as a higher
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user cost rate will discourage investments. Finally, the construction price index, pb,t, is error increasing
in the long run, while the house price index, ph,t, error corrects in the long run. Figure 3b shows this
cointegrating relation.

3.10. Summary of Empirical Findings

In summary, we find strong evidence in support of the housing price, as well as remaining
variables in our information set, defined in Equation (16), being integrated of order two, i.e., highly
persistent. Moreover, we strongly reject that the I(2) dynamics can be appropriately accounted for by
simply transforming to real variables, i.e., we reject long-run price homogeneity. Rather, we find that the
uncertainty-adjusted no-arbitrage (UANA) condition, given in Equation (15), provides an empirically
relevant characterization of the long-run house price equilibrium. Furthermore, the error-correction
dynamics estimated via the cointegrated VAR model can help explain the long-swings behavior in the
housing price, observed in Figure 1.

On the last point, it is instructive to construct an informal example of how long-swings behavior
associated with the cointegrating relation in Equation (21) relates to our theoretical framework in
Section 2 in combination with momentum-based forecasting. Suppose that, at some point in time,
the expected future price change is greater than the sum of the current user cost rate and the uncertainty
premium; that is, there is arbitrage according to the UANA condition in Equation (12). Investors
will then respond by buying housing, pushing the housing price up in the process, which increases
Tobin’s q (all else equal), and in turn the required uncertainty premium in the next quarter.

This pattern may continue quarter after quarter until Tobin’s q has been increased to the point
where the expected price change for the next quarter is less than or equal to the sum of the user cost rate
and the uncertainty premium. Given the momentum in the price of housing and individual forecasts,
the result can be a persistent swing upwards in the price until the required uncertainty premium has
become too large relative to investors’ expectations of the price change in the next quarter. At this
point, further price increases will result in overshooting relative to the long-run equilibrium as well as
further increases in the uncertainty premium. In this situation there is also arbitrage, but in the other
direction, which will lead to investors selling housing. In turn, the momentum in housing prices will
decrease, or even turn (all else equal), and the process will go into reverse. The result is in this case
a persistent swing downwards in the price of housing until the required uncertainty premium has
become small enough for investors to find housing attractive again relative to their expectations of
future price changes.

In practice, all else is not equal, and changes in the user cost rate, building costs, and housing
investments will also affect the price of housing. For example, if Tobin’s q is greater than unity then
the housing stock is smaller than what is demanded by investors, and so net investments will increase
to generate profit from the discrepancy between the price at which housing is sold relative to its cost of
construction. That is, we would expect a positive association between Tobin’s q and net investments,
which aligns well with our interpretation of the second cointegration relation in Equation (22).

4. Conclusions

The primary contribution of this paper was to establish that the long-swings behavior observed
in the market price of Danish housing since the 1970s can be understood by studying the interplay
between short-term expectation formation and long-run equilibrium conditions. We have introduced
an asset market model for housing based on uncertainty rather than risk, which under mild
assumptions allows for other forms of forecasting behavior than rational expectations. We have
tested the theory via an I(2) cointegrated VAR model and found that the long-run equilibrium for the
housing price corresponds closely to the predictions from the theoretical framework. Additionally,
we have corroborated previous findings that housing markets are well characterized by short-term
momentum forecasting behavior. Our conclusions have wider relevance, since housing prices play
a role in the wider Danish economy, and other developed economies, through wealth effects. In sum,
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the CVAR model and the uncertainty-based asset market approach provide a useful framework to
analyzing and understanding price formation and net investments in the Danish housing market.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/5/3/40/s1:
the original data from the MONA database, cf. Danmarks Nationalbank (2003), and Ox code to transform the
variables into the data vector in Equation (16).
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Figure A1. Data in levels, first-, and second differences.
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Table A1. Lag-length determination.

Lags Log-likelihood SC HQ AIC LM-test

k = 4 3406.56 −35.45 −36.80 −37.72 −
k = 3 3395.29 −36.06 −37.14 −37.88 F(25, 540) = 0.77 [0.79]
k = 2 3375.61 −36.58 −37.39 −37.94 F(50, 664) = 1.08 [0.34]

Note: The LM-test is nested in k = 4. The preferred model minimizes the information criteria.

Residuals of pc ,t N(s=0.00656) 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

10

20

30

40

50

60

70

80

90 Residuals of pc ,t N(s=0.00656) 

(a) Residuals of pc,t

Residuals of pb ,t N(s=0.0173) 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

5

10

15

20

25

30

35 Residuals of pb ,t N(s=0.0173) 

(b) Residuals of pb,t

Residuals of ph ,t N(s=0.0171) 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

5

10

15

20

25

30

35

40
Residuals of ph ,t N(s=0.0171) 

(c) Residuals of ph,t

Residuals of ct N(s=0.00244) 

-0.010 -0.005 0.000 0.005 0.010

25

50

75

100

125

150

175 Residuals of ct N(s=0.00244) 

(d) Residuals of ct

Residuals of Δht N(s=0.000424) 

-0.0015 -0.0005 0.0005 0.0015

200

400

600

800

1000

1200 Residuals of Δht N(s=0.000424) 

(e) Residuals of Δht

Figure A2. Residuals from the unrestricted CVAR model with lag order 2.

Appendix B. Specification without Dummies

The VAR(2) model with no dummies has more traces of ARCH effects, kurtosis and skewness
than the specification with dummies, as shown in Table A2. From Table A3 the rank test indicates
a rank of {r = 4, s1 = 0, s2 = 1}. We find the same main conclusion, namely that the UANA condition
exists in the over-identified long-run structure (which is not rejected, χ2(2) = 0.21, p-value of 0.90),
despite the rank test pointing to a different rank. We also find that there are long swings in the house
prices, i.e., the house price is error increasing in the medium run and error correcting in the long run
as seen in Table A4.
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Table A2. Misspecification tests for the specification with no dummies.

Multivariate tests

No-autocorrelation LM(1) χ2(25) = 26.4 p = 0.39
LM(2) χ2(25) = 28.4 p = 0.29

Normality Doornik-Hansen χ2(10) = 238.6 p = 0.00
No-ARCH LM(1) χ2(225) = 341.0 p = 0.00

LM(2) χ2(450) = 630.0 p = 0.00

Univariate tests

Δ2 pc,t Δ2 pb,t Δ2 ph,t Δ2ct Δ3ht
No-ARCH 17.57

[0.00]
29.19
[0.00]

9.61
[0.00]

5.75
[0.06]

16.35
[0.00]

Skewness −0.21 0.44 −0.26 −0.058 0.87
Kurtosis 4.59 9.15 4.75 7.72 6.05
Normality 16.88

[0.00]
107.61
[0.00]

19.07
[0.00]

84.71
[0.00]

25.33
[0.00]

R2 61% 32% 46% 27% 35%

Notes: Bold font indicates that the hypothesis is rejected at the 5% significance level. We use the multivariate
tests for ARCH-effects and autocorrelation presented in Godfrey (1988) and the univariate and multivariate
normality test from Doornik and Hansen (2008). The p-values for the univariate tests are shown in
square brackets.

Table A3. I(2) rank test for the specification with no dummies.

p − r r s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0
2 3 56.1

[0.01]
37.1
[0.03]

30.3
[0.01]

1 4 16.9
[0.13]

7.7
[0.28]

Note: The p-values for the I(2) rank test are given in square brackets.

Table A4. Over-identified long-run structure for the specification with no dummies.

pc,t pb,t ph,t ct Δht Det a)

β′1 0.000 0.028
[7.2]

−0.028
[−7.2]

1.000 0.000 0.001
[15.1]

d′1 0.393
[6.9]

0.393
[6.9]

0.697
[6.9]

0.009
[7.0]

−0.001
[−7.0]

−0.205
[−25.6]

α1 −0.533
[−5.0]

0.238
[0.7]

0.532
[1.7]

−0.027
[−0.5]

−0.039
[−5.1]

β′2 0.000 0.002
[8.3]

0.000 0.000 1.000 −0.000
[−12.1]

d′2 −0.117
[−10.5]

−0.117
[−10.5]

−0.208
[−10.5]

−0.003
[−10.5]

0.000
[10.5]

0.009
[8.4]

α2 −7.610
[−5.7]

0.715
[0.2]

3.310
[0.8]

1.530
[2.4]

−0.377
[−4.0]

β′3 0.000 0.000 0.000 0.112
[17.2]

1.000 0.000

d′3 −0.127
[−11.6]

−0.127
[−11.6]

−0.225
[−11.6]

−0.003
[−11.5]

0.000
[11.5]

−0.001
[−9.3]

α3 6.540
[6.5]

2.220
[0.7]

0.611
[0.2]

−1.590
[−3.3]

0.220
[3.1]

β′4 1.000 –1.000 0.000 0.000 0.000 0.001
[8.8]

d′4 0.340
[2.3]

0.340
[2.3]

0.603
[2.3]

0.008
[2.3]

−0.001
[−2.3]

−0.153
[−8.1]

α4 −0.042
[−2.1]

0.385
[6.2]

0.107
[1.8]

−0.010
[−1.1]

−0.004
[−2.9]

Notes: t-statistics are given in brackets below the estimate. a) A restricted trend is included in β′ and
a restricted constant in d′.
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Abstract: The ability to distinguish between sustainable and excessive debt developments is crucial
for securing economic stability. By studying US private sector credit loss dynamics, we show that this
distinction can be made based on a measure of the incipient aggregate liquidity constraint, the financial
obligations ratio. Specifically, as this variable rises, the interaction between credit losses and the
business cycle increases, albeit with different intensity depending on whether the problems originate
in the household or the business sector. This occurs 1–2 years before each recession in the sample.
Our results have implications for macroprudential policy and countercyclical capital-buffers.

Keywords: debt sustainability; credit losses; financial crises; financial obligations; smooth transition
regression; non-linear cointegration
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1. Introduction

The concern that private sector debt accumulations can become excessive, threatening both real and
financial stability, has gained considerable momentum during the past decade. To assess the importance
of such considerations empirically, one must be able to separate sustainable debt developments from
excessive buildups. By studying US aggregate credit loss dynamics over the period 1985–2010, we show
that the upper limit for sustainable debt developments is determined by the strength of the incipient
aggregate liquidity constraint, as measured by the financial obligations ratio. In particular, we find
that both household and business sector financial obligations ratios act as regime switching variables.
Once they move beyond critical levels, the interaction between business cycle fluctuations and credit
losses starts to intensify. This occurs in either the household or the business sector 1–2 years prior to each
economic downturn in our sample. The more severe recessions ensue when both sectors are affected
simultaneously. In contrast to existing cross-sectional studies on individual episodes of financial distress,
we do not find that leverage, as measured by the debt to income ratio, to be informative in this respect.
These patterns suggest that increasing liquidity problems associated with excessive aggregate debt
accumulations can undermine both real and financial stability.

The idea that credit cycles can be a source of real fluctuations is by now well established in a large
body of theoretical work on financial frictions. For instance, Bernanke et al. (1999) show that feedback
between firms’ net worth and their borrowing opportunities can generate credit booms which result in
increased investments. Similarly, by focusing on households, Kiyotaki and Moore (1997) demonstrate
that increases in house prices raise the value of collateral available to households, increasing their
borrowing opportunities and thereby their consumption spending. In both cases, there is a financial
accelerator effect which tends to reinforce the business cycle. More recent contributions along these
lines include Kiyotaki and Gertler (2010), and references therein.
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While the aforementioned literature is mainly concerned with the amplifying effect of credit
on ordinary macroeconomic shocks, there is also a risk that aggregate debt can reach excessive
and inefficient levels. For example, Lorenzoni (2008) and Miller and Stiglitz (2010) discuss how
self-reinforcing processes between net worth and borrowing can lead to asset price bubbles and
excessive leverage under the assumptions that agents have limited commitment in financial contracts or
dispersed beliefs. Because banks can have incentives to reduce their lending standards during upturns,
the problem may be further exacerbated (Ruckes 2004; Dell’Ariccia and Marquez 2006). When aggregate
debt reaches unsustainable levels, debt holders become highly vulnerable to any common negative
shock which reduces their net worth, as it constrains their refinancing ability. In such situations, they
may attempt to sell off assets and reduce spending to meet their debt obligations. Campello et al. (2010),
for instance, document such alterations in behavior among financially constrained firms during the
recent financial crisis. However, such actions can be contagious as they tend to reinforce the negative
effects of the initial shock, triggering off a self-reinforcing downward spiral which can lead to a severe
recession or even a systemic financial crisis (e.g., Gai et al. (2008)).

Theoretical predictions of this type have been lent considerable credibility by empirical studies
that find a close association between high aggregate debt to income ratios (leverage) and subsequent
credit and output losses1. For example, King (1994) documents this type of relationship across countries
in connection with the early 1990s recession. More recently, Mian and Sufi (2010) obtain similar results
by exploiting US cross-county variation from the recent financial crisis. However, because these studies
focus on cross-section variation from individual episodes of financial distress, they tend to overlook
the persistent upward trend that has been present in US debt to income ratios for the past 30 years.
Because such long-run developments probably impinge on the cross-section in a uniform way, most
of the cross-sectional variation will be due to possibly excessive short-run accumulations. If so,
this would explain why the past studies find a seemingly close relationship between leverage and losses.
The question remains, however: If high aggregate leverage was one of the major factors behind the
early 1990s recession, as suggested by King (1994), then how could even higher and increasing debt
ratios be sustained during the two following decades?

To make progress, it seems crucial to be able to distinguish between sustainable and excessive debt
developments already from the outset. This is recognized by Borio and Lowe (2002) and Borio and
Drehmann (2009) who construct early warning indicators of systemic banking crises based on leverage
and asset price gaps. While the indicators perform well both in and out of sample, the gaps are,
however, constructed using the Hodrick-Prescott filter rather than motivated by economic rationale.
Thus, there is a risk of mistaking sustainable debt developments for excessive buildups. For example,
if a credit boom lasts for a long time the filtered trend will eventually catch up, producing a gap
which is close to zero or even negative. Similar problems can occur if the true underlying trend in
debt-to-income suddenly changes. This suggests that the debt to income ratio should be detrended
using economic rather than statistical criteria.

The most likely explanation for the upward trend in leverage during the recent decades is the
concurrent decline in real interest rates, documented for example in Caballero et al. (2008), among others.
Indeed, the optimal (sustainable) allocation of aggregate debt in a dynamic stochastic environment
should vary with changes in the terms of credit (see e.g., Stein (2006)). If this is the case, a more
appropriate alternative measure for the burden imposed by private sector indebtedness is given by the
financial obligations ratio constructed by the Federal Reserve (see Dynan et al. (2003)). By consisting of
interest payments and repayments on debt divided by income, the financial obligations ratio captures
the incipient aggregate liquidity constraints of borrowers (Hall 2011). Rising financial obligations,
for instance, indicate that borrowers have less leeway to smooth their consumption or make new

1 Several empirical studies also attempt to quantify the relative importance of the financial accelerator for output fluctuations.
See for instance, Gertler and Lown (1999), Meier and Müller (2006), Gilchrist et al. (2009), and references therein.
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investments, and are also more vulnerable to income and interest rate shocks. This may not be a
problem as long as the business cycle is benign and banks’ lending standards are soft. However,
when the business cycle turns, the liquidity constraints start to bind for more and more borrowers,
forcing them in arrears and ultimately to default, thereby driving up banks’ losses.

To investigate this possibility, we compare the ability of the financial obligations ratio for
explaining US banking sector credit losses with that of the debt-to-income ratio. Focusing on credit
losses instead of output losses also allows us to assess the differential roles that business and household
loans play in generating real and financial weakness (see e.g., Iacoviello (2005))2. We allow the two
debt measures to enter credit loss determination both linearly, in line with the literature on financial
accelerators, as well as non-linearly, to capture altered behavior and contagion effects during episodes
in which aggregate credit constraints become binding. In the latter case, each debt measure is allowed
to enter the empirical model as a regime switching variable which smoothly increases the interaction
between credit losses and the business cycle once it exceeds an estimated critical threshold.

Applying this approach to quarterly US data from 1985Q1 to 2010Q2, we find evidence of
significant nonlinearities in the credit loss data, associated with the episodes of severe financial distress
in our sample. This seems consistent with theories that allow for excessive aggregate buildups of
credit. However, we do not find any significant temporal relationship, linear or otherwise, between
aggregate leverage and credit losses. Replacing leverage by the financial obligations ratio, we find
that the latter significantly enters credit loss determination as a regime switching variable of the type
described above. Hence, based on this variable we can adequately account for the nonlinear dynamics
inherent in aggregate credit losses. In addition, we are able to accurately estimate the parameters of
the transition function which determines the weights given to the high and low credit loss regimes as
a smooth function of the financial obligations ratio. We refer to the half way point between regimes as
the maximum sustainable debt burden (MSDB).

By further distinguishing between total debt and real estate related debt in both the household
and business sector, we gain important insights into how these different debt categories contribute
to aggregate credit loss dynamics. For the household sector we find that the financial obligations
ratio, specifically associated with real estate debt, exceeds an estimated MSDB threshold of 10.1% at
two intervals over the sample period. The first interval is 1989Q2–1992Q1, i.e., MSDB is exceeded
roughly one year prior to the recession in the early 1990’s and returns to the sustainable region at the
bottom of the recession. The second starts in 2005Q1, more than two years before the recent crisis,
and continues to the end of the sample in 2010Q2, by which time the financial obligations ratio has not
yet returned to the sustainable region. Both of these episodes are associated with massive credit losses
and an unusually large number of bank failures, but differ with respect to the severity and length of
the ensuing recession. This difference appears to be related to size with which the financial obligations
ratio exceeded the MSDB estimate on each occasion.

For the business sector, we similarly find that major credit losses ensue when the associated
financial obligations ratio crosses its MSDB estimate of 10.4% into the unsustainable region.
This happens 1–2 years prior to each of the three US recessions in the sample but, as exemplified by
the recession in the early 2000s, does not necessarily lead to large-scale bank failures. While the credit
losses associated with excessive business loans seem less detrimental to financial stability than those
associated with households’ real estate loans, they may, nevertheless, exert a significant effect on the
business cycle.

The observation that the financial obligations ratio in excess of its MSDB level precede
economic downturns could be useful in designing capital standards for banks (Drehmann et al. 2010;
Repullo et al. 2010) and for implementing more general macro prudential policies (e.g., Borio (2009)).

2 The temporal association between credit losses and output losses is very strong as can be seen by comparing panels (a) and
(e) of Figure 1.
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For instance, our analysis suggests that credit risk assessment based on financial obligations ratios could
lead to more countercyclical capital standards. Similarly, the financial obligations ratios, in particular
those related to real estate debt, may be useful for macro prudential policy as early warning indicators
of such long-term debt accumulations which may eventually threaten financial stability3. Our results
also suggest a channel through which monetary policy may affect financial stability under certain
conditions. For instance, an interest rate increase, intended to curb inflationary pressure, can impinge
on financial stability in periods when aggregate debt is close to or above the sustainable level. This is
because an interest rate increase directly raises the financial obligations of borrowers, which in turn
can make credit losses both more likely and more severe.

The rest of the paper is organized as follows: Section 2 introduces the data, whereas Section 3
discusses methodology and statistical models. The results are presented in Sections 4 and 5 concludes.

2. Data

This section introduces quarterly US time-series data of the key variables, spanning the sample
1985Q1–2010Q2. We first introduce credit loss rates and indicators of the business cycle, and discuss
their temporal association graphically. Then, in Section 2.2, we present two different measures of
aggregate debt and relate their dynamics to that of the credit loss rates. Detailed descriptions of the
variables and their sources are provided in Appendix A.

2.1. Credit Losses and Business Cycle Indicators

As a measure of credit losses we use the net charge-off rate on loans held by all insured commercial
US banks. The banks are required to charge off an estimate of the current amount of loans and leases
that are not likely to be collected, or are more than 120 days delinquent, from their loan loss allowance4.
The net change-off rate is the current period change-offs minus recoveries. Hence, it constitutes the
most accurate and timely estimate of credit losses that are available for US banks.

We distinguish between losses on total loans (TL), real estate loans (RL), and business loans (BL),
denoted lossTL

t , lossRL
t , and lossBL

t , respectively. The loss rate on total loans, depicted in panel (a) of
Figure 1, shows peaks at the low point of each of the three US recessions in the sample (as indicated
by a standard output gap measure, ygapt = yt − y∗t , depicted in panel e of the figure), with the most
recent one being almost twice as severe as the previous ones. This pattern, however, is not preserved
over different loan categories. For example, the loss rate on real estate loans (panel b) peaks only twice
over the sample, first during the recession in the early 1990s and next during the recent financial crisis.
As can be seen from panel (d) of the figure, both of these occasions are associated with large-scale
bank failures. In contrast, the loss rate on business loans (panel c) displays peaks of roughly equal
magnitude at each of the three recessions. In this sense, it more closely resembles the term-spread,
termt = f undrt − govrt, depicted in panel (g), where f undrt is the federal funds rate and govrt is the
yield of 10-year treasury securities. We also note that losses on business loans seem less strongly
connected to bank failures, as exemplified by the early 2000s recession.

3 This conjecture has recently been corroborated in a subsequent paper by Drehmann and Juselius (2012), who construct debt
service ratios, a more narrow counterpart to the financial obligations ratio, for 27 countries. They find that the debt service
ratio produce more accurate early warning signals than other extant measures 1–2 years ahead of systemic banking crises,
whereas the credit-to-GDP gap have superior performance at longer horizons.

4 See the Federal Financial Institutions Examination Council’s “Instructions for Preparation of Consolidated Reports of
Condition and Income (FFIEC 031 and 041)” and the Generally Accepted Accounting Principles (GAAP).
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(f) Nominal (solid line) and real (dotted line) long-term
government T-bill rate.
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funds rate.

Figure 1. Credit loss rates and various indicators of financial, monetary, and real conditions in the
United Sates. The real (ex-post) interest rates are constructed using the 4-quarter moving average
inflation rate to facilitate the exposition.
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This ocular evidence suggests that there may be significant interactions between credit losses
across different loan categories and the business cycle, potentially reinforcing each other. For instance,
deep recessions and financial instability appear to be more closely associated with losses on real
estate loans than losses on business loans, whereas the latter seems more related to ordinary business
cycle fluctuations. The question is whether a suitable measure of the aggregate debt burden, either the
conventional leverage or the financial obligations ratio that we propose in this paper, can predict when
such interactions become pivotal5.

2.2. Leverage vs. Financial Obligations

Panels (a)–(d) in Figure 2 depict the household (H) and business (B) sector debt-to-income ratios,
distinguishing between total and real estate loans (RL), respectively. We use these ratios as a measure
of leverage and denote them by levi,j

t , where i = H, B and j = TL, RL. By comparing panels (a) and (b),
as well as panels (c) and (d), it can be seen that real estate loans comprise more than two thirds of total
loans in the household sector, but less than 10% of total loans in the business sector. Moreover, business
sector leverage appears to be more volatile than household sector leverage. This points to potentially
important disparities between the processes which generate excessive debt in the two sectors.

One potential problem with using the leverage variables for determining debt sustainability is
their clear upward trends over the sample. This either implies that debt in the two sectors did not
reach excessive levels until possibly just before the recent crisis or, alternatively, that the associated
critical threshold must have been time-varying. The evidence in King (1994), for example, would argue
against the former case, whereas estimation is problematic in the latter.

The likely reasons for the growth displayed by the debt-to-income ratios are changes in the terms
of credit, as discussed in the introduction. For instance, both the federal funds rate and the long-term
interest rate have been declining over the entire sample, as is evident from panels (f) and (h) in Figure 1.

A measure that explicitly accounts for changes in the terms of credit is the financial obligations
ratio, reported by the Federal Reserve. It is broadly defined as the ratio of financial obligations,
consiting mostly of interest payments and amortizations, to income6. As the Federal Reserve only
reports this measure for the household sector, we construct a corresponding measure for the business
sector by using the federal funds rates as the relevant interest rate, a fixed maturity of 3 years7, and a
linear amortization schedule. Panels (e)–(h) in Figure 2 depict the financial obligations ratios, denoted
by f orij

t , where i corresponds to the two sectors and j to the two loan categories. These ratios show less
persistent growth and a stronger tendency to revert back to some benchmark value, compared to the
leverage variables. Moreover, given that a large fraction of debt outstanding has longer maturity than
one quarter, the per-period financial obligations ratios are considerably lower than the corresponding
debt to income ratio as can clearly be seen from the figure.

The differences in the dynamic behavior between the leverage variables and the financial
obligations ratios indicate that much of the upward trend in the former is due to changes in the
terms of credit. Hence, the financial obligations ratio is more likely to be informative about the limits
to private sector indebtedness than leverage.

5 In the empirical analysis, we also control for a number of other variables including real house prices, deviations from a
standard Taylor’s rule, the real exchange rate, the unemployment rate, and the inflation rate.

6 The numerator also includes rent payments on tenant-occupied property, auto lease payments, homeowners’ insurance,
and property tax payments.

7 This value lies between the average maturities on firms’ bank loans reported in Stohs and Mauer (1996) and Berger et al. (2005).
We checked robustness of the results below by assuming 2 and 4 years maturities. The results did not change significantly
and are available upon request.
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(h) Real estate financial obligations in the business
sector.

Figure 2. Indicators of leverage and financial obligations in the household and business sectors.
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3. Methodology

In this section, we present our empirical strategy for determining the role of aggregate debt
variables in credit loss determination and discuss statistical models which can be used for its
implementation. We first document that our credit loss variables display considerable variability
at frequencies close to zero. This suggest that standard cyclical variables, such as output gaps or credit
spreads, may not be able to fully account for the variation in them. We then consider two alternative
sources for the persistence, both related to the aggregate debt variables.

The first possibility is that the persistence of the credit loss rates is directly (linearly) inherited
from the debt variables. This would be in line with existing empirical work on financial accelerators
(e.g., Gertler and Lown 1999; Gilchrist et al. 2009). Because the economic models which underlie
such accelerator effects typically exclude credit rationing (see e.g., Bernanke et al. (1999)), they seem
more relevant as descriptions of credit market and business cycle interactions during normal (stable)
times. To allow for this possibility we approximate the persistence in the credit loss rates and the debt
variables by unit-roots and test for cointegration between them.

If the persistence cannot be accounted for linearly, a second possibility is that it stems from threshold
dynamics related to excessive debt. For example, Leybourne et al. (1998) and Nelson et al. 2001 find
that such non-linear dynamics can give rise to the appearance of stochastic trending. To study this
possibility, we use the debt measures as transition variables in nonlinear regime-switching models
for the credit loss rates. The idea is to capture increases in the interaction between credit losses
and the business cycle which may arise if aggregate debt is allowed to reach excessive levels
(see e.g., Miller and Stiglitz (2010)). The reason is that borrowers who are at the limits of their credit
constraints may not be able to smooth their consumption or make optimal investments as they have
to honor their debt obligations in the wake of a negative shock. Campello et al. (2010), for example,
document significant changes in the investment and employment decisions of credit constrained
firms during the recent financial crisis. If the proportion of constrained borrowers is large, this type
of behavior can easily reinforce the negative effects of the initial shock, thereby creating increased
feedback between loan defaults and the business cycle. An additional benefit of this modeling strategy
is that it allows us to estimate a critical threshold for each debt variable above which it becomes
excessive, provided that nonlinear transition-dynamics are present8.

3.1. Statistical Models

A convenient way of testing for linear long-run co-movement between the credit loss rates and
the debt variables is to model them jointly in a cointegrated VAR model

Δyt =
k−1

∑
i=1

ΓiΔyt−i + Πyt−1 + Φdt + εt (1)

where yt = (lossh
t , ygapt, termt, f undrt, debtt)′ for h = TL, RL, BL, debtt is successively one of the

debt measures presented in Section 2.2, i.e., levj,i
t or f orj,i

t for j = H, B and i = TL, RL, dt is a
vector consisting of a constant and seasonal dummies (and possibly other dummies defined in
the text), εt ∼ Np(0, Σ), and k is the lag-length. This setting implies that we only consider each
debt variable separately rather than jointly. Note that we also include the federal funds rate as a
separate variable in the system. This is to allow for possibility that the decline in interest rates over

8 The precision with which the critical thresholds can be estimated depends more on the relative number of observations in
each regime than the number of transitions between regimes. For instance, while our sample contains only two episodes of
severe household sector financial distress, the number of observations associated with these events is 34, i.e., approximately
one third of the entire sample.
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the past decades have reduced credit risks associated with the existing stock of loans in banks’ loan
portfolios (see e.g. Altunbas et al. (2010)).

Cointegration in (1) can be tested by the likelihood ratio (LR) test for the rank of
Π (Johansen (1996)). If the rank, r, is equal to the number of variables in the system, p, then yt
is stationary, i.e., yt ∼ I(0). If 0 < r < p, then Π = αβ′, where α and β are two (p × r) matrices
of full column rank and β′yt−1 describes the cointegration relationships. In this case yt ∼ I(1) and
cointegrated with r cointegration vectors, β, and p − r common stochastic trends, assuming that the
“no I(2) trends” condition

∣∣∣α′⊥(I − ∑k−1
i=1 Γi)β⊥

∣∣∣ �= 0 is met, where ⊥ denotes orthogonal complements.
For example, any variable in yt that is stationary a priori, such as the term spread and the output gap, is
expected to increase r by one and add a unit-vector to β. If r = 0, then yt ∼ I(1) and the process is not
cointegrated. A testing sequence that ensures correct power and size starts from the null hypothesis of
rank zero and then successively increases the rank by one until the first non-rejection. When 0 < r < p,
it is possible to test the hypothesis that a variable, yi,t say, is weakly exogenous with respect to the
long-run parameters of the model. The test of this hypothesis is asymptotically χ2, and amounts to
imposing zero-restrictions on a row of α corresponding to yi,t.

If the persistence in the credit loss rates cannot be explained linearly, there is still a possibility that
it stems from important nonlinearities. To allow for this possibility, we specify a smooth transition
regression (STR) model for the credit loss rates. As we do not expect to find strong nonlinearities in
the other variables9, we focus on a single-equation model to keep the analysis tractable, rather than
attempt to estimate a full-fledged multivariate STR model (see van Dijk et al. (2002)). In particular,
the model takes the form

lossh
t = (1 − ϕ(debtt))(μ1 + γ′

1xt) + ϕ(debtt)(μ2 + γ′
2xt) + ψ′dt + υt (2)

where, xt = (ygapt, termt, debtt)′ is a vector of potentially difference stationary explanatory variables,
dt is a vector of deterministic terms define above, and υt is assumed to be a mean zero stationary
disturbance term10. We note that the stationarity assumption on the disturbance term implies that lossh

t
and xt are either linearly or non-linearly cointegrated. Thus, verifying this assumption ensures model
consistency, as well as safeguards against spurious results, for example due to growth correlations
over time.

Our primary interest lies in the transition function

ϕ(debtt) =
1

1 + e−κ1(debtt−κ2)

which determines the relative weights between regimes 1 and 2, and has the properties 0 ≤ ϕ(debtt) ≤ 1
and ϕ(κ2) = 1/2. We use debtt as the primary transition variable, i.e., we successively try one of
the leverage or financial obligations ratios as arguments in ϕ(·)11. Hence, for positive κ1 and κ2,
say, (2) captures gradual changes in the effect (given by ϕ(·)(γ1 − γ2)) of the cyclical variables in xt on
credit losses, as the debt variable increases. The halfway point between regimes, which we will loosely
refer to as the maximum sustainable debt burden (MSDB), is determined by the κ2 and the speed of the
transition is determined by κ1.

We apply a linearity test by Choi and Saikkonen (2004) to identify the statistically significant
transition variables. The test is based on a Taylor series approximation of (2), which under the null
hypothesis of linearity will not contain any significant second (or higher) order polynomial terms.

9 Both the output gap and the term structure should be stationary. Moreover, credit losses reduce the credit aggregates so that
even if they affect output debt to GDP ratios would not move too much.

10 See Saikkonen and Choi (2004) for a discussion of this model.
11 We also tried the other variables in xt, as well as real house prices. None, of these variables produced superior results in the

sense discussed in Section 4.2.
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However, under the STR alternative, all significant higher order terms will involve the transition
variable. Hence, statistically valid transition variables can be detected by applying the test successively
to each variable from the set of potential transition variables. Such information may be helpful in
distinguishing between competing explanations for the recent crisis, such as lax monetary policy or
excessive debt.

4. Results

This section reports the main empirical findings. Section 4.1 first investigates whether the observed
persistence in the credit loss rates is due to exogenous factors or related to (transitory) regime shifts,
or both. Next, Section 4.2 compares the ability of leverage and the financial obligations ratio for
explaining shifts in credit loss dynamics. Section 4.3 reports the estimates associated with regime shift
dynamics, and shows that they are informative about debt sustainability.

4.1. Linearity vs. Regime Shifts

We find that all credit loss rates show significant variation at frequencies close to zero, indicating
the presence of cycles of longer duration than the available sample. This can be clearly seen from the
spectral densities reported in Figure 3. Moreover, the unit-root hypothesis cannot be rejected for any of
the loss rates using standard Augmented Dickey-Fuller (ADF) tests. We also find that our leverage
variables, financial obligations ratios, and the federal funds rate (see Figures 1 and 2) all display similar
stochastic trending12. Hence, each of the latter variables may conceivably be a source of persistence in
the credit loss rates.
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Figure 3. Spectral densities of the credit loss rates.

12 The only exception is the financial obligations ratio on total business loans which is found to be stationary. These results are
available upon request.
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While unit-roots are a convenient way of capturing the persistence in the credit loss rates, giving such
roots a structural interpretation in this context does not seem reasonable. Instead, the persistence
is more likely to reflect breaks or other types of nonlinearities, possibly associated with the recent
crisis and its aftermath. For this reason, we adopt a cautious approach, initially restricting our
attention to the pre-crisis sample 1985Q1–2006Q4, where regime shift dynamics are less likely to have
played a dominant role in credit loss determination. We model credit loss rates jointly with the other
variables to see if we can identify the source of the persistence in them, i.e., we estimate (1) with
yt = (lossh

t , ygapt, termt, f undrt, debtt)′ for h = TL, RL, BL and debtt successively indicating one of
the debt variables in Section 2.2. We are especially interested to see if the persistent debt variables are
relevant in this regard.

Applying the LR test for cointegration rank, as well as tests for unit-vectors in β, we find that:
(i) unit-roots in the credit loss rates cannot be rejected in the pre-crisis sample; (ii) none of the other
persistent debt variables are linearly cointegrated with the loss rates; and (iii) that the output gap and the
term spread are stationary (i.e., they have corresponding unit vectors in β)13. The only variable that is
linearly cointegrated with the loss rates is the nominal federal funds rate, suggesting that the declining
interest rates during the past decades have reduced credit risk, consistent with Altunbas et al. (2010).

We next ask if the pre-crisis sample cointegration results continue to hold once the recent crisis
period is included. For simplicity, we do this within a smaller model with yt = (lossh

t , f undrt)′, k = 2,
a restricted constant, three centered seasonal dummies, and transitory impulse dummies (reported in
Appendix A), but the results remain the same if we also include the stationary variables and the debt
variables. Table 1 reports the results of the LR test for the rank of Π and tests of weak exogeneity
(conditional on r = 1). The upper part of the table confirms the cointegration results for the pre-crisis
sample. As can be seen, r = 0 is always rejected, whereas r ≤ 1 cannot be rejected in this sample.
Moreover, we cannot reject the hypothesis that the federal funds rate is weakly exogenous. The lower
part of the table shows that the cointegration results break-down in the full sample from 1985Q1 to
2010Q2. This is likely caused by a transitory but influential change in the process that govern short-run
credit losses associated with the crisis.

Table 1. Linear cointegration results. Notes: The rows labeled “r = 0” and “r ≤ 1” report the p-values
of the LR tests for the rank of Π. The following two rows report the p-values from testing weak
exogeneity for both of the variables in yt. Boldface values indicate significance at the 5% level.

Linear Cointegration Results

1985Q1–2006Q4

y′
t r = 0 r ≤ 1 αloss = 0 α f undr = 0

(lossTL
t , f undrt)

′ 0.00 0.38 0.00 0.42
(lossRL

t , f undrt)
′ 0.01 0.79 0.00 0.13

(lossBL
t , f undrt)

′ 0.00 0.19 0.00 0.54

1985Q1–2010Q2

y′
t r = 0 r ≤ 1 αloss = 0 α f undr = 0

(lossTL
t , f undrt)

′ 0.96 0.98 – –
(lossRL

t , f undrt)
′ 0.95 0.94 – –

(lossBL
t , f undrt)

′ 0.27 0.29 – –

13 These results are omitted for brevity, but are available upon request. We also tried per capita GDP, the inflation rate, the
unemployment rate, and the real exchange rate. None of these were found to be both cointegrated and weakly exogenous with
respect to the credit loss rates.
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(a) Filtered Loss rate on total loans.

1985 1990 1995 2000 2005 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Filtered loss rate on business loans.
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(c) Filtered loss rate on real estate loans.

Figure 4. Credit loss rates with stochastic trend component removed.

The presence of a small downward trend associated with the long-term decline in the federal
funds rate is a nuisance, as there is a risk that it can be mixed-up with the type of nonlinearity that are
the main focus of the study. For this reason, we estimate it by Hodrick-Prescott filtering the federal
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funds rate and remove it from the credit loss rates based on the pre-crisis cointegration estimates14.
The adjusted loss rates are depicted in Figure 4. Comparing these loss rates with the unadjusted ones
in Figure 1, reveals that the effect of the detrending is relatively small. The main change is a relative
reduction in the loss rates at the beginning of the sample compared to the rates at the end.

Having controlled for linear stochastic trends in the loss rates, we proceed to test the null hypothesis
of linearity against the STR model alternative in (2) using a test by Choi and Saikkonen (2004).
Initial modeling suggested that none of the debt variables (which successively enter through debtt)
yielded significant coefficients in γ1 or γ2, i.e., the two regimes. Hence, we excluded them from xt

altogether. Similarly, the output gap, ygapt, was never significant in the model for the loss rate on
business loans, lossBL

t , and was therefore excluded from this model. This has very little effect on
the estimated regime switching dynamics, but improves the precision of the γ1 and γ2 estimates.
We consistently apply these restrictions in the subsequent analysis, using xt = (termt, ygapt)′ in
the models for losses on total loans and real estate loans and xt = termt in the model for losses on
business loans.

Given the indicated choices of xt, Table 2 reports the results of the linearity tests corresponding to
each of the individual debt variables. For the pre-crisis period, the results in the upper part of the table
show that the null hypothesis of linearity cannot be rejected in any of the models15. However, turning
to the lower part of Table 2, we see that the null hypothesis of linearity is rejected for several potential
transition variables in the full sample. For instance, in the model for the loss rate on real estate loans,
lossRL

t , there seems to be significant nonlinearities associated with household and business sector real
estate debt-to-income, as well as the household sector’s real estate financial obligations ratio. In the
model for the loss rate on business loans, lossBL

t on the other hand, all debt-to-income ratios and the
financial obligations ratio in the business sector, are significant. The results of the model for the loss
rate on total loans, lossTL

t are, by and large, a combination of the results from the models of lossRL
t

and lossBL
t . Hence, while regime shifts do not play a very dominant role in the pre-crisis period, they

seem crucial for describing credit loss dynamics in the full sample, and in particular during the recent
financial crisis.

Table 2. Tests of linearity against a STR alternative. Boldface values indicate rejection of the null
hypothesis at the 5% significance level.

Tests of Linearity vs. Regime Shifts

1985Q1–2006Q2

levH,TL
t levH,RL

t levB,TL
t levB,RL

t f orH,TL
t f orH,RL

t f orB,TL
t f orB,RL

t
lossTL

t 0.828 0.719 0.535 0.419 0.963 0.406 0.780 0.570
lossRL

t 0.363 0.597 0.489 0.688 0.108 0.085 0.221 0.583
lossBL

t 0.370 0.408 0.072 0.256 0.132 0.929 0.141 0.420

1985Q1–2010Q2

levH,TL
t levH,RL

t levB,TL
t levB,RL

t f orH,TL
t f orH,RL

t f orB,TL
t f orB,RL

t
lossTL

t 0.016 0.013 0.011 0.012 0.181 0.041 0.411 0.037

lossRL
t 0.059 0.042 0.052 0.021 0.738 0.018 0.940 0.054

lossBL
t 0.048 0.049 0.006 0.029 0.058 0.151 0.021 0.064

14 This is statistically justified if the federal funds rate is strongly exogenous and the Hodrick-Prescott filtered trend provides
an accurate estimate of the underlying trend in the federal funds rate. We found some evidence in favor of strong exogeneity
for the federal funds rate by testing additional restrictions on the short-term dynamics. While there is no guarantee that the
Hodrick-Prescott trend is an accurate estimate of the underlying trend, we checked robustness by estimating (2) with lossh

t
on the left hand side and γ0iM

t added to the right hand side. This does not change the results below to any significant degree.
15 This does not, however, imply that such shifts are not present in the pre-crisis sample, but rather that the resulting dynamics

are of a lesser magnitude and, hence, not likely to be confused with long-run movements in the credit loss rates.
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4.2. Leverage vs. Financial Obligations

Next we estimate (2) for each the three credit loss rates, lossh
t , with xt as in the previous section,

and debtt in ϕ(·) successively equal to one of the transition variable candidates that has a significant
entry in Table 2. Before we turn to the estimates, it is worthwhile to ask if the resulting regressions
can account for the persistence in the credit loss rates associated with the crisis period. To this end,
we apply both ADF tests and and (KPSS) stationarity tests to the residual. While these tests are strictly
not valid for the residuals from (2), which are mixture processes, this technicality may not be so
important in practice16. Nevertheless, these results should be viewed with some caution.

When the leverage variables, levi,j
t , are used we find that the stationarity of the residual cannot

be secured in most cases. This can be seen from Table 3 which reports (ADF) unit-root and (KPSS)
stationarity tests for the residual. In only two cases, levB,RL

t in the equation for lossTL
t and levH,RL

t in
the equation for lossBL

t , do the tests conclusively yield stationary residuals. In both of these cases,
however, the estimated parameters of ϕ(·) are such that regime 2 never occurs within the sample. In
one case (levB,RL in the equation for lossBL

t ), the tests yield inconclusive results. These results suggest
that non-linear cointegration is generally rejected when the leverage variables are used, implying they
cannot adequately account for the large and persistent fluctuations in the credit loss rates associated
with the regime-shift dynamics.

Table 3. Tests for non-linear cointegration. The null hypothesis of the Augmented Dickey-Fuller (ADF)
test is that the residual from (2), with explained and transition variable as indicated in the columns, is a
unit-root process. A constant and seasonal dummies were included, and lag-length was chosen based
in the AIC information criterion. The 10%, 5%, and 1% critical values for this test are −2.58, −2.89,
and −3.50, respectively. The null hypothesis of the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is
that the aforementioned residual is stationary. The bandwidth was set to 2 in each case. The 10%, 5%,
and 1% critical values for this test are 0.35, 0.46, and 0.74, respectively. Rejections of the null hypothesis
at the 10%, 5% and 1% significance levels are indicated by �, ��, and � � �, respectively. † Estimated
values for κ1 and κ2 imply that regime 2 occurs outside the rage of debtt.

Unit-Root and Stationarity Tests

Explained Variable: LossTL
t

debtt : levH,TL
t levH,RL

t levB,TL
t levB,RL

t f orH,TL
t f orH,RL

t f orB,TL
t f orB,RL

t
ADF : −1.99 −0.51 −2.08 −3.55 ���† – −4.84 ��� – −3.49 ��

KPSS : 0.38 � 1.11 ��� 0.37 � 0.09 † – 0.24 – 0.24

Explained Variable: LossRL
t

debtt : levH,TL
t levH,RL

t levB,TL
t levB,RL

t f orH,TL
t f orH,RL

t f orB,TL
t f orB,RL

t
ADF : – −1.90 – −2.41 – −4.31 ��� – –
KPSS : – 0.63 �� – 0.52 �� – 0.12 – –

Explained Variable: LossBL
t

debtt : levH,TL
t levH,RL

t levB,TL
t levB,RL

t f orH,TL
t f orH,RL

t f orB,TL
t f orB,RL

t
ADF : −2.36 −3.16 ��† −2.58 � −2.57 – – −5.08 ��� –
KPSS : 0.37 � 0.30 † 0.84 ��� 0.31 – – 0.20 –

In contrast, when the financial obligations ratios are used, both the ADF and the KPSS tests
conclusively support the stationarity of the residuals as can be seen from Table 3. Moreover, in all of
these cases the estimated parameters of ϕ(·) yield regime transitions inside the range of the relevant
financial obligations ratio. In the model for losses on total loans, lossTL

t both the financial obligations

16 Applying a more appropriate test, such as the one in Saikkonen and Choi (2010) which is based on the KPSS test, is left for
future work.
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ratios associated with real estate debt in the household and business sectors, f orH,RL
t and f orB,RL

t ,
have significant entries in Table 2. We choose the former financial obligations ratio as it produces a
somewhat better fit and higher likelihood than the latter. Based on these results, the leverage variables
do not seem to signal an impending crisis with sufficient precision, whereas the Financial obligations
ratios seem more relevant in this respect.

4.3. Explaining Credit Losses

Table 4 reports the key parameter estimates of the STR models. As can be seen from the table, both
the estimated coefficients measuring the speed of transition between regimes, κ1, and the estimated
thresholds, κ2, are positive, indicating that regime 2 dominates for values above κ2. Furthermore, the
estimates of κ1 indicate that speeds of transitions between regimes are rather fast in all cases. The two
regimes are characterized by the parameters γterm and γygap, describing the effect of of the term spread,
termt and the output gap, ygapt, on credit losses, lossh

t , in each regime (except in the equation for
lossBL

t where only termt enter the regimes). The parameters in the first regime are generally negative
but not significant, whereas in the second regime both parameters become negative and significant. It
is notable that the effect on credit losses from a change in the output gap or the interest rate spread
is much larger in the second regime. Therefore, the financial system becomes much more exposed to
real economic fluctuations when the financial obligations ratios are above the estimated threshold
values. Thus, the second regime describes unstable periods where even small negative shocks can
lead to massive credit losses. In this sense, the threshold values, κ2, can be viewed as estimates of the
maximum sustainable debt burden (MSDB) with respect to a given credit category. Our estimates suggest
that both total debt and real estate debt become unsustainable (i.e., susceptible to high loss rates)
when the financial obligation ratio associated with households real estate loans exceed 10.19% and
10.08%, respectively. Similarly, business debt becomes unsustainable when the financial obligations
ratio associated with total business loans exceeds 10.44%.

The results in Table 4 are robust to more general specifications of (2). For example, adding
auto-regressive lags to the equation yields a well-specified model with approximately constant
parameters that displays both quantitatively and qualitatively similar results. Moreover, the model also
compares favorably to a simple Markov-Switching specification of (2). This suggests that conditioning
the transition dynamics on the financial obligations ratio is indeed beneficial for describing credit loss
dynamics. The details of these robustness checks are reported in Appendix B.

Table 4. Estimated transition parameters and regime coefficients from STR models of the adjusted
credit loss rates. Boldface values indicate significance at the 5% level (standard errors in parenthesis).

STR Estimates

Transition Parameters Regime 1 Regime 2

Equ. debtt κ1 κ2 γterm γygap γterm γygap

lossTL
t f orH,RL

t 12.678
(5.630)

10.192
(0.056)

−0.063
(0.034)

0.002
(0.045)

−0.276
(0.094)

−0.224
(0.051)

lossRL
t f orH,RL

t 3.609
(1.128)

10.079
(0.106)

−0.023
(0.041)

−0.051
(0.038)

−0.267
(0.099)

−0.243
(0.049)

lossBL
t f orB,TL

t 2.318
(0.968)

10.44
(0.199)

−0.249
(0.085)

– −0.619
(0.119)

–

The relationship between the financial obligations ratio and the credit losses can also be presented
graphically. The upper panel of Figure 5 depicts the loss rate on real estate loans, and the lower
panel depicts the financial obligations ratio related to household real estate debt along with a line
demarking the corresponding MSDB estimate. The periods during which the second regime dominates
are demarked by grey bars in the figure. As can be seen, there are only two unstable periods in the
sample. The first begins in 1989Q2, roughly one year in advance of the recession in the early 1990s,
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and ends at its bottom. The second begins in 2005Q1, over two years in advance of the recent crisis,
and has not yet ended by the last observation in our sample (2010Q2). Hence, in retrospect this MSDB
estimate would have signaled a significant increase in credit risk a full two years before the onset of
the crisis. In addition, the magnitude and duration by which the financial obligations ratio exceed
the MSDB line may explain both the severity and length of the ensuing downturns. We leave this
interesting aspect for future work.

1985 1990 1995 2000 2005 2010
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1

2

3

1985 1990 1995 2000 2005 2010

9

10

11

MSBD

Regime 1

Loss rate on real estate loans

Financial obligations ratio,

Regime 2

household’s real estate debt

Figure 5. Transitions in the loss rate on real estate loans. The upper panel depicts the loss rate
on real estate loans, whereas the lower panel depicts the financial obligations ratio associated with
household’s real estate debt and the corresponding MSDB estimate. Episodes when regime 2 dominate
are demarked by grey bars.

Similarly, Figure 6 depicts the loss rate on business loans and the corresponding financial
obligations ratio. As can be seen form the figure, there are three unstable periods in our sample,
each beginning between 1–2 years prior to one of the three known US recessions in the sample, and
ending roughly at their low points. Prior to the 1990s recession, the MSDB of business loans is exceeded
in 1988Q2, a full year earlier than the MSDB of households real estate loans. However, prior to the
recent crisis the relative timing is reversed, i.e., the household sector MSDB was exceeded first. Finally,
we note that it is possible to construct the business sector financial obligations ratio for earlier dates
than those in our estimation sample. Hence, as a tentative test of the out-of-sample performance of the
business sector MSDB, we checked whether it predicts the deep recession in the early 1980’s17. We find
that the financial obligations ratio crosses the MSDB line from below in 1980Q4, three quarters before
the onset of the early 80’s recession, and returns to the sustainable region at bottom of the recession.
Since this pattern is in accordance with the within-sample results, it gives some additional support to
our estimates.

17 It is more difficult to conduct a similar test for the household sector, as the Federal Reserve does not record financial
obligations ratios before 1985.
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Figure 6. Transitions in the loss rate on business loans. The upper panel depicts the loss rate on
business loans, whereas the lower panel depicts the financial obligations ratio associated with total
business sector debt and the corresponding MSDB estimate. Episodes when regime 2 dominate are
demarked by grey bars.

5. Conclusions

When do aggregate debt accumulations become excessive, compromising both macroeconomic
and financial stability? By studying US credit loss dynamics over the period 1985–2010, we show that it
is the strength of the aggregate liquidity constraint, as measured by the financial obligations ratio, which
determines the upper limit for sustainable debt developments. In contrast to previous studies which
use cross-sectional data, we do not find the debt-to-income ratio, or leverage, to be particularly relevant
in this respect. The reason for this finding seems to be that a large part of the growth trend in leverage
during the past decades was in fact sustainable and due to a concurrent decline in the real interest rate.
Because this trend is likely to have a uniform effect on the cross-sections, most of the cross-sectional
variation in leverage will be due to excessive buildups which, thereby, generate seemingly strong
association with subsequent credit losses.

We find that the private sector financial obligations ratio displays a cyclical pattern, reaching
unsustainable levels 1–2 years prior to each of the three US recessions in our sample. This pattern is,
however, not identical among households and businesses. For instance, the household sector cycle
seems to be approximately twice as long as the corresponding business sector cycle. Thus, the household
sector financial obligations ratio only reached unsustainable levels prior to the deep recessions in the
early 1990s and late 2000s, whereas the Business sector financial obligations ratio reached unsustainable
levels prior to each of the three recessions. These results suggest that the distinction between excessive
financial obligations in the household and business sectors may be important for understanding why
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some recessions become deep and prolonged while others do not. However, They also indicate that the
financial obligations ratio may be useful as an early warnings indicator.

While our empirical approach seems promising in the sense of successfully spotting buildups
of excessive aggregate debt, several interesting avenues for future research remain to be explored.
For instance, because different types of households are likely to differ with respect the tightness of their
financial constraints (Hall (2011)), it might be worthwhile to decompose the financial obligations ratio
according to such characteristics as age and income. This may significantly improve our ability to detect
excessive debt accumulations, especially when population cohorts change along these dimensions. It is
also conceivable that our framework can be extended to an analysis of public sector debt, which could
potentially be very valuable in light of the ongoing US and European sovereign debt crisis. As a final
remark, we note that the recurrent nature of excessive debt accumulations suggests that the underlying
credit market behavior is systematic, which seems inconsistent with the basic assumptions of most
theoretical models. Asset price models that incorporate imperfect knowledge and heterogeneous
expectations (e.g., Frydman and Goldberg (2009) and Burnside et al. (2016)) are able to generate
pervasive boom and busts as a consequence of the market’s allocation of capital and, hence, seem more
promising in this respect.

Appendix A

Detailed definitions of the variables used in the analysis are provided in Table A1.

Table A1. Variable definitions and sources.

Data and Definitions

Variable: Definition:

lossh
t Net charge-off rate on loans, all insured US commercial banks. h = TL (total loans),

RL (real estate loans), and BL (business loans). Source: FRS (Bank Assets & Liabilities)

levi,j
t Debt-to-income ratio (in %). i = H (households’), B (Nonfarm nonfinancial

corporate business). j = TL (total loans), RL (real estate loans). Household income:
total wages and salaries. Business income: Value added in non farm business.
Sources: FRS (Flow of Funds Accounts) and BEA (National Economic Accounts).

f ori,j
t Financial obligations ratio. i and j are as above. For i = H the series are taken from

the FRS (Household Finance). For i = B the definition is lBj
t iM

t /400 + lBj
t /12.

f undrt Effective federal fund rate (3-month average). Source: FRS (Interest Rates)
govrt Yield on 10-year Treasury securities. Source: FRS (Interest Rates)

termt f undrt − govrt

ygapt 100(yt − y∗t ), where yt is log real output and y∗t is the OECD production function

based level of potential output. Source: OECD.

Sources: Federal Reserve System (FRS), Bureau of Economic Analysis (BEA), Bureau of Labor Statistics (BLS),
OECD databases (OECD), Federal Housing Finance Agency (FHFA).

The underlying data are publicly available at the listed sources. To check robustness, we considered
several alternative measures. For instance, we used the household debt service ratio (FRS) instead
of f orHT, deviations between real and Hodric-Prescott filtered GDP and the unemployment gap
(congressional budget office definition) instead of ygapt, and the difference between corporate BAA
and AAA bonds instead of termt. This did not produce significant changes to the results.

A few transitory impulse dummies were used in connection with the VAR estimates in Section 4.1.
These dummies (labeled DYYQ) take the value 1 at date YYQ and –1 at the consecutive date,
where YY and Q refer to the year and quarter digits, respectively. The model for yt = (lossTL

t , f undrt)′

includes D894, the model for yt = (lossRL
t , f undrt)′ includes D904, D914 and D923, and the model for

yt = (lossBL
t , f undrt)′ includes D894 and D014.
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Appendix B

In this section we test robustness of the results reported in the main text with respect to alternative
specifications. We begin by comparing the results in Table 4 with those obtained from a dynamic
specification of (2). We also report the results from break-point Chow tests for these models. Finally,
to assess the value added of the financial obligations ratios for explaining regime-switching in credit
loss rates, we compare the weights to Regime 2 from models in Table 4 with the ones obtained from a
simple Markov-Switching (MS) dynamic regression specification of (2).

The results in Section 4.2 indicate that the STR models for the credit loss rates in conjunction with
the financial obligations ratios can produce stationary residuals. These residuals are, however, severely
auto-correlated and show other signs of misspecification as well. As this can affect both the precision
and consistency of the estimates reported in Table 4, we re-estimate the STR models using a dynamic
specification of the form

l̃oss
h
t =

4

∑
i=1

ρi l̃oss
h
t−i + (1 − ϕ(debtt))(μ1 + γ′

1xt) + ϕ(debtt)(μ2 + γ′
2xt) + ψ′dt + υt (A1)

where l̃oss
h
t = lossh

t − strendh
t for h = TL, RL, BL, and xt and dt are as in Section 4.3. Table A2 reports

the estimates. As can be seen from the table, the estimated parameters of the transition function, κ1

and κ2, are fairly close to the ones reported in Table 4. The biggest difference with respect to these
parameters occurs in the model for losses on real estate loans, where κ2 increases from 10.08 to 10.92.
While this increase is substantial, the speed of adjustment is now reduced from 3.61 to 2.50. This has
the effect of widening the transition region, producing very similar regimes as before. At the same
time, however, it becomes less appropriate to interpret κ2 as a maximum sustainable debt burden.

The effect of the explanatory variables, as given by γ1 and γ2, cannot easily be compared to
the estimates in Table 4. The reason is the contemporaneous effects in Table A2 will be reinforced
by the auto regressive terms. The long run (steady state) effects are given by γj/1 − ∑ ρi. In the

models for l̃oss
TL
t , l̃oss

RL
t , and l̃oss

BL
t , the sums of auto-regressive coefficients are 0.88, 0.81, and 0.83,

respectively, as can be seen from Table A2, giving long-run multipliers of 8.3, 5.3, and 5.9. This implies
that the effects of the explanatory variables are larger than what is immediately apparent from the table.
Overall, the same general patter that was found in Table 4 seems to hold for the dynamic versions of
the model: the effects in Regime 1 are smaller in magnitude and insignificant, whereas the effects in
Regime 2 are large and often significant. Hence, we conclude that the patterns and results reported in
the main text are broadly robust to dynamic extensions of the models.

Table A2 also report the results of several misspecification tests. It can be seen from the table
that the residuals of the three models are reasonably well behaved. While there are still some signs of
auto-correlation, in particular in the model for real estate losses, the effect on the results are nevertheless
likely to be minor. Also, the normality assumption is rejected at the 5% significance level in all three
models due to a few outliers. To investigate the parameter stability of the models, Figure A1 shows the
results from recursive break-point Chow tests. Values above the black dotted line indicate rejection of
parameter stability at the 1% significance level. As can be seen from the figure, all three models seem
to display reasonable parameter stability.
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Table A2. Estimated transition parameters and regime coefficients from dynamic versions of the STR
models for the credit loss rates. Boldface values indicate significance at the 5% level (standard errors in
parenthesis). The null hypothesis of no auto-correlation (AR) in up to five lags of the residual is tested
by a Lagrange multiplier test. A similar test is conducted on the squared residuals to test for the null of
no auto-regressive conditional heteroscedasticity (ARCH). The last row reports the adjusted coefficient
of determination.

Dynamic STR Estimates

Model

Explained: l̃oss
TL
t l̃oss

RL
t l̃oss

BL
t

debtt : f orH,RL
t f orH,RL

t f orB,TL
t

Parameters

ρ1 0.67
(0.10)

0.50
(0.10)

0.59
(0.11)

ρ2 0.47
(0.12)

0.21
(0.11)

0.31
(0.13)

ρ3 −0.52
(0.12)

−0.19
(0.12)

−0.20
(0.12)

ρ4 0.26
(011)

0.29
(0.11)

0.13
(0.12)

κ1 29.80
(28.02)

2.50
(1.28)

3.37
(1.96)

κ2 10.34
(0.03)

10.92
(0.62)

10.72
(0.24)

γ1,term 0.02
(0.02)

0.01
(0.02)

0.01
(0.05)

γ1,ygap 0.00
(0.02)

0.01
(0.02)

–

γ2,term −0.02
(0.05)

−0.25
(0.22)

−0.21
(0.10)

γ2,ygap −0.08
(0.03)

−0.24
(0.23)

–

Misspecification

AR 0.18 0.01 0.05
ARCH 0.97 0.16 0.15
Normality 0.00 0.01 0.02

R2 0.96 0.97 0.90

Model: loss (TL) 1% Signficance level 

1990 1995 2000 2005 2010

0.5

1.0
Model: loss (TL) 1% Signficance level 

Model: loss (RL) 1% Signficance level 

2000 2005 2010

0.5

1.0
Model: loss (RL) 1% Signficance level 

Model: loss (BL) 1% Significance level 
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0.5

1.0
Model: loss (BL) 1% Significance level 

Figure A1. Parameter stability tests. The black solid lines depict recursive break-point Chow tests for
the models in Table A2. Twenty quarters were used to initialize the recursions. Values above the dotted
black line indicate rejection of parameter stability at the 1% significance level.
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As a final assessment of the model, we compare the results in Table 4, which are based on the
STR specification in (2), with an analogous MS model. In particular, the latter model has exactly
the same explanatory variables and two regimes, but replaces the transition function, ϕ(·), with a
unobserved random variable which follows a Markov chain. Hence, comparing the two models
allows us to assess the benefits of having the financial obligations ratio as a specific transition variable:
if the two model yield identical regimes, the value added of conditioning on this variable is limited.
The estimates, of the MS-model (available upon request) are qualitatively in line with the ones for the
STR model in Table 4, i.e., the effects of the cyclical variables are generally insignificant in Regime 1
and significantly negative in Regime 2. As a first statistical assessment of the MS model, we check if it
produces stationary residuals for each of the three loss rates. The ADF-test statistics on the residuals
of lossTL

t , lossRL
t , and lossBL

t are −2.66, −3.25, and −4.73, respectively. This implies that we cannot
reject the unit-root hypothesis for the residuals of the equation for the loss rate on total loans. For the
loss rate on real estate loans we reject this hypothesis at the 5%, but not on the 1% significance level,
whereas the residual of the equation for losses on business loans is clearly stationary. In all three cases,
however, the residual persistence of the STR model is less than that of the MS model.

Figure A2 depicts the weights to (or probabilities of) Regime 2 which are implied by the STR
and MS models. While the two types of models yield transitions between regimes which are broadly
reminiscent of each other, there are nevertheless several sharp differences as is clear from the figure. The
most wide dispersion between the regimes is obtained with respect to the models for losses on total
loans (upper panel). The regime classification of the MS model for this loss rate, does not seem to
be entirely reasonable. In particular, the episodes in the “bad” regime which are associated with
the crisis periods in the early 1990s and late 2000s are very long, for instance starting the the late
1999’s for the latter crisis. Moreover, the strength of Regime 2 declines just prior to the crisis. These
results indicate that the MS model for losses on total loans may not be able to characterize the data
adequately, which is also evidenced by the failure to reject the unit-root hypothesis for the residuals
of this equation. Turning to the models for the two remaining loss rates, we see that the transition
patterns are more closely aligned. However, there is a clear tendency for the STR regimes to increase
and decline approximately one year before the MS regimes. The only exception to this pattern is during
the early 90’s recession in the model for losses on real estate loans, where the MS transition moves
more sharply around the crisis date than the one obtained from the STR model.

STR weigth to Regime 2 (TL) MS probability of Regime 2 (TL) 

1985 1990 1995 2000 2005 2010

0.5

1.0
STR weigth to Regime 2 (TL) MS probability of Regime 2 (TL) 

STR weigth to Regime 2 (RL) MS probability of Regime 2 (RL) 

1985 1990 1995 2000 2005 2010

0.5

1.0
STR weigth to Regime 2 (RL) MS probability of Regime 2 (RL) 

STR weigth to Regime 2 (BL) MS probability of Regime 2 (BL) 

1985 1990 1995 2000 2005 2010

0.5

1.0
STR weigth to Regime 2 (BL) MS probability of Regime 2 (BL) 

Figure A2. Estimated weights/probabilities to Regime 2 implied by the STR and the MS models.

125



Econometrics 2017, 5, 27

Taken together, these results point to substantial differences between the predictions of the two
types of models. While the STR model is more demanding, as it requires successful specification of the
transition variable, it nevertheless delivers significant pay-offs in terms of statistical fit, early warnings,
and economic interpretation.
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Abstract: It is well known that inference on the cointegrating relations in a vector autoregression
(CVAR) is difficult in the presence of a near unit root. The test for a given cointegration vector can have
rejection probabilities under the null, which vary from the nominal size to more than 90%. This paper
formulates a CVAR model allowing for multiple near unit roots and analyses the asymptotic
properties of the Gaussian maximum likelihood estimator. Then two critical value adjustments
suggested by McCloskey (2017) for the test on the cointegrating relations are implemented for the
model with a single near unit root, and it is found by simulation that they eliminate the serious size
distortions, with a reasonable power for moderate values of the near unit root parameter. The findings
are illustrated with an analysis of a number of different bivariate DGPs.

Keywords: long-run inference; test on cointegrating relations; likelihood inference; vector autoregressive
model; near unit roots; Bonferroni type adjusted quantiles
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1. Introduction

Elliott (1998) and Cavanagh et al. (1995) investigated the test on a coefficient of a cointegrating
relation in the presence of a near unit root in a bivariate cointegrating regression. They show convincingly
that when inference on the coefficient is performed as if the process has a unit root, then the size
distortion is serious, see top panel of Figure A1 for a reproduction of their results. This paper analyses
the p-dimensional cointegrated VAR model with r cointegrating relations under local alternatives

Δyt = (αβ′ + T−1α1cβ′
1)yt−1 + εt, t = 1, . . . , T, (1)

where α, β are p × r and εt is i.i.d. Np(0, Ω). It is assumed that α1 and β1 are known p × (p − r)
matrices of rank p − r, and c is (p − r)× (p − r) and an unknown parameter, such that the model
allows for a whole matrix, c, of near unit roots. We consider below the likelihood ratio test, Qβ, for a
given value of β, calculated as if c = 0, that is, as if we have a CVAR with rank r. The properties of the
test Qβ can be very bad, when the actual data generating process (DGP) is a slight perturbation of the
process generated by the model specified by αβ′. The matrix αβ′ describes a surface in the space of
p × p matrices of dimension p2 − (p − r)2. Therefore a model is formulated that in some particular
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“directions”, given by the matrix α1cβ′
1, has a small perturbation of the order of T−1 and (p − r)2 extra

parameters, c, that are used to describe the near unit roots.
A similar model could be suggested for near unit roots in the I(2) model, see Di Iorio et al. (2016),

but this will not be attempted here.
The model (1) contains as a special case the DGP used for the simulations in Elliott (1998), whe the

errors are i.i.d. Gaussian and no deterministic components are present. The likelihood ratio test, Qβ,
for β equal to a given value, is derived assuming that c = 0 and analyzed when in fact near unit roots
are present, c �= 0. The parameters α, β, and Ω can be estimated consistently, but c cannot, and this is
what causes the bad behaviour of Qβ.

The matrix Π(α, β, c) = αβ′ + T−1α1cβ′
1 is an invertible function of the p2 parameters (α, β, c),

see Lemma 1, so that the Gaussian maximum likelihood estimator in model (1) is least squares,
and their limit distributions are found in Theorem 2. The main contribution of this paper, however,
is a simulation study for the bivariate VAR with p = 2, r = 1. It is shown that two of the methods
introduced by McCloskey (2017, Theorems Bonf and Bonf -Adj), for allowing the critical value for Qβ

to depend on the estimator of c, give a much better solution to inference on β, in the case of a near unit
root. The results of McCloskey (2017) also allow for multivariate parameters and for more complex
adjustments, but in the present paper we focus for the simulations on the case with p = 2 and r = 1,
so there is only one parameter in c. In case r = 1, the matrix Ip + Π is linear in c ∈ R, and for c = 0,
it has an extra unit root. Therefore there is a near unit root for c �= 0, and we choose the vector α1 such
c ≥ 0 corresponds to the non-explosive near unit roots of interest.

The assumption that α1 and β1 are known is satisfied under the null, in the DGP analyzed by Elliott,
see (15) and (16). This is of course convenient, because α1, β1 as free parameters, are not estimable.

Let θ denote the parameters α, β and Ω and let θ̂ and ĉ denote the maximum likelihood estimators
in model (1). For a given η (here 5% or 10%), the quantile cθ,η(c) is defined by Pc,θ{ĉ ≤ cθ,η(c)} = η.
Simulations show that the quantile is increasing in c, and solving the inequality for c, a 1− η confidence
interval, [0, c−1

θ,η(ĉ)], is defined for c. For given ξ (here 90% or 95%) the quantile qθ,ξ(c) is defined by
Pc,θ{Qβ ≤ qθ,ξ(c)} = ξ, and McCloskey (2017) suggests replacing the critical value qθ,ξ(c), by the
stochastic critical value qθ,ξ(c−1

θ,η(ĉ)), or introducing the optimal ξ by solving the equation

max
0≤c≤∞

Pc,θ

{
Qβ ≤ qθ,ξ

(
c−1

θ,η(ĉ)
)}

= υ,

for a given nominal size υ (here 10%).
These methods are explained and implemented by a simulation study, and it is shown that they

offer a solution to the problem of inference on β in the presence of a near unit root.

2. The Vector Autoregressive Model with near Unit Roots

2.1. The Model

The model is given by (1) and the following standard I(1) assumptions are made.

Assumption 1. It is assumed that r < p, c is (p − r)× (p − r), and that the equation

det
(

Ip(1 − z)− αβ′z
)
= 0

has p − r roots equal to one, and the remaining roots are outside the unit circle, such that |eigen(Ir + β′α)| < 1.
Moreover Π = αβ′ + T−1α1cβ′

1 has rank p and

det
(

Ip(1 − z)− αβ′z − T−1α1cβ′
1z
)
= 0, (2)

has all roots outside the unit circle for all T ≥ T0.
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For the asymptotic analysis we need condition (2) to hold for T tending to ∞, and for the
simulations, we need it to hold for T = 100. In model (1) with cointegrating rank r and α1 and β1

known, the number of free parameters in α and β is 2pr − r2 = p2 − (p − r)2. The next result shows
how the parameters α, β, c are calculated from Π. For any p × m matrix of rank m < p, we use the
notation a⊥ to indicate a p × (p − m) matrix of rank p − m, for which a′⊥a = 0, and the notation
ā = a(a′a)−1.

Lemma 1. Let Π = αβ′ + T−1α1cβ′
1 and let Assumption 1 be satisfied. Then, for β normalized as β′b = Ir,

α = Πβ1⊥(α′1⊥Πβ1⊥)−1α′1⊥Πb, (3)

β′ = (α′1⊥Πb)−1α′1⊥Π, (4)

c = T(β′
1Π−1α1)

−1. (5)

To discuss the estimation we introduce the product moments of Δyt and yt−1

S00 = T−1
T

∑
t=1

ΔytΔy′t, S11 = T−1
T

∑
t=1

yt−1y′t−1, S10 = S′
01 = T−1

T

∑
t=1

yt−1Δy′t.

Theorem 2. In model (1) with α1 and β1 known, the Gaussian maximum likelihood estimator of Π = αβ′ +
T−1α1cβ′

1 is the coefficient in a least squares regression of Δyt on yt−1. For β normalized on some p × r matrix
b, β′b = Ir, the maximum likelihood estimators (α, β, c) are given in (3)–(5) by inserting Π̂.

For c = 0, such that the rank of Π is r, the likelihood ratio test for a given value of β is

Qβ = T log
det
(

S00 − S01β(β′S−1
11 β)β′S10

)
det
(

S00 − S01 β̆(β̆′S−1
11 β̆)β̆′S10

) , (6)

where the maximum likelihood estimator β̆ is determined by reduced rank regression assuming the rank is r.

2.2. Asymptotic Distributions

The basic asymptotic result for the analysis of the estimators and the test statistic is that α′⊥yt

converges to an Ornstein-Uhlenbeck process. This technique was developed by Phillips (1988), and
Johansen (1996, chp. 14) is used as a reference for details related to the CVAR. The results for the test
statistic can be found in Elliott (1998).

Under Assumption 1, the process given by (1) satisfies

T−1/2α′⊥y[Tu]
D→ K(u),

where K is the Ornstein-Uhlenbeck process

K(u) = α′⊥
∫ u

0
exp

{
α1cβ′

1C(u − s)
}

dWε(s),

C = β⊥(α′⊥β⊥)−1α′⊥ and Wε is Brownian motion generated by the cumulated εt.

Theorem 3. The test Qβ for a given value of β, derived assuming c = 0, see (6), satisfies

Qβ
D→ χ2

(p−r)r + B, (7)

where the stochastic noncentrality parameter
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B = tr

{
β1c′ζcβ′

1β⊥
(
α′⊥β⊥

)−1
(∫ 1

0
KK′du

) (
β′
⊥α⊥

)−1
β′
⊥

}
, (8)

is independent of the χ2 distribution and has expectation

E(B) = tr

{
β1c′ζcβ′

1C
(∫ 1

0
(1 − v) exp(vτC)Ω exp(vC′τ′)dv

)
C′
}

. (9)

Here ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 and τ = α1cβ′
1, so it follows that E(B) = 0 if and only if α′1Ω−1α = 0,

in which case Qβ
D→ χ2

(p−r)r.

Let β be normalized as β′β1⊥ = Ir. The asymptotic distribution of the estimators, α̂, β̂, ĉ, see (3)–(5),
are given as

T1/2(α̂ − α)
D→Np×r(0, Σ−1

ββ ⊗ Ω), (10)

T(β̂ − β)′β⊥
D→(α′1⊥α)−1α′1⊥

∫ 1

0
(dWε)K′

(∫ 1

0
KK′du

)−1

α′⊥β⊥, (11)

ĉ − c D→(α′⊥α1)
−1α′⊥

∫ 1

0
(dWε)K′

(∫ 1

0
KK′du

)−1

α′⊥β⊥(β′
1β⊥)−1. (12)

Note that the asymptotic distributions of β̂ and ĉ given in (11) and (12) are not mixed Gaussian,
because α′1⊥Wε(u) and α′⊥Wε(u) are not independent of K(u), which is generated by α′⊥εt.

Corollary 1. In the special case where r = p − 1, we choose α1 so that c ≥ 0, and find

E(B) =
e2δc − 1 − 2δc

(2δ)2 κζ, (13)

where
δ = β′

1Cα1, κ = β′
1CΩC′β1, ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.

3. Critical Value Adjustment for Test on β in the CVAR with near Unit Roots

3.1. Bonferroni Bounds

In this section the method of McCloskey (2017, Theorem Bonf) is illustrated by a number of
simulation experiments. The simulations are performed with data generated by a bivariate model (1),
where p = 2 and r = 1. The direction α1 is chosen such that c ≥ 0. The test Qβ for a given value of β,
is calculated assuming c = 0, see (6). The simulations of Elliott (1998), see Section 3.3, show that there
may be serious size distortions of the test, depending on the value of c and ρ, if the test is based on the
quantiles from the asymptotic χ2(1) distribution.

The methods of McCloskey (2017) consists in this case of replacing the χ2(1) critical value with
a stochastic critical value depending on ĉ, in order to control the rejection probability under the
null hypothesis.

Let θ = (α, β, Ω) and let Pc,θ denote the probability measure corresponding to the parameters c, θ.
The method consists of finding the η quantile of ĉ, see (5) with Π replaced by Π̂, as defined by

Pc,θ

(
ĉ ≤ cθ,η(c)

)
= η,

for η = 5% or 10%, say, and the ξ quantile qθ,ξ(c) of Qβ as defined by
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Pc,θ

(
Qβ ≤ qθ,ξ(c)

)
= ξ,

for ξ = 90% or 95%, say.
By simulation for given θ and a grid of given of values c ∈ (c1, . . . , cn), the quantiles cθ,η(ci) and

qθ,ξ(ci) are determined. It turns out, that both cθ,η(c) and qθ,ξ(c) are increasing in c, see Figure A2.
Therefore, a solution c−1

θ,η(ĉ) can be found such that

Pc,θ

{
ĉ > cθ,η(c)

}
= Pc,θ

{
c ≤ c−1

θ,η(ĉ)
}
= 1 − η. (14)

This gives a 1 − η confidence interval [0, c−1
θ,η(ĉ)] for c, based on the estimator ĉ. Note that for

c ≤ c−1
θ,η(ĉ) it holds by monotonicity of qθ,ξ(·) that qθ,ξ(c) ≤ qθ,ξ(c−1

θ,η(ĉ)), such that

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}

and c ≤ c−1
θ,η(ĉ)

]
≤ Pc,θ

{
Qβ > qθ,ξ(c)

}
≤ 1 − ξ,

but we also have

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}

and c > c−1
θ,η(ĉ)

]
≤ Pc,θ

[
c > c−1

θ,η(ĉ)

]
= η,

such that

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}}

≤ 1 − ξ + η.

In the paper from McCloskey (2017) it is proved under suitable conditions that we have the much
stronger result

1 − ξ ≤ lim sup
T→∞

sup
0≤c<∞

Pc,θ

[
Qβ > qθ̂,ξ

{
c−1

θ̂,η
(ĉ)
}]

≤ 1 − ξ + η.

Thus, the limiting rejection probability, for given θ, of the test on β, calculated as if c = 0,
but replacing the χ2

ξ(1) quantile by the estimated stochastic quantile qθ̂,ξ(c
−1
θ̂,η

(ĉ)), lies between 1 − ξ

and 1 − ξ + η. In the simulations we set η = 0.05 and ξ = 0.95, so that the limiting rejection probability
is bounded by 10%.

Note that θ is replaced by the consistent estimator θ̂. It obviously simplifies matters that in all the
examples we simulate, it turns out that cθ,η(c) is approximately linear and increasing in c, and qθ,ξ(c)
is approximately quadratic and increasing in c for the relevant values of c, see Figure A2.

3.2. Adjusted Bonferroni Bounds

McCloskey (2017, Theorem Bonf-Adj) suggests determining by simulation on a grid of values of c
and ξ, the quantitity

P̄θ,η(ξ) = max
0≤c≤∞

Pc,θ

(
Qβ > qθ,ξ(c−1

θ,η(ĉ)
)

.

It turns out that P̄θ,η(ξ) is monotone in ξ, and we can determine for a given nominal size υ (here 10%)

ξopt = P̄−1
θ,η (υ).

The Adjusted Bonferroni quantile is then

qθ,ξopt

(
c−1

θ,η(ĉ)
)

,
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and we find
Pc,θ

(
Qβ > qθ,ξopt(c

−1
θ,η(ĉ)

)
≤ υ.

The result of McCloskey (2017, Theorem Bonf-Adj) is that under suitable assumptions

lim sup
T→∞

sup
0≤c<∞

Pc,θ

[
Qβ > qθ̂,ξopt

{
c−1

θ̂,η
(ĉ)
}]

= υ,

where we illustrate the upper bound.

3.3. The Simulation Study of Elliott (1998)

The DGP is defined by the equations,

y1t =
(

1 − c
T

)
y1t−1 + u1t, (15)

y2t = γy1t + u2t. (16)

It is assumed that ut = (u1t, u2t)
′ are i.i.d. N2(0, Ωu) with

Ωu =

(
1 ρ

ρ 1

)
,

and the initial values are y10 = y20 = 0. The data y1, . . . , yT are generated from (15) and (16), and the
test statistic Qβ for the hypothesis γ = 0, is calculated using (6).

The DGP defined by (15) and (16) is contained in model (1) for p = 2. Note that y2t = γ(1 −
c/T)y1t−1 + γu1t + u2t such that

α =

(
0
1

)
, β =

(
γ

−1

)
, α1 =

(
−1
−γ

)
, β1 =

(
1
0

)
, (17)

where the sign on α1 has been chosen such that c ≥ 0. Finally ε1t = u1t and ε2t = u2t +γu1t, and therefore

Ω =

(
1 ρ + γ

ρ + γ 1 + γ2 + 2γρ

)
.

For c = 0, the process yt = (y1t, y2t)
′ is I(1) and γy1t − y2t is stationary, and if c/T is close to zero,

yt has a near unit root.
Applying Corollary 1 to the DGP (15) and (16), the expectation of the test statistic Qβ is found

to be

E(Qβ) = p − 1 +
e−2c − 1 + 2c

4
ρ2

1 − ρ2 , (18)

which increases approximately linearly in c.
Based on N = 1000 simulations of errors u1, . . . , uT , T = 100, the data y1, . . . , yT , are constructed

from the DGP for each combination of the parameters

(γ, c, ρ) ∈ [−0.5 : (0.01) : 0.5]× [1 : (1) : 20]× [−0.9 : (0.1) : 0.9],

where [a : (b) : c] indicates the interval from a to c with step b. Based on each simulation, ĉ and the test
Qβ for γ = 0 are calculated.

133



Econometrics 2017, 5, 25

Top panel of Figure A1 shows the rejection probabilities of the test Qβ as a function of (c, ρ),
using the asymptotic critical value, χ2

0.90(1) = 2.71, for a nominal rejection probability of 10%.
The rejection probability increases with |ρ| and with c. When c = 10 (corresponding to an autoregressive
coefficient of c/T = 0.9) and |ρ| = 0.7, the size of the test Qβ is around 50%, as found in Elliott (1998).
The results are analogous across models with an unrestricted constant term, or with a constant restricted
to the cointegrating space. In the paper by Elliott (1998) a number of tests are analyzed, and it was
found that they were quite similar in their performance and similar to the above likelihood ratio test
Qβ from the CVAR with rank equal to 1.

3.4. Results with Bonferroni Quantiles and Adjusted Bonferroni Quantiles for Qβ

Data are simulated as above and first the rank test statistic, Qr, see Johansen (1996, chp. 11) for
rank equal to 1, is calculated. The rejection probabilities for a 5% test using Qr are given in the bottom
panel of Figure A1 and they show that for c = 20, the hypothesis that the rank is 1, is practically certain
to be rejected. If c = 8, the probability of rejecting that the rank is 1 is around 50%, so that plotting the
rejection probabilities for 0 ≤ c ≤ 10, covers the relevant values, see Figure A3.

For η = 5% and 10%, the quantiles cη(c) of ĉ are reported in Figure A2 as a function of c.
The quantiles cη(c) are nearly linear in c, and they are approximated by

c̃η(c) = aη + bηc,

where the coefficients (aη , bη) depend on η, which is used to construct the upper confidence limit
in (14) as

c̃−1
η (ĉ) = (ĉ − aη)b−1

η .

For ξ = 90% and 95%, the quantiles qρ,ξ(c) of Qβ are reported in Figure A2 as function of c for
four values of ρ. It is seen that for given ρ, the quantiles qρ,ξ(c) are monotone and quadratic in c,
for relevant values of c, and hence they can be approximated by

q̃ρ,ξ(c) = fρ,ξ + gρ,ξc + hρ,ξc2, (19)

where the coefficients ( fρ,ξ , gρ,ξ , hρ,ξ) depend on ρ and ξ. The modified critical value is then constructed
replacing (c, ρ) by (c̃−1

η (ĉ), ρ̂) in (19), and thus one finds the adjusted critical value

q̃ρ̂,ξ,η(ĉ) = fρ̂,ξ + gρ̂,ξ(ĉ − aη)b−1
η + hρ,ξ

(
(ĉ − aη)b−1

η

)2
(20)

which depends on estimated values, ĉ and ρ̂, and on discretionary values, ξ and η.
The adjusted Bonferroni quantile is explained in Section 3.2. Simulations show that P̄θ,η(ξ) is

linear in ξ and the solution of the equation

P̄θ,η(ξ) = υ,

where υ = 0.10 is the nominal size of the test, determines ξopt; the adjusted Bonferroni q-quantile is
then found like (20) as

q̃ρ̂,ξopt ,η(ĉ) = fρ̂,ξopt + gρ̂,ξopt(ĉ − aη)b−1
η + hρ,ξopt

(
(ĉ − aη)b−1

η

)2
, (21)

where η = 0.05.
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The rejection frequency of Qβ, the test for γ = 0, calculated using the χ2(1)0.90 quantile,
the Bonferroni quantile in (20) for ξ = 95% and η = 5% and the adjusted Bonferroni quantile
in (21) for η = 5% is reported as a function of c for four values of ρ in Figure A3. For both corrections
the rejection frequency is below the nominal size of 10%; hence both procedures are able to eliminate
the serious size-distortions of the χ2 test. While the Bonferroni adjustment leads to rather conservative
test with rejection frequency well below the nominal size, the adjusted Bonferroni procedure is closer
to the nominal value. The power of the two procedures is shown in Figures A4 and A5 for values of
|γ| ≤ 1/2. It is seen that the better rejection probabilities in Figure A3 are achieved together with a
reasonable power for c ≤ 5, where the probability of rejecting the hypothesis of r = 1 is around 30%, see
bottom panel of Figure A1. Notice that both tests become slightly biased, that is, the power functions
are not flat around the null γ = 0.

In conclusion, the simulations indicate that the adjusted Bonferroni procedure works better than
the simple Bonferroni, the reason being that the former relies on the joint distribution of Qβ and ĉ.

3.5. A Few Examples of Other DGPs

Four other data generating processes are defined in Table 1, to investigate the role of different
choices of α1 and β1 for the results on improving the rejection probabilities for test on β under the
null and alternative. The DGPs all have α = −β = (−1, 1)′/2. The vectors α1 and β1 are chosen to
investigate different positions of the near unit root in the DGP.

The choice of DGP turns out to be important also for the test, Qr, for r = 1. In fact the probability
of rejecting r = 1 is around 50% for DGP 1 if c = 4, for DGP 2 if c = 20, whereas for DGP 3 and 4
the 50% value value is 8.

The rejection probabilities in Figure A6 are plotted for 0 ≤ c ≤ 10, to cover the most relevant values.
The results are summarized in Figures A6–A8. It is seen that the conclusions from the study of

the DGP analyzed by Elliott seem to be valid also for other DGPs. For moderate values of c, using the
Bonferroni quantiles gives a rather conservative test while the adjusted Bonferroni procedure is closer
to the nominal size and the power curves look reasonable for c ≤ 5, although the tests are slightly
biased, except for DGP 1. For this DGP, α1 = β1 = (1, 1)′, Ω = I2, such that α′1Ω−1α = 0, which means
that the asymptotic distribution of Qβ is χ2(1), see Theorem 3, despite the near unit root. It is seen from
Figure A6, there is only moderate distortion of the rejection probability in this case and in Figures A7
and A8, the power curves are symmetric around γ = 0, so the tests are approximately unbiased.

Table 1. The matrix Π for four different DGPs given by α = −β = (−1, 1)′/2 which are the basis for
the simulations of rejection probabilities for the adjusted test for β = (1,−1)′/2. The positions of c/T
give the different α1 and β1.

Four DGPs Allowing for near Unit Roots, Ω = I2

1:
( − 1

4 − c/T 1
4 − c/T

1
4 − c/T − 1

4 − c/T

)
2:

( − 1
4

1
4

1
4 − 1

4 − c/T

)

3:
( − 1

4
1
4

1
4 − c/T − 1

4 − c/T

)
4:

( − 1
4 − c/T 1

4 − c/T
1
4 − 1

4

)

4. Conclusions

It has been demonstrated that for the DGP analyzed by Elliott (1998), it is possible to apply the
methods of McCloskey (2017) to adjust the critical value in such a way that the rejection probabilities
of the test for β are very close to the nominal values. By simulating the power of the test for β, it is seen
that for c ≤ 5, the test has a reasonable power. Some other DGPs have been investigated and similar
results have been found.
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Appendix A. Proofs

Proof of Lemma 1. Multiplying Π = αβ′ + T−1α1cβ′
1 by β1⊥, we find

Πβ1⊥ = αβ′β1⊥. (A1)

Multiplying Π by α′1⊥ we find

α′1⊥Π = α′1⊥αβ′ = α′1⊥Πβ1⊥(β′β1⊥)−1β′. (A2)

Multiplying by b we find
(β′β1⊥)−1 = (α′1⊥Πβ1⊥)−1α′1⊥Πb.

It follows that from (A2)

β′ = β′β1⊥(α′1⊥Πβ1⊥)−1α′1⊥Π = (α′1⊥Πb)−1α′1⊥Π

and from (A1)
α = Πβ1⊥(β′β1⊥)−1 = Πβ1⊥(α′1⊥Πβ1⊥)−1α′1⊥Πb,

which proves (3) and (4).
Inserting these results in the expression for Π, we find using α′1⊥Πbβ′ = α′1⊥αβ′bβ′ = α1⊥Π

Π = αβ′ + T−1α1cβ′
1 = Πβ1⊥(α′1⊥Πβ1⊥)−1α′1⊥Π + T−1α1cβ′

1. (A3)

Next Π is decomposed using

Π = Πβ1⊥(α′1⊥Πβ1⊥)−1α′1⊥Π + α1(β′
1Π−1α1)

−1β′
1, (A4)

which is proved by premultiplying (A4) by α′1⊥ and β′
1Π−1. Subtracting (A3) and (A4) and multiplying

by ᾱ′1 and β̄1, it is seen that
(β′

1Π−1α1)
−1 = c/T.

Proof of Theorem 2. The unrestricted maximum likelihood estimator of Π is Π̂ = S01S−1
11 , and

Ω̂ = S00 − S01S−1
11 S10, and the results for α̂, β̂, ĉ follow from Lemma 1. If c = 0, the maximum

likelihood estimator β̆ can be determined by reduced rank regression, see (Johansen (1996, chp. 6)).

Proof of Theorem 3. Proof of (7) and (8): The limit results for the product moments are given first,
using the normalization matrix CT = (β, T−1/2α⊥) and the notation S1ε = T−1 ∑T

t=1 yt−1ε′t,

C′
TS11CT =

(
β′S11β T−1/2β′S11α⊥

T−1/2α′⊥S11β T−1α′⊥S11α⊥

)
D→
(

Σββ 0
0

∫ 1
0 KK′du

)
, (A5)

T1/2C′
TS1ε =

(
T1/2β′S1ε

T−1α′⊥S1ε

)
D→
(

Nr×p(0, Ω ⊗ Σββ)∫ 1
0 K(dWε)′

)
. (A6)
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The test for a known value of β is given in (6). It is convenient for the derivation of the limit
distribution of Qβ, to normalize β̆ on the matrix α(β′α)−1, such that β̆′α(β′α)−1 = Ir, and define
θ̆ = (β′

⊥α⊥)−1β′
⊥(β̆ − β). This gives the representation

β̆ − β = α⊥(β′
⊥α⊥)−1β′

⊥(β̆ − β) + β(α′β)−1α′(β̆ − β) = α⊥ θ̆.

The proof under much weaker conditions can be found in Elliott (1998), and is just sketched here.
The estimator for θ for known α, Ω and c = 0, is given by the equation

Tθ̆ = (α′⊥T−1S11α⊥)−1(α′⊥S1ε + α′⊥T−1S11β1cα′1)αΩ,

where αΩ = Ω−1α(α′Ω−1α)−1. The limit distribution of Tθ̆ follows from (A5) and (A6) as follows.

Because T−1α′⊥S11β
P→ 0 it follows that

α′⊥T−1S11β1cα′1 = α′⊥T−1S11

(
α⊥(β′

⊥α⊥)−1β′
⊥ + β(α′β)−1α′

)
β1cα′1

D→
(∫ 1

0
KK′du

)
(β′

⊥α⊥)−1β′
⊥β1cα′1,

and from α′⊥S1ε
D→ ∫ 1

0 K(dWε), it is seen that

Tθ̆
D→
(∫ 1

0
KK′du

)−1 (∫ 1

0
K(dWε) +

(∫ 1

0
KK′du

)
(β′

⊥α⊥)−1β′
⊥β1cα′1

)
αΩ = U,

say. Conditional on K, the distribution of U is Gaussian with variance (α′Ω−1α)−1 ⊗ (
∫ 1

0 KK′du)−1

and mean (β′
⊥α⊥)−1β′

⊥β1cα′1αΩ. The information about θ satisfies

T−2 Iθθ = tr
{

Ω−1α(dθ)′α′⊥S11α⊥(dθ)α′
}

D→ tr
{

α′Ω−1α(dθ)′
∫ 1

0
KK′du(dθ)

}
,

and inserting U for (dθ) determines the asymptotic distribution of Qβ. Conditional on K, this has a
noncentral χ2((p − r)r) distribution with noncentrality parameter

B = tr
{
(β′

⊥α⊥)−1β′
⊥β1c′ζcβ′

1β⊥(α′⊥β⊥)−1
∫ 1

0
KK′du

}
,

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1, which proves (8). The marginal distribution is therefore a
noncentral χ2 distribution with a stochastic noncentrality parameter, which is independent of the χ2

distribution, as shown by Elliott (1998).

Proof of (9): For τ = α1cβ′
1 it is seen that

Etr

{
(β′

⊥α⊥)−1β′
⊥β1c′ζcβ′

1β⊥(α′⊥β⊥)−1
∫ 1

0
KK′du

}

= Etr

{
β1c′ζcβ′

1C
∫ 1

0

(∫ u

0
exp

(
τC(u − s)

)
dW(s)

)(∫ u

0
dW(t)′ exp

(
C′τ′(u − t)

))
duC′

}

= tr

{
β1c′ζcβ′

1C
∫ 1

0

(∫ u

0
exp

(
τC(u − s))Ω exp(C′τ′(u − s)

)
ds
)

duC′
}

= tr

{
β1c′ζcβ′

1C
(∫ 1

0
(1 − v) exp(vτC)Ω exp(vC′τ′)dv

)
C′
}

,
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which proves (9). Note that this expression is zero if and only if ζ = 0, or α′1Ω−1α = 0, in which case
the asymptotic distribution of Qβ is χ2.

Proof of (10) and (11):

It follows that Π̂ = S01S−1
11 can be expressed as

Π̂ = αβ′ + T−1α1cβ′
1 + Sε1S−1

11 (A7)

= αβ′ + T−1α1cβ′
1 + T−1/2(T1/2Sε1CT)(C′

TS11CT)
−1
(

β, T−1/2α⊥
)′

= αβ′ + T−1α1cβ′
1 + T−1/2M1T β′ + T−1M2Tα′⊥,

where, using (A5) and (A6),

M1T
D→ M1 = Np×r(0, Σ−1

ββ ⊗ Ω), (A8)

M2T
D→ M2 =

∫ 1

0
dWεK′

(∫ 1

0
KK′du

)−1

. (A9)

From β̂′ = (α′1⊥Π̂b)−1α′1⊥Π̂, it follows that

T(β̂ − β)′β⊥ = T(α′1⊥Π̂b)−1α′1⊥(Π̂ − αβ′)β⊥
= (α′1⊥Π̂b)−1α′1⊥(T

1/2M1T β′ + M2Tα′⊥)β⊥
D→ (α′1⊥αβ′b)−1α′1⊥M2α′⊥β⊥ = (α′1⊥α)−1α′1⊥M2α′⊥β⊥,

where T1/2M1T β′β⊥ = 0, α′1⊥α1cβ′
1 = 0 and β′b = Ir. This proves (11).

From the normalization β̂′b = Ir we find, replacing β̂ by β

T1/2(α̂ − α) = T1/2(Π̂β1⊥(β̂′β1⊥)−1 − Πβ1⊥(β′β1⊥)−1)

= T1/2(T−1/2M1T + T−1M2Tα′⊥β1⊥(β′β1⊥)−1) + oP(1)

= M1T + T−1/2M2Tα′⊥β1⊥(β′β1⊥)−1 + oP(1)
D→ M1,

which proves (10).

Proof of (12): To analyse the limit distribution of ĉ, define

AT = (T−1/2ᾱ, α⊥) and BT = (T−1/2 β̄, β⊥),

and write
ĉ = T(β′

1Π̂−1α1)
−1 = (β′

1BT(A′
TTΠ̂BT)

−1 A′
Tα1)

−1.

The expansion (A7), and the limits (A8) and (A9) are then applied to give the limit results

T−1/2ᾱ′(TΠ̂)T−1/2 β̄ = Ir + O(T−1) + OP(T−1),

T−1/2ᾱ′(TΠ̂)β⊥ = 0 + O(T−1/2) + OP(T−1/2),

α′⊥(TΠ̂)β̄T−1/2 = 0 + O(T−1/2) + α′⊥M1T ,

α′⊥(TΠ̂)β⊥ = 0 + α′⊥α1cβ′
1β⊥ + α′⊥M2Tα′⊥β⊥.
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Thus

A′
T(TΠ̂)BT

D→
(

Ir 0
α′⊥M1 α′⊥α1cβ′

1β⊥ + α′⊥M2α′⊥β⊥

)
,

BT(A′
T(TΠ̂)BT)

−1 A′
T

D→ (0, β⊥)
(

Ir 0
α′⊥M1 α′⊥α1cβ′

1β⊥ + α′⊥M2α′⊥β⊥

)−1

(0, α⊥)′

= β⊥(α′⊥α1cβ′
1β⊥ + α′⊥M2α′⊥β⊥)−1α′⊥.

Multiplying by β′
1 and α1 and inverting, it is seen that because β′

1β⊥ and α′1α⊥ are (p − r)× (p − r) of
full rank,

ĉ = (β′
1BT(A′

TTΠ̂BT)
−1 A′

Tα1)
−1 D→ [β′

1β⊥(α′⊥α1cβ′
1β⊥ + α′⊥M2α′⊥β⊥)−1α′⊥α1]

−1

= (α′⊥α1)
−1(α′⊥α1cβ′

1β⊥ + α′⊥M2α′⊥β⊥)(β′
1β⊥)−1

= c + (α′⊥α1)
−1α′⊥M2α′⊥β⊥(β′

1β⊥)−1,

which proves (12).

Proof of Corollary 1. Proof of (13): If r = p − 1, the expression (9) can be reduced as follows.
For τ = α1cβ′

1
(τC)2 = cα1c(β′

1Cα1)β′
1C = c(β′

1Cα1)α1cβ′
1C = cδτC,

for δ = β′
1Cα1, and in general for n ≥ 0, it is seen that

(τC)n+1 = (cδ)nτC.

Therefore, using β1c′ζcβ′
1 = β1c′τΩ−1α(α′Ω−1α)−1α′Ω−1τ′,

E(B) = tr{Ω−1α(α′Ω−1α)−1α′Ω−1τC
(∫ 1

0
(1 − v) exp(vτC)Ω exp(vC′τ′)dv

)
C′τ′}.

The integral can be calculated by the expansion

τC exp(vτC)Ω exp(vC′τ′)C′τ′ =
∞

∑
n,m=0

vn

n!
(τC)n+1Ω(C′τ′)m+1 vm

m!

=
∞

∑
n,m=0

(vcδ)n+m

n!m!
τCΩC′τ′ = exp(2vcδ)c2κα1α′1,

where κ = β′
1CΩC′β1. This allows the integral to be calculated

τC
(∫ 1

0
(1 − v) exp(vτC)Ω exp(vC′τ′)dv

)
C′τ′

=

(∫ 1

0
(1 − v) exp(2vcδ)dv

)
c2κα1α′1 =

e2δc − 1 − 2cδ

(2δc)2 c2κα1α′1.

Therefore

E(B) =
e2cδ − 1 − 2cδ

(2δ)2 κα′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 = (e2cδ − 1 − 2cδ)
κζ

(2δ)2 ,

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.
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Appendix B. Figures

−1
−0.5

0
0.5

1

0
5

10
15

20
0

0.5

1

ρ

10% test on β

c

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

c

5% test on rank

Figure A1. Top panel: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile as a
function of c and ρ. Bottom panel: Rejection frequency of the 5% test Qr for r = 1 using Table 15.1 in
Johansen (1996) as a function of c. N = 1000 simulations of T = 100 observations from the DGP (15)
and (16).
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Figure A2. Quantiles and fitted values in the distributions of ĉ and Qβ as a function of c for different
values of ρ; N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A3. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (Unadjusted),
the Bonferroni quantile in (20) for ξ = 95% and η = 5% (Bonf) and the adjusted Bonferroni quantile
in (21) for η = 5% (Adjusted Bonf) as a function of c for different values of ρ; N = 1000 simulations of
T = 100 observations from the DGP (15) and (16).
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Figure A4. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the Bonferroni quantile in (20) for ξ = 95% and η = 5%, as a function of γ for different values of c
and ρ; N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A5. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c=0, chisq) and
the adjusted Bonferroni quantile in (21) for η = 5% as a function of γ for different values of c and ρ;
N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A6. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (Unadjusted),
the Bonferroni quantile in (20) for ξ = 95% and η = 5% (Bonf) and the adjusted Bonferroni quantile
in (21) for η = 5% (Adjusted Bonf) as a function of c; N = 1000 simulations of T = 100 observations
from the DGPs in Table 1.

145



Econometrics 2017, 5, 25

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

γ

10% test on β, DGP 1

 

 

c=0, chisq
c=0
c=5

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

γ

10% test on β, DGP 2

 

 

c=0, chisq
c=0
c=5

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

γ

10% test on β, DGP 3

 

 

c=0, chisq
c=0
c=5

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

γ

10% test on β, DGP 4

 

 

c=0, chisq
c=0
c=5

Figure A7. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the Bonferroni quantile in (20) for ξ = 95% and η = 5%, as a function of γ for different values of c;
N = 1000 simulations of T = 100 observations from the DGPs in Table 1.
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Figure A8. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the adjusted Bonferroni quantile in (21) for η = 5% as a function of γ for different values of c; N = 1000
simulations of T = 100 observations from the DGPs in Table 1.
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Abstract: A state space model with an unobserved multivariate random walk and a linear observation
equation is studied. The purpose is to find out when the extracted trend cointegrates with its estimator,
in the sense that a linear combination is asymptotically stationary. It is found that this result holds for
the linear combination of the trend that appears in the observation equation. If identifying restrictions
are imposed on either the trend or its coefficients in the linear observation equation, it is shown that
there is cointegration between the identified trend and its estimator, if and only if the estimators of the
coefficients in the observation equations are consistent at a faster rate than the square root of sample
size. The same results are found if the observations from the state space model are analysed using a
cointegrated vector autoregressive model. The findings are illustrated by a small simulation study.

Keywords: cointegration of trends; state space models; cointegrated vector autoregressive models

JEL Classification: C32

1. Introduction and Summary

This paper is inspired by a study on long-run causality, see Hoover et al. (2014). Causality is
usually studied for a sequence of multivariate i.i.d. variables using conditional independence,
see Spirtes et al. (2000) or Pearl (2009). For stationary autoregressive processes, causality is discussed
in terms of the variance of the shocks, that is, the variance of the i.i.d. error term. For nonstationary
cointegrated variables, the common trends play an important role for long-run causality.
In Hoover et al. (2014), the concept is formulated in terms of independent common trends and their causal
impact coefficients on the nonstationary observations. Thus, the emphasis is on independent trends, and
how they enter the observation equations, rather than on the variance of the measurement errors.

The trend is modelled as an m−dimensional Gaussian random walk, starting at T0,

Tt+1 = Tt + ηt+1, t = 0, . . . , n − 1, (1)

where ηt are i.i.d. Nm(0, Ωη), that is, Gaussian in m dimensions with mean zero and m × m variance
Ωη > 0. This trend has an impact on future values of the p−dimensional observation yt modelled by

yt+1 = BTt + εt+1, t = 0, . . . , n − 1, (2)

where εt are i.i.d. Np(0, Ωε) and Ωε > 0. It is also assumed that the εs and ηt are independent for all s
and t. In the following the joint distribution of T1, . . . , Tn, y1, . . . , yn conditional on a given value of T0

is considered.
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The observations are collected in the matrices Yn, p × n, and ΔYn, p × (n − 1), which are defined as

Yn = (y1, . . . , yn), and ΔYn = (y2 − y1, . . . , yn − yn−1).

The processes yt and Tt are obviously nonstationary, but the conditional distribution of Yn given
T0 is well defined. We define

EtTt = E(Tt|Yt, T0),

Vt = Vart(Tt) = Var(Tt|Yt, T0).

Then the density of Yn conditional on T0 is given by the prediction error decomposition

p(Yn|T0) = p(y1|T0)
n−1

∏
t=1

p(yt+1|Yt, T0),

where yt+1 given (Yt, T0) is p dimensional Gaussian with mean and variance

Etyt+1 = BEtTt,

Vart(yt+1) = BVtB′ + Ωε.

In this model it is clear that yt and Tt cointegrate, that is, yt+1 − BTt+1 = εt+1 − Bηt+1 is stationary,
and the same holds for Tt and the extracted trend EtTt = E(Tt|y1, . . . , yt, T0). Note that in the statistical
model defined by (1) and (2) with parameters B, Ωη , and Ωε, only the matrices BΩη B′ and Ωε are
identified because for any m × m matrix ξ of full rank, Bξ−1 and ξΩηξ ′ give the same likelihood,
by redefining the trend as ξTt.

Let ÊtTt be an estimator of EtTt. The paper investigates whether there is cointegration between
EtTt and ÊtTt given two different estimation methods: A simple cointegrating regression and the
maximum likelihood estimator in an autoregressive representation of the state space model.

Section 2, on the probability analysis of the data generating process, formulates the model as a
common trend state space model, and summarizes some results in three Lemmas. Lemma 1 contains the
Kalman filter equations and the convergence of Var(Tt|y1, . . . , yt, T0), see Durbin and Koopman (2012),
and shows how its limit can be calculated by solving an eigenvalue problem. Lemma 1 also shows how
yt can be represented in terms of its prediction errors vj = yj − Ej−1yj, j = 1, . . . , t. This result is used in
Lemma 2 to represent yt in steady state as an infinite order cointegrated vector autoregressive model,
see (Harvey 2006, p. 373). Section 3 discusses the statistical analysis of the data and the identification of
the trends and their loadings. Two examples are discussed. In the first example, only B is restricted
and the trends are allowed to be correlated. In the second example, B is restricted but the trends are
uncorrelated, so that also the variance matrix is restricted. Lemma 3 analyses the data from (1) and (2)
using a simple cointegrating regression, see Harvey and Koopman (1997), and shows that the estimator
of the coefficient B suitably normalized is n-consistent.

Section 4 shows in Theorem 1 that the spread between BEtTt and its estimator B̂ÊtTt is
asymptotically stationary irrespective of the identification of B and Tt. Then Theorem 2 shows
that the spread between EtTt and its estimator ÊtTt is asymptotically stationary if and only if B has
been identified so that the estimator of B is superconsistent, that is, consistent at a rate faster than n1/2.

The findings are illustrated with a small simulation study in Section 5. Data are generated from (1)
and (2) with T0 = 0, and the observations are analysed using the cointegrating regression discussed in
Lemma 3. If the trends and their coefficients are identified by the trends being independent, the trend
extracted by the state space model does not cointegrate with its estimator. If, however, the trends are
identified by restrictions on the coefficients alone, they do cointegrate.
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2. Probability Analysis of the Data Generating Model

This section contains first two examples, which illustrate the problem to be solved. Then a special
parametrization of the common trends model is defined and some, mostly known, results are given in
Lemmas 1 concerning the Kalman filter recursions. Lemma 2 is about the representation of the steady
state solution as an autoregressive process. All proofs are given in the Appendix.

2.1. Two Examples

Two examples are given which illustrate the problem investigated. The examples are analysed
further by a simulation study in Section 5.

Example 1. In the first example the two random walks T1t and T2t are allowed to be dependent, so Ωη

is unrestricted, and identifying restrictions are imposed only on their coefficients B. The equations are

y1,t+1 = T1t + ε1,t+1,
y2,t+1 = T2t + ε2,t+1,
y3,t+1 = b31T1t + b32T2t + ε3,t+1.

(3)

for t = 0, . . . , n − 1. Thus, yt = (y1t, y2t, y3t)
′, Tt = (T1t, T2t)

′, and

B =

⎛⎜⎝ 1 0
0 1

b31 b32

⎞⎟⎠ . (4)

Moreover, Ωη > 0 is 2 × 2, Ωε > 0 is 3 × 3, and both are unrestricted positive definite. Simulations
indicate that Etyt+1 − Êtyt+1 = BEtTt − B̂ÊtTt is stationary, and this obviously implies that the same
holds for the first two coordinates EtT1t − ÊtT1t and EtT2t − ÊtT2t.

Example 2. The second example concerns two independent random walks T1t and T2t, and the three
observation equations

y1,t+1 = T1t + ε1,t+1,
y2,t+1 = b21T1t + T2t + ε2,t+1,
y3,t+1 = b31T1t + b32T2t + ε3,t+1.

(5)

In this example

B =

⎛⎜⎝ 1 0
b21 1
b31 b32

⎞⎟⎠ , Ωη = diag(σ2
1 , σ2

2 ), (6)

and Ωε > 0 is 3 × 3 and unrestricted positive definite. Thus the nonstationarity is caused by two
independent trends. The first, T1t, is the cause of the nonstationarity of y1t, whereas both trends are
causes of the nonstationarity of (y2t, y3t). From the first equation it is seen that y1t and T1t cointegrate.
It is to be expected that also the extracted trend EtT1t cointegrates with T1t, and also that EtT1t
cointegrates with its estimator ÊtT1t. This is all supported by the simulations. Similarly, it turns
out that

Ety2,t+1 − Êty2,t+1 = b21EtT1t − b̂21ÊtT1t + EtT2t − ÊtT2t,

is asymptotically stationary. In this case, however, EtT2t − ÊtT2t is not asymptotically stationary,
and the paper provides an answer to why this is the case.

The problem to be solved is why in the first example cointegration was found between the
extracted trends and their estimators, and in the second example they do not cointegrate. The solution
to the problem is that it depends on the way the trends and their coefficients are identified. For
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some identification schemes the estimator of B is n-consistent, and then stationarity of EtTt − ÊtTt

can be proved. But if identification is achieved by imposing restrictions also on the covariance of the
trends, as in Example 2, then the estimator for B is only n1/2-consistent, and that is not enough to get
asymptotic stationarity of EtTt − ÊtTt.

2.2. Formulation of the Model as a Common Trend State Space Model

The common trend state space model with constant coefficients is defined by

αt+1 = αt + ηt,
yt = Bαt + εt,

(7)

t = 1, . . . , n, see Durbin and Koopman (2012) or Harvey (1989), with initial state α1. Here αt is the
unobserved m−dimensional state variable and yt the p−dimensional observation and B is p × m of
rank m < p. The errors εt and ηt are as specified in the discussion of the model given by (1) and (2).

Defining Tt = αt+1, t = 0, . . . , n, gives the model (1) and (2). Note that in this notation EtTt = Etαt+1

is the predicted value of the trend αt+1, which means that it is easy to formulate the Kalman filter.
The Kalman filter calculates the prediction at+1 = Etαt+1 and its conditional variance Pt+1 =

Vart(αt+1) by the equations

at+1 = at + PtB′(BPtB′ + Ωε)
−1(yt − Et−1(yt)), (8)

Pt+1 = Pt + Ωη − PtB′(BPtB′ + Ωε)
−1BPt, (9)

starting with a1 = α1 and P1 = 0.
The recursions (8) and (9) become

Et+1Tt+1 = EtTt + K′
t(yt+1 − Etyt+1), (10)

Vt+1 = Ωη + Vt − K′
tBVt, (11)

t = 0, . . . , n − 1 starting with E1T1 = T0 and V1 = Ωη , and defining the Kalman gain

K′
t = VtB′(BVtB′ + Ωε)

−1. (12)

Lemma 1 contains the result that Vt+1 converges for t → ∞ to a finite limit V, which can be calculated
by solving an eigenvalue problem. Equation (11) is an algebraic Ricatti equation, see Chan et al. (1984),
where the convergence result can be found. The recursion (10) is used to represent yt+1 in terms of its
cumulated prediction errors vt+1 = yt+1 − Etyt+1, as noted by Harvey (2006, Section 7.3.2).

Lemma 1. Let Vt = Var(Tt|Yt) and EtTt = E(Tt|Yt).
(a) The recursion for Vt, (11), can be expressed as

Vt+1 = Ωη + Vt − Vt(Vt + ΩB)
−1Vt → V, t → ∞, (13)

where ΩB = Var(B̄′εt|B′
⊥εt) for B̄ = B(B′B)−1. Moreover,

Im − K′
tB = Im − VtB′(BVtB′ + Ωε)

−1B → Im − K′B = ΩB(V + ΩB)
−1, t → ∞, (14)

which has positive eigenvalues less than one, such that Im − K′B is a contraction, that is, (Im − K′B)n → 0,
n → ∞.

(b) The limit of Vt can be found by solving the eigenvalue problem

|λΩB − Ωη | = 0,
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for eigenvectors W and eigenvalues (λ1, . . . , λm), such that W ′ΩBW = Im and W ′ΩηW = diag(λ1, . . . , λm).
Hence, W ′VW = diag(τ1, . . . , τm) for

τi =
1
2
{λi + (λ2

i + 4λi)
1/2}. (15)

(c) Finally, using the prediction error, vt+1 = yt+1 − Etyt+1, it is found from (10) that

EtTt = T0 +
t

∑
j=1

K′
j−1vj, and yt+1 = vt+1 + B(T0 +

t

∑
j=1

K′
j−1vj). (16)

The prediction errors are independent Gaussian with mean zero and variances

Var(vt+1) = Vart(yt+1) = Vart(BTt + εt+1) = BVtB′ + Ωε → BVB′ + Ωε, t → ∞,

such that in steady state the prediction errors are i.i.d. Np(0, BVB′ + Ωε), and (16) shows that yt is
approximately an AR(∞) process, for which the reduced form autoregressive representation can be
found, see (Harvey 2006, Section 7.3.2).

Lemma 2. If the system (7) is in steady state, prediction errors vt are i.i.d. N(0, BVB′ + Ωε) and

Δyt = Δvt + BK′vt−1. (17)

Applying the Granger Representation Theorem, yt is given by

Δyt = αβ′yt−1 +
∞

∑
i=1

ΓiΔyt−i + vt. (18)

Here α = −K⊥(B′
⊥K⊥)−1 and β = B⊥.

2.3. Cointegration among the Observations and Trends

In model (1) and (2), the equation yt+1 = BTt + εt+1 shows that yt and Tt are cointegrated. It also
holds that Tt − EtTt is asymptotically stationary because

vt+1 = yt+1 − Etyt+1 = BTt + εt+1 − BEtTt,

which shows that B(Tt − EtTt) = vt+1 − εt+1 is asymptotically stationary. Multiplying by B̄′ = (B′B)−1B′,
the same holds for Tt − EtTt.

In model (18) the extracted trend is

T∗
t = α′⊥

t

∑
i=1

vi = K′ t

∑
i=1

vi,

and (16) shows that in steady state, yt+1 − BT∗
t = vt+1 + BT0 is stationary, so that yt cointegrates with

T∗
t . Thus, the process yt and the trends Tt, T∗

t , and EtTt all cointegrate, in the sense that suitable linear
combinations are asymptotically stationary. The next section investigates when similar results hold for
the estimated trends.

3. Statistical Analysis of the Data

In this section it is shown how the parameters of (7) can be estimated from the CVAR (18) using
results of Saikkonen (1992) and Saikkonen and Lutkepohl (1996), or using a simple cointegrating
regression, see (Harvey and Koopman 1997, p. 276) as discussed in Lemma 3. For both the state space
model (1)–(2) and for the CVAR in (18) there is an identification problem between Tt and its coefficient B,
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or between β⊥ and T∗
t , because for any m × m matrix ξ of full rank, one can use Bξ−1 as parameter and

ξTt as trend and ξΩηξ′ as variance, and similarly for β⊥ and T∗
t . In order to estimate B, T, and Ωη, it is

therefore necessary to impose identifying restrictions. Examples of such identification are given next.

Identification 1. Because B has rank m, the rows can be permuted such that B′ = (B′
1, B′

2), where B1 is
m × m and has full rank. Then the parameters and trend are redefined as

B† =

(
Im

B2B−1
1

)
=

(
Im

γ′

)
, Ω†

η = B1Ωη B′
1, T†

t = B1Tt. (19)

Note that B†T†
t = BTt and B†Ω†

η B†′ = BΩη B′. This parametrization is the simplest which separates
parameters that are n-consistently estimated, γ, from those that are n1/2-consistently estimated,
(Ωη , Ωε), see Lemma 3. Note that the (correlated) trends are redefined by choosing T1t as the trend in
y1t, then T2t as the trend in y2t, as in Example 1.

A more general parametrization, which also gives n-consistency, is defined, as in simultaneous
equations, by imposing linear restrictions on each of the m columns and require the identification
condition to hold, see Fisher (1966).

Identification 2. The normalization with diagonality of Ω†
η is part of the next identification, because

this is the assumption in the discussion of long-run causality. Let Ω†
η = Cηdiag(σ2

1 , . . . , σ2
m)C′

η be a
Cholesky decomposition of Ωη . That is, Cη is lower-triangular with one in the diagonal, corresponding
to an ordering of the variables. Using this decomposition the new parameters and the trend are

B# =

(
Cη

γ′Cη

)
, Ω#

η = diag(σ2
1 , . . . , σ2

m), T#
t = C−1

η T#
t , (20)

such that B#T#
t = B†T†

t = BTt and B#Ω#
η B#′ = B†Ω†

η B†′ = BΩη B′.
Identification of the trends is achieved in this case by defining the trends to be independent and

constrain how they load into the observations. In Example 2, T1t was defined as the trend in y1t, and T2t
as the trend in y2t, but orthogonalized on T1t, such that the trend in y2t is a combination of T1t and T2t.

3.1. The Vector Autoregressive Model

When the process is in steady state, the infinite order CVAR representation is given in (18).
The model is approximated by a sequence of finite lag models, depending on sample size n,

Δyt = αβ′yt−1 +
kn

∑
i=1

ΓiΔyt−i + vt,

where the lag length kn is chosen to depend on n such that kn increases to infinity with n, but so
slowly that k3

n/n converges to zero. Thus one can choose for instance kn = n1/3/ log n or kn = n1/3−ε,
for some ε > 0. With this choice of asymptotics, the parameters α, β, Γ = Ip − ∑∞

i=1 Γi, Σ = Var(vt),
and the residuals, vt, can be estimated consistently, see Johansen and Juselius (2014) for this application
of the results of Saikkonen and Lutkepohl (1996).

This defines for each sample size consistent estimators ᾰ, β̆, Γ̆ and Σ̆, as well residuals

v̆t. In particular the estimator of the common trend is T̆∗
t = ᾰ′⊥ ∑t

i=1 v̆i. Thus, ᾰβ̆′ P→ αβ′,
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C̆ = β̆⊥(ᾰ′⊥Γ̆β̆⊥)−1
⊥ ᾰ′⊥

P→ C = BK′ and Σ̆ P→ Σ = BVB′ + Ωε. If β⊥ is identified as (Im, γ)′,
then B̆ = β̆⊥

P→ β⊥. In steady state, the relations

Ωη = VB′(BVB′ + Ωε)
−1B′V = VB′Σ−1B′V,

C = BK′ = BVB′(BVB′ + Ωε)
−1 = BVB′Σ−1,

hold, see (11) and Lemma 2. It follows that

B̆Ω̆η B̆′ = C̆Σ̆C̆′ P→ BΩη B′, and Ω̆η = (B̆′ B̆)−1B̆′C̆Σ̆C̆′ B̆(B̆′ B̆)−1 P→ Ωη .

Finally, an estimator for Ωε can be found as

Ω̆ε = Σ̆ − 1
2
(C̆Σ̆ + Σ̆C̆′) P→ BVB′ + Ωε − 1

2
(BVB′ + BVB′) = Ωε.

Note that CΣ is not a symmetric matrix in model (18), but its estimator converges in probability
towards the symmetric matrix BVB′.

3.2. The State Space Model

The state space model is defined by (1) and (2). It can be analysed using the Kalman filter to calculate
the diffuse likelihood function, see Durbin and Koopman (2012), and an optimizing algorithm can be
used to find the maximum likelihood estimator for the parameters Ωη, Ωε, and B, once B is identified.

In this paper, an estimator is used which is simpler to analyse and which gives an n-consistent
estimator for B suitably normalized, see (Harvey and Koopman 1997, p. 276).

The estimators are functions of ΔYn and B′
⊥Yn, and therefore do not involve the initial value T0.

Irrespective of the identification, the relations

Var(Δyt) = BΩη B′ + 2Ωε, (21)

Cov(Δyt, Δyt+1) = −Ωε, (22)

hold, and they gives rise to two moment estimators, which determine Ωη and Ωε, once B has been
identified and estimated.

Consider the identified parametrization (19), where B = (Im, γ)′, and take B⊥ = (γ′,−Ip−m)′.
Then define z1t = (y1t, . . . , ymt)′ and z2t = (ym+1,t, . . . , ypt)′, such that yt = (z′1t, z′2t)

′ and B′
⊥yt =

γ′z1t − z2t = B′
⊥εt, that is,

z2t = γ′z1t − B′
⊥εt. (23)

This equation defines the regression estimator γ̂reg:

γ̂reg = (
n−1

∑
t=0

z1tz′1t)
−1

n−1

∑
t=0

z1tz′2t = γ − (
n−1

∑
t=0

z1tz′1t)
−1

n−1

∑
t=0

z1tε
′
tB⊥. (24)

To describe the asymptotic properties of γ̂reg, two Brownian motions are introduced

n−1/2
[nu]

∑
t=1

εt
D→ Wε(u) and n−1/2

[nu]

∑
t=1

ηt
D→ Wη(u). (25)

Lemma 3. Let the data be generated by the state space model (1) and (2).
(a) From (21) and (22) it follows that

Sn1 = n−1 ∑n
i=1 ΔytΔy′t

P→ BΩη B′ + 2Ωε,

Sn2 = n−1 ∑n
i=2(ΔytΔy′t−1 + Δyt−1Δy′t)

P→ −2Ωε,
(26)
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define n1/2-consistent asymptotically Gaussian estimators for BΩη B′ and Ωε, irrespective of the identification
of B.

(b) If B and B⊥ are identified as B = (Im, γ)′, B′
⊥ = (γ′,−Ip−m), and Ωη is adjusted accordingly,

then γ̂reg in (24) is n-consistent with asymptotic Mixed Gaussian distribution

n(γ̂reg − γ) = −n(B̂ − B)′B⊥ = nB′(B̂⊥ − B⊥) (27)

D→ −(
∫ 1

0
WηW ′

ηdu)−1
∫ 1

0
Wη(dWε)

′B⊥.

(c) If B is identified as B = (C′
η , C′

ηγ)′, B′
⊥ = (γ′,−Ip−m), and Ωη = diag(σ2

1 , . . . , σ2
m), then B̂ − B =

OP(n−1/2), but (27) still holds for −n(B̂ − B)′B⊥ = Ĉ′
η(γ̂reg − γ), so that some linear combinations of B̂ are

n−consistent.

Note that the parameters B = (Im, γ)′, Ωη, and Ωε can be estimated consistently from (24) and (26) by

B̂ =

(
Im

γ̂′
reg

)
, Ω̂ε = −1

2
Sn2, and Ω̂η = (B̂′ B̂)−1B̂′(Sn1 + Sn2)B̂(B̂′ B̂)−1. (28)

In the simulations of Examples 1 and 2 the initial value is T0 = 0, so the Kalman filter with T0 = 0
is used to calculate the extracted trend EtTt using observations and known parameters. Similarly the
estimator of the extracted trend ÊtTt is calculated using observations and estimated parameters based
on Lemma 3. The next section investigates to what extent these estimated trends cointegrate with the
extracted trends, and if they cointegrate with each other.

4. Cointegration between Trends and Their Estimators

This section gives the main results in two theorems with proofs in the Appendix. In Theorem 1 it is
shown, using the state space model to extract the trends and the estimator from Lemma 3, that BEtTt−
B̂ÊtTt is asymptotically stationary. For the CVAR model it holds that BT∗

t − B̆T̆∗
t

P→ 0, such that this
spread is asymptotically stationary. Finally, the estimated trends in the two models are compared,
and it is shown that B̂ÊtTt− B̆T̆∗

t is asymptotically stationary. The conclusion is that in terms of
cointegration of the trends and their estimators, it does not matter which model is used to extract the
trends, as long as the focus is on the identified trends BTt and BT∗

t .

Theorem 1. Let yt and Tt be generated by the DGP given in (1) and (2).
(a) If the state space model is used to extract the trends, and Lemma 3 is used for estimation, then BEtTt −

B̂ÊtTt is asymptotically stationary.

(b) If the vector autoregressive model is used to extract the trends and for estimation, then BT∗
t − B̆T̆∗

t
P→ 0.

(c) Under assumptions of (a) and (b), it holds that B̂ÊtTt− B̆T̆∗
t is asymptotically stationary.

In Theorem 2 a necessary and sufficient condition for asymptotic stationarity of T∗
t − T̆∗

t , EtTt − ÊtTt,
and ÊtTt − T̆∗

t is given.

Theorem 2. In the notation of Theorem 1, any of the spreads T∗
t − T̆∗

t , EtTt − ÊtTt or ÊtTt− T̆∗
t is

asymptotically stationary if and only if B and the trend are identified such that the corresponding estimator for B
satisfies n1/2(B̂ − B) = oP(1) and n1/2(B̆ − B) = oP(1).

The missing cointegration between EtTt and ÊtTt, say, can be explained in terms of the identity

B̂(EtTt − ÊtTt) = (B̂ − B)EtTt + (BEtTt − B̂ÊtTt).
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Here the second term, BEtTt − B̂ÊtTt, is asymptotically stationary by Theorem 1(a). But the first term,
(B̂ − B)Tt, is not necessarily asymptotically stationary, because in general, that is, depending on the
identification of the trend and B, it holds that B̂ − B = OP(n−1/2) and EtTt = OP(n1/2), see (16).

The parametrization B = (Im, γ)′ ensures n-consistency of B̂, so there is asymptotic stationarity of
T∗

t − T̆∗
t , EtTt − ÊtTt, and ÊtTt− T̆∗

t in this case. This is not so surprising because

BEtTt − B̂ÊtTt =

(
EtTt − ÊtTt

γ′EtTt − γ̂′ÊtTt

)
,

is stationary. Another situation where the estimator for B is n-consistent is if B = (B1, . . . , Bm) satisfies
linear restriction of the columns, R′

iBi = 0, or equivalently Bi = Ri⊥φi for some φi, and the condition
for identification is satisfied

rank{R′
i(R1⊥φ1, . . . , Rm⊥φm)} = r − 1, for i = 1, . . . , m, (29)

see Fisher (1966). For a just-identified system, one can still use γ̂reg, and then solve for the identified
parameters. For overidentified systems, the parameters can be estimated by a nonlinear regression of
z2t on z1t reflecting the overidentified parametrization. In either case the estimator is n-consistent such
that T∗

t − T̆∗
t , EtTt − ÊtTt, and ÊtTt− T̆∗

t are asymptotically stationary.
If the identification involves the variance Ωη , however, the estimator of B is only n1/2-consistent,

and hence no cointegration is found between the trend and estimated trend.
The analogy with the results for the CVAR, where β and α need to be identified, is that if β is

identified using linear restrictions (29) then β̂ is n-consistent, whereas if β is identified by restrictions
on α then β is n1/2-consistent. An example of the latter is if β is identified as the first m rows of the
matrix Π = αβ′, corresponding to α = (Im, φ)′, then β̂ is n1/2-consistent and asymptotically Gaussian,
see (Johansen 2010, Section 4.3).

5. A Small Simulation Study

The two examples introduced in Section 2.1 are analysed by simulation. The equations are given
in (5) and (3). Both examples have p = 3 and m = 2. The parameters B and Ωη contain 6+ 3 parameters,
but the 3 × 3 matrix BΩη B′ is of rank 2 and has only 5 estimable parameters. Thus, 4 restrictions must
be imposed to identify the parameters. In both examples the Kalman filter with T0 = 0 is used to extract
the trends, and the cointegrating regression in Lemma 3 is used to estimate the parameters.

Example 1 continued. The parameter B is given in (4), and the parameters are just-identified. Now

EtBT1t − Êt B̂T1t =

⎛⎜⎝ EtT1t − ÊtT1t
EtT2t − ÊtT2t

b31EtT1t + b32EtT2t − b̂31ÊtT1t − b̂32ÊtT2t

⎞⎟⎠ . (30)

As EtT1t − ÊtT1t and EtT2t − ÊtT2t are the first two rows of EtBT1t − Êt B̂T1t in (30), they are both
asymptotically stationary by Theorem 1(a).

To illustrate the results, data are simulated with n = 100 observations starting with T0 = 0 and
parameter values b31 = b32 = 0.5, σ2

1 = σ2
2 = 1, and σ12 = 0, such that

B =

⎛⎜⎝ 1 0
0 1

0.5 0.5

⎞⎟⎠ , Ωη =

(
1 0
0 1

)
. (31)

The parameters are estimated by (28) and the estimates become b̂31 = 0.48, b̂32 = 0.41, σ̂2
1 = 0.93,

σ̂12 = 0.26, and σ̂2
2 = 1.63. The extracted and estimated trends are plotted in Figure 1. Panels a
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and b show plots of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t), respectively, and it is seen that they co-move.
In panels c and d the differences ÊtT1t − EtT1t and ÊtT2t − EtT2t both appear to be stationary in this
parametrization of the model.
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0

(a)
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(b)
EtT2t ÊtT2t 

EtT1t−ÊtT1t 
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1 (d)
EtT2t−ÊtT2t 

Figure 1. The figure shows the extracted and estimated trends for the simulated data in Example 1 with
the identification in (19). Panels a and b show plots of EtT1t and ÊtT1t, and EtT2t and ÊtT2t, respectively.
Note that in both cases, the processes seem to co-move. In panels c and d, EtT1t − ÊtT1t and EtT2t − ÊtT2t

are plotted and appear stationary, because they are both recovered from BEtTt − B̂ÊtTt as the first two
coordinates, see (19).

Example 2 continued. The parameter B in this example is given in (6) such that

EtBTt − Êt B̂Tt =

⎛⎜⎝ EtT1t − ÊtT1t
b21EtT1t + EtT2t − b̂21ÊtT1t − ÊtT2t

b31EtT1t + b32EtT2t − b̂31ÊtT1t − b̂32ÊtT2t

⎞⎟⎠ . (32)

By the results in Theorem 1(a), all three rows are asymptotically stationary, in particular EtT1t − ÊtT1t.
Moreover, the second row of (32), (b21EtT1t − b̂21ÊtT1t) + (EtT2t − ÊtT2t), is asymptotically stationary.
Thus, asymptotic stationarity of EtT2t − ÊtT2t requires asymptotic stationary of the term

b21EtT1t − b̂21ÊtT1t = (b21 − b̂21)EtT1t + b̂21(EtT1t − ÊtT1t). (33)

Here, the second term, b̂21(EtT1t − ÊtT1t), is asymptotically stationary because EtT1t − ÊtT1t is.
However, the first term, (b21 − b̂21)EtT1t, is not asymptotically stationary because b̂21 is n1/2-consistent.

In this case n1/2(b21 − b̂21)
D→ Z, which has a Gaussian distribution, and n−1/2E[nu]T1[nu]

D→ Wη1(u),
where Wη1 is the Brownian motion generated by the sum of η1t. It follows that their product

(b21 − b̂21)E[nu]T1[nu] = {n1/2(b21 − b̂21)}{n−1/2E[nu]T1[nu]}

converges in distribution to the product of Z and Wη1(u), n → ∞, and this limit is nonstationary.
It follows that EtT2t − ÊtT2t is not asymptotically stationary for the identification in this example.
This argument is a special case of the proof of Theorem 2.
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To illustrate the results, data are simulated from the model with n = 100 observations starting with
T0 = 0 and parameter values b21 = 0.0, b31 = b32 = 0.5, and σ2

1 = σ2
2 = 1, which is identical to (31).

The model is written in the form (19) with a transformed B and Ωη , as

B† =

⎛⎜⎝ 1 0
0 1

b31 − b32b21 b32

⎞⎟⎠ , Ω†
η =

(
σ2

1 b21σ2
1

b21σ2
1 σ2

2 + b2
21σ2

1

)
.

The parameters are estimed as in Example 1 and we find b̂31 − b̂32b̂21 = 0.48, b̂32 = 0.41, σ̂2
1 = 0.93,

b̂21σ̂12 = 0.26, and σ̂2
2 + b̂2

21σ̂2
1 = 1.63, which are solved for b̂21 = 0.28, b̂31 = 0.59, b̂32 = 0.41, σ̂2

1 = 0.93,
and σ̂2

2 = 1.56. The extracted and estimated trends are plotted in Figure 2. The panels a and b show plots
of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t), respectively. It is seen that EtT1t and ÊtT1t co-move, whereas EtT2t
and ÊtT2t do not co-move. In panels c and d, the differences EtT1t − ÊtT1t and EtT2t − ÊtT2t are plotted.
Note that the first looks stationary, whereas the second is clearly nonstationary. When comparing
with the plot of EtT1t in panel a, it appears that the process ÊtT1t can explain the nonstationarity
of EtT2t − ÊtT2t. This is consistent with Equation (33) with b21 = 0 and b̂21 = 0.28. In panel d,
EtT2t − ÊtT2t − 0.28ÊtT1t is plotted and it is indeed stationary.
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EtT1t ÊtT1t EtT2t ÊtT2t 
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Figure 2. The figure shows the extracted and estimated trends for the simulated data in Example 2
with the identification in (20). Panels a and b show plots of EtT1t and ÊtT1t, and EtT2t and ÊtT2t,
respectively. Note that EtT1t and ÊtT1t seem to co-move, whereas EtT2t and ÊtT2t do not. In panel c,
EtT1t − ÊtT1t is plotted and appears stationary, but in panel d the spread EtT2t − ÊtT2t is nonstationary,
whereas EtT2t − ÊtT2t − 0.28ÊtT1t is stationary.

6. Conclusions

The paper analyses a sample of n observations from a common trend model, where the state is
an unobserved multivariate random walk and the observation is a linear combination of the lagged
state variable and a noise term. For such a model, the trends and their coefficients in the observation
equation need to be identified before they can be estimated separately. The model leads naturally
to cointegration between observations, trends, and the extracted trends. Using simulations it was
discovered, that the extracted trends do not necessarily cointegrate with their estimators. This problem
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is investigated, and it is found to be related to the identification of the trends and their coefficients
in the observation equation. It is shown in Theorem 1, that provided only the linear combinations
of the trends from the observation equation are considered, there is always cointegration between
extracted trends and their estimators. If the trends and their coefficients are defined by identifying
restrictions, the same result holds if and only if the estimated identified coefficients in the observation
equation are consistent at a rate faster than n1/2. For the causality study mentioned in the introduction,
where the components of the unobserved trend are assumed independent, the result has the following
implication: For the individual extracted trends to cointegrate with their estimators, overidentifying
restrictions must be imposed on the trend’s causal impact coefficients on the observations, such that
the estimators of these become super-consistent.
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Appendix A

Proof of Lemma 1 Proof of (a): Let N=(B̄, B⊥), B̄ = B(B′B)−1, such that

K′
tB = VtB′[BVtB′ + Ωε]

−1B = VtB′N[(N′BVtB′N + N′ΩεN)]−1N′B

= Vt

(
Im

0

)′ (
Vt + B̄′Ωε B̄ B̄′ΩεB⊥

B′
⊥Ωε B̄ B′

⊥ΩεB⊥

)−1(
Im

0

)
= Vt(Vt + ΩB)

−1,

where
ΩB = B̄′[Ωε − ΩεB⊥(B′

⊥ΩεB⊥)−1B′
⊥Ωε]B̄ = Var(B̄′εt|B′

⊥εt).

This proves (13) and (14).
Proof of (b): If the recursion starts with V1 = Ωη , then Vt can be diagonalized by W for all t and

the limit satisfies W ′VW = diag(τ1, . . . , τm), where

τi = λi + τi −
τ2

i
1 + τi

.

This has solution given in (15).
Proof of (c): The first result follows by summation from the recursion for EtTt in (10), and the

second from yt+1 = vt+1 + BEtTt.

Proof of Lemma 2 The polynomial Φ(z) = Ip − z(Ip − BK′) describes (17) as

(1 − L)yt = Φ(L)vt.

Note that Φ(1) = BK′ is singular and dΦ(z)/dz|z=1 = BK′ − Ip = BVB′(BVB′ + Ωε)−1 − Ip,
satisfies B′

⊥(BK′ − Ip)K⊥ = B′
⊥ΩεB⊥ is nonsingular, where K⊥ = (BVB′ + Ωε)B⊥. This means that

the Granger Representation Theorem (Johansen 1996, Theorem 4.5) can be applied and gives the
expansion (18) for α = −K⊥(B′

⊥K⊥)−1 and β = B′
⊥.

Proof of Lemma 3 Proof of (a): Consider first the product moments (21) and (22). The result (26)
follows from the Law of Large Numbers and the asymptotic Gaussian distribution of Ω̂ε = − 1

2 Sn2 and

Ω̂η = ̂̄B′
(S1n + Sn2)̂̄B follows from the Central Limit Theorem.
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Proof of (b): It follows from (23), (24), and (25) that the least squares estimator γ̂reg satisfies (27).
Let B⊥ = (γ′,−Ip−m)′, then

−(B̂ − B)′B⊥ = γ̂reg − γ = B′(B̂⊥ − B⊥).

Proof of (c): Note that for the other parametrization, (20), where B = (C′
η , C′

ηγ)′, it holds
that B⊥ = (γ′,−Ip−m)′, such that for both parametrizations (27) holds. The estimator of B, in the
parametrization (20), is B̂′ = (Ĉ′

η , Ĉ′
ηγ̂), where Ĉη is derived from the n1/2-consistent estimator of Ωη ,

such that for this parametrization, estimation of B is not n-consistent, but only n1/2-consistent and
B̂ − B = OP(n−1/2).

Proof of Theorem 1. Proof of (a): Let wt = BTt − B̂ÊtTt, then

BEtTt − B̂ÊtTt = B(EtTt − Tt) + (BTt − B̂ÊtTt) = B(EtTt − Tt) + wt. (A1)

Here B(EtTt − Tt) is stationary, so that it is enough to show that wt is asymptotically stationary.
From the definition of Tt+1 and the Kalman filter recursion (10) calculated for T0 = 0 and for the
estimated parameters, it holds that

BTt+1 = BTt + Bηt+1,

B̂Êt+1Tt+1 = B̂ÊtTt − B̂K̂′
t(yt+1 − B̂ÊtTt).

Subtracting the expressions gives

BTt+1 − B̂Êt+1Tt+1 = BTt + Bηt+1 − B̂ÊtTt − B̂K̂′
t(yt+1 − BÊtTt)

= BTt − B̂ÊtTt − B̂K̂′
t(BTt + εt+1 − B̂ÊtTt) + Bηt+1,

which gives the recursion

wt+1 = (Ip − B̂K̂′
t)wt − B̂K̂′

tεt+1 + Bηt+1. (A2)

Note that (Ip − B̂K̂′
t) is not a contraction, because p − m eigenvalues are one. Hence it is first proved

that B̂′
⊥wt is small and then a contraction is found for B̂′wt. From the definition of wt, it follows

from (27), that

B̂′
⊥wt = B̂′

⊥BTt = B̂′
⊥(B − B̂)Tt = −(B⊥ − B̂⊥)′ B̂Tt = OP(n−1)OP(n1/2) = OP(n−1/2).

Next define ̂̄B = B̂(B̂′ B̂)−1and ̂̄B⊥ = B̂⊥(B̂′
⊥ B̂⊥)−1, such that Ip = B̂̂̄B′

+ B̂⊥ ̂̄B′
⊥. From (A2) it follows

by multiplying by ̂̄B′
and using ̂̄B′

B = ̂̄B′
(B − B̂) + Im = Im + OP(n−1/2), that

̂̄B′
wt+1 = (̂̄B − K̂t)

′wt − K̂′
tεt+1 +

̂̄B′
Bηt+1

= (̂̄B − K̂t)
′(B̂̂̄B′

+ B̂⊥ ̂̄B′
⊥)wt − K̂′

tεt+1 + ηt+1 +
̂̄B′
(B − B̂)ηt+1

= (Im − K̂′
t B̂)̂̄B′

wt − K̂′
tεt+1 + ηt+1 + OP(n−1/2),

because ̂̄B′
(B − B̂)ηt+1 = OP(n−1/2) and (̂̄B − K̂t)′ B̂⊥ ̂̄B′

⊥wt = −K̂′
t B̂⊥ ̂̄B′

⊥wt = OP(n−1/2).

From (14) it is seen that Im − K̂′
t B̂

P→ ΩB(V + ΩB)
−1 and (Im − K′B)n → 0, n → ∞. This shows

that ̂̄B′
wt and hence wt is asymptotically a stationary AR(1) process.
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Proof of (b): The CVAR (18) is expressed as Π(L)yt = vt, and the parameters are estimated using
maximum likelihood with lag length kn → ∞ and k3

n/n → 0. This gives estimators (ᾰ, β̆, Γ̆, C̆, Σ̆) and
residuals v̆t. The representation of yt in terms of vt is given by

yt = C
t

∑
i=1

vi +
∞

∑
i=0

Civt−i + A,

where β′A = 0. This relation also holds for the estimated parameters and residuals, and subtracting
one finds

BT∗
t

t

∑
i=1

vi − B̆T̆∗
t

t

∑
i=1

v̆i =
∞

∑
i=0

C̆iv̆t−i −
∞

∑
i=0

Civt−i − A + Ă.

It is seen that the right hand side is oP(1) and hence asymptotically stationary.
Proof of (c): Each estimated trend is compared with the corresponding trend which gives

B̂ÊtTt − B̆T̆∗
t = (B̂ÊtTt − BTt) + (BTt − BT∗

t ) + (BT∗
t − B̆T̆∗

t ).

Here the first term is asymptotically stationary using Theorem 2(a), the middle term is asymptotically
stationary, and the last is oP(1) by Theorem 1(b).

Proof of Theorem 2. The proof is the same for all the spreads, so consider EtTt − ÊtTt, and the identity

B̂′(BEtTt − B̂ÊtTt) = B̂′(B − B̂)EtTt + B̂′ B̂(EtTt − ÊtTt).

The left hand side is asymptotically stationary by Theorem 1(a) and therefore EtTt − ÊtTt is
asymptotically stationary if and only

B̂′(B − B̂)EtTt = [n1/2B̂′(B − B̂)][n−1/2EtTt],

is asymptotically stationary. Here the second factor converges to a nonstationary process,

n−1/2E[nu]T[nu] = n−1/2E0T0 + n−1/2
[nu]

∑
j=2

K′
j−1vj

D→ Wv(u),

see (16), so for the term [n1/2B̂′(B − B̂)][n−1/2EtTt] to be asymptotically stationary it is necessary and

sufficient that n1/2B̂′(B − B̂) P→ 0.
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Abstract: We consider a class of panel tests of the null hypothesis of no cointegration and cointegration.
All tests under investigation rely on single-equations estimated by least squares, and they may be
residual-based or not. We focus on test statistics computed from regressions with intercept only
(i.e., without detrending) and with at least one of the regressors (integrated of order 1) being
dominated by a linear time trend. In such a setting, often encountered in practice, the limiting
distributions and critical values provided for and applied with the situation “with intercept only”
are not correct. It is demonstrated that their usage results in size distortions growing with the panel
size N. Moreover, we show which are the appropriate distributions, and how correct critical values
can be obtained from the literature.

Keywords: single-equations; large N asymptotics; integrated series with drift

JEL Classification: C22; C23

1. Introduction

Most panel tests for the null hypothesis of (no) cointegration rely on single-equations, notable
exceptions being Larsson et al. [1], Groen and Kleibergen [2], Breitung [3] and Karaman Örsal
and Droge [4] who proposed panel system approaches. In particular, the more recent paper
by Miller [5], building on nonlinear instrumental variable likelihood-based rank tests, allows for
cross-correlation between the units. Similarly, recent single-equation tests by Chang and Nguyen [6] or
Demetrescu et al. [7] also rely on nonlinear instrumental variable estimation, while the vast majority of
such panel tests builds on ordinary or fully modified or dynamic least squares (LS). Here, we study
exactly this class of LS-based single-equation panel tests for the null of either cointegration or no
cointegration.

We focus on the situation where the test statistics are computed from regressions with an
intercept only, and with at least one of the integrated regressors displaying a linear time trend
on top of the stochastic trend. Such a constellation is often met in practical applications, see for
instance Coe and Helpman [8] and Westerlund [9] on R&D spillovers (total factor productivity
and capital stock), Larsson et al. [1] on log real consumption and income (per capita), or
Hanck [10] on prices and exchange rate series testing the weak purchasing power parity (PPP).
The relevance of a linear trend in panel data has been addressed in Hansen and King [11] when
commenting on the link between health care expenditure and GDP, see McCoskey and Selden [12];
consequently, Blomqvist and Carter [13], Gerdtham and Löthgren [14] or Westerlund [15] worked
(partly) with detrended series, i.e., they included time as an explanatory variable in their panel
tregressions. Hansen ([16], p. 103), however, argue that “it seems reasonable that excess detrending
will reduce the test’s power”. Therefore, we study the empirically relevant case where test statistics are
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computed from regressions with intercept only (i.e., without detrending) when at least one of the I(1)
regressors displays a linear time trend.

Before becoming more technical, we want to outline our findings as a rule for empirical applications.
Let Z̄(m) denote a generic panel cointegration statistic computed from a regression with intercept only
involving m = k + 1 I(1) variables. The least squares regression may be static in levels,

yi,t = ᾱi + β̄i,1xi,1,t + · · ·+ β̄i,kxi,k,t + ūi,t , t = 1, . . . , T, i = 1, . . . , N ,

where {ui,t} is assumed to be I(1) in the case of no cointegration, or I(0) under the null hypothesis
of cointegration, see Remarks 1 and 3 below, respectively. Alternatively, Z̄(m) may be from the
error-correction regression1,

Δyi,t = κ̄i + γ̄iyi,t−1 + θ̄i,1xi,1,t−1 + · · ·+ θ̄i,kxi,k,t−1 + ε̄i,t , t = 1, . . . , T, i = 1, . . . , N ,

where contemporaneous differences Δxi,t or additional lags of differences may be required as additional
regressors to render ε̄i,t free of serial correlation, see Remark 2 below. The test statistic may be
constructed from pooling the data or from averaging individual statistics, see e.g., Pedroni [18,19] or
Westerlund [15]. Much of the nonstationary panel literature relies on sequential limit theory where
T → ∞ is followed by N → ∞, such that limiting normality can be established under the assumption
that none of the I(1) regressors follows a deterministic time trend:

√
N
(

Z̄(m) − μ̄m

)
/σ̄m ∼ N (0, 1) .

The constants μ̄m and σ̄m required for appropriate normalization are typically tabulated for
a selected number of values of m, see again Remarks 1 through 3. A different set of such moments
μ̃m and σ̃m is also typically given for detrended regressions, where the test statistic Z̃(m) stems from
regressions of the type (m = k + 1)

yi,t = α̃i + δ̃it + β̃i,1xi,1,t + · · ·+ β̃i,kxi,k,t + ũi,t ,

or
Δyi,t = κ̃i + ψ̃i t + γ̃iyi,t−1 + θ̃i,1xi,1,t−1 + · · ·+ θ̃i,kxi,k,t−1 + ε̃i,t .

We call such regressions “detrended” because, in a single-equation framework, the resulting
parameter estimators are equivalent to what one obtains from a two-step procedure: first, regress
all variables on a linear time trend, and, second, regress the individually detrended residuals on
each other. This equivalence is sometimes called Frisch-Waugh-Lovell Theorem, see e.g., Greene ([20],
Theorem 3.2). For generic Z̃(m) from, e.g., the tests mentioned in Remarks 1 through 3, it holds,
irrespective of an eventual linear trend in the data, that

√
N
(

Z̃(m) − μ̃m

)
/σ̃m ∼ N (0, 1) .

Our main contribution is twofold for the case that at least one of the I(1) regressors has a linear
time trend and the regressions are run with intercept only (without detrending). First, it is shown
that the normalization with μ̄m and σ̄m and the resulting critical values for Z̄(m) from the regression
“with intercept only” are not correct in the presence of linear time trends in the data. It is analytically
(Proposition 1) and numerically demonstrated that their usage results in size distortions growing
with the panel size N. Second, we characterize the appropriate limiting distributions by showing

1 Under the alternative of cointegration, the intercept κ from the error correction form can be decomposed in a rather
complicated way, see Juselius ([17], Section 6.2)); below; however, we will maintain the assumption of no cointegration.
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that normalization of Z̄(m) with μ̃m−1 and σ̃m−1 results in a standard normal limit, such that the size
of the tests can be controlled (Theorem 1). Put differently, Theorem 1 means in non-technical terms:
The limiting distribution arising from a regression on k I(1) variables with drift and an intercept
amounts to the limiting distribution in the case of a regression on k − 1 I(1) variables and an intercept
plus a linear time trend. Such a rule is known in a pure time series context for the special case of the
residual-based Phillips-Ouliaris test for no cointegration from Hansen ([16], p. 103): “[...] deterministic
trends in the data affect the limiting distribution of the test statistics whether or not we detrend the
data”; see also the expositions in Hamilton ([21], p. 596, 597) and Hassler ([22], Proposition 16.6).
It is even more relevant in our panel framework since we illustrate numerically and analytically that
the size distortions of an inappropriate normalization grow with the panel size N (either to zero or
one, depending on the specific test). Moreover, we compare our proposal to account for linear trends
in the data with the more traditional method of detrending the regression. By simulation, we show
that power gains of our new strategy according to Theorem 1 over detrending may be considerable.
We hence recommend this strategy as being superior to detrending.

The rest of the paper is organized as follows. The next section sets some notation and assumptions.
Section 3 establishes and discusses our asymptotic results and illustrates them with numerical evidence.
It also compares our suggestion to account for linear trends with the conventional method of detrending.
The last section discusses consequences for applied work. Mathematical proofs are relegated to
the Appendix A.

2. Notation and Assumptions

Restricting our attention to the single-equation framework we partition the m-vector zi,t of
observables into a scalar yi,t and a k-element vector xi,t, z′i,t = (yi,t, x′i,t), m = k + 1. As usual, the index
i stands for the cross-section, i = 1, . . . , N, while t denotes time, t = 1, . . . , T. Each sequence {zi,t},
t = 1, . . . , T, is assumed to be integrated of order 1, I(1), where we allow for a non-zero drift, and
assume for simplicity a negligible starting value, zi,0 = 0. While {zi,t} may be cointegrated or not,
depending on the respective null hypothesis, we rule out cointegration among {xi,t}. Technically, these
assumptions translate as follows, where Wi,m(·) denotes an m-dimensional standard Wiener process,
�x� stands for the integer part of a number x, and ⇒ is the symbol for weak convergence.

Assumption 1. With obvious partitioning according to (yi,t, x′i,t)
′, we assume (i = 1, . . . , N)

zi,t = μi,z t +
t

∑
j=1

ei,j =

(
μi,y
μi,x

)
t +

t

∑
j=1

(
ei,y,j
ei,x,j

)
, t = 1, . . . , T .

The stochastic zero mean process {ei,t} is integrated of order 0 in that it satisfies

T−0.5
�rT�
∑
t=1

ei,t ⇒ Ω0.5
i Wi,m(r) = Ω0.5

i

(
Wi,y(r)
Wi,x(r)

)
, r ∈ [0, 1] ,

with

Ωi =

(
ω2

i,yy ω′
i,xy

ωi,xy Ωi,xx

)
,

where ω2
i,yy > 0 and Ωi,xx is positive definite.

Now, we turn to assumptions with respect to the tests. Let S̄(m)
i and S̃(m)

i stand again for generic
test statistics computed from individual single-equation least squares regressions with “intercept only”
and “intercept plus linear trend”, respectively. The superscript (m) stands for the dimension of the I(1)
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vector entering the equations. One route to panel testing relies on so-called group statistics averaging
individual statistics. We denote them as follows:

Ḡ(m) =
1
N

N

∑
i=1

S̄(m)
i or G̃(m) =

1
N

N

∑
i=1

S̃(m)
i .

Similarly, panel statistics rely on pooling the data across the dimension within, i.e., summing over
terms showing up in the numerator and denominator separately,

P̄(m) = g

(
N

∑
i=1

N̄(m)
i,T ,

N

∑
i=1

D̄(m)
i,T

)
or P̃(m) = g

(
N

∑
i=1

Ñ(m)
i,T ,

N

∑
i=1

D̃(m)
i,T

)
.

A typical example for the mapping g is g(x, y) = x/
√

y in the case of t-type statistics. Here, it is

assumed that the generic N̄(m)
i,T and D̄(m)

i,T or Ñ(m)
i,T and D̃(m)

i,T are computed from individually demeaned
or detrended regressions, respectively. We allow for group and panel statistics by introducing the
generic notation Z̄(m) and Z̃(m), and maintain for the panel the joint null hypothesis

H0 =
N⋂

i=1

Hi,0 . (1)

A distinction between the individual null hypotheses Hi,0 of cointegration or absence of
cointegration is not required, and both cases are treated in the generic assumption as follows.

Assumption 2. Consider linear single-equation least squares regressions (i = 1, . . . , N, t = 1, . . . , T)

yi,t = ᾱi + β̄′
ixi,t + ūi,t and yi,t = α̃i + δ̃i t + β̃′

ixi,t + ũi,t , (2)

or
Δyi,t = κ̄i + γ̄i yi,t−1 + θ̄′i xi,t−1 + ε̄i,t and Δyi,t = κ̃i + ψ̃i t + γ̃i yi,t−1 + θ̃′i xi,t−1 + ε̃i,t , (3)

where contemporaneous differences Δxi,t or lags of Δzi,t−j, j > 0, may be required as additional regressors in
(3) to ensure residuals free of serial correlation. Let Z̄(m) and Z̃(m) stand for group statistics Ḡ(m) and G̃(m) or
for panel statistics P̄(m) and P̃(m) computed from regressions with “intercept only” and “intercept plus linear
trend”, respectively. We assume under the null hypothesis (1) that

√
N
(

Z̄(m) − μ̄m

)
⇒ N (0, σ̄2

m) if μi,z = 0 for all i = 1, . . . , N ,
√

N
(

Z̃(m) − μ̃m

)
⇒ N (0, σ̃2

m) for μi,z unrestricted ,

as T → ∞ followed by N → ∞.
Tests, e.g., by Kao [23], Pedroni [18,19], Westerlund [9,24] or Westerlund [15] meet Assumption 2

under different sets of restrictions, and they will be considered in the next section, see Remarks 1
through 3. In particular, these authors tabulate values of (μ̄m, σ̄m) and (μ̃m, σ̃m), m ≥ 2. Our assumption
of a single equation approach is motivated by the fact that much of applied work relies on this.
However, such an assumption comes at a price: In (2), we have to assume that the regressors xi,t
alone are not cointegrated (Ωi,xx is positive definite according to Assumption 2), and, in (3), we have
to assume under the alternative of cointegration that Δyi,t adjust to deviations from the long-run
equilibrium, and not Δxi,t.

Much of the earlier panel cointegration literature assumed independent units invoking a central
limit theorem to establish Assumption 2, see e.g., Pedroni [18,19] and Kao [23]. Cross-sectional
independence, however, is not maintained in our Assumption 2. Westerlund [15,24] e.g., allows for
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cross-correlation driven by a common factor. To account for this, he suggests replacing xi,t and yi,t by
the cross-sectionally demeaned time series,

xi,t − x̄t and yi,t − ȳt , where x̄t =
1
N

N

∑
i=1

xi,t , ȳt =
1
N

N

∑
i=1

yi,t .

This way, he establishes that the limiting results maintained under Assumption 2 are met under
cross-sectional correlation (subject to some restrictions).

3. Results

3.1. Asymptotic Theory

The first paper allowing for linear time trends in a panel cointegration context was by Kao [23].
He considers a residual-based unit root test for the null hypothesis of no cointegration in the tradition
of Phillips and Ouliaris [25]. His test builds on pooling the data while allowing for a individual-specific
intercept. Kao [23] does not consider regressions containing a linear time trend as additional regressors,
but allows for a linear drift in the data when performing a regression with a fixed effect intercept.
In the case of the k = 1 regressor (i.e., m = 2), Kao ([23], Equation (15)) observed that the linear time
trend dominates the I(1) component; hence, the limiting distribution amounts to that of the panel unit
root test by Levin et al. [26] upon detrending. To be precise: let μ̃1 and σ̃1 denote the normalizing
constants provided by Levin et al. [26] for detrended panel unit root tests; then, one should use them
for the pooled residual-based panel cointegration statistic P̄(2) in a bivariate regression if the regressor
is I(1) with drift, see Kao ([23], Theorem 4):

√
N
(

P̄(2) − μ̃1

)
⇒ N (0, σ̃2

1 ) under μi,x �= 0 . (4)

In Theorem 1, we extend Kao’s result for any panel or group statistics from static or dynamic
regressions with m ≥ 2 computed from regressions with intercept only in the presence of linear
time trends.

Theorem 1. Let the data satisfy Assumption 1, and the generic test statistic Z̄(m) meets Assumption 2 for
m ≥ 2. Furthermore, assume that μi,x �= 0 for all i = 1, . . . , N. Under the null hypothesis (1), it then holds
true that √

N
(

Z̄(m) − μ̃m−1

)
⇒ N (0, σ̃2

m−1)

as N → ∞, where (μ̃m−1, σ̃m−1) are from Assumption 2.

For proof, see Appendix A.
Note that Assumption 2 does not impose any restriction on μi,y. As is shown in the proof,

Theorem 1 holds irrespective of whether {yi,t} displays a linear trend or not (μi,y �= 0 or μi,y = 0).
Two research strategies can be employed in the presence of linear time trends when dealing with

statistics resulting from regressions with intercept only. The first one simply ignores the linear time
trends in the data and standardizes Z̄(m) with μ̄m and σ̄m. The second strategy accounts for the drift in
the data according to Theorem 1; in other words, it applies Z̄(m) upon standardizing with μ̃m−1 and
σ̃m−1. We summarize as follows:

Strategy SI : When Z̄(m) is computed from panel regressions without detrending, then compare√
N
(

Z̄(m) − μ̄m

)
/σ̄m with quantiles from the standard normal distribution, i.e., ignore the presence

of linear trends in the data.
Strategy SA: When Z̄(m) is computed from panel regressions without detrending, then compare√

N
(

Z̄(m) − μ̃m−1

)
/σ̃m−1 with quantiles from the standard normal distribution, i.e., account for the

presence of linear trends in the data.
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For the rest of the paper, we assume that an applied econometrician is able to distinguish between
the two cases, whether a linear time trend underlies the variables (e.g., log income or log prices) or not
(e.g., interest or inflation rates). Hence, we maintain the assumption behind Theorem 1: the researcher
knows that at least one regressor is I(1) with drift (μi,x �= 0). We assume that strategy SA is only
employed when linear trends are truly present and thus refrain from the discussion of misspecification:
what happens if there are no linear time trends in the data, but one erroneously accounts for trends.

The situation analyzed in Theorem 1 has not been considered in the previous panel cointegration
literature, with the notable exception of Kao [23]. Consequently, all applied papers that we are aware
of standardize Z̄(m), with μ̄m and σ̄m ignoring the effect of deterministic trends in the series, which
amounts to strategy SI . The effect of strategy SI under linear time trends is discussed for growing N in
the following proposition. The resulting size distortions depend on whether the test is right-tailed or
left-tailed (null hypothesis is rejected for too large or too small values, respectively).

Proposition 1. Let the assumptions from Theorem 1 hold true. Furthermore, assume

μ̃m−1 < μ̄m . (5)

Under the null hypothesis, one has the following results for strategy SI:

(a) For a left-tailed test, the probability to reject according to strategy SI increases with growing N to 1;
(b) for a right-tailed test, the probability to reject according to strategy SI decreases with growing N to 0.

For proof, see Appendix A.
We now discuss a couple of panel tests satisfying Assumption 2 and (5), such that Theorem 1 and

Proposition 1 apply.

Remark 1. The residual-based unit root tests for the null hypothesis of no cointegration proposed by
Pedroni [18,19] build on static regressions as in (2). The null hypothesis (1) is rejected for too negative values
of the test statistic (of Z̄(m) in our generic notation). The expected values and standard deviations (μ̄m, σ̄m)

and (μ̃m, σ̃m) showing up in Assumption 2 are available from Pedroni ([18], Table 2) for m > 2 and from
Pedroni ([19], Corollary 1) for m = 2. In order to apply Theorem 1 (strategy SA) for m = 2, one requires μ̃1

and σ̃1. These values stem from the detrended Dickey-Fuller distribution in the case of group statistics and have
been tabulated by Nabeya ([27], Table 4): μ̃1 = −2.18136 and σ̃1 = 0.74991. Throughout this, we observe
μ̃m−1 < μ̄m < 0. Hence, Proposition 1(a) applies. If strategy SI is employed under linear trends, and then
the probability to reject the true null hypothesis converges into one with growing panel size N. Alternatively,
Westerlund [24] suggested group and panel variance ratio type tests along the lines of Breitung [28]. The null
hypothesis of no cointegration is rejected again for too small values of the variance ratio statistic, and (μ̄m, σ̄m)

and (μ̃m, σ̃m) showing up in Assumption 2 are given in Westerlund ([24], Table 1) for m ≥ 2. To apply
Theorem 1 with m = 2, we need μ̃1 and σ̃1. For the detrended Breitung distribution we obtain by simulation
μ̃1 = 0.0110 and σ̃1 = 0.005197, which are the values corresponding to the case of group statistics. Again, we
observe 0 < μ̃m−1 < μ̄m, so that (5) holds. Consequently, Proposition 1(a) applies, and the probability to reject
the true null hypothesis under strategy SI grows with N as long as there is a linear trend in the data. To sum up:
in the case of residual-based tests for no cointegration, strategy SI results in massive size distortions; numerical
evidence for finite N is given in Table 1 below.

Remark 2. The error-correction tests by Westerlund [15] relies on regressions of type (3). It is again a left-tailed
test: The null hypothesis of no cointegration is rejected for too negative t-values associated with γ. Values
of (μ̄m, σ̄m) and (μ̃m, σ̃m) are tabulated in Westerlund ([15], Table 1) for m ≥ 2. In case of m = 1 (i.e., no
xi,t on the right-hand side), the limiting distributions are of the usual Dickey-Fuller type. Hence, μ̃1 and
σ̃1 for group statistics are again from detrended Dickey-Fuller-type distributions and given in Nabeya ([27],
Table 4) (see above). Comparing μ̄m with μ̃m, we find μ̃m−1 < μ̄m < 0 meeting (5) again. Consequently,
strategy SI is increasingly liberal in the presence of linear time trends, and the probability to reject the true null
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hypothesis approaches 1 in the limit as long as the series display a linear time trend. For numerical evidence,
see Table 2 below.

Remark 3. We now flip the null and the alternative hypotheses. Westerlund [9] suggested testing the null
hypothesis of cointegration. He proposed a CUSUM group test statistic for this null hypothesis to be applied
with tabulated values (μ̄m, σ̄m) and (μ̃m, σ̃m), m ≥ 2. To apply Theorem 1 for m = 2, we provide as moments of
the univariate, detrended distribution by simulation: μ̃1 = 0.6367 and σ̃1 = 0.145952. This test is right-tailed
and in accordance with Westerlund ([9], Table 1) 0 < μ̃m−1 < μ̄m. Thus, this time Proposition 1(b) comes in.
Under strategy SI in the presence of linear trends, the test is increasingly undersized with growing N. Such a
conservative behaviour implies low power under the alternative hypothesis.

3.2. Numerical Evidence

The statements obtained from Proposition 1 may be quantified more precisely by means of
Equations (A2) and (A3) given in the Appendix. These rejection probabilities apply approximately
(for large N) under the null hypothesis at nominal significance level α. We report results for the group
t-tests by Pedroni [18,19] and by Westerlund [15] in Tables 1 and 2.

Table 1. Approximate effective size of the group t-test by Pedroni [18,19] computed from (A2) at
nominal level α under strategy SI for μi,x �= 0.

N = 10 20 30 40 50

α = 0.01 0.030 0.053 0.079 0.107 0.137
k = 1 α = 0.05 0.126 0.190 0.249 0.307 0.361

α = 0.10 0.227 0.314 0.389 0.455 0.515

α = 0.01 0.017 0.024 0.030 0.036 0.043
k = 2 α = 0.05 0.080 0.102 0.122 0.141 0.159

α = 0.10 0.154 0.188 0.217 0.243 0.268

α = 0.01 0.014 0.017 0.020 0.022 0.025
k = 3 α = 0.05 0.067 0.078 0.087 0.096 0.104

α = 0.10 0.130 0.148 0.162 0.175 0.187

Table 2. Approximate effective size of the group t-test by Westerlund [15] computed from (A2) at
nominal level α under strategy SI for μi,x �= 0

N = 10 20 30 40 50

α = 0.01 0.139 0.352 0.564 0.732 0.846
k = 1 α = 0.05 0.394 0.669 0.836 0.924 0.967

α = 0.10 0.566 0.808 0.921 0.969 0.988

α = 0.01 0.089 0.208 0.344 0.478 0.598
k = 2 α = 0.05 0.283 0.484 0.644 0.763 0.846

α = 0.10 0.436 0.645 0.783 0.870 0.924

α = 0.01 0.067 0.150 0.247 0.349 0.450
k = 3 α = 0.05 0.232 0.392 0.531 0.647 0.738

α = 0.10 0.372 0.553 0.687 0.783 0.852

Generally, the size distortions in Tables 1 and 2 grow with N, while decreasing with m = k + 1
at the same time. The fact that SI is too liberal is characteristic for these tests where we reject for too
negative values (of

√
N(Z̄(m) − μ̄m)/σ̄m in our generic notation). Overrejection is not the general case,

2 The univariate distribution is the supremum over the absolute value of a so-called second-level Brownian bridge, which
shows up with the detrended KPSS test, too; see Kwiatkowski et al. [29].
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however, as we see when reversing the null and alternative hypotheses. To quantify distortions for the
CUSUM test discussed in Remark 3, we use Equation (A3) from the Appendix. When evaluating SI
under μi,x �= 0, we observe rejection probabilities equal to zero up to three digits for N = 10, 20, . . .;
this strongly supports the limiting result from Proposition 1 (b).

3.3. Regressions with a Linear Time Trend

For regressions with intercept only, strategy SI has been used in the literature and applied with
the tests mentioned in the remarks above. We have illustrated its failure to control size under the null
hypothesis in the presence of a linear time trend. In practice, one may use two strategies to account
for linear time trends. The first one is the new SA according to Theorem 1 from regressions without
detrending. The second one consists of detrending the series, or equivalently running detrended
regressions, i.e., including δ̃it and ψ̃it in (2) and (3), respectively. The empirical strategy then becomes
the following:

Strategy SD: Compute Z̃(m) from detrended panel regressions and compare the normalization√
N
(

Z̃(m) − μ̃m

)
/σ̃m with quantiles from the standard normal distribution.

By Assumption 2, this strategy will provide asymptotically correct size. However, tests from
detrended regressions will be prone to power losses relative to strategy SA, which is more parsimonious.
For this reason, we next investigate the price of strategy SD relative to SA in terms of power.

In Monte Carlo experiments, we study in particular the error-correction test (group t-statistic) by
Westerlund [15]. Before turning to a power analysis, we make sure that size is under control. For the
data-generating process (DGP), we consider hence the null hypothesis of no cointegration under linear
time trends:

yi,t = δit + xi,1,t + xi,2,t + · · ·+ xi,k,t + ri,0,t , (6)

t = 1, 2, . . . , T , i = 1, 2, . . . , N ,

xi,j,t = μi,j,x + xi,j,t−1 + vi,j,t , j = 1, 2, ..., k , (7)

where {vi,j,t} are normal iid sequences, N (0, σ2
i,j), independent of each other. Finally, ri,0,t = ri,0,t−1 + vi,0,t is

an independent random walk entering (6). The DGP under the alternative of cointegration becomes

Δyi,t = −0.02 (yi,t−1 − δi(t − 1)− xi,1,t−1 − xi,2,t−1 − · · · − xi,k,t−1) + vi,0,t , (8)

where xi,j,t and vi,0,t are generated as before. Using the regression

Δyi,t = κ̄i + γ̄iyi,t−1 + θ̄′i xi,t−1 + φ̄′
iΔxi,t + ε̄i,t , (9)

we computed the group t-statistic proposed by Westerlund [15]. Strategy SD is employed with

Δyi,t = κ̃i + ψ̃it + γ̃iyi,t−1 + θ̃′i xi,t−1 + φ̃′
iΔxi,t + ε̃i,t . (10)

All reported rejection frequencies rely on 10,000 replications.
The leading case consists of the following parameterization, where only the first component of

the regressors {xi,t} is driven by a linear time trend:

T = 250 , μ′
i,x = (1, 0, . . . , 0) , σ2

i,0 = σ2
i,1 = · · · = σ2

i,k = 1 . (11)

This mimics with k = 2 or k = 3 a typical macro panel with monthly data and e.g., income, interest
rates and inflation rates as regressors. Table 3 reports the frequencies of rejection for different values
of δi from (6), and rejection is based on strategy SA according to Theorem 1. It illustrates how well
the rule of Theorem 1 works: the experimental sizes are close to the nominal ones. This is particularly
true for δi = 1, while the test is mildly conservative for δi = 0.1, and a bit more conservative for
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δi = 0, in particular for N large relative to T = 250. Next, we consider strategy SD with the same data.
The rejection frequencies are given in Table 4. We observe that the experimental size from detrended
regressions is close to the nominal one under the null hypothesis of no cointegration, irrespective of δi.

Since strategies SA and SD both hold the nominal size, the question of which one is more powerful
naturally arises. The results contained in Table 5 are very clear: first, the power increases with δi;
second, strategy SA always outperforms SD considerably, and has, e.g., rejection frequencies more
than twice as large for N = 10 or k = 3. In particular, detrending becomes all the more costly; relative
to strategy SA, the larger N is, which is intuitively clear: including a linear time trend in a regression
requires the estimation of an additional parameter; in a panel of N units, detrending thus involves the
estimation of N additional parameters compared to strategy SA. At the same time, these estimated
trends can be spuriously correlated with the stochastic trends in the data, and, therefore, incorrectly
lead to support for cointegration, in particular when the time dimension is relatively short.

Table 3. Experimental size at nominal level α under SA according to Theorem 1 for (11); data-generating
process (DGP): (6) and (7).

N = 10 20 30 40 50

δi = 0

α = 0.01 0.010 0.009 0.008 0.008 0.008
k = 1 α = 0.05 0.048 0.048 0.043 0.040 0.041

α = 0.10 0.093 0.095 0.087 0.080 0.083

α = 0.01 0.008 0.009 0.007 0.009 0.006
k = 2 α = 0.05 0.046 0.040 0.039 0.040 0.034

α = 0.10 0.093 0.082 0.083 0.082 0.073

α = 0.01 0.010 0.010 0.012 0.010 0.011
k = 3 α = 0.05 0.051 0.052 0.052 0.049 0.052

α = 0.10 0.101 0.101 0.102 0.098 0.098

δi = 0.1

α = 0.01 0.009 0.010 0.009 0.008 0.008
k = 1 α = 0.05 0.050 0.048 0.048 0.044 0.043

α = 0.10 0.096 0.095 0.096 0.089 0.088

α = 0.01 0.009 0.009 0.008 0.009 0.007
k = 2 α = 0.05 0.044 0.047 0.045 0.046 0.040

α = 0.10 0.093 0.094 0.090 0.092 0.085

α = 0.01 0.013 0.013 0.013 0.013 0.011
k = 3 α = 0.05 0.055 0.056 0.058 0.056 0.054

α = 0.10 0.107 0.112 0.110 0.107 0.108

δi = 1

α = 0.01 0.009 0.010 0.008 0.009 0.009
k = 1 α = 0.05 0.047 0.045 0.045 0.042 0.044

α = 0.10 0.095 0.092 0.095 0.090 0.091

α = 0.01 0.011 0.009 0.008 0.010 0.009
k = 2 α = 0.05 0.051 0.046 0.045 0.044 0.042

α = 0.10 0.097 0.093 0.090 0.086 0.084

α = 0.01 0.011 0.013 0.011 0.013 0.013
k = 3 α = 0.05 0.056 0.054 0.055 0.055 0.056

α = 0.10 0.105 0.108 0.108 0.107 0.107
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Table 4. Experimental size at nominal level α under SD (detrending) for (11); DGP: (6) and (7).

N = 10 20 30 40 50

δi = 0

α = 0.01 0.010 0.010 0.008 0.010 0.010
k = 1 α = 0.05 0.047 0.047 0.045 0.048 0.044

α = 0.10 0.098 0.095 0.091 0.091 0.087

α = 0.01 0.012 0.012 0.013 0.012 0.012
k = 2 α = 0.05 0.057 0.057 0.056 0.059 0.057

α = 0.10 0.112 0.108 0.106 0.108 0.111

α = 0.01 0.013 0.008 0.012 0.013 0.010
k = 3 α = 0.05 0.055 0.050 0.050 0.055 0.049

α = 0.10 0.104 0.099 0.101 0.098 0.099

δi = 0.1

α = 0.01 0.009 0.009 0.010 0.009 0.010
k = 1 α = 0.05 0.051 0.050 0.049 0.051 0.048

α = 0.10 0.097 0.103 0.100 0.100 0.096

α = 0.01 0.012 0.013 0.013 0.015 0.014
k = 2 α = 0.05 0.059 0.062 0.061 0.058 0.063

α = 0.10 0.116 0.117 0.115 0.113 0.117

α = 0.01 0.011 0.012 0.012 0.012 0.013
k = 3 α = 0.05 0.054 0.052 0.052 0.052 0.055

α = 0.10 0.107 0.104 0.104 0.104 0.107

δi = 1

α = 0.01 0.011 0.010 0.013 0.011 0.010
k = 1 α = 0.05 0.052 0.047 0.048 0.050 0.050

α = 0.10 0.104 0.095 0.096 0.098 0.095

α = 0.01 0.015 0.011 0.014 0.014 0.012
k = 2 α = 0.05 0.062 0.061 0.060 0.062 0.058

α = 0.10 0.119 0.119 0.116 0.119 0.115

α = 0.01 0.013 0.015 0.012 0.014 0.013
k = 3 α = 0.05 0.053 0.056 0.053 0.053 0.054

α = 0.10 0.110 0.106 0.101 0.112 0.105

We have varied the leading case with the parameterization from (11). First, we allowed for more
and stronger trends in the regressors,

μ′
i,x = (1, 1, . . . , 1) , or μ′

i,x = (1, 2, . . . , k) ,

with all other parameters fixed. This corrects the mild undersizedness of strategy SA reported in
Table 3 yielding empirical sizes very close to the nominal one. At the same, time power relative to
Table 5 is increased, with strategy SA still dominating SD. Second, we have increased the magnitude of
the random walks, namely σ2

i,0 = σ2
i,1 = · · · = σ2

i,k = 4, while the other parameters are from (11) and
δi = 0 (see Table 6). Here, the linear trends are less pronounced, such that SA results in slightly more
conservative tests (compared to the first panel in Table 3), and similarly, power is reduced (compared
to the first panel in Table 5). Still, SA clearly dominates SD in Table 6. Third, we simulated shorter
panels, T = 100. This makes both strategies, SA and SD, conservative under H0, which is accompanied
by a loss of power.
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Table 5. Experimental power at nominal level 5% for (11); DGP: (8) and (7).

N = 10 20 30 40 50

SA: Theorem 1 for δi = 0

k = 1 0.486 0.727 0.859 0.933 0.965
k = 2 0.284 0.433 0.559 0.672 0.751
k = 3 0.155 0.234 0.288 0.336 0.387

SD: Detrended regression for δi = 0

k = 1 0.235 0.379 0.497 0.615 0.707
k = 2 0.163 0.247 0.331 0.399 0.452
k = 3 0.087 0.118 0.133 0.156 0.173

SA: Theorem 1 for δi = 0.1

k = 1 0.536 0.772 0.904 0.953 0.981
k = 2 0.311 0.485 0.622 0.726 0.802
k = 3 0.174 0.252 0.319 0.384 0.439

SD: Detrended regression for δi = 0.1

k = 1 0.262 0.402 0.531 0.636 0.716
k = 2 0.170 0.261 0.337 0.417 0.476
k = 3 0.090 0.127 0.143 0.168 0.186

SA: Theorem 1 for δi = 1

k = 1 0.824 0.974 0.997 1.000 1.000
k = 2 0.526 0.759 0.890 0.950 0.979
k = 3 0.292 0.419 0.553 0.661 0.734

SD: Detrended regression for δi = 1

k = 1 0.395 0.605 0.757 0.852 0.911
k = 2 0.219 0.330 0.433 0.524 0.595
k = 3 0.101 0.129 0.145 0.170 0.189

Table 6. Experimental size and power at nominal level 5% for T = 250, μ′
i,x = (1, 0, . . . , 0), δi = 0, and

σ2
i,j = 4; DGP: (6) or (8) and (7).

N = 10 20 30 40 50

SA: size

k = 1 0.043 0.039 0.037 0.036 0.034
k = 2 0.043 0.041 0.037 0.034 0.031
k = 3 0.050 0.049 0.045 0.045 0.042

SA: power

k = 1 0.410 0.622 0.771 0.869 0.920
k = 2 0.252 0.383 0.501 0.604 0.683
k = 3 0.147 0.205 0.257 0.304 0.364

SD: size

k = 1 0.048 0.047 0.049 0.048 0.049
k = 2 0.056 0.063 0.061 0.062 0.062
k = 3 0.058 0.052 0.053 0.051 0.057

SD: power

k = 1 0.236 0.387 0.522 0.622 0.699
k = 2 0.178 0.273 0.350 0.437 0.493
k = 3 0.102 0.136 0.161 0.192 0.213
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4. Conclusions

In time series econometrics, it has been known for a long time that “the deterministic
trends in the data affect the limiting distributions of the test statistics whether or not we detrend
the data” (Hansen [16], p. 103). This has been shown for the residual-based Phillips-Ouliaris (or
Engle-Granger) cointegration test by Hansen [16], see also the exposition in Hamilton ([21], p. 596,
597). Analogous results have been given for other cointegration tests by Hassler [30,31], see also the
summary by Hassler ([22], Proposition 16.6). In this paper, these findings are carried over to the panel
framework, and they are shown to continue to hold for single-equation tests relying on least squares,
no matter whether the null hypothesis is absence or presence of cointegration. In a regression involving
m ≥ 2 variables, much of the panel cointegration theory relies on normalization with suitable constants
μ̄m and σ̄m and letting the panel dimension N go to infinity to obtain a standard normal distribution.
The numbers μ̄m and σ̄m are tabulated for the case of regressions with intercept only. Different figures
μ̃m and σ̃m are tabulated for regressions with intercept and linear time trend. We show the following:
when statistics are computed from regressions with m integrated variables with intercept only, but
one of the integrated regressors is dominated by a linear time trend, then normalization with μ̃m−1

and σ̃m−1 is required to achieve asymptotically valid inference under the null hypothesis (Theorem 1).
Normalization with μ̄m and σ̄m, however, which has been the conventional strategy so far, results in a
loss of size control under the null hypothesis. In fact, employing μ̄m and σ̄m in the presence of linear
time trends gives rejection probabilities converging with N to 1 or 0, depending on whether the null
hypothesis is no cointegration or cointegration, respectively (see Proposition 1). To avoid such size
distortions, one may employ the strategy following Theorem 1, or one may work with detrended
regressions. Detrending, however, comes at a price: a regression with intercept only will provide more
powerful tests (see e.g., Hamilton [21], p. 598); according to our simulations, power gains of our new
strategy over detrending may be considerable and growing with N, and this also holds true if there is
a linear trend superimposing the level relation. Our Monte Carlo evidence, however, is limited to the
case of testing for the null hypothesis of no cointegration.

Hence, we propose the following empirical strategy if at least one of the integrated regressors is
driven by a linear time trend when testing for no cointegration. First, test the null hypothesis of no
cointegration with our new strategy SA from Theorem 1, since it is more powerful than tests relying
on detrending. If the null hypothesis of no cointegration is rejected according to Theorem 1, then one
may test, in a second step, whether a linear time trend is present, superimposing the level relation
between yi,t and xi,t. If strategy SA does not reject the null hypothesis of no cointegration, then one
may, of course, try a test building on detrending, although it will tend to be less powerful, since it
requires the estimation of N additional parameters.
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Appendix A

Appendix A.1. Proof of Theorem 1

Since group statistics Ḡ(m) are computed from individual regressions and since panel statistics
P̄(m) build on pooled regressions, we suppress the index i and consider the generic case with {yt}
and {xt} satisfying Assumption 1. Furthermore, we focus on the stochastic regressors and ignore the
constant intercept without loss of generality. We will proceed in four steps.
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Step 1: First, note that the regressors may be rotated in such a way that all linear trends are
concentrated in one scalar component. To that end, define the k-element vector λ1 := μx/

√
μ′

xμx of
unit length with

τt := λ′
1xt =

√
μ′

xμx t + λ′
1

t

∑
j=1

ex,j .

At the same time, there exist k − 1 linearly independent k-element columns collected in the
k × (k − 1)-matrix Λ2. Due to the Gram-Schmidt orthogonalization, one may assume that the invertible
matrix Λ := (λ1, Λ2) is orthogonal: ΛΛ′ = Ik. All columns of Λ2 eliminate the linear trend in xt:

ξt := Λ′
2xt = Λ′

2

t

∑
j=1

ex,j .

Hence, ξt is a (k − 1)-vector integrated of order 1 without drift. Now, we are able to write

Λ′xt =

(
τt

ξt

)
.

Step 2: Second, we show that the deterministic term in τt dominates the I(1) component, which is
clear from

T−1τ�rT� =
√

μ′
xμx

�rT�
T

+ Op(T−0.5) ⇒ √
μ′

xμx r , 0 ≤ r ≤ 1 .

More precisely, we can show that empirical moments involving τt equal those with t
√

μ′
xμx up to

Op
(
T−0.5). We have from Park and Phillips ([32], Lemma 2.1) that the row vector(

1
T2

T

∑
t=1

τt,
1

T3

T

∑
t=1

τ2
t ,

1
T2.5

T

∑
t=1

τtξ
′
t,

1
T2

T

∑
t=1

τtΔx′t−j

)

equals √
μ′

xμx

(
1

T2

T

∑
t=1

t,
√

μ′
xμx

T3

T

∑
t=1

t2,
1

T2.5

T

∑
t=1

tξ ′t,
1

T2

T

∑
t=1

tΔx′t−j

)
+ Op

(
T−0.5

)
;

furthermore, if μy �= 0,(
1

T3

T

∑
t=1

τtyt,
1

T2

T

∑
t=1

τtΔyt

)
=
√

μ′
xμx

(
1

T3

T

∑
t=1

tyt,
1

T2

T

∑
t=1

tΔyt

)
+ Op

(
T−0.5

)
,

or, if μy = 0,(
1

T2.5

T

∑
t=1

τtyt,
1

T1.5

T

∑
t=1

τtΔyt

)
=
√

μ′
xμx

(
1

T2.5

T

∑
t=1

tyt,
1

T1.5

T

∑
t=1

tΔyt

)
+ Op

(
T−0.5

)
.

Now, we are equipped to deal with the two cases: residual-based tests from (2) and t-type tests
from (3).

Step 3: Consider the least squares regression (without intercept for brevity)

yt = β̂′xt + ût
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with

β̂ =

(
T

∑
t=1

xtx′t

)−1

Λ Λ′ T

∑
t=1

xtyt =

(
T

∑
t=1

Λ′xtx′t

)−1 T

∑
t=1

Λ′xtyt

=

(
T

∑
t=1

(
τt

ξt

)
x′t

)−1 T

∑
t=1

(
τt

ξt

)
yt .

Similarly,

β̂′Λ =
T

∑
t=1

(
τt , ξ ′t

)
yt

(
T

∑
t=1

(
τt

ξt

) (
τt , ξ ′t

))−1

.

Consequently, the empirical residuals are

ût = yt − β̂′Λ Λ′xt = yt −
T

∑
t=1

(
τt , ξ ′t

)
yt

(
T

∑
t=1

(
τt

ξt

) (
τt , ξ ′t

))−1(
τt

ξt

)
. (A1)

For yt, we have by assumption

yt = δ t + β′xt + ut = δ t + β′Λ Λ′xt + ut

= δ t + β′λ1τt + θ′ξt + ut , θ := Λ′
2β .

If {ut} is I(1), then the series are not cointegrated. If {ut} is I(0), then there is cointegration,
where a linear time trend may superimpose the cointegrating relation (δ �= 0) or not (δ = 0). In any
case, {yt} is composed of the (k − 1)-vector {ξt}, which is I(1), and a linear time trend asymptotically
(since δ t + β′λ1τt ≈ (δ + β′λ1

√
μ′

xμx) t in the sense of Step 2). Therefore, the residuals {ût} behave
asymptotically as if they were computed from a regression on (k − 1) I(1) regressors and on a linear
trend. This establishes Theorem 1 for the case of residual-based tests.

Step 4: Consider the dynamic least squares regression (without intercept and without (lagged)
differences as further regressors for brevity):

Δyt = γ̂yt−1 + θ̂′xt−1 + ε̂t .

In order to investigate error-correction tests relying on the t statistic tγ, we employ what is
sometimes called the Frisch-Waugh-Lovell theorem. In the first stage, regress both Δyt and yt−1 on
xt−1, and denote the fitted values as f0,t and f1,t, respectively. In the second stage, the regression of f0,t
on f1,t produces a slope estimator that is numerically identical to γ̂, and so are the residuals, while the
t-statistics differ negligibly due to differences in degrees of freedom. As in Step 3, Equation (A1), one
can argue that both f0,t and f1,t behave asymptotically, as if they were computed from a regression
on (k − 1) I(1) regressors and on a linear trend. Hence, because of the Frisch-Waugh-Lovell theorem,
tγ behaves as if xt−1 in (3) had been replaced by a linear time trend as regressor plus (k − 1) regressors
that are I(1). This establishes Theorem 1 for the case of error-correction tests, and the proof is complete.
�

Appendix A.2. Proof of Proposition 1

According to Theorem 1, the statistic Z̄(m) requires under μi,x �= 0 normalization with μ̃m−1 and
σ̃m−1, in order to result in a standard normal distribution under H0. Let z1−α denote a quantile from the
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standard normal distribution. In the case where the panel tests are left-tailed, the rejection probability
of strategy SI under the null hypothesis becomes approximately for large N (at nominal level α):

P

(√
N

Z̄(m) − μ̄m

σ̄m
< −z1−α

)
= Φ

(√
N

μ̄m − μ̃m−1

σ̃m−1
− σ̄m

σ̃m−1
z1−α

)
. (A2)

Analogously for right-tailed tests, the rejection probability of strategy SI becomes under μi,x �= 0
according to Theorem 1 with growing N:

P

(√
N

Z̄(m) − μ̄m

σ̄m
> z1−α

)
= 1 − Φ

(√
N

μ̄m − μ̃m−1

σ̃m−1
+

σ̄m

σ̃m−1
z1−α

)
. (A3)

For N → ∞, one gets the limits given in Proposition 1 from (A2) and (A3). �
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Abstract: This paper provides some test cases, called circuits, for the evaluation of Gaussian likelihood
maximization algorithms of the cointegrated vector autoregressive model. Both I(1) and I(2) models
are considered. The performance of algorithms is compared first in terms of effectiveness, defined as
the ability to find the overall maximum. The next step is to compare their efficiency and reliability across
experiments. The aim of the paper is to commence a collective learning project by the profession on
the actual properties of algorithms for cointegrated vector autoregressive model estimation, in order
to improve their quality and, as a consequence, also the reliability of empirical research.
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1. Introduction

Since the late 1980s, cointegrated vector autoregressive models (CVAR) have been extensively
used to analyze nonstationary macro-economic data with stochastic trends. Estimation of these models
often requires numerical optimization, both for stochastic trends integrated of order 1, I(1), and of
order 2, I(2). This paper proposes a set of test cases to analyze the properties of the numerical algorithms
for likelihood maximization of CVAR models. This is an attempt to start a collective learning project
by the profession about the actual properties of algorithms, in order to improve their quality and, as a
consequence, the reliability of empirical research using CVAR models.

The statistical analysis of CVAR models for data with I(1) stochastic trends was developed in
Johansen (1988, 1991). The I(1) CVAR model is characterized by a reduced rank restriction of the
autoregressive impact matrix. Gaussian maximum likelihood estimation (MLE) in this model can be
performed by Reduced Rank Regression (RRR, see Anderson 1951), which requires the solution of a
generalized eigenvalue problem.

Simple common restrictions on the cointegrating vectors can be estimated explicitly by
modifications of RRR, see Johansen and Juselius (1992). However, MLE under more general restrictions,
such as equation-by-equation overidentifying restrictions on the cointegration parameters, cannot be
reduced to RRR; here several algorithms can be applied to maximize the likelihood. Johansen and
Juselius (1994) and Johansen (1995a) provided an algorithm that alternates RRR over each cointegrating
vector in turn, keeping the others fixed. They called this a ‘switching algorithm’, and since then this
label has been used for the alternating variables algorithms in the CVAR literature. Boswijk and
Doornik (2004) provides an overview.

Econometrics 2017, 5, 49 179 www.mdpi.com/journal/econometrics
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Switching algorithms have some advantages over quasi-Newton methods: they don’t require
derivatives, they are easy to implement and each step uses expressions whose numerical properties
and accuracy are well known, such as ordinary least squares (OLS), RRR, or generalized least squares
(GLS). The downside is that convergence of switching algorithms can be very slow, see Doornik (2017a),
and there is a danger of prematurely deciding upon convergence. Doornik (2017a) also showed that
adding a line search to switching algorithms can greatly improve their speed and reliability.

The I(2) CVAR is characterized by two reduced rank restrictions, and Gaussian maximum
likelihood cannot be reduced to RRR, except in the specific case where it really reduces to an
(unrestricted) I(1) model. Initially, estimation was performed by a two-step method, Johansen (1995b).
Subsequently, Johansen (1997) proposed a switching algorithm for MLE. Estimation of the I(2) model
with restrictions on the cointegration parameters appears harder than in the I(1) case, and it is still
under active development, as can be seen below.

While several algorithms exist that estimate the restricted I(1) and I(2) CVAR models, with some
of them readily available in software packages, there has been very little research into the effectiveness
of these algorithms. No comparative analysis is available either. This paper aims to improve upon
this situation; to this effect, it proposes a set of experimental designs that will allow researchers to
benefit from the results of alternative algorithms implemented by peers. This should ultimately lead to
more effective algorithms, which, in turn, will provide more confidence in the numerical results of
empirical analyses.

This paper defines two classes of exercises, called Formula I(1) and I(2), in a playful allusion to
Grand Prix car racing championships. Formula I(1) defines a set of precise rules involving I(1) data
generation processes (DGP) and models, while Formula I(2) does the same for I(2) DGPs and models.
The proposed experiments control for common sources of variability; this improves comparability and
efficiency of results. A simple way to control for Monte Carlo variability is to use the same realization
of the innovations in the experiments. This is achieved here by sharing a file of innovations and
providing instructions on how to build the time series from them.

Econometricians are invited to implement alternative algorithms with respect to the ones
employed here, and to test them by running one or more of the exercises proposed in this paper.
A companion website https://sites.google.com/view/race-i1 has been created, where researchers
interested in checking the performance of their algorithms are invited to follow instruction on how to
upload their results, to be compared with constantly-updated benchmarks. Guidelines are illustrated
below. The results for all algorithms are by design comparable; moreover, the participation of an
additional algorithm may improve the overall confidence in the comparisons, as explained below.

Results from different implementations of algorithms reflect both the properties of the algorithms
sensu stricto and of their implementation, where one expects different implementations of the same
algorithm to lead to different results. Because of this, econometricians are encouraged to participate in
the races also with their own implementation of algorithms already entertained by others. This will
increase information on the degree of reproducibility of results and on the relative importance of the
implementation versus the algorithm sensu stricto.1

Recent advances in computational technology have fuelled the Reproducible Research movement;
the present paper can be seen as a contribution to this movement.2 The Reproducible Research
movement makes use of replication testbeds and Docker containers for replication of results, see
e.g., Boettiger (2015). The present project has chosen to keep requirements for researchers at a minimum
and it is not demanding the use of these solutions, at least in the current starting configuration.

1 In the rest of the paper the word algorithm is used to represent the combination of the algorithm sensu stricto and its
implementation; hence two implementations of the same algorithm are referred to as two algorithms.

2 The reference to the Reproducible Research movement was suggested by one referee; see e.g., the bibliography and links at
http://reproducibleresearch.net.
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The rest of the paper is organized as follows. Section 2 discusses design and evaluation of
algorithms in general terms. Section 3 provides definitions, while Section 4 describes precise measures
of algorithmic performance. Section 5 describes the Formula I(1) DGP-model pairs, while Section 6
does so for the Formula I(2) DGP-model pairs. The Formula I(1) races are illustrated in Section 7, the
Formula I(2) races are illustrated in Section 8; Section 9 concludes. The Appendix A contains practical
implementation instructions.

2. Design and evaluation principles

Each exercise in Formula I(1) and I(2) is built around a DGP-model pair. The chosen DGPs
have a simple design, with a few coefficients that govern persistence, dimensionality and adjustment
towards equilibrium. Aggregating algorithmic performance across runs of the same single DGP
appears reasonable, because one expects the frequency of difficult maximization problems to be a
function of the characteristics of the given DGP-model pair.

Two main criteria are used for the evaluation of the output from different algorithms. The first one,
called effectiveness, regards the ability of an algorithm to find a maximum of the likelihood function.
Algorithms are expected either to fail, or to converge to a stationary point. This, with some further
inspection, may be established as a local maximum. A comparison of local maxima between methods
will provide useful insights.

The second one, conditional on the first, is the efficiency of the algorithm to find the maximum,
which is closely related to its speed. Effectiveness is considered here to be of paramount importance: it
is not much use having an algorithm that runs quickly but fails to find the maximum. Actual speeds
can be difficult to compare in heterogenous hardware and software environments: however, measures
of efficiency can be informative for an implementation in a fixed environment using different designs.

There are many examples of comparisons of optimization algorithms in the numerical analysis
literature. Beiranvand et al. (2017) provides an extensive list, together with a generic discussion of
how to benchmark optimization algorithms.3 In the light of this, only advantages and shortcomings
of the present approach with respect to Beiranvand et al. (2017) are discussed here, as well as future
extensions that are worth considering.

One important specificity here is the focus on the evaluation of estimation procedures for statistical
models. These have numerical optimization at their core, but they are applied to maximize specific
likelihoods. In the present setting the exact maximum of the likelihood is not known. Moreover, while
the asymptotic properties of the MLE are well understood, these will only be approximate at best in
any finite sample.

2.1. Race Design

The race design refers to the DGP-model pair, as well as the rules for the implementation of
estimators. Because iterative maximization will be used in all cases, algorithms need starting values
and decision rules as to when to terminate.

2.1.1. Starting Values

Formula I(1) and I(2) treat the choice of starting value as part of the algorithm. This is the most
significant difference with common practice in optimization benchmarking. The starting values may
have an important impact on the performance, and, ideally but unfeasibly, one would like to start at
the maximum. Optimization benchmarks prescribe specific starting values to create a level playing
field for algorithms. This is not done here because implementations may have statistical reasons for

3 The idea to create public domain test cases based on which programmers may test the performances of their algorithms
according to rigorous rules is also not new. For example, the National Institute of Standards and Technology started a
website in the late 1990s of the project StRD - Statistical Reference Datasets, see http://www.itl.nist.gov/div898/strd/.
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their starting value routine, e.g., there may be a simple estimator that is consistent or an approximation
that is reasonable.

Some implementations use a small set of randomized starting values, then pick the best.
This approach is general, so could be used by all algorithms. The advantage of the present approach is
that one evaluates estimation as it is presented to the user. The drawback is that it will be harder to
determine the source of performance differences.4

2.1.2. Convergence

The termination decision rule is also left to the algorithm, so it presents a further source of
difference between implementations. One expects this to have a small impact: participants in the races
should ensure that convergence is tight enough not to change the computed evaluation statistics. If it
is set too loose, the algorithm will score worse on reliability. However, setting convergence too tightly
will increase the required number of iterations, sometimes substantially if convergence is linear or
rounding errors prevent achieving the desired accuracy.

2.1.3. DGP-Model Pair

The chosen DGPs generate I(1) or I(2) processes, as presented in Sections 5 and 6 below; the
associated statistical models are (possibly restricted) I(1) or I(2) models, defined in Section 3. Exercises
include both cases with correct specification, i.e. when the DGP is contained in the model, as well as
cases with mis-specification, i.e., when the DGP is not contained in the model.

Mis-specification is limited here, in the sense that all models still belong to the appropriate model
class: an I(1) DGP is always analyzed with an I(1) (sub-)model, and similarly for an I(2) DGP and
(sub-)model. Indeed, the sources of mis-specification present here are a subset of the ones faced by
econometricians in real applications. The hope is that results for the mis-specification cases covered
here can give some lower bounds on the effects of mis-specification for real applications.

Common econometric wisdom says that algorithms tend to be less successful when the model is
mis-specified. The present design provides insights as to what extent this is the case in I(1) and I(2)
CVAR models, within the limited degree of mis-specification present in these races.

2.1.4. Construction of Test Cases

Different approaches can be used to create test cases:

1. Estimate models on real data

This is the most realistic setting, because it reflects the complexities of data sets that are used for
empirical analyses. On the other hand, it could be hard to study causes of poor performance as
there can be many sources such as unmodelled correlations or heteroscedasticities. Aggregating
performance over different real datasets may hide heterogeneity in performance due to the
different DGPs that have generated the real data.

2. Generate artificial data from models estimated on real data

This is a semi-realistic setting where it is known from which structure the data are generated.
Coefficient matrices of the DGP will normally be dense, with a non-diagonal error variance matrix.

3. Use a purely artificial DGP

This usually differs from the previous case in that the DGPs are controlled by only a few
coefficients that are deemed important. So it is the least realistic case, but offers the possibility to
determine the main causes of performance differences.

4 A future extension would be to include some experiments that start from prespecified starting values, as well as storing the
initial log-likelihood in the results file.
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Formula I(1) and I(2) adopt the artificial DGP approach with sparse design as a method to
construct test data. The drawback is that it can only cover a limited number of DGPs, which may
not reflect all empirically-relevant situations. The present set of designs is no exception to this rule;
however, it improves on the current state of play where no agreed common design of experiments
has been proposed in this area. A future extension will be to include a set of tests based on real-world
data sets.

2.1.5. Generation of Test Data

All experiments are run with errors that are fixed in advance to ensure that every participant
generates exactly the same artificial data sets. The sample size is an important design characteristic;
test data are provided for up to 1000 observations, but only races that use 100 or 1000 are included here.

In terms of comparability of results for different algorithms, the possibility to fix the innovations,
and hence the data in each lap, controls for one known source of Monte Carlo variability when
estimating difference in behavior; see Abadir and Paruolo (2009), Paruolo (2002) or Hendry (1984, §4.1)
on the use of common random numbers.

The choice of common random numbers permits to find (significant) differences in behavior of
algorithms with a smaller number of cases, and hence computer time, than when innovations vary
across teams. Moreover, it also allows the possibility to investigate the presence of multiple maxima.

2.2. Evaluation

Each estimation, unless it ends in failure, results in a set of coefficient estimates with corresponding
log-likelihood. Ideally, all algorithms converge to the same stationary point, which is also the global
maximum of the likelihood. This will not always happen: it is not known whether these models have
unimodal likelihoods, and there is evidence to the contrary in many experiments considered. Moreover,
the global maximum is not known, and this is the target of each estimation. As a consequence,
evaluation is largely based on a comparison with the best solution.

2.2.1. Effectiveness

The overall maximum is the best function value of all algorithms that have been applied to the
same problem. This is the best attempt at finding the global maximum, but remains open to revision.
Consensus is informative: the more algorithms agree on the maximum, the more confident one is that
the global maximum has been found. Similarly, disagreement may indicate multimodality. This is one
of the advantages of pooling the results of different algorithms.

If one algorithm finds a lower log-likelihood than another, this indicates that it either found
a different local maximum, converged prematurely, or ended up in a saddle point, or, hopefully
not so common, there is a programming error. Differences may be the result of the adopted initial
parameter values, or owing to the path that is taken, or to the terminal conditions, or a combination of
all the above.

However, algorithms that systematically fail to reach the overall maximum should be considered
inferior to the ones that find it. Inability to find the global maximum may have serious implications for
inference, leading to over-rejection or under-rejection of the null hypothesis for likelihood ratio (LR)
tests, depending on whether the maximization error affects the restricted or the unrestricted model.

2.2.2. Efficiency

Efficiency can be expressed in terms of a measure of the number of operations involved, or a
measure of time. Time can be expressed as CPU time or as the total time to complete an estimation.
While lapsed time is very useful information for a user of the software, it is difficult to use in the
present setting. First, the same algorithm implemented in two different languages (say Ox and Matlab)
may have very different timings on identical hardware. Next, this project expects submissions of
completed results, where the referee team has no control over the hardware.
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Even if the referee team were to rerun the experiments, this would be done on different computers
with different (versions of) operating systems. Finally, the level of parallelism and number of cores
plays a role: even when the considered algorithms cannot be parallelized, matrix operations inside
them may be. When running one thousand replications, one could normally do replications in parallel.
This suggests not to use time to measure efficiency.

With time measurements ruled out, one is left with counting some aspects of the algorithm.
This could be the number of times the objective function is evaluated, the number of parameter update
steps, or some other measure. All these measures have a (loose) connection to clock time. E.g., a
quadratically convergent algorithm will require fewer function calls and parameter updates than
a linearly convergent algorithm, and usually be much faster as well. However, the actual speed
advantage can be undermined if the former requires very costly hessian computations (say).

For the switching algorithms that are most commonly used in CVARs when RRR is not possible,
the number of parameter update steps is a better metric to express efficiency. An analysis of all the
timings reported in Doornik (2017b) shows that, after allowing for two outlying experiments, the
number of updates can largely explain CPU time, while the number of objective function evaluations
is insignificant. Both the intercept and the coefficient that maps the update count to CPU time are
influenced by CPU type, amount of memory, software environment, etc.

In line with common practice, an iteration is defined as a one parameter update step.
This definition also applies to quasi-Newton methods, although, unlike switching algorithms, each
iteration then also involves the computation of first derivatives. As a consequence, an iteration could
be slower than a switching update step, but in many situations a comparison would still be informative.
When comparing efficiency of algorithms, the number of iterations appears to be of more fundamental
value than CPU time, and it is certainly useful when comparing the same implementation for different
experiments when these have been run on a variety of hardware.

There remains one small caveat: changing compiler can affect the number of iterations. When
code generation differences mean that rounding errors accumulate differently, this can impact the
convergence decision. This effect to be expected to be small.

Summing up, the remainder of the paper uses number of iterations as a measure of efficiency. An
update of the parameter vector is understood to define an iteration, and each team participating to
Formula I(1) and I(2) is expected to use the same definition.

3. Definitions and Statistical Models

This section introduces the car racing terminology and defines more precisely the notions of DGP
and statistical model.

3.1. Terminology

Analogous to car racing terminology, a circuit refers to a specific DGP-model pair, i.e. a DGP
coupled with a model specification, characterized by given restrictions on the parameters. Each circuit
needs to be completed a certain number of times, i.e. laps (replications).

Circuits are grouped in two championships, called ‘Formula I(1)’ and ‘Formula I(2)’.
The implementation of an algorithm corresponds to a driver with a constructor team, which is called a
team for simplicity. The definition of an algorithm is taken to include everything that it is required to
maximize the likelihood function; in particular it includes the choice of the starting value and of the
convergence criterion or termination rule.

In the following there are 96 Formula I(1) circuits and 1456 Formula I(2) circuits. Teams do not
have to participate in all circuits. For each circuit, a participating team has to:

(i) reconstruct N = 1000 datasets (one for each lap) using the innovations provided and the DGP
documented below;

(ii) for each dataset, estimate the specified model(s);
(iii) report the results in a given format, described in the Appendix A.
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An econometrician may implement more than one algorithm, so enter multiple teams in the races.

3.2. Definitions

This subsection is devoted to more technical definitions of a DGP, a statistical model and its
parametrization. A DGP is a completely specified stochastic process that generates the sample data
X1:T := (X1 : · · · : XT). Here : is used to indicate horizontal concatenation, with the exception for
expressions involving indices, such as (1 : T), which is a shorthand for (1 : · · · : T). For example Xt

i.i.d N(0, 1), t = 1, . . . , T is a DGP.
The present design of experiments considers a finite number of DGPs; these are grouped into

two classes, called the I(1) DGP class and the I(2) DGP class. Each DGP class is indexed by a set of
coefficients; for example Xt i.i.d N(0, 1), t = 1, . . . , T, with T ∈ {100, 1000} is a DGP class.

A parametric statistical model is a collection of stochastic processes indexed by a vector of parameters
ϕ, which belongs to a parameter space Φ, usually an open subset of Rm, where m is the number of
parameters. A model is said to be correctly specified if its parameter space contains one value of the
parameters that characterizes the DGP which has generated the data, and it is mis-specified otherwise.
E.g. Xt i.i.d N(μ, σ2), t = 1, . . . , T, −∞ < μ < ∞, 0 ≤ σ < ∞ is a parametric statistical model, when Xt

is a scalar and ϕ = (μ : σ2)′. The parameter space Φ is given here by R×R+. Note that a parametric
statistical model is needed in order to write the likelihood function for the sample data X1:T . In the
case above, the likelihood is f (X1:T ; μ, σ2) = π−T/2σ−T exp(− 1

2 ∑T
t=1(Xt − μ)2/σ2).

Consider now one model A for X1:T , indexed by the parameter vector ϕ with parameter space ΦA.
Assume also that model B is the same, except that the parameter vector ϕ lies in the parameter space
ΦB with ΦA ⊂ ΦB. The two models differ by the parameter points that are contained in ΦB but not in
ΦA (i.e. points in the set ΦB\ΦA). If some points in ΦB\ΦA cannot be obtained as limits of sequences
in ΦA, (i.e., ΦB does not coincide with the closure of ΦA) then model A is said to be a submodel of
model B. For example, model A can be Xt i.i.d N(μ, 1), t = 1, . . . , T, ΦA := {μ : 0 ≤ μ < ∞} while
model B can be ΦB := {μ : −∞ < μ < ∞}. Here ΦB\ΦA = {μ : −∞ < μ < 0} whose points cannot
be obtained as limits of sequences in ΦA. Hence model A is a submodel of model B.

When all the parameter values in ΦB\ΦA can be obtained as limits of sequences in ΦA, then
model A and B are essentially the same, and no distinction between them is made here. In this
case, or in case the mappings between parametrizations are bijective, it is said that A and B provide
equivalent parametrizations of the same model. As an example, let ΦA := {μ : 0 ≤ μ < ∞} as
above and let ΦB := {μ = exp η : −∞ < η < ∞}; the two models are essentially the same, and
their parametrizations are equivalent. This is because, despite μ = 0 being present only in the μ

parametrization, μ = 0 can be obtained as a limit of points in μ = exp η, η ∈ (−∞, ∞), e.g., by
choosing ηi = −i, i = 1, 2, 3 . . . Hence in this case the η and μ parametrizations are equivalent, as they
essentially describe the same model.

In the present design of experiments all models are (restricted versions of) the I(1) and the I(2)
models, defined below. The case of equivalent models in the above sense is relevant for different
parametrizations of the I(2) statistical model, see Noack Jensen (2014).

3.3. The Cointegrated VAR

Both the I(1) and I(2) statistical models are sub-models of the Gaussian VAR model with k lags

Xt =
k

∑
i=1

AiXt−i + μ0 + μ1t + εt, εt i.i.d. N(0, Ω), t = k + 1, ..., T, (1)

where Xt, εt, μ0, μ1 are p × 1, Ai and Ω are p × p, and Ω is symmetric and positive definite.
The presample values X1, ..., Xk are fixed and given. The (possibly restricted) parameters associated
with μ0, μ1, Ai, i = 1, . . . , k are called the mean-parameters and are indicated by θ. The ones associated
with Ω are called the variance parameters, and they are here always unrestricted, except for the
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requirement of Ω to be positive definite. The parameter vector is made of the unrestricted entries in θ

and Ω.
The Gaussian loglikelihood (excluding a constant term) is given by:

−T − k
2

log det Ω − 1
2

T

∑
t=k+1

ε′t (θ)Ω−1εt (θ) ,

where εt(θ) equal to εt in (1) considered as a function of θ. Maximizing the loglikelihood with respect
to Ω, one finds Ω = Ω(θ) := (T − k)−1 ∑T

t=k+1 εt(θ)ε′t(θ), which, when substituted back into the
loglikelihood gives −(T − k)p/2 + �(θ) where

� (θ) := −T − k
2

log det Ω(θ), Ω (θ) :=
1

T − k

T

∑
t=k+1

εt (θ) ε′t (θ) . (2)

The loglikelihood is here defined as �(θ), calculated as in (2).
The I(1) and I(2) models are submodels of (1).

I(1) statistical models The unrestricted I(1) statistical model under consideration is given by:

ΔXt = αβ′
(

Xt−1

t

)
+

k−1

∑
i=1

ΓiΔXt−i + μ0 + εt. (3)

Here α and β = (β�′ : β′
D)

′ are respectively p × r and (p + 1) × r parameter
matrices, r < p, with βD a 1 × r vector. The long-run autoregressive matrix
Π = −I + ∑k

i=1 Ai is here restricted to satisfy rank(Π) ≤ r, because it is expressed as a product
Π = αβ�′, where α and β� have r columns. The coefficient μ1 is restricted as μ1 = αβ′

D. The Γi matrices
are unconstrained. Some Formula I(1) races have restrictions on the columns of α and β.

The I(1) model is indicated as M(r) in what follows. The likelihood of the I(1) model M(r) has
to be maximized with respect to the parameters α, β, Γ1, ..., Γk−1, μ0 and Ω.

I(2) statistical models The unrestricted I(2) statistical model under consideration is given by:

Δ2Xt = αβ′
(

Xt−1

t − 1

)
+ (Γ : μ0)

(
ΔXt−i

1

)
+

k−2

∑
i=1

ΦiΔ2Xt−i + εt, (4)

with α′⊥(Γ : μ0)β⊥ = ϕη′. (5)

Here α⊥ indicates a basis of the orthogonal complement of the space spanned by the columns of
α; similarly for β⊥ with respect to β. The I(2) model is a submodel of I(1) model; in fact in (4), as in (3),
α and β = (β�′ : β′

D)
′ are p × r and (p + 1)× r parameter matrices, r < p, with βD a 1 × r vector, and

μ1 is restricted as μ1 = αβ′
D. In (5), ϕ is (p − r)× s and η = (η�′ : η′

D)
′ is (p − r + 1)× s, s < p − r

with ηD a 1 × s vector.5 The Φi parameter matrices are unrestricted.
The I(2) model in (4) and (5) is indicated as M(r, s) in the following. In the I(2) model there

are two rank restrictions, namely rank(αβ′) ≤ r and rank(α′⊥(Γ : μ0)β⊥) ≤ s. Several different
parametrizations exist of the I(2) model M(r, s), see Johansen (1997), Paruolo and Rahbek (1999),

5 One can observe that β⊥ can be chosen as

β⊥ =

(
β�
⊥ β̄�β′

D
0 −1

)
so that α′⊥(Γ : μ0)β⊥ can be written as α′⊥(Γ : μ0)β⊥ = (α′⊥Γβ�

⊥ : α′⊥Γβ̄�β′
D − α′⊥μ0). Using the partition η′ = (η�′ : η′

D),
Equation (5) can be written as

α′⊥Γβ�
⊥ = ϕη�′ and α′⊥μ0 = α′⊥Γβ̄�β′

D + ϕη′
D

which is the form of the restrictions (5) used in Rahbek et al. (1999) Equation (2.4) (2.5).
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Rahbek et al. (1999), Boswijk (2000), Doornik (2017b), Mosconi and Paruolo (2016, 2017), Boswijk and
Paruolo (2017). They all satisfy rank(αβ′) ≤ r and rank(α′⊥(Γ : μ0)β⊥) ≤ s.6 Teams can choose their
preferred parametrization, but, whichever is adopted, the estimated parameters must be reported in
terms of α, β, (Γ : μ0), Φ1, ..., Φk−2 and Ω.

Some races have restrictions on columns of α, β or τ, where τ is defined as a (p + 1)× (r + s)
matrix that spans the column space of (β : β̄⊥η), where ā := a(a′a)−1.

4. Performance Evaluation

This section defines a number of indicators later employed to measure the performance of
algorithms. As introduced above, θ indicates the parameter vector of mean parameters and Ω the
variance covariance matrix of the innovations.

4.1. Elementary Information to Be Reported by Each Team

Each lap is indexed by i = 1, ..., N, each circuit by c = 1, . . . , C, and each team (i.e., algorithm)
by a. The set of teams participating in the race on circuit c is indicated as Ac; this set contains nc

algorithms. The subscript c indicates that Ac and nc depend on c, because a team might not participate
in all circuits. The following subsections describe the results that each team a has to report, as well as
the calculations that the referee team of the race will make on the basis of it.

For each lap i of circuit c, when team a terminates optimization, it produces the optimized value
θa,c,i of the parameter vector θ. The team should also set the convergence indicator Sa,c,i equal to 1 if
the algorithm has satisfied the (self-selected) convergence criterion, and set Sa,c,i to 0 if no convergence
was achieved. Teams should report the loglikelihood value obtained at the maximum �a,c,i := �(θa,c,i)

using (2).
In case Sa,c,i = 0, θa,c,i indicates the last value of θ before failure of algorithm a. Algorithm

a may not have converged either because � (θ) cannot be evaluated numerically anymore (as e.g.,
when Ω (θ) becomes numerically singular) or because a maximum number of iterations has been
reached. In the latter case the final loglikelihood should be reported. In the former case, when the
likelihood evaluation failed, the team should report �a,c,i = −∞.7 So, regardless of success or failure in
convergence, a loglikelihood is always reported.

For each lap i in circuit c, team a should also report the number of performed iterations Na,c,i.
This number equals the maximum number of iterations if this is the reason why the algorithm
terminated. Choosing smaller or larger maximum numbers of iterations will affect result of each team
in an obvious way. Teams are asked to choose their own maximum numbers of iterations.

Na,c,i is assumed here to be inversely proportional to the speed of the algorithm. In practice, the
speed of the algorithm depends by the average time spent in each iteration, which is influenced by many
factors, such as the hardware and software specifications in the implementation. However, because
these additional factors vary among teams, the number Na,c,i is taken to provide an approximate
indicator of the slowness of the algorithm.

The choice of starting value of the algorithm a is taken to be an integral part of the definition of
the algorithm itself. Starting values cannot be based on the results of other teams. It is recommended
that the teams document their algorithm in a way that facilitates replication of their results, including
providing the computer code used in the calculations and a description of the choice of initial values.

Reported results from the races should be organised in a file, whose name indicates the circuit,
and where each row should contain the following information:

(i : �u
a,c,i : �a,c,i : Na,c,i : Sa,c,i : θR′

a,c,i),

6 In case of no deterministics, the satisfied inequalities are rank(αβ�′) ≤ r and rank(α′⊥Γβ�
⊥) ≤ s.

7 Because there is no clear convention on writing −∞, any value of −10308 or lower is interpreted as −∞.
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where �u
a,c,i is the maximum of the loglikelihood of a reference unrestricted model detailed in the

Appendix A, and the reported part of the coefficient vector, θR
a,c,i, is defined as

θR′
a,c,i :=

(
vec(αa,c,i)

′ : vec(βa,c,i)
′)

for the Formula I(1) circuits. For the Formula I(2) circuits instead:

θR′
a,c,i :=

(
vec(αa,c,i)

′ : vec(βa,c,i)
′ : vec(Γ : μ0)

′
a,c,i
)

.

The reported part of the θa,c,i includes the estimated parameters except for the parameters Φi
of the short term dynamics and the covariance of the innovations Ω. More details on the reporting
conventions are given in the Appendix A.

4.2. Indicators of Teams’ Performance

After completion of lap i of circuit c by a set of teams Ac, the referee team will compute the overall
maximum ��c,i and deviations Da,c,i from it as:

��c,i = max
{a∈Ac : Sa,c,i=1}

�a,c,i, Da,c,i = ��c,i − �a,c,i. (6)

If all a ∈ Ac report failed convergence Sa,c,i = 0, then ��c,i will be set equal to −∞ and Da,c,i will
be set equal to 0. Observe that Da,c,i ≥ 0 by construction; Da,c,i is considered small if less than 10−7,
moderately small if between 10−7 and 10−2, and large if greater than 10−2.8

Next define the indicators

SCa,c,i := 11(Da,c,i < 10−7)Sa,c,i, WCa,c,i := 11(10−7 ≤ Da,c,i < 10−2)Sa,c,i

DCa,c,i := 11(Da,c,i ≥ 10−2)Sa,c,i, FCa,c,i := 1 − Sa,c,i,

where 11(·) is the indicator function, SC stands for ‘strong’ convergence, WC stands for ‘weak’
convergence, DC stands for ‘distant’ convergence – i.e. convergence to a distant point from the overall
maximum – and FC stands for failed convergence. Note that SCa,c,i + WCa,c,i + DCa,c,i + FCa,c,i = 1 by
construction. When ��c,i = −∞, note that SCa,c,i = WCa,c,i = DCa,c,i = Sa,c,i = 0 and FCa,c,i = 1.

A summary across laps of the performance of algorithm a in circuit c is given by the quantities

SCa,c := 100 · N−1
N

∑
i=1

SCa,c,i, WCa,c := 100 · N−1
N

∑
i=1

WCa,c,i,

DCa,c := 100 · N−1
N

∑
i=1

DCa,c,i, FCa,c := 100 · N−1
N

∑
i=1

FCa,c,i.

These indicators deliver information on the % of times each algorithm reached strong convergence,
weak convergence, convergence to a point which is not the overall maximum, or did not converge.9

The set of pairs {(��c,i, �a,c,i) : DCa,c,i = 1}a∈Ac ,i=1:N contain the detailed information on the effects
of convergence to a point that is distant from the overall maximum. They are later plotted, together
with the distribution of the relevant test statistics. Focusing on the laps where DCa,c,i = 1, it is also
interesting to calculate the average distance of �a,c,i to ��c,i. This is given by

8 As all reference values, the present ones of 10−2 and 10−7 are chosen in an ad-hoc way. In the opinion of the proponents
they reflect reasonable values for the differences between loglikelihoods, which can be interpreted approximately as relative
differences. Hence a difference of 10−2 means roughly that the two likelihoods differ by 1%, while a difference of 10−7

means roughly that the two likelihoods differ by 0.1 in a million, in relative terms.
9 One may wish to consider these indicators conditionally on the number of converged cases. To do this, one can replace the

division by N in the above formulae for SCa,c, WCa,c, DCa,c with division by ∑N
i=1 Sa,c,i .

188



Econometrics 2017, 5, 49

ADa,c =
N

∑
i=1

Da,c,i · DCa,c,i

(
N

∑
i=1

DCa,c,i

)−1

.

Conditionally on convergence, the average number of iterations is defined as

ITa,c :=
N

∑
i=1

Na,c,i · Sa,c,i

(
N

∑
i=1

Sa,c,i

)−1

.

4.3. Summary Analysis of Circuits and Laps

The referee team will compute summary statistics for each circuit. First, in order to identify laps
where all algorithms fail, the following DNF indicator is defined:

DNFc,i = ∏
a∈Ac

(1 − Sa,c,i),

which equals 1 if all algorithms fail to converge.
In order to harvest information on the number of different maxima reported by the teams, the

following indicator is constructed. Let �(1),c,i ≥ �(2),c,i ≥ · · · ≥ �(mc),c,i be the ordered log-likelihood
values reported by those algorithms a ∈ Ac that have reported convergence, i.e., for which Sa,c,i = 1.
This list can be used to define the ‘number of reported optima’ indicator, NOR, as follows

NORc,i = 1 +
mc

∑
j=2

11(�(j−1),c,i − �(j),c,i > 10−2).

Note that for each j = 2, . . . , mc, the difference �(j−1),c,i − �(j),c,i ≥ 0 is the decrement of successive
reported log-likelihood values; if this decrement is smaller than a selected numerical threshold, here
taken to be 10−2, this means that the two algorithms corresponding to (j − 1) and (j) have reported
the same log-likelihood in practice. In this case, the counter NOR is not increased. If this difference is
greater than the numerical threshold of 10−2, then the two reported log-likelihood are classified as
different, and the counter NOR is incremented. Overall, NOR counts the number of maxima found by
different algorithms that are separated at least by distance of 10−2. NOR is influenced by the number
of participating teams.

Observe that the reported log-likelihood value �(j),c,i can correspond to an actual maximum or to
any other point judged as stationary by the termination criterion used in each algorithm. No check is
made by the referee team to distinguish between these situations; NOR should hence be interpreted as
an indicator of potential presence of multiple maxima; a proper check of the number of maxima would
require a more dedicated analysis.10

Especially for a difficult lap i, it is interesting to pool information obtained by different algorithms
on convergence to points that are distant from the overall maximum, i.e., when Da,c,i is large. This can
be averaged across the set of algorithms Ac that participate to circuit c in the indicator

DDc,i = ∑
a∈Ac

Da,c,iDCa,c,i

(
∑

a∈Ac

DCa,c,i

)−1

.

The indicators DDc,i and ADa,c are obviously related, and they differ in how they are averaged,
either across laps or algorithms.

10 This further analysis is not performed in this paper, but may be considered in later developments of the Formula I(1) and
I(2) project.
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The DNF and NOR indicators are also aggregated over all laps in a circuit, giving:

DNFc = N−1 ∑N
i=1 DNFc,i, NORc = N−1 ∑N

i=1 NORc,i.

5. Formula I(1) Circuits

This section introduces Formula I(1) circuits, i.e. DGP-model pairs where the DGP produces I(1)
variables. The model is the I(1) model M(r) or a submodel of it. For some circuits the statistical model
is correctly specified, whereas for others it is mis-specified, as discussed in Section 3.2.

In the specification of the I(1) and I(2) DGPs, the innovations εt are chosen uncorrelated (and
independent given normality). This choice is made to represent the simplest possible case; this can be
changed in future development of the project.11

5.1. I(1) DGPs

The I(1) DGP class for lap i is indexed on the scalars (p, T, ρ0, ρ1):{
ΔX(i)

1,t = ρ1ΔX(i)
1,t−1 + ε

(i)
1,t

X(i)
2,t = ρ0X(i)

2,t−1 + ε
(i)
2,t

ε
(i)
t =

(
ε
(i)
1,t

ε
(i)
2,t

)
∼ i.i.d. N

(
0, Ip

)
, (7)

for t = 1 : T, i = 1 : N, X(i)
t = (X(i)′

1,t : X(i)′
2,t )

′, X(i)
0 = X(i)

−1 = 0p, where ε
(i)
j,t is of dimension p/2 × 1,

j = 1, 2. Here Ip is the identity matrix of order p. All possible combinations are considered of the
following indices and coefficients:

p ∈ {6, 12} ; T ∈ {100, 1000} ; ρ0 ∈ {0, 0.9} ; ρ1 ∈ {0, 0.9} .

Note that in these DGPs,

• the first p/2 variables in X(i)
t are either random walks (when ρ1 = 0), or I(1) AR(2) processes

whose first difference is persistent (when ρ1 = 0.9). Therefore, ρ1 is interpreted as ‘a near
I(2)-ness’ coefficient.

• The last p/2 variables in X(i)
t are either white noise (when ρ0 = 0), or persistent stationary AR(1)

processes (when ρ0 = 0.9). Therefore, ρ0 is a ‘near I(1)-ness’ or ‘weak mean reversion’ coefficient.
For simplicity, in the following it is referred to as the ‘weak mean reversion’ coefficient.

The DGPs can be written as follows, see (3):

ΔXt =

(
0r

(ρ0 − 1)Ir

)(
0r Ir

)
Xt−1 +

(
ρ1 Ir 0r

0r 0r

)
ΔXt−1 + εt,

where μ0 = μ1 = 0, r = p/2, and 0r is a square block of zeros of dimension r.
To create the Monte Carlo datasets X(i)

1:T , each team has to use the DGP (7) with relevant values
of (p, T, ρ0, ρ1), together with the realizations of the ε’s as determined by the race organizers. Further
details are in the Appendix A.

5.2. I(1) Statistical Models

Using the generated data X(i)
1:T as a realization for X1:T , the I(1) model M(r) in (3) has to be

estimated on each lap i = 1, ..., N; as noted above, MLE of the unrestricted I(1) models M(r) in (3) is

11 In theory, the chosen DGPs can represent a wider class of DGPs, exploiting invariance of some statistical models with respect
to invertible transformation of the variables; see e.g., Paruolo (2005). In practice, however, algorithms may be sensitive
to scaling.
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obtained by RRR. The estimation sample starts at t = k + 1, so uses T − k observations. Two alternative
values for lag length k are used: k ∈ {2, 5}.

All I(1) circuits use the correct rank r = p/2 and are subject to further restrictions on the
cointegrating vectors, with or without restrictions on their loadings. To express these restrictions, the
following matrix structures are introduced, where an ∗ stands for any value, indicating an unrestricted
coefficient:

R0,m
m×m

=

⎛⎜⎜⎜⎜⎜⎝
∗ 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ∗

⎞⎟⎟⎟⎟⎟⎠ , R1,m
m×m

=

⎛⎜⎜⎜⎜⎜⎝
∗ 1 ∗ ∗
1

. . . . . . ∗
∗ . . . . . . 1
∗ ∗ 1 ∗

⎞⎟⎟⎟⎟⎟⎠ , R2,m
m×m

=

⎛⎜⎜⎜⎜⎜⎝
1 ∗ ∗ ∗
∗ . . . . . . ∗
∗ . . . . . . ∗
∗ ∗ ∗ 1

⎞⎟⎟⎟⎟⎟⎠ . (8)

Remark that R0,m sets all elements except the diagonal to zero; R1,m has two bands of unity
along the diagonal; R2,m fixes the diagonal to unity, but is otherwise unrestricted. All these matrices
are square.

Finally, Um,n stands for an unrestricted m × n dimensional matrix:

Um,n
m×n

=

(
∗ ∗ ... ∗
∗ ∗ ... ∗

)
. (9)

Restriction I(1)-A Model A has the following overidentifying restrictions on β:

β′ = (R0,r : Ir : Ur,1) . (10)

Specification (10) imposes r (r − 1) correctly specified overidentifying restrictions on β.
Restriction I(1)-B Model B has over-identifying restrictions that are mis-specified:

β′ = (R1,r : Ir : Ur,1) . (11)

This imposes 2(r − 1) overidentifying restrictions on β. These restrictions are mis-specified, in
the sense that the DGP is outside the parameters space of the statistical model, see Section 3.

Restriction I(1)-C Model C imposes the following, correctly specified, overidentifying restrictions on
α and β:

α′ = (Ur,r : R0,r) , β′ = (R0,r : R2,r : Ur,1) . (12)

Specification (12) imposes 2r (r − 1) restrictions on α and β. r (r − 1) of them would be enough
to obtain just-identification, therefore r (r − 1) are over-identifying.

6. Formula I(2) Circuits

This section introduces Formula I(2) circuits, following a similar approach to Formula I(1).

6.1. I(2) DGPs

The I(2) DGP class is indexed by the scalars (p, T, ω, ρ1); the data X(i)
1:T is generated as follows:⎧⎪⎪⎨⎪⎪⎩

Δ2X(i)
1,t = ε

(i)
1,t

ΔX(i)
2,t = ρ1ΔX(i)

2,t−1 + ε
(i)
2,t

X(i)
3,t = ωX(i)

3,t−1 + ΔX(i)
1,t−1 + ε

(i)
3,t

ε
(i)
t =

⎛⎜⎜⎝
ε
(i)
1,t

ε
(i)
2,t

ε
(i)
3,t

⎞⎟⎟⎠ ∼ i.i.d. N
(
0, Ip

)
(13)
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where X(i)
0 = X(i)

−1 = 0p, X(i)
t = (X(i)′

1,t : X(i)′
2,t : X(i)′

3,t )
′, t = 1, ..., T, i = 1, ..., N, and ε

(i)
j,t is p/3 × 1. As in

the I(1) case, all possible combinations are considered of the following indices and coefficients:

p ∈ {6, 12} ; T ∈ {100, 1000} ; ω ∈ {0, 0.9} ; ρ1 ∈ {0, 0.9} .

The DGPs can be written as follows, see (4):

Δ2Xt =

(
02r,r

Ir

)(
0r,2r (ω − 1)Ir

)
Xt−1 +

⎛⎜⎝ 0r 0r 0r

0r (ρ1 − 1)Ir 0r

Ir 0r −Ir

⎞⎟⎠ΔXt−1 + εt,

with μ0 = μ1 = 0. Note that in these DGPs,

• X1,t is a pure cumulated random walk, and hence I(2);
• X2,t is I(1), and does not cointegrate with any other variable in Xt. Moreover, X2,t is a pure

random walk when ρ1 = 0, and it is I(1) – near I(2) when ρ1 = 0.9; therefore, as in the I(1) case,
the parameter ρ1 is interpreted as a ‘near I(2)-ness’ coefficient.

• X3,t is the block of variables that reacts to the multi-cointegration relations, which are given by
(ω − 1)X3,t + ΔX1,t − ΔX3,t. These relations can be read off as the last block in the equilibrium
correction formulation in the last display. When ω = 0 one has that the levels X3,t and differences
ΔX1,t, ΔX3,t have the same weight (apart from the sign) in the multi-cointegration relations; when
ω = 0.9 the weight of the levels 1 − ω = 0.1 is smaller than the ones of the first differences. Hence
ω can be interpreted as the ‘relative weight of first differences in the multi-cointegrating relation’.

One can see that in this case:

α⊥ = β�
⊥ =

⎛⎜⎝Ir 0
0 Ir

0 0

⎞⎟⎠ ,

so for the I(2) rank condition:

α′⊥Γβ�
⊥ =

(
0 0
0 (ρ1 − 1)Ir

)
=

(
0r

(ρ1 − 1)Ir

)(
0r Ir

)
= ϕη�′.

To create the Monte Carlo dataset X(i)
1:T , each team has to use the DGP (13) with relevant values

of (p, T, ω, ρ1), together with the drawings of ε as determined by the race organisers. Details are in
the Appendix A.

6.2. I(2) Statistical Models

Using the generated data X(i)
1:T as a realization for X1:T , the I(2) model M(r, s) in (4) has to be

estimated on each lap i = 1, ..., N. The estimation sample starts at t = k + 1, so uses T − k observations.
Two alternative values for the lag k are used, namely k ∈ {2, 5}.

An I(2) analysis usually starts with a procedure to determine the rank indices r, s. This requires
estimating the M(r, s) model under all combinations of (r, s), and computing all LR test statistics.
Usually, a table is produced with r along the rows and s2 = p − r − s along the columns.

In the I(2) model M(r, s), the MLE does not reduce to RRR or OLS except when:

(i) r = 0, corresponding to an I(1) model for ΔXt, or
(ii) p − r − s = 0, corresponding to I(1) models for Xt, or

(iii) r = p, corresponding to an unrestricted VAR for Xt.

All restricted I(2) circuits use the correct rank indices r = s = p/3. Restrictions are expressed
using the matrix structures (8) and (9). In addition to restrictions on β and α in (4), there are circuits
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with restrictions on τ, which is a basis of the space spanned by (β : β̄⊥η). Under DGP (13), the correctly
specified τ is any matrix of the type

τ =

⎛⎜⎜⎜⎝
0r 0r

0r Ir

Ir 0r

01,r 01,r

⎞⎟⎟⎟⎠ A

with r = s = p/3 and A any full rank (r + s)× (r + s) matrix. Recall that 0r indicates a square matrix
of zeros of dimension r; the 01,r vectors are added in the last row to account from the presence of the
trend in I(2) model (4).

Unrestricted I(2) models are estimated for

1 ≤ r ≤ p − 1, 0 ≤ s ≤ p − r − 1.

The number of models satisfying these inequalities is p(p − 1)/2. Obviously, some of these
models are correctly specified, some are mis-specified.

Restriction I(2)-A Model A is estimated with r = s = p/3 under the following overidentifying
restrictions on β

β′ = (R0,r : Ur,r : Ir : Ur,1) . (14)

This imposes r (r − 1) overidentifying restrictions on β. These restrictions are correctly specified.
Restriction I(2)-B The following overidentifying restrictions on β are mis-specified:

β′ = (R1,r : Ur,r : Ir : Ur,1) . (15)

This imposes r (r − 1) overidentifying restrictions on β, where r = s = p/3 .
Restriction I(2)-C Overidentifying restrictions on α and β are used in estimation with r = s = p/3:

α′ = (Ur,2r : R0,r) , β′ = (R0,r : Ur,r : R2,r : Ur,1) . (16)

Specification (16) imposes 2r (r − 1) correctly specified restrictions on α and β; r (r − 1) of them
would be enough to just reach identification of α and β, and hence r (r − 1) restrictions are
overidentifying.

Restriction I(2)-D Model D has r = s = p/3 and 2r(r − 1) correctly specified overidentifying
restrictions on τ of the type:

τ′ =
(

R0,r Ir 0r,r Ur,1

R0,r 0r,r Ir Ur,1

)
. (17)

This imposes 2r (r − 1) overidentifying restrictions on τ.
Restriction I(2)-E The following 2(r − 1) + 2 (s − 1) mis-specified overidentifying restrictions on τ

are imposed in estimation with r = s = p/3:

τ′ =
(

R1,r Ir 0r,r Ur,1

R1,r 0r,r Ir Ur,1

)
. (18)

7. Test Drive on Formula I(1) Circuits

To illustrate the type of information one can obtain by participating in the Formula I(1) circuits,
this Section illustrates a ‘test drive’ for four algorithms, i.e., teams. The results of these teams also
provide a benchmark for other teams willing to participate at a later stage.

Four teams participated in the first Formula I(1) races:
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• Team 1: the switching algorithm proposed in Boswijk and Doornik (2004) as implemented in
Mosconi and Paruolo (2016) that alternates maximization between β and α. The algorithm is
initialized using the unrestricted estimates obtained by RRR. Normalizations are not maintained
during optimization, but applied after convergence. The algorithm was implemented in RATS
version 9.10.

• Team 2: CATS3 ‘alpha-beta switching’ algorithm as described in Doornik (2017b, §2.2) using the
LBeta acceleration procedure. CATS3 is an Ox 7 (Doornik (2013)) class for estimation of I(1) and
I(2) models, including bootstrapping.

• Team 3: CATS3 ‘alpha-beta hybrid’ algorithm is an enhanced version of alpha-beta switching:

1. Using standard starting values, as well as twenty randomized starting values, then
2. alpha-beta switching, followed by
3. BFGS iteration for a maximum of 200 iterations, followed by
4. alpha-beta switching.

This offers some protection against false convergence, because BFGS is based on first derivatives
combined with an approximation to the inverse Hessian.

More important is the randomized search for better starting values as perturbations of the default
starting values. Twenty versions of starting values are created this way, and each is followed for
ten iterations. Then half are discarded, and they are merged with (almost) identical ones; this is
then run for another ten iterations. This is repeated until a single one is left. The iterations used in
this start-up process are included in the iteration count.

• Team 4: PcGive algorithm, see Doornik and Hendry (2013, §12.9). This algorithm allows for
nonlinear restrictions on α and β, based on switching between the two after a Gauss-Newton
warm-up. This is implemented in Ox, Doornik (2013). The iteration count for Team 4 cannot
be extracted.

The Formula I(1) circuits are fully described by four features related to the DGP (p = {6, 12},
T = {100, 1000}, ρ0 = {0, 0.9}, ρ1 = {0, 0.9}), and two features related to the statistical model: the lag
length k = {2, 5} and the type of restrictions A, B or C. There are 16 DGPs and 6 model specifications,
making a total of 96 circuits.

In the circuits with T = 1000, there is not much difference between k = 2 and k = 5, so the
presentation is limited to only one of these values. Combining a long lag length with a small sample
size is more problematic. Onatski and Uhlig (2012) consider that situation. They find that the roots
of the characteristic polynomial of the VAR tend to a uniform distribution on the unit circle when
log(T)/k and k3/T tend to zero.

Before analyzing the Formula I(1) races, the tests for cointegration rank are used as ‘qualifying
races’; this only requires RRR. The qualifying races for Formula I(1) parallel the ones for Formula I(2),
reported later. The overall results for the qualifying races show that:

(i) Even when MLE is performed with RRR, inference on the cointegration rank is not easy (not even
at T = 1000).

(ii) Large VAR dimension, lag length, near-I(2) ness, weak mean reversion are all complicating factors
for the use of asymptotic results.

In more detail, Table 1 records the acceptance frequency at 5% significance level of the trace
test, using p-values from the Gamma approximation of (Doornik 1998); the null is that the rank is
less or equal to r against the alternative of unrestricted rank up to p, where the true rank equals p/2.
For T = 1000 and p = 6, the tests behave as expected. When p = 12, they tend to favour lower rank
values for slow mean-reversion and higher ranks for near-I(2) behaviour.

The results for T = 100 are more problematic. When p = 12, a lag length of five is excessive
relative to the sample size, and leads to overfitting. This is shown in the selection of a too-large rank
with frequency close to 1. A lag length of 2 gives opposite results, where a too low rank tends to be
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selected away from the near-I(2) cases, and a too high rank is chosen in the near-I(2) cases. In the
remainder only k = 2 is considered, as this already illustrates an interesting range of results.

Table 1. Formula I(1). Acceptance frequencies at 5% significance level of LR test for rank r against rank
p. – indicates exactly zero; other entries rounded to two decimal digits. Bold entries correspond to the
true rank p/2.

k T p ρ0, ρ1 r = 0 1 2 3 4 5

2 100 6 0.0, 0.0 – – 0.20 0.94 1.00 1.00
2 100 6 0.0, 0.9 – – 0.01 0.57 0.91 0.99
2 100 6 0.9, 0.0 0.81 0.98 1.00 1.00 1.00 1.00
2 100 6 0.9, 0.9 0.18 0.52 0.82 0.94 0.99 1.00
5 100 6 0.0, 0.0 0.08 0.41 0.81 0.96 1.00 1.00
5 100 6 0.0, 0.9 – 0.03 0.19 0.52 0.84 0.97
5 100 6 0.9, 0.0 0.22 0.68 0.92 0.98 1.00 1.00
5 100 6 0.9, 0.9 – 0.04 0.23 0.54 0.82 0.96
2 1000 6 0.0, 0.0 – – – 0.94 0.99 1.00
2 1000 6 0.0, 0.9 – – – 0.92 0.99 1.00
2 1000 6 0.9, 0.0 – – 0.04 0.95 1.00 1.00
2 1000 6 0.9, 0.9 – – 0.02 0.93 0.99 1.00
5 1000 6 0.0, 0.0 – – – 0.94 1.00 1.00
5 1000 6 0.0, 0.9 – – – 0.92 0.99 1.00
5 1000 6 0.9, 0.0 – – 0.13 0.95 1.00 1.00
5 1000 6 0.9, 0.9 – – 0.08 0.93 0.99 1.00

k T p ρ0, ρ1 r = 0 1 2 3 4 5 6 7 8 9 10 11

2 100 12 0.0, 0.0 – – 0.00 0.06 0.31 0.74 0.94 0.98 1.00 1.00 1.00 1.00
2 100 12 0.0, 0.9 – – – – – – 0.01 0.06 0.19 0.40 0.65 0.90
2 100 12 0.9, 0.0 0.11 0.48 0.81 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 100 12 0.9, 0.9 – – – – 0.00 0.02 0.05 0.13 0.27 0.42 0.62 0.87
5 100 12 0.0, 0.0 – – – – 0.01 0.05 0.21 0.47 0.74 0.90 0.97 0.99
5 100 12 0.0, 0.9 – – – – – – – – 0.00 0.01 0.06 0.39
5 100 12 0.9, 0.0 – – – – – – 0.00 0.01 0.05 0.21 0.50 0.82
5 100 12 0.9, 0.9 – – – – – – – – – – – 0.06
2 1000 12 0.0, 0.0 – – – – – – 0.94 0.99 1.00 1.00 1.00 1.00
2 1000 12 0.0, 0.9 – – – – – – 0.77 0.97 0.99 1.00 1.00 1.00
2 1000 12 0.9, 0.0 – – 0.00 0.01 0.16 0.71 0.98 1.00 1.00 1.00 1.00 1.00
2 1000 12 0.9, 0.9 – – – 0.00 0.02 0.36 0.88 0.98 1.00 1.00 1.00 1.00
5 1000 12 0.0, 0.0 – – – – – – 0.94 0.99 1.00 1.00 1.00 1.00
5 1000 12 0.0, 0.9 – – – – – – 0.72 0.96 0.99 1.00 1.00 1.00
5 1000 12 0.9, 0.0 – – 0.01 0.08 0.39 0.84 0.98 1.00 1.00 1.00 1.00 1.00
5 1000 12 0.9, 0.9 – – – 0.00 0.11 0.51 0.87 0.98 1.00 1.00 1.00 1.00

Table 2 presents the Formula I(1) results for the four teams. For each team, the table reports the
convergence quality (SC, WC, DC, for strong, weak, and distant convergence) as percentage of laps,
followed by the percentage of laps that failed (FC), the average error distance (AD) and the average
iteration count for converged laps only (IT). Team 4 does not report the iteration count. The last two
columns are averages over all teams and laps. NOR is the indicator of average number of optima
reported, where unity means that in all laps all teams have reported the same maximum.
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Turning attention to some specific circuits, consider I(1)-A, which has valid overidentifying
restrictions on β. For a large enough sample, T = 1000, all teams finish equally and quickly.
This suggests that any estimation problem for T = 100 is a small sample issue.

Consider now the circuits with p = 6, ρ0 = 0.9, ρ1 = 0, i.e., the third and ninth row of results in
Table 2, panel 1. Figure 1 plots three densities: the empirical densities (kernel density estimates) of
the likelihood ratio test LR�

c,i := 2(�u
c,i − ��c,i) for T = 100, 1000, where �u

c,i is the maximized likelihood
under the cointegration rank restriction only, along with the χ2 (6) reference asymptotic distribution.
Notice that when T = 100 the empirical distribution is very different from the asymptotic one: using
the asymptotic 95th percentile of the asymptotic distribution as critical value would lead to severe
over-rejection (more than 70%). Finite sample corrections would therefore be very important. Notice
that even when T = 1000, although the distribution approaches the asymptotic one, the difference is
still substantial (the rejection rate is about 10%).

To gain some understanding of the implications of ‘distant convergence’, for T = 100
all laps where any of the teams obtained a distant maximum were pooled, obtaining pairs{
(��c,i, �a,c,i) : DCa,c,i = 1

}
a∈Ac ,i=1:N

. Figure 1 plots in blue the cdf of the LR test based on the overall

maximum, LR�
c,i, as the left endpoint of the horizontal lines; the right endpoint represents the LR test

based on the distant maximum, i.e., LRa,c,i = 2(�u
c,i − �a,c,i). Considering the χ2(6), distant convergence

has almost no practical implications, since the inappropriate asymptotic distribution would lead to
over-rejection anyway. Conversely, relative to the empirical density, in several cases one would
(correctly) accept using LR�

c,i, and (wrongly) reject using LRa,c,i). Distant convergence has therefore
implications for hypothesis testing, at least if one takes finite sample problems into account.

Figure 1. Formula I(1): I(1)-A, p = 6, ρ0 = 0.9, ρ1 = 0 circuits. Red: pdfs (on the left scale):
kernel-estimate pdfs of 2(�u

c,i − ��c,i) for T = 100 and T = 1000 based on 1000 laps, along with the
asymptotic χ2(6). Blue: empirical cdf of 2(�u

c,i − ��c,i) for T = 100, considering only laps and algorithms
where distant convergence has been reported. The blue filled diamond denotes the LR calculated
using the overall maximum 2(�u

c,i − ��c,i), the empty circle the LR calculated using the distant maximum
2(�u

c,i − �a,c,i).

Consider now the mis-specified restrictions I(1)-B. Table 2 clearly shows that, whichever the
DGP, maximizing the likelihood under mis-specified restrictions induces optimization problems.
The number of iterations is, for all teams, much higher than under restrictions I(1)-A, and it does not
decrease even when T = 1000. Failure to converge (FC) becomes a serious problem for teams 1 and
4, whereas teams 2 and 3 do not suffer this problem, but have a much higher percentage of distant
convergence (DC). Whether distant convergence is a nuisance or an advantage in this case is however
debatable: since the hypothesis is false, rejecting is correct, and therefore distant convergence increases
the power of the test (see below).
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Figure 2, in analogy with Figure 1, illustrates the challenging ‘weak mean reverting’ circuits with
p = 6, ρ0 = 0.9, ρ1 = 0, i.e., the third and ninth row of results in Table 2, panel 3. The asymptotic
distribution of the LR test is χ2(4), whose 95th percentile is 9.48. Using this as a critical value,
LR�

c,i = 2(�u
c,i − ��c,i) would reject about 70% of the times when T = 100, and 100% of the times when

T = 1000. The power seems reasonably good also in small samples, but one needs to keep in mind
that, as illustrated when discussing Figure 1, the asymptotic distribution is very inappropriate here.12

Figure 2 also illustrates the impact of distant convergence. Using LRa,c,i = 2(�u
c,i − �a,c,i) instead of

LR�
c,i = 2(�u

c,i − ��c,i) has no practical implication for large samples (T = 1000), where the power would
be 1 anyway. Conversely, in small samples (T = 100) distant convergence has a somewhat beneficial
effect on power, increasing the rejection rate. Notice that distant convergence seems to occur more
frequently when the null hypothesis is false, like I(1)-B, than when it is true, like I(1)-A; therefore, a
tentative optimistic conclusion is that the gain in power due to distant convergence seems to be more
relevant than the loss in size.

Figure 2. Formula I(1): I(1)-B, p = 6, ρ0 = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. See caption of Figure 1.

I(1)-C imposes valid over-identifying restrictions on α and β. The first two circuits for I(1)-C are
similar to I(1)-A, except that Team 4 has a higher percentage of low and failed convergence. The third
circuit shows a more dramatic difference. The effect of the persistent autoregressive effect when
ρ0 = 0.9 is to reduce the significance of the α coefficients. As a consequence, some laps yield solutions
where some coefficients in α get very large, offset by almost zeros in β. The product Π still looks
reasonable, but computation of standard errors of α and β fails (giving huge values), suggesting this
may be towards a boundary of the parameter space.

Lap 999 of the third circuit for I(1)-C provides an illustration. Team 1 fails, Teams 2 and 4 have
distant convergence. Team 3 has the best results with the following coefficients:

α̂ =

⎛⎜⎜⎜⎜⎜⎜⎝

0.0369163 362.772 599.137
−0.00890223 −17858.0 −29502.9

0.0101925 11995.8 19817.9
−0.0309902 0 0

0 −0.0848045 0
0 0 −0.0545074

⎞⎟⎟⎟⎟⎟⎟⎠ , β̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4.13543 0 0
0 1.24557 · 10−5 0
0 0 8.96396 · 10−7

1 −0.41946 0.253898
−6.55434 1 −0.605302
1.83937 −1.65209 1
0.664556 0.0224937 −0.013616

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

12 Figure 1 shows that, when testing I(1)-A, the asymptotic critical values leads to a 70% rejection rate even if the null hypothesis
is true.

198



Econometrics 2017, 5, 49

where α is numerically close to reduced rank. This model has a loglikelihood that is below the
unrestricted I(1) model with rank 2. Because the switching algorithms are really for rank(Π) ≤ r rather
than rank(Π) = r, they occasionally fail or yield unattractive results when α is statistically weakly
determined. Team 4 provides more attractive estimates with reasonable standard errors, albeit with a
lower loglikelihood.

These characteristics are compatible with several scenarios, including the possibility that in this
part of the parameter space the likelihood has a horizontal asymptote. A proper detailed analysis of
these and other difficult cases is however beyond the scope of the present paper and it is left for future
research.

8. Test Drive on Formula I(2) Circuits

As for Formula I(1), Formula I(2) circuits are illustrated through a test drive for three teams.
The following teams participated in the races:

• Team 1: CATS3 ‘delta switching’ algorithm proposed in Doornik (2017b);
• Team 2: CATS3 ‘triangular switching’ algorithm proposed in Doornik (2017b);
• Team 3: CATS3 ‘tau switching’ algorithm proposed in Johansen (1997, §8), implemented as

discussed in Doornik (2017b).

As previously illustrated, Formula I(2) is based on 1456 circuits. Although results for all circuits
were obtained and stored to serve as benchmark for future comparisons, Formula I(2) circuits and
results are too numerous to present in tabular form here; hence only the cases where p = 6 and k = 2
are shown here.

The first group of circuits are called ’qualifying races’, as in Formula I(1). They are designed to:

(i) check the ability of the numerical algorithms to maximize the likelihood of the I(2) model M(r, s)
with no restrictions except for the specification of r and s13

(ii) analyze the difficulties of the cointegration ranks tests in spotting the correct r and s in the
different DGPs.

Results for task (i) are illustrated in Table 3. For this part of the analysis, only the cases
r = 1, ..., p − 1 and s = 1, ..., p − r − 1 are considered. This excludes all cases with r = 0 and/or
s = p − r (i.e., s2 = p − r − s = 0) since in these cases the likelihood of the I(2) model can be maximized
exactly by RRR. Preliminary analysis of the results shows that there is relatively little variation for
different values of ω and ρ1. As a consequence, in Table 3 all circuits with the same p, k, T, r, s are
analyzed together, irrespective of ω and ρ1. On the whole, Table 3 shows that the teams perform well.
The percentage of ‘distant convergence’ (DC) is very small, and there are almost no failures. There are
a few cases with large ‘average distance’ (AD), but only when the ranks are smaller than in the DGP.14

Convergence is quick, usually in about 10 iterations. For T = 1000 ‘weak convergence’ (WC) occurs
quite frequently, especially in misspecified (overrestricted) models, and sometimes one observes some
large ‘average distance’ (AD).

13 This aspect of the qualifying races is specific of Formula I(2), since the qualifying races in Formula I(1) can be reduced
to RRR.

14 In the DGP r = s = s2 = p/3 = 2, and the corresponding row is highlighted in boldface in Table 3. See Noack Jensen (2014)
for a discussion of the nesting structure of the I(2) models. As illustrated there, all models listed above r = s = 2 are
misspecified (i.e., overrestricted), whereas all models listed below r = s = 2 are correctly specified, since they nest the DGP.
Observe that, for example, r = 2, s = 2 is nested in r = 3, s = 0.
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On the whole, likelihood maximization is reasonably accurate, for each circuit and lap; one
can then proceed to find the maximum of the maximized likelihoods reported by the three teams.
On this basis, the likelihood ratio tests for the cointegration ranks r and s were computed on the
overall maximum. As done in Table 1 for the I(1) case, Table 4 records the acceptance frequency at
5% significance level of the LR cointegration test, using p-values from the Gamma approximation of
(Doornik 1998); the null is that rank (αβ′) ≤ r and rank (α′⊥(Γ : μ0)β⊥) ≤ s against the alternative of
unrestricted VAR.

Table 4. Formula I(2). Qualifying race. I(2) rank-test table, p = 6, k = 2, r = 1. Acceptance frequencies
at 5% significance level of LR test for ranks (r, s) against the unrestricted VAR, with p = 6, k = 2 and
s2 = p − r − s. Bold entries correspond to the true ranks r = s = s2 = p/3 = 2. Cases with r = 0 and
r = 1 have been omitted for readability, since the acceptance rate is always zero or very close to zero.

T ρ0, ρ1
r = 2 r = 3 r = 4 r = 5

s2 = 4 3 2 1 0 s2 = 3 2 1 0 s2 = 2 1 0 s2 = 1 0

100 0.0, 0.0 0.00 0.01 0.87 0.69 0.34 0.88 0.97 0.94 0.74 0.98 0.99 0.92 0.99 0.99
100 0.0, 0.9 0.91 0.87 0.65 0.32 0.07 0.98 0.93 0.73 0.34 0.98 0.93 0.69 0.98 0.93
100 0.9, 0.0 0.01 0.25 0.50 0.28 0.06 0.52 0.76 0.66 0.33 0.83 0.87 0.64 0.92 0.91
100 0.9, 0.9 0.58 0.46 0.25 0.07 0.01 0.74 0.62 0.32 0.09 0.82 0.67 0.34 0.87 0.72

1000 0.0, 0.0 0.00 0.00 0.94 0.85 0.48 0.94 0.99 0.98 0.83 0.99 1.00 0.95 1.00 1.00
1000 0.0, 0.9 0.00 0.12 0.93 0.77 0.40 0.94 0.99 0.97 0.78 0.99 1.00 0.94 1.00 0.99
1000 0.9, 0.0 0.00 0.00 0.92 0.77 0.39 0.90 0.98 0.97 0.77 0.99 0.99 0.93 1.00 0.99
1000 0.9, 0.9 0.00 0.07 0.88 0.70 0.33 0.91 0.98 0.95 0.71 0.99 0.99 0.91 1.00 0.98

For this aspect of the analysis, all cases r = 0, ..., p − 1 and s = 1, ..., p − r are considered. However,
Table 4 does not report r = 0, since the acceptance rate is exactly zero for all values of s in that case.
Also the case r = 1 is not reported, because the acceptance rate is always zero for T = 1000 and
very close to zero for T = 100 (less than 0.02, except for ω = ρ1 = 0.9, where it is 0.06). The model
corresponding to the DGP, i.e., r = s = s2 = p/3 = 2, has been highlighted in boldface.

Note that r is almost never underestimated even when T = 100, irrespective of the value of ω.
This seems to be a major difference with respect to Formula I(1), where r is frequently underestimated
when ρ0 is 0.9. It is important to remark that the interpretation of ρ0 in Formula I(1) different from the
interpretation of ω in Formula I(2), although they both affect the magnitude of the coefficients in Π. In
fact ρ0 may be interpreted as ‘weak mean reversion’, whereas ω has no implication for the speed of
adjustment, but it is rather related to the relative weight of levels and differences in the polynomial
cointegration relations; this might be the reason why for ω = 0.9 there is no to underestimation of r.15

It is, however, surprising that when ω = 0.9 (so that the weight of the levels is reduced to 1 − ω = 0.1)
one tends to overestimate r, rejecting r = 2 in favour of r = 3 or even r = 4.

The impact of the ‘near I(2)’ parameter ρ1 is linked to the form of the DGP in (13): when ρ1 = 0.9
the variables in ΔX2,t are stationary but slowly mean reverting, so that X2,t is almost I(2). Not
surprisingly then, when ρ1 = 0.9 the tests tend to underestimate s (i.e., overestimate s2 = p − r − s)
at least when T = 100, so that very frequently r = 2, s = 0 is selected. When T = 1000 the power vs
s = 0 goes to 1, but one would still select r = 2, s = 1 about 10% of the times.

The results on the Formula I(2) circuits with restrictions on the cointegration parameters (in
addition to the restrictions on the ranks) are illustrated in Table 5. The cases I(2)-A, I(2)-B and I(2)-C
involve only the matrix Π; more specifically, as in Formula I(1), models I(2)-A involve correctly

15 Formula I(2) circuits may be extended in the future introducing another coefficient in analogy with ρ0 of Formula I(1). This
would amount at replacing the third equation in (13) with

Δ2X(i)
3,t = (ρ0 − 1)((ω − 1)X(i)

3,t−1 + ΔX(i)
1,t−1 − ΔX(i)

3,t−1) + ε
(i)
3,t.
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specified restrictions on β, models I(2)-B contain misspecified restrictions on β, while models I(2)-C
contain correctly specified restriction on α and β. All three algorithms seem to perform quite well
in maximizing the likelihood of the I(2) model under restrictions on Π only, with Triangular-hybrid
beating the others. In particular, under the correctly specified restrictions A and C the likelihood is
easily and quickly maximized (especially when T = 1000), with almost no case of distant convergence.

Conversely, the misspecified restrictions in model I(2)-B require more iterations and, for the first
two teams, induce distant convergence quite frequently. However, as observed when discussing
Formula I(1) results, it is important to keep in mind that distant convergence is indeed a problem when
the restriction is correctly specified since it leads to over-rejection, whereas for misspecified restrictions
it can be seen as beneficial, since it increases the power of the test.

More generally, the analysis of restrictions A, B, C, seems to suggest that estimation of restricted
α and β is easier in the I(2) case with respect to the I(1) case. Note however that the comparison is
not completely fair, since most of the difficulties in the I(1) case are found when ρ0 = 0.9 (weak mean
reversion), and this coefficient does not appear in the current Formula I(2) design.

Consider finally the restrictions I(2)-D and I(2)-E, reported in the last two panels of Table 5.
Remember that I(2)-D is a correctly specified model with restrictions on τ, while I(2)-E is a misspecified
model with restrictions on τ. Table 5 shows serious difficulties in maximizing the likelihood under
restrictions on τ; in both cases (i.e., whether the hypothesis is true or false), the number of iterations
is much higher than under restrictions A, B and C and it does not decrease even when T = 1000.
Failure to converge (FC) becomes a serious problem for triangular switching (and to some extent
delta switching), and there is an high percentage of distant convergence (DC) for all three algorithms;
Triangular hybrid performs better, having a smaller average distance (AD). Notice that for model
I(2)-D (where the null hypothesis is true) distant convergence is more problematic since it leads to
over-rejection.

To analyze this problem, as done in Formula I(1), Figure 3 illustrates the impact of distant
convergence. It is apparent from the figure that over-rejection is substantial here. Since the 5% critical
value of the asymptotic χ2 (4) distribution is 9.49, the analysis clearly shows several cases where one
would (correctly) accept using the overall maximum, and (wrongly) reject using the distant maximum.
The striking difference with respect to Formula I(1) is that here the over-rejection due to distant
convergence remains even when T = 1000.

Figure 3. Formula I(2): I(2)-D, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. Three extreme outliers for T = 1000 have been removed for readability. See caption
of Figure 1 for more details.
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As the final aspect of Formula I(2), consider the misspecified restrictions on τ in model I(2)-E.
Figure 4 shows that distant convergence has no practical implication for large samples (T = 1000),
where the power would be 1 anyway. Conversely, in small samples (T = 100) distant convergence
slightly increases the rejection rate, which would be quite high in any case.

Figure 4. Formula I(2): I(2)-E, p = 6, ω = 0.9, ρ1 = 0 laps with distant convergence. (Left) T = 100,
(Right) T = 1000. See caption of Figure 1 for more details.

Overall, in the setting of Formula I(2), maximizing the likelihood under correctly specified
restrictions on α and β seems fast and accurate. Conversely, when correctly specified restrictions on
τ are introduced, finding the overall maximum of the likelihood is not easy. Since β is one of the
components of τ, one might guess that the problems arise from the complementary directions with
respect to β within τ; the issue deserves further exploration.

As in the I(1) case, maximizing the likelihood under misspecified restrictions is difficult; however,
the consequence of this difficulty are benign, because they appear to increase the power of the test for
the current design of the Formula I(2) races.

9. Conclusions

The test run of the championships shows that there is room for improving algorithms. It demonstrates
the strength of this ‘collective learning’ experiment, where other researchers may try and propose new
algorithm to improve on the existing ones. All algorithms win in the end, since each team learns where
and how to improve the algorithm design.

Other circuits may be added in the future, as algorithms improve. Races with a similar spirit
can be set up in other adjacent fields, like fractional cointegration; the same principles may in fact be
applied to any other model classes where maximizing the likelihood needs numerical optimization.
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Appendix A. Practical Requirements for Submission

To facilitate submission and automated processing of results, some conventions are established
that submissions to the project must adopt.
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Appendix A.1. Innovations

A file containing 12 000 i.i.d. N(0, 1) time series of length 1000 is provided (ERRORS.CSV) in
the companion website. The series are organized column-wise and labelled eps00001 to eps12000.
In other words, this file contains the 1000 × 12 000 matrix E. The p-dimensional vector ε

(i)
t , t = 1, ..., T,

is obtained as the transpose of the t-th row of the submatrix E(1 : T, [i − 1]p + 1 : ip), assuming
indexation starts at element (1, 1).

Table A1 provides the first five generated observations for lap 1 of the I(1) and I(2) DGP with
p = 6, ρ0 = ρ1 = ω = 0.9.

Table A1. The first five observations of the generated data for I(1) and I(2) DGPs with p = 6, ρ0 = ρ1 =

ω = 0.9. Ten significant digits given; computation uses double precision.

t Formula I(1) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.7806863280 −6.446826254 0.1020649020 −1.468146855 −1.017498239 −2.539647722
3 −0.3490545448 −9.526135279 −0.08454244820 −1.010888930 0.04508386490 −0.3954565398
4 −0.4230090503 −11.98920553 −0.6228956034 −2.179696857 −1.063624342 −1.528447976
5 −0.09820491529 −14.61563411 −1.559382683 −1.481900221 0.05204249257 −0.4856795382

t Formula I(2) X(1)′
t

1 0.2548828200 −2.009603960 0.5542620800 0.7913726500 −0.5458015100 −1.349741980
2 0.8061746100 −6.647786650 0.1020649020 −0.6767742050 −0.7626154190 −4.549251682
3 −0.2454976300 −10.37177830 −0.08454244820 −1.687663135 0.8257701929 −6.842282794
4 −0.3543575900 −13.78746208 −0.6228956034 −3.867359991 −1.412678886 −11.05458325
5 −0.07185436000 −17.61281121 −1.559382683 −5.349260212 −0.3709665578 −12.47488507

Appendix A.2. Report File Naming

For each circuit, a team needs to upload an output file on the companion website with either txt
or csv extension. The former is a text file where numbers are separated by a space, while the latter is a
csv spreadsheet file using a comma as separator (and without column headers). In all cases there will
be one lap per line in the output file.

The output file should be named FIxDGPyyyMODzzz.csv (or FIxDGPyyyMODzzz.txt), where:

x 1 for Formula I(1), 2 for Formula I(2);
yyy three digits DGP index n, as defined in Table A2;

Table A2. Definition of the DGP index n.

DGP index n := 8iT + 4ip + 2i0 + i1 + 1
iT = 0 T = 100 i0 = 0 ρ0 = 0 for Formula I(1) or ω = 0 for Formula I(2)
iT = 1 T = 1000 i0 = 1 ρ0 = 0.9 for Formula I(1) or ω = 0.9 for Formula I(2)
ip = 0 p = 6 i1 = 0 ρ1 = 0
ip = 1 p = 12 i1 = 1 ρ1 = 0.9

zzz three digits model index m, as defined in Table A3;
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Table A3. Definition of the model index m.

Model index m := 2ir + ik + 1

ir = 0 Restriction I(1)-A or I(2)-A
ir = 1 Restriction I(1)-B or I(2)-B
ir = 2 Restriction I(1)-C or I(2)-C
ir = 3 Restriction I(2)-D
ir = 4 Restriction I(2)-E

ir = 4 + r + (r + s − 1)(r + s)/2 M(r, s) with ordering as in Table A4

ik = 0 k = 2
ik = 1 k = 5

The ordering of the unrestricted I(2) estimates corresponds to the column vectorization of the
upper diagonal of the relevant part of a ranks test table. For instance, in case p = 6 the ordering of
models is the one in Table A4.

Table A4. Ordering of the models M(r, s) for case p = 6. Entries in the table correspond to the
numbering of models, where s2 = p − r − s. The ordering is similar for the case p = 12.

r\s2 5 4 3 2 1
1 1 2 4 7 11
2 3 5 8 12
3 6 9 13
4 10 14
5 15

As an example, results for the Formula I(2) circuit with n = 13 (iT = 1, ip = 1, i0 = 0 and
i1 = 0) and m = 6 (ir = 2, ik = 1), should be stored in a file named FI2DGP013MOD006.csv (or
FI2DGP013MOD006.txt).

Appendix A.3. Report File Content

Formula I(1) files have N lines with 4 + 2 (p + 1) r numbers, whereas Formula I(2) files have N
lines, each with 4 + 2 (p + 1) r + p (p + 1) numbers. Each line contains the following information:

(i : �u
a,c,i : �a,c,i : Na,c,i : Sa,c,i : θR′

a,c,i),

where:

1. i is the lap number, i = 1, ..., 1000;
2. �u

a,c,i is the unrestricted loglikelihood, reported with at least 8 significant digits:

• Formula I(1): loglikelihood of the unrestricted I(1) model;
• Formula I(2) ir > 4: loglikelihood of the VAR;
• Formula I(2) ir ≤ 4: loglikelihood of the unrestricted I(2) model.

3. �a,c,i as defined in (2) with at least 8 significant digits;
4. Na,c,i, the iteration count;
5. Sa,c,i is the integer convergence indicator, 1 for convergence, 0 for no convergence;
6. θR′

a,c,i is part of the coefficient vector, which is for Formula I(1):

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′) .

For the Formula I(2) circuits use instead:

θR′
a,c,i =

(
vec(αa,c,i)

′ : vec(βa,c,i)
′ : vec(Γ : μ0)

′
a,c,i
)

.
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Coefficients must be reported exactly in the given order, providing at least 8 significant digits (but
15 digits is recommended). No particular normalization is required.

If the algorithm failed because likelihood evaluation failed (e.g., singular Ω), then �a,c,i = −∞
should be reported. The data is processed with Ox, so .NaN and .Inf are allowed. Because there is no
clear convention on writing −∞, any value of −10308 or lower is interpreted as −∞.

Table A5 provides the start of the first three lines of three selected output files.

Table A5. Three examples of output files. Beginning of first three lines given.

FI1DGP001MOD001.csv
1, 84.7587177451401, 82.2423190842343, 3, 1,-0.187577914295476, ...
2, 30.1177483889851, 28.6953188342152, 5, 1,0.299447436254108, ...
3, 64.5916602781794, 59.9799720330047, 4, 1,-0.0746786280148741, ...

FI1DGP001MOD001.txt
1 84.75871775 82.24231908 10 1 -1.8757787e-001 1.6004096e-002 ...
2 30.11774839 28.69531883 20 1 2.9944720e-001 -5.8528461e-002 ...
3 64.59166028 59.97997203 16 1 -7.4678444e-002 -1.5937408e-001 ...

FI2DGP001MOD001.csv
1, 76.4430824288192, 76.2400219176979, 10, 1,0.0844284641160844, ...
2, 27.5347594941493, 26.6849814069451, 19, 1,0.0711585542069055, ...
3, 48.709883495749, 48.2827756129209, 24, 1,0.12242477122602, ...
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