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Abstract. Many complex systems, both natural and artificial, may
be represented by networks of interacting nodes. Nevertheless, it is
often difficult to find meaningful correspondences between the dynam-
ics expressed by these systems and the topological description of their
networks. In contrast, many of these systems may be well described in
terms of coordinated behavior of their dynamically relevant parts. In this AQ1

paper we use the recently proposed Relevance Index approach, based
on information-theoretic measures. Starting from the observation of the
dynamical states of any system, the Relevance Index is able to provide
information about its organization. Moreover, we show how the applica-
tion of the proposed approach leads to novel and effective interpretations
in the T helper network case study. AQ2

Keywords: Complex systems · Biological networks
Dynamical behavior · Relevance index · T helper cells

1 Introduction

Nowadays a plethora of molecular data results in a vast amount of pathways,
networks of interactions and molecular scenarios. A large quantity of information
is available on many biological systems, and researchers use it to infer global
properties of biological networks [15,21]. In spite of the strong representational
power and flexibility of networks, there are, however, two major limitations which
affect most studies in the field [16,23]:

– the information about the underlying true interactions is often incomplete,
so the inferred networks do not provide a complete picture of the interactions
in the system under study;

– network studies are often concerned with “static” topological information,
like connectivity and betweenness, whereas, in order to understand the func-
tionality of a system, it is important to study its dynamical properties.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-319-78658-2_10
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2 M. Villani et al.

Modeling the dynamic behavior of such systems is difficult, due to the lack of
kinetic data and to computational limitations. Among the methods for facing this
problem, those based on steady-state approximations are widely used [13,25].
Nevertheless, these kinds of analysis do not provide enough constraints to find
a unique solution to the problem: thus researchers support these techniques by
means of suitable hypotheses as, for example, minimization or maximization
issues [25]. This drawback, in terms of modeling, has turned out to be particu-
larly relevant when controlling the steady-state behavior of complex networked
dynamical systems. In this respect, some efficient model-free methods based on
multi-agent reinforcement learning [5] and on mean-field game theory [3] are
rapidly emerging in several domains, such as telecommunications.

In order to overcome the aforementioned limitations of steady-state methods,
it is worthwhile to resort to methods able to directly deal with the dynamical
repertoire of the system. In this paper, we use a recently proposed approach,
the Relevance Index (RI for short) method [11,32,33], which has the following
features:

1. It is based on the observation of the dynamical states of the system (whether
simulated or real), without requiring any a priori knowledge of the interac-
tions among variables (whenever such knowledge is available, it can be used
to complement the proposed method);

2. It can be applied to states coming from different steady state conditions, or
even to states obtained from perturbation of these conditions (it does not
require fixed asymptotic states);

3. It provides information about the organization of the system itself; indeed,
complex systems often display complex organizational features that cannot
be captured by a simple tree-like structure;

4. It is robust against noisy or incomplete data, being based on information-
theoretic measures.

The overall contribution of this paper is twofold.
On one hand, we show that (i) the dynamically relevant groups of variables

identified using the RI index in a biological network are extremely useful in
describing the overall dynamics of the system and that (ii) this description could
significantly enlarge the explicative power of the graph description of a biological
system, by highlighting the links that are really effective.

On the other hand, we present a novel method for creating the homoge-
neous system used as a reference to evaluate the significance of the RI results.
This method considers non-zero pairwise correlations among the variables of the
system and is based on the NORTA technique.

The rest of the paper is structured as follows. Section 2 presents the context
about complex systems and related works. Section 3 provides a brief review of the
Relevance Index method and of the improvement in computing the homogeneous
system. Section 4 shows how the application of the RI method leads to novel and
effective interpretations in a biological network (T helper case study). Finally,
Sect. 5 seals up the work.
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A Relevance Index Method to Infer Global Properties of Biological Networks 3

2 Context and Related Work

In most natural or artificial dynamical systems, there are groups of variables
showing highly coordinated internal dynamics able to significantly influence
other groups or even the whole system (Relevant Sets, or shortly RS in the
following). The capacity of detecting their presence can often lead to a high-
level description of the dynamical organization of the system, and thus to its
understanding [32].

However, the identification and monitoring of the significant or relevant por-
tions of dynamical systems is very difficult, especially if these systems exhibit
emergent or self-organizing phenomena, the latter being the most interesting and
prominent situation for complex dynamical systems [7].

Indeed, most theories and models take into account only two-level systems
and describe the formation of relatively simple dynamical patterns as, for exam-
ple, the creation of the well-known Bénard-Marangoni hexagonal convection pat-
tern [12]. In this case the two levels involved are those of the water particles and
of the hexagonal convection cells. Indeed, the apparatus where the phenomenon
takes place (which is, of course, necessary, since it determines some major fea-
tures of the phenomenon itself) is not affected by what happens at the lower
levels: in other words, it just provides the fixed boundary conditions that allow
the phenomenon to occur.

However, the most interesting recurrent patterns of interaction [18] take place
very often at levels that can be regarded as intermediate between pre-existing
layers, which are, in turn, affected by the dynamics of these patterns. There
are several examples of these “sandwiched” phenomena in physics, biology and
social sciences [18]. Perhaps the most evident cases are the presence of vortexes
on fluids surfaces, the presence of organs and tissues in multi-cellular organisms,
or the action of various groups of humans (such as companies, cooperatives,
associations, factions, communities) within societies1. Note that the formation
of structures or patterns not explicitly designed is frequent even in artificial
systems, as for example power grids [34], e-mail networks [6], Internet [1,8], and
so on. Thus, the detection of intermediate-level structures and patterns is a very
central issue in complex dynamical systems.

Many interesting systems can be represented, at least partially, by means of
graphs. In this case, a widespread property is the presence of the so-called com-
munities, portions of system elements within which the connections are dense,
but between which they are sparser [20]. Their identification sometimes could
detect groups that can be good relevant set candidates.

A method that mixes static and dynamic issues was proposed by Thomas
et al. [27,28] for regulatory networks, the focus of this paper, to capture the
main qualitative features of the dynamics of such systems.

1 The lower and upper level being constituted by the fluid particles and their global
stream, by cells and the organism to which they belong, and by human beings and
societies, respectively.
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4 M. Villani et al.

Works that use dynamical features in order to detect functional groups are
not so frequent; many of them rely on similarity measures and clustering algo-
rithms. This is what is done by Feldt et al. [9], for example.

An interesting approach uses methods introduced in information theory and
applied in neurosciences by Edelman and Tononi in 1994 and 1998 [29,30] to
detect functional groups of brain regions. In our previous works, we extended the
approach to non-stationary dynamical regimes, in order to apply the method to
a broad range of systems, including abstract models of gene regulatory networks
and simulated social [10], chemical [32], and biological [33] systems. The resulting
approach could also be used to identify the critical states of complex dynamical
systems [24].

Finally, an interesting literature review about the reconstruction of gene reg-
ulatory networks and the development of mathematical models of how the pat-
terns of activation and inhibition determine the state of activation of the network
can be found in [4]. The T helper regulatory network considered in this paper is
based on the one described in [19].

3 Method

The technique employed in this paper to identify subsets of nodes that are good
candidates as RSs is mainly based on the Relevance Index (RI) method. For
a complete overview of the methodology adopted in this work please refer to
Villani et al. [33]. In the following we will only summarize it briefly.

Main assumptions:

– the values of the system nodes, or variables, express the observed states of
the system;

– there exist one or more subsets where these variables are acting in a coordi-
nated way;

– the variables of each subset interact with the other system variables more
weakly than among one another internally;

– The computation of the RI is usually based on observational data, and prob-
abilities are estimated as the relative frequencies of the values observed for
each variable.

Consider a system U composed of n random variables (X1,X2, ...,Xn), and
a subset Sk composed of k of them, with k < n. The RI(Sk) value is defined
as the ratio between the integration I of Sk and the mutual information MI
between Sk and the rest of the system:

RI(Sk) =
I(Sk)

MI(Sk;U\Sk)
(1)

where I(Sk), the integration, measures the statistical independence of the k ele-
ments in Sk and M(Sk;U\Sk), the mutual information, expresses the mutual
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A Relevance Index Method to Infer Global Properties of Biological Networks 5

dependence between the subset Sk and the rest of the system U\Sk. The inte-
gration is defined by the following formula:

I(Sk) =
∑

s∈Sk

H(s) − H(Sk) (2)

Values of MI equal to zero indicate that the Candidate Relevant Set (CRS in the
following) does not communicate with the rest of the system, i.e., it is a separate
system and its variables can be neglected. The RI scales with the size of the
CRS, thus it needs to be normalized by dividing each member of the quotient
in Eq. 1 by its average value within a system where no dynamical structures are
present, i.e., a homogeneous system where no specific interaction within groups
of variables can be highlighted. Moreover, the statistical significance of RI dif-
ferences should be assessed by means of an appropriate test. For these reasons, a
statistical significance index Tc was introduced, which measures how much larger
(or smaller) the RI of a subset of variables Sk is with respect to the average RI
of groups of the same size within the homogeneous system:

Tc(Sk) =
RI(Sk) − 〈RIh〉

σ(RIh)
=

νRI − ν 〈RIh〉
νσ(RIh)

(3)

where 〈RIh〉 and σ(RIh) are, respectively, the average and the standard deviation
of the RI of a sample of subsets of size k extracted from a reference homogeneous
system Uh, and ν = 〈MIh〉 / 〈Ih〉 is its normalization constant. A more detailed
description can be found in previous work [26,31].

The generation of the homogeneous system is critical, and often, in past
papers, a simple but general and easy to compute solution was chosen. This
solution encompassed the computation of the frequency of each variable, given
the available observations, and the generation of a new random series of samples,
where each variable had a prior probability equal to the frequency of the original
observations. The homogeneity required by Tononi was achieved by considering
the components of the random vector Uh, representing the homogeneous system,
to be independent. This produced:

1. A unity correlation matrix of the homogeneous system, i.e., with pairwise
correlations set to zero;

2. An integration I(Sk) = 0 for all subsets of the homogeneous system.

In this paper, we introduce, for the first time, a novelty in the generation of the
homogeneous system compared to previous works: homogeneity is maintained
by forcing all off-diagonal elements of the correlation matrix to have the same
constant value ρ different from zero:

CORR(Uh) =

⎡

⎢⎢⎢⎢⎣

1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ
ρ . . . ρ 1

⎤

⎥⎥⎥⎥⎦
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6 M. Villani et al.

Such a value ρ is computed as the average of all pairwise correlations of the
observed variables. In this way we preserve both homogeneity and dependence
among the different variables.

In order to generate a homogeneous system with the aforementioned features,
we use the NORTA method [2], a mathematical procedure that solves the issue
of creating random vectors of correlated samples, given the set of their marginal
distributions (marginals) and a measure of the dependence among them. The
dependence measure we used in NORTA is the usual product-moment correlation
matrix, based on the linear Pearson correlation coefficient.

As a final step of our methodology, a further sieving algorithm [11] can be
used to isolate the most representative CRSs, i.e., those having the highest Tc.
This procedure is based on the following criterion: if CRS C1 is a proper subset
of C2 and ranks higher than CRS C2, then C1 is considered to be more relevant
than C2. Thus it is possible to keep only those CRSs not included in or not
including any other CRS with higher Tc. The sieving activity stops when no
more eliminations are possible and the remaining sets of variables are the true
relevant sets.

4 Experimental Results

4.1 The T Helper Cell Differentiation System

The vertebrate immune system is composed of several cell populations, including
antigen presenting cells, natural killer cells, and B and T lymphocytes. There
are two main kinds of T lymphocytes: the T cytotoxic cells that actively destroy
virus-infected cells and tumor cells and the T helper cells (Th) that take part in
cell- and antibody-mediated immune responses by secreting various cytokines,
differently distributed in the two main T helper cell sub-types Th1 and Th2.
Both sub-types derive from a common precursor Th0 through a rather complex
differentiation path, modeled in [19,22]. In this work, we use the discretization
of an updated version of these paths described in [19] (Fig. 1).

The nodes TCR, IL18, IFNb and IL12 receive their input from outside the
Th differentiation system and constitute the way the system is aware of its
context (in other words, they constitute the system “sensors”). Several signalling
pathways are stimulated by their activation [14].

4.2 RI Results

We simulated the gene regulatory network described in Fig. 1 by means of a
synchronous Boolean system. There are 219 different initial conditions for each
of the 24 different scenarios identified by the “sensor” nodes. However, we found
only 33 different asymptotic behaviors (all fixed points). Three of these attractors
coincide with the gene expression of Th0, Th1 and Th2 cells. These attractors
are presented in [19] as the only really stable states, according to the information
derived from the application of the so-called generalized logical analysis [28] to
the Th differentiation system.
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A Relevance Index Method to Infer Global Properties of Biological Networks 7

Fig. 1. (a) A graph representation of the Th differentiation system. Note that all the
gray-filled nodes (TCR, IL 18, IFN b, and IL 12) do not receive their input from the
network regulating the differentiation system. Thus, in this representation, they do
not have incoming links. (b) The dynamical rules of the Th differentiation system as
described in [19].

However, the gene regulatory network can express 33 different asymptotic
behaviors. Indeed, this fact should give us some information about the dynamical
organization of the system2. Therefore, to extract this information, we tried to
apply the RI methodology (i) to the mere juxtaposition of these attractors or (ii)
by weighting their presence proportionally to the size of their basins of attraction,
i.e., the width of the neighborhood from which the system converges into the
state represented by the attractor under consideration.

In both cases the relevant subsets that were found are composed by TCR
and NFAT nodes (Group1 in Fig. 2) and all the other nodes (Group2 in Fig. 2)3.

2 In this work we do not make hypotheses about the biological plausibility (or stability
or biological function, if any) of these attractors, suggesting the interested readers
to refer to Mendoza and Xenarios [19] and to the references quoted therein. Rather
we highlight that, once a mathematical model has been established, its structure
implies the presence of a well-defined set of attractors: so, an analysis that takes into
account their presence (and therefore which highlights their interrelated dynamical
relationships) should provide better results than a method that does not act in this
way.

3 The node JAK1 is constantly inactive in all attractors. Thus, its presence is useless
for the purposes of a dynamical analysis and no CRS include it. Indeed, it is active
in transient states, but this kind of analysis is out of the scope of this work (see [24]
for a first comparison of the results of RI application to transients and asymptotic
states).
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8 M. Villani et al.

Fig. 2. The table shows the groups detected by the application of the RI methodology
followed by the sieving algorithm (groups 1–6): each group is represented as a row
where black boxes denote the variables belonging to it. Group7 and Group8 have been
discarded by the sieving algorithm, because they include the stronger relevant subsets
indicated as Group3 and Group4: however their observation is important, because it
traces a significant coupling among Group3 and Group4 and the other system variables.
Indeed, a second application of the iterated RI method fixes this strong association
(data not shown).

This fact indicates that the Th differentiation machinery is indeed highly inte-
grated. We can register the presence of these two first CRSs and successively
filter them out, in order to apply the sieving algorithm to all the remaining
groups. In this case, the two approaches produce different results.

The simple attractor juxtaposition separates Group2 into two big subsets
(see Fig. 3, left), whereas the application of RI to an extended set of observations
obtained by repeating input data related with the 33 attractors a number of times
proportional to the width of their basins of attraction is able to identify (i) the
four chains that transmit the external signals toward the inner core of the Th
differentiation system (the TCR-NFAT chain, i.e., the Group1, already identified
during the first RI application) and (ii) a “circle” of nodes that appears to be
the “dynamical engine” of the Th differentiation system, denoted as Group5
(Fig. 3, right).

Fig. 3. The main relevant subsets identified using the simple juxtaposition of the
attractors of the Th differentiation system (left) or by weighting their presence pro-
portionally to their basins of attraction - the right part of the figure. In this part we
highlight the presence of Group1, Group3, Group4, Group5, and Group6, respectively
in striped, yellow, blue, orange, and green background. (Color figure online)
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A Relevance Index Method to Infer Global Properties of Biological Networks 9

It appears that nodes SOCS1, IL 4, IL 4R, and STAT6 do not belong to any
relevant subsets (Fig. 3, right), if we strictly adhere to the relevant subset def-
inition. However, before the application of the sieving algorithm, the RI analy-
sis reports two highly-ranked groups in the top positions, namely Group7 (com-
posed by the aforementioned nodes and by Group3) and Group8 (composed of
IL 4,IL 4R, STAT6, and by Group4). Indeed, these two groups are discarded by
the sieving algorithm because they include two already identified and slightly
stronger relevant subsets. Vice-versa, we can use this information in order to iden-
tify the nodes influenced by (or influencing) Group3 and Group4. Thus, given the
directions of the links of the Th system, it appears that the information acquired
by Group3 (in particular by node IFN b) is transmitted to the nodes belonging to
the “white group”, which, in turn, passes it to Group4. Therefore, the white group
is composed by elements that seem to act as a sort of “transmission engine” for
the Th differentiation system. Figure 4 highlights such an information flow from
the “yellow” region (group 7) to the “blue” region (group 8).

The RI analysis therefore induces an interesting interpretation of the dynam-
ical data which, when mapped on the already available topological knowledge,
provides an expressive explanation of the system functioning. The same knowl-
edge (the identification of groups of variables and of their relationships) is not
derivable from the static analysis alone. The usual algorithms for the search of
communities [17,20] identify only the pair GATA3-T bet. Moreover, only one of
the identifiable 27 circuits is highlighted (Group5, which involves nodes T bet,
GATA3, IL 10, IL 10R, STAT3, IFN g, IFN gR, JAK1 and STAT1).4

On the other hand, the usual dynamical analyses are mainly focused on the
detailed reproduction or prediction of the system’s behaviors [19] and therefore
are not suitable for a highly abstracted and “global” vision of the system func-
tioning. The same generalized logical analysis [28] that mixes topological and
dynamical issues identifies chains of positive and negative feedbacks, eventually
providing clues for the identification of stable attractors, but does not give the
overall vision of the RI method, which identifies the genes involved in injecting
information into the system (the groups 1, 3, 4 and 6) and the main circuit
responsible of the information processing (group5).

Obviously, this method cannot be used to reconstruct the detailed topology
of the investigated system (though it could suggest useful groupings). It is worth
mentioning, however, that the RI method can be applied directly to the exper-
imental data, if these are available. In this respect, we can note that while the
collection of time series is an experimentally difficult and costly task, the RI
methodology can be applied merely by comparing different steady states (whose
data could derive even from different beings), in such a way taking advantage
from more common data sources. In case experimental data are available, the
RI method can provide an effective idea of the dynamical organization of the
observed system without requiring any knowledge of topology, dynamical rules,
or parameters [26,31,32].

4 Note that the node STAT1 participates in Group 3, one of the “sensors groups” of
the Th differentiation system.
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10 M. Villani et al.

Fig. 4. Same as Fig. 3, but highlighting the correlation of Group3 and Group4 with
other Th differentiation variables (SOCS1, IL 4, IL 4R and STAT6 – for brevity indi-
cated in this caption as “WhiteGroup”). With reference to the table reported in Fig. 2,
one can see that, indeed, the first (and unique) significant appearance of these variables
as a block occurs along with Group3 and Group4, with which they compose Group7
and Group8, as shown by the third block of results in the table. Given the directions
of the links, in this example assumed to be known, it appears that the graph struc-
ture of the system could allow the signal transmission from Group3 and Group5 to
the WhiteGroup (first row). However, the RI index indicates as evident the influence
of just Group3. In turn, the information acquired by the WhiteGroup from Group3
is transmitted to Group4, in such a way modulating the external signals coming from
node IL 18 (second row). (Color figure online)

5 Conclusion

In this paper, we proposed to use the RI method, improved through a novel
technique for computing the correlation matrix of the homogeneous system,
as a means to infer global properties of biological networks. With respect to
steady-state approximation approaches, the RI method, which is based on the
observation of the dynamical states of the system, provides information about
the organization of the system itself and is robust against noisy or incomplete
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A Relevance Index Method to Infer Global Properties of Biological Networks 11

data, being based on information-theoretic measures. The RI method can be
applied directly to the experimental data, if available. In this case, it can sketch
an effective picture of the dynamical organization of the observed system. As a
use case, we illustrated the analysis of the T helper network.

Regarding future work, we plan to apply the RI method to several biolog-
ical networks. This can be done quite easily because it can be applied to sys-
tem characterized by both continuous and discrete (Boolean or multi-valued)
variables. The ultimate objective is twofold and encompasses both finding new
insights about those systems and refining the method itself. In particular, we are
interested in studying systems with a large number of nodes, which cannot be
explored exhaustively, even with parallel computing approaches. For such sys-
tems, the adoption of meta-heuristics is necessary in order to find the relevant
groups of nodes in a reasonable amount of time.
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