UNIVERSITY
of
GLASGOW

Middendorf, M. and Manlove, D. F. (2004) Combined super-/substring

and super-/subsequence problems. Theoretical Computer Science 320
(2-3):247-267.

http://eprints.gla.ac.uk/archive/00000308/

Glasgow ePrints Service
http://eprints.gla.ac.uk

Combined Super-/Substring and
Super-/Subsequence Problems

Martin Middendorf' and David F. Manlove?

L Parallel Computing and Complex Systems Group, University of Leipzig,
D-04109 Leipzig, Germany. FEmail: middendorf@informatik.uni-leipzig.de.

2 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: davidm@dcs.gla.ac.uk.

Abstract

Super-/substring problems and super-/subsequence problems are well known prob-
lems in stringology that have applications in a variety of areas, such as manufacturing
systems design and molecular biology. Here we investigate the complexity of a new type of
such problem that forms a combination of a super-/substring and a super-/subsequence
problem. Moreover we introduce different types of minimal superstring and maximal
substring problems. In particular, we consider the following problems: given a set L of
strings and a string S, (i) find a minimal superstring (or maximal substring) of L that
is also a supersequence (or a subsequence) of S, (ii) find a minimal supersequence (or
maximal subsequence) of L that is also a superstring (or a substring) of S. In addition
some non-super-/non-substring and non-super-/non-subsequence variants are studied.
We obtain several NP-hardness or even MAX SNP-hardness results and also identify
types of “weak minimal” superstrings and “weak maximal” substrings for which (i) is
polynomial-time solvable.

1 Introduction

Super-/substring and super-/subsequence problems for sets of strings find important ap-
plications in many areas, including project and process planning, manufacturing systems
design and computational molecular biology (see e.g. [18]). This is because many objects
in nature can be modeled as strings and the super-/substring and super-/subsequence re-
lations are the most basic and natural relations between strings. Several papers study
super- /substring and super-/subsequence problems with respect to their complexity (see e.g.
[3, 5,9, 10, 14, 17, 18]). Four well-studied problems are the Shortest Common Superstring
(SCSt), Longest Common Substring (LCSt), Shortest Common Supersequence (SCSe), and
Longest Common Subsequence (LCSe) problems. Each of SCSt, SCSe and LCSe is known to
be MAX SNP-hard [1] (see [16] for the theory of MAX SNP-hardness). SCSt is polynomial-
time solvable for strings of length 2 and becomes NP-hard for strings of length 3 [5]. SCSt
is also NP-hard for an alphabet of size 2 [5]. LCSt is solvable in polynomial time (see e.g.
[7, 18]). SCSe is NP-hard for strings of length 2 [18] and also NP-hard for an alphabet of size
2 [17]. LCSe is trivially solvable in polynomial time for strings of constant length, though
NP-hard for an alphabet of size 2 [10].

Since it is difficult to find shortest supersequences (superstrings), it is desirable to have
at least minimal supersequences (superstrings) that cannot be shortened by omitting some
characters. A supersequence (superstring) S of a set L of strings is minimal if no proper

subsequence of S is also a supersequence (superstring) of L. Starting with any supersequence
S of L a subsequence of S that is minimal can easily be found in polynomial time using the
following strategy. Delete a character in S if the so-obtained subsequence of S is also a super-
sequence of L. Repeat this until no more characters can be deleted from the supersequence.
The problem of finding a longest minimal supersequence is known to be MAX SNP-hard for
strings over an alphabet of size 2 [14]. For strings of length 2 this problem is polynomial
time solvable, whereas the complexity for strings of constant length k£ > 3 is open [4].

For superstrings the situation is different. A minimal superstring of L cannot necessarily
be found by iterative deletions of single characters from some superstring as long as the string
so obtained is required to be a superstring. As an example consider the superstring S =
abebed of L = {abe,bed}. S is not minimal since deleting substring cb gives the superstring
abed of L. But deleting only one character from S gives a string that is not a superstring
of L. We identify new types of superstrings called “weak minimal” superstrings that can be
obtained from a given superstring S in polynomial time.

More generally we study the complexity of problems which are a combination of a super-
/subsequence problem with a super-/substring problem. Such problems have not been stud-
ied before. In particular, we focus on the following problems: given a string .S and a set L
of strings find a string that is a

1. minimal superstring (maximal substring) of L and subsequence of T,
2. minimal superstring (maximal substring) of L and supersequence of T,
3. minimal supersequence (maximal subsequence) of L and substring of T,

4. minimal supersequence (maximal subsequence) of L and superstring of 7.

We show that some of these problems can be solved in polynomial time while others are
NP-complete. E.g. we show that the complexity of finding a minimal supersequence S for
a set of strings such that S contains a fixed string 7" as a substring depends on the string
T — for some strings T the problem is NP-complete, whilst for others it is polynomial time
solvable. We also consider some non-substring and non-super/non-subsequence variants, i.e.
when we search for strings that do not have the given property. Moreover, we show that the
Longest Minimal Non-Subsequence problem is MAX SNP-hard for strings over an alphabet
of size 2, thus solving an open problem mentioned in [14]. Note, that the problem of finding
a shortest supersequence of L that is a subsequence of T' and the problem of finding a longest
subsequence of L that is a supersequence of T" have been studied in [14].

Let us give some motivating applications for our problems. The first two examples con-
cern minimal superstring problems that are studied in Section 3. (1) In rockwool production
a machine can produce rockwool of different diameters Dy < Dy < ... < D,. Usually it
is easy to change the production from smaller diameters to larger ones since the speed of
production goes down. The other direction requires that the machine waits some time before
it can speed up. Now assume we want to produce several lots of rockwool where every lot fills
a truck. Each lot consists of a sequence of rockwool units of different diameters. To reduce
costs for storing we assume that the rockwool for each lot is a substring in the production
sequence of the machine. The production sequence is the sequence of different diameters
that occur during production (e.g. the lot D5 DgD5 is a substring in the production sequence
D3sDsDgD2DyDs). To find a good production sequence we want to limit the number of
switches from a larger to a smaller diameter. Hence we look for a minimal superstring S of
the lot sequences that is a subsequence of (D1 Dy ... D,)*. In this case S contains at most k
switches from large to small diameter. (2) In other application scenarios similar to (4) one
might be interested to have a large number of switches between two different products A and

B. In this case a minimal superstring that is a supersequence of one of the strings (AB)* or
(BA)¥ is needed.

The next example is a maximal substring problem (see Section 4). (3) The webusage be-
haviour of a customer that visits the wepages of a company can be decribed by her navigation
path through the webpages, i.e. by a string over the alphabet of the companies webpages (e.g.
[12]). An interesting Data Mining problem is to find common usage patterns of customers.
Assume one is interested to find for a set L of strings describing customers navigation paths
a longest common substring that started possibly with page A then went on to the set of
pages {B,C, D} and ended in the set of pages {A, E}. Then the problem is to find a longest
common substring of L that is a subsequence of the string A(BCD)*(AE)! for a large enough
k,1> 0.

The next two examples concern minimal supersequence problems as studied in Section 5.
(4) Assume a conveyer belt consists of a sequence T' of machines of different type. A product
can be characterised by the sequence S of machines it has to pass during production process.
The product can be produced on T if S is a subsequence of T. Assume that the conveyer
belt T has to be extended on both sides such that a set L of new products can be produced
on it and such that no machine is unnecessary. This is the problem of finding a string S
that is a minimal supersequence of L and contains T' as a substring. (5) Another problem
is to find for a set of products characterised by a set L of strings a conveyer belt with no
unnecessary machines and where a given sequence of neighboured machines is not allowed to
be included (e.g. a cooling machine should not be placed after a heating machine). Then the
problem is to find a minimal supersequence of L that does not contain a certain substring.

The organisation of the paper is as follows. Basic definitions are given in Section 2.
Section 3 contains results about finding minimal superstrings. Maximal substring problems
are studied in Section 4. Minimal supersequence and maximal subsequence problems are
described in Section 5. Conclusions are given in Section 6.

2 Basic Definitions

A string over an alphabet ¥ is a finite sequence of characters from 3. For a string S
the prefix of length k is denoted by Prefi(S). The empty string is denoted by A. The
concatenation of two strings S and T is denoted by ST. For S let S° = X and S* = S5~!
for each integer ¢ > 1. A string obtained from S by deleting zero or more characters is
called a subsequence of S. T is a supersequence of S if S is a subsequence of T'. A string
S obtained from T by deleting a (possibly empty) prefix and a (possibly empty) suffix
is called a substring of T. This is denoted by S € T, and by S <€ T if S is a proper
substring of T (i.e. S L T and S # T). T is a superstring of S if S is a substring of T'.
S is a subsequence (supersequence, substring, superstring) of a set L of strings if S is a
subsequence (supersequence, substring, superstring) of every string in L. The property that
S is a substring of L is denoted by S < L. S is a non-supersequence (non-subsequence,
non-substring) of T if S is not a supersequence (subsequence, substring) of 7. S is a non-
supersequence (non-subsequence) of a set L of strings if S is a non-supersequence (non-
subsequence) of every string in L. A supersequence (superstring, non-subsequence) S of a
set of strings is minimal if no proper subsequence of S is a supersequence (superstring, non-
subsequence). A subsequence (substring, non-supersequence) S of a set of strings is mazimal
if no proper supersequence of S is a subsequence (substring, non-supersequence).

Let S = s182...5 be a subsequence of T = tits...tr. An embedding of S in T is a
strictly increasing function f : [1: 1] — [1 : k] such that s; =t for all i € [1:[]. We say
that s; is mapped onto ty;) by f, i € [1 :[]. An embedding of S into a set L of strings is a
set ' ={fr | T € L} where for each T' € L the function fr is an embedding of S in 7. An

embedding of L into S is a set F' = {fr | T" € L} where for each T' € L the function fr is an
embedding of T in S. A run of a string is a substring of maximal length that is of the form
a* for a € ¥ and k > 1 (also called a-run).

3 Minimal Superstrings

In this section we consider the problem of finding, for a given string T" and set L of strings,
a subsequence (supersequence) S of T that is a minimal superstring of L. It is easy to see
that the following characterisations are equivalent:

e S is a minimal supersequence of L.

e There does not exist a character s in S such that the string obtained after deleting s
is also a supersequence of L.

e There does not exist a substring S’ of S such that the string obtained after deleting S’
is also a supersequence of L.

e For every embedding of L into S and every character s in S there exists at least one
character of a string in L that is mapped onto s.

For minimal superstrings none of the analogous equivalences holds in general. Before we
give examples showing this we define the corresponding types of minimal superstrings, i.e.
the “weak minimal” superstrings as mentioned in the Introduction. A superstring S of a set
L of strings is

embedding-minimal (e-minimal) if for each embedding of L into S and for every char-
acter s of S the set of characters mapped onto s is not empty,

— substring-deletion-minimal (sub-minimal) if no proper subsequence of S, obtained by
the deletion of exactly one substring, is a superstring,

— character-deletion-minimal (char-minimal) if no subsequence of S, obtained by deleting
exactly one character, is a superstring,

— prefiz-suffiz-deletion-minimal (pre-suf-minimal) if no proper substring of S is a super-
string.

Lemma 3.1. (a) For a superstring S of a set L of strings the following implications hold:
minimal = sub-minimal = char-minimal = e-minimal = pre-suf-minimal. (b) The inverse
implication “char-minimal = sub-minimal” holds for strings of length 2 but not for strings
of length 3. The other inverse implications do not hold even for strings of length 2.

Proof. (a) follows from the definitions. For (b), we give the following examples which deal
with the inverse implications:

1. Let L = {ab, ac,bd, ca} and S = abcacbd. 1t is not hard to show that S is sub-minimal.
But S is not minimal since the proper subsequence S’ = acabd of S is also a superstring of
L.

2. Let L = {cba,bac} and S = cbabac. It is easy to show that S is char-minimal. But S
is not sub-minimal since the subsequence S’ = cbac obtained by deleting the substring ba is
a superstring of L.

3. Let L = {ba,ab} and S = baab. S is e-minimal but not char-minimal since the
subsequence S’ = bab obtained by deleting one a is a superstring of L.

4. Let L = {ab,c} and S = abic for some integer i > 2. It is easy to show that S is
pre-suf-minimal but not e-minimal.

It remains to show “char-minimal = sub-minimal” holds for strings of length 2. For a
contradiction assume there is a set L of strings of length 2 and a char-minimal superstring
S that is not sub-minimal, i.e. S = S’S”S" for strings S’, 5", 58", |S”| > 2 and S’S” is also
a superstring. Clearly, S’ # X\ # S”. Consider the set of strings L' C L that have at least
one character in S” in every embedding into S. Since S is char-minimal L’ is not empty. It
follows that in any embedding of L’ into S’S", every string has to be embedded into the last
character of S’ — say a — and the first character of S/ — say b. Since S is char-minimal
we derive that |L'| = 1 and S” = ab. But then the string S’aS” is also a superstring of L
and therefore S was not char-minimal. O

As mentioned in the Introduction, finding a shortest superstring of a set of strings is
solvable in linear time for strings of length 2 and NP-complete for strings of length 3, and
also for strings over a binary alphabet [5]. The complexity of finding any (not necessarily
a shortest) minimal superstring is open for strings of length 3, and also for strings over an
alphabet of size 2. Also, the complexity of finding a longest (sub-,char-,e-,pre-suf-)minimal
superstring is not known. However, using a suffix tree (see Chapter 5 of [8] for an introduction
to suffix trees) it can be checked in time O(n|X|) whether a string of size O(n) is a superstring
of a set L of strings over an alphabet Y, where n denotes the total length of all strings in
L. This implies easily that finding just any sub-minimal superstring of a set of strings can
be done in time O(n*|X|). Similarly, char-minimal and e-minimal superstrings can be found
in time O(n?®|X|). To find a pre-suf-minimal superstring start with any superstring S. Then
using a suffix tree, find the rightmost occurrence in S of every string in L. Let S’ be the
shortest suffix of S that contains all rightmost occurrences of strings in L. Similarly find then
the leftmost occurrence of every string of L in S”. Now the string S” that is the shortest prefix
of S’ containing all leftmost occurrences of the strings in L is a pre-suf-minimal superstring
of L. Hence, a pre-suf-minimal superstring can be found in time O(n|X]).

We consider now the problem of finding a (sub-,char-,e-,pre-suf-)minimal superstring that
can be of arbitrary length but has to be a supersequence (subsequence) of some given string.

Definition 3.2. Fixed Supersequence Minimal Common Superstring:
Given: A set L of strings and a string T over an alphabet 3.
Question: Does there exist a minimal superstring of L which is a subsequence of T'?

The problems Fixed Supersequence (sub-,char-,e-,pre-suf-)Minimal Common Superstring
are defined analogously. When the superstring does not have to be minimal the problem is
called Fixed Supersequence Common Superstring problem.

The Fixed Supersequence Common Superstring problem is polynomially equivalent to
the Fixed Supersequence sub-Minimal Common Superstring problem. To see this, suppose
that S is a superstring of L, and suppose that S’ is a string obtained from S by deletion
of a substring, such that S’ is also a superstring of L. Then S’ is also a subsequence
of T. Analogously, this holds for the Fixed Supersequence char-Minimal (e-Minimal, pre-
suf-Minimal) Common Superstring problems. In case of the Fixed Supersequence Minimal
Common Superstring problem, such relationship is not immediate, since the complexity of
the problem of deciding whether a superstring of a set L of strings is minimal is open.

Theorem 3.3. The Fized Supersequence (sub-,char-,e-,pre-suf-)Minimal Common Super-
string problem and the Fized Supersequence Common Superstring problem are NP-hard for
strings of length 2.

Proof. We reduce the 3-SAT ([LO2] in [6]) to our problem. Let aset C = {C1,Cs, ..., Cp} of
clauses each of size three over a set V' = {v1,v9,...,v,} of variables be an instance of 3-SAT.

We define a set L of strings of length 2 and a string T over an alphabet ¥. For each variable
Ups h € [1:n] let C;y,Ci,,...,C;, be the clauses with an unnegated occurrence of v; and
Ci,Cys v vy quh be the clauses with an occurrence of v; and define the corresponding strings
T; = circiy - - - Ci, s T = ¢jcjy - . Cj,, » and T!" = viTivv T o1#i. Set T = #oTV'Ty ... T).
Let L ={v;v; | 1 <i<n}U{¢|1<i<m}U{#;|0<i<n}.

Assume that S is a minimal superstring of L and a subsequence of T'. Clearly, S contains
every character #;, 1 < ¢ < n exactly once. Since S contains the substring v;v; and is a
subsequence of T' the substring of S between #;_1 and #; is in one of the following forms: i)
#,_1S;v;U;#; where S, is a subsequence of T; or ii) #;_1v;015#; where S. is a subsequence
of T/. We obtain a truth assignment of V' by setting v;, ¢ € [1 : n] true if (i) holds for v;
and otherwise v; is set false. The proof for the case that S is any superstring is very similar.
To show that there exists a minimal superstring of L that is a subsequence of T' when there
exists a C-satisfying truth assignment for V is easy. The proof for the case that S is any
superstring is very similar, and the results for the Fixed Supersequence char-Minimal (e-
Minimal, pre-suf-Minimal) Common Superstring problems follow since each is polynomially
equivalent to the Fixed Supersequence Common Superstring problem. O

The fixed string T in the proof of Theorem 3.3 depends on the instance of 3-SAT. An
interesting question is whether the problem remains NP-complete when 7' depends only on
the size of the instance, i.e. does there exist an infinite sequence T' = s1ss ... over characters
of some alphabet 3 such that the following problem is NP-complete: given a set of strings
over 3, n € N, is Pref,(T) a (sub-,char-,e-,pre-suf-)minimal superstring of L?

Corollary 3.4. The Fized Supersequence (sub-,char-,e-,pre-suf-)Minimal Common Super-
string problem is NP-hard for strings over an alphabet of size 2.

We omit the proof. The idea is to encode every character in the proof of Theorem 3.3
by a suitable string over an alphabet of size 2.

Definition 3.5. Fixed Subsequence Minimal Common Superstring;:
Given: A set L of strings and a string T over an alphabet 3.
Question: Does there exist a minimal superstring of L which is a supersequence of T %
The problems Fixed Subsequence (sub-,char-,e-,pre-suf-)Minimal Common Superstring
are defined analogously.

Theorem 3.6. The Fized Subsequence (sub-,char-,e-)Minimal Common Superstring problem
is NP-hard for strings of length 2.

Proof. We reduce a 3-SAT version where for each variable the number of negated occurences
equals the number of unnegated occurences and no variable occurs twice in a clause. Let
aset C = {C1,Cy, ...,Cp} of clauses each of size three over a set V = {v1,va,...,v,} of
variables be an instance of 3-SAT. Before we define a set L of strings of length 2 and a string
T over an alphabet ¥ we need some definitions and observations.

A string S” in L supports a character in a superstring S of L when S’ can not be mapped
into S without using this character. Clearly, every character in a (sub-,char-,e-)minimal
superstring S of L has to be supported by some string in L. In the following definition of
T each # stands for some character that occurs only once in T. We make the following
observation: When T contains a substring of the form #ab#, ab € L, and when the string
ab is needed to support the substring ab of T (i.e. it is not possible that strings of the
form az and by support the a and the b) then the substring ab occurs only once in a (sub-
,char-,e-)minimal superstring S of L with subsequence T" and this occurence is between the
corresponding # characters. A main tool in the proof is to use this observation to restrict
the neighbourhoods of characters in parts of S as follows. We define a substring Ty of T" and
a set Lo C L of strings so that

i) outside of the substring Ty of S the character ¢;, j € [1 : m] can only have right
neighbours ¢;, x;, or vlh when C is the hth clause with positive occurence of v; and
left neighbours c¢;, y;, or @lh when Cj is the hth clause with negated occurence of v;,

ii) outside of the substring T of S the character ¢;, j € [m+1: (3/2)m] (without loss
of generality we assume that m is even) can only have right neighbours ¢;, z;, or v;,
i € [1:n], and left neighbours ¢;, y;, or v;, i € [1: n].

concatenation of all strings T, i € [1:n]. For j € [1:(3/2)m] define Tc, = aja;c;jcib;b;#.
Let T3 be the concatenation of all strings Tc,, j € [1 : (3/2)m]. Set T' = TyT1T3. The set
L contains the strings in L, all strings # that occur in 7" and the strings in the following
sets L1 = {vPal, ol | he [1:n]i € [1:nU{olthol i€ [1:n]}, Ly = {zyi | i €
[m+1:(3/2)m]}, Ls = {a;a;, bibi,cic; | i € [1: (3/2)m]}}. Now we show that a C-satisfying
truth assignment of V' exists when there exists a (sub-,char-,e-)minimal superstring of L that
contains T as a subsequence.

Let S be a (sub-,char-,e-)minimal superstring of L with subsequence 7. Consider an
embedding of L in S. The following facts are easy to show: i) every character # can occur
only once in S and the corresponding string # supports it, ii) every of the substrings a;a;,
bib;, cici, © € [1 : (3/2)m] in substring T' of S has to be supported by the corresponding
string in Lg C L, iii) of the (7/2)m + n strings in L; U Ly exactly 3m have to occur in S as
a neighbour to a character ¢j, j € [1:(3/2)m] in the subsequence 7" in order guaranty that
none of ¢;’s neighbours a; and b; in T' is its neighbour in S, j € [1: (3/2)m], iv) (1/2)m+n
strings in L, are needed to support the (non-#)characters in 7),, 7 € [1 : n].

It follows that exactly n; + 1 of the strings in L; have to support the (non-#)characters
in T,, i € [1: n]. There are only two possibilities: Either all strings {v}!o} | h € [1 : n;]} U
{v T ol} or all strings {o/vf ! | h e [1:n;]} U {oM 0}} support the (non-#)characters in
T,,. This allows to define a truth assignment for the variables in V. In the first case v; is
set false and in the second case v; is set true.

For each substring c¢jcj, j € [1 : m] only the string z;y; and strings in Ly can guaranty
that (i) is satisfied when they occur as neighbours in S. Hence at least one string from Lo
must occur in S as neighbour of ¢;. This is possible for a string vz-h@ih only when C} is the hth
clause that contains v; and v; is true (i.e., the string U?@Zh is not needed to support characters
in T,,) or for a string @Zhvzh when Cj is the hth clause that contains v; and v; is false (i.e.,
the string z‘;zhvzh is not needed to support characters in 7),). Hence there must be at least
one true literal in each clause. The other direction of the proof is easy. O

For each variable v;, i € [1 : n] define T,,, = v} 5} 0257 ... v/5" 0" T # and let Ty be the
[

By encoding every character in the proof of Theorem 3.6 by a suitable string over an
alphabet of size 2 we obtain the following corollary.

Corollary 3.7. The Fized Subsequence (sub-,char-,e-)Minimal Common Superstring prob-
lem is NP-hard for strings over an alphabet of size 2.

By contrast with the previous result, Fixed Subsequence pre-suf-Minimal Common Su-
perstring is solvable in linear time, as we show now.

Theorem 3.8. The Fized Subsequence pre-suf-Minimal Common Superstring problem is
solvable in time O(n) where n is the total length of the input strings.

Proof. Let a set L of strings and a string T over an alphabet X be given. Let m be the
maximal length of a run of a string in L. For a string S let «(S) be the string that is
obtained from S by shortening the leftmost run and the rightmost run so that each has
length one. Let a(L) = {«a(S) | S € L}. For a string S let S> be the string that is

Type of any shortest | longest fixed fixed

minimality supersequence subsequence

minimal ? NPh: ? NPh: NPh:
O(n): || =2 [=2,Th. 3.3 [=2, Th. 3.6

l=215] =3 |X] =2, Cor. 3.4 | |X| =2, Cor. 3.7

sub-minimal | O(n*|X]) ?

char-minimal | O(n3[X]) | O(n): ?

e-minimal [= ?

pre-suf-min. | O(n|X]) 5] A O(n), Th. 3.8

none

Table 1: Complexity of minimal superstring problems: P=polynomial time, NPh=NP-hard,
A=may not exist, [=length of longest string in L, n=total length of strings in L, ¥=alphabet

obtained from S by doubling the rightmost character until the length of the rightmost run
is m+ 1. Strings <S and <S> are defined analogously by doubling the leftmost (respectively
the leftmost and the rightmost) character of S until the length of the leftmost (respectively
the leftmost and the rightmost) run is m + 1. We consider three cases.

Case 1: a(L) contains at least two strings with > 3 runs. Let T3, T, ..., T, be the strings
in (L) with > 3 runs, m > 2. Let S’ be the string in L with «(S”) = T} that has the longest
leftmost run and S” be the string in L with «(S”) = T,,, that has the longest rightmost run.
Let S” be a string that has only runs of length m + 1, contains T as a subsequence, and is
a superstring of every string S € L with at most two runs. Then it is easy to show that the
string S'> S 94Ty > <T31> ... 4Ty, _1><45" is a pre-suf-minimal superstring of L that contains
T as a subsequence.

Case 2: Case 1 does not hold and there are at least two strings in L with a run of length
> 2. First assume that «(L) contains one string 77 with > 3 runs and it has a run of
length > 2. Then 77 = a™b"2c™, a,b,c € 3, a # b # ¢, for some integers ny, ny, n3 at
least one of them > 2. Let S’ be the shortest string that contains all strings S € L with
a(S) = Ty and also every string of the form a*b! with integers k, [, [< no as a substring.
Further, assume there exists a string in L that is not substring of S’ and has a run of length
> 2. Then a string S” can be found in linear time that is a suf-minimal superstring of the
remaining strings in L where the first run of S” has length one and the string that supports
the rightmost character has a run of length > 2. Let S be a string that has only runs of
length 1, contains T" as a subsequence, and the last character of S” is different from the first
character of S”. Then the string S’S”’S” is a pre-suf-minimal superstring of L that contains
T as a subsequence. Most remaining subcases can be proved similarly (a few subcases can
be detected where there does not exist a pre-suf-minimal superstring of L with subsequence
T).

Case 3: Neither of Cases 1 and 2 holds. Proof omitted since it can be shown with similar
techniques as the other cases.]

Table 1 summarises the complexity results of this section.

4 Maximal Substrings

In this section we consider finding maximal substrings of a set of strings. In analogy to
Section 3, maximal substring problems with a fixed supersequence (subsequence) are defined.
Firstly, we define certain types of “weak maximal” substrings. A substring S of a set L of
strings is

— substring-insertion-mazimal (sub-mazimal) if no proper supersequence of S, that can
be obtained by the insertion of exactly one string, is a substring,

— character-insertion-mazimal (char-mazimal) if no supersequence of S that can be ob-
tained by inserting exactly one character is a substring,

— prefix-suffiz-insertion-maximal (pre-suf-maximal) if no proper superstring of S is a
substring.

Lemma 4.1. For a substring S of a set L of strings the following implications hold: maximal
= sub-mazximal = char-maximal = pre-suf-mazximal and the inverse implications do not hold
i general.

Proof. The implications can be shown easily, the following examples show that the inverse
implications do not hold. (1) Let L = {aabacach, acacbaab} and S = aab. S is sub-maximal
but not maximal since the string acacb is also a substring. (2) Let L = {accbab, abaccb}
and S = ab. S is char-maximal but not sub-maximal since the string accb obtained by
inserting cc into S is also a substring. (3) Let L = {abaa, aaba} and S = aa. Clearly, S is
pre-suf-maximal but not char-maximal since aba is also a substring. O

Definition 4.2. Fixed Subsequence Maximal Common Substring;:
Given: A set L of strings and a string T over an alphabet 3.
Question: Does there exist a maximal substring of L which is a supersequence of T'?

The problems Fixed Subsequence (sub-,char-,pre-suf-)Maximal Common Substring and
Fixed Supersequence (sub-,char-,pre-suf-) Maximal Common Substring are defined analo-
gously.

The Longest Common Substring problem is linear-time solvable: Hui [7] has shown that,
for a set L containing k strings, a longest substring of L may be found in O(n) time, where n
denotes the total length of all strings in L. Hui’s approach involves the use of suffix trees and
lowest common ancestors (see Chapter 8 of [8] for a definition of lowest common ancestors
and a description of how they may be computed efficiently). Gusfield [8, §9.7] presents an
in-depth description of Hui’s method, demonstrating how a simpler O(kn) algorithm for the
problem [8, §7.6] may be refined in order to achieve the O(n) bound. In this section we
show that all pre-suf-maximal substrings of L may be found in O(n) time. As a corollary we
obtain that a shortest pre-suf-maximal substring of L may be found in O(n) time (note that
this problem is a minimaximal optimisation problem with a special partial order property
as studied in [11]).

Our algorithm makes use of Hui’s methods for solving the Longest Common Substring
problem. Additionally, some aspects of our approach bear similarities to the algorithm for
finding all (pre-suf-) maximal repeats in a string in O(n) time [8, §7.12.1]. However our
task here involves k strings; nevertheless, by using suitable data structures, we achieve time
bound O(n) for our problem. We leave open whether the corresponding problems for (sub-
,char-)maximal substrings can be solved in linear time (polynomial time is trivial).

We firstly establish some definitions relating to suffix trees (the terminology follows that
of Gusfield [8, §5.2]). Let 7 be a suffix tree for a string S. The label of a path from the root
of 7 to a node v is the concatenation, in order, of the substrings labelling the edges of that
path. The path label of a node v is the label of the path from the root of 7 to v. For any
node v, the string depth of v is the number of characters in the path label of v.

Theorem 4.3. For a set L of k strings with total length n all pre-suf-maximal substrings of
L can be found in O(n) time.

Proof. Suppose that L = {S; : 1 < i < k}. To each string S; (1 < i < k), we append a
unique termination symbol $; not occurring in ¥; let S! be the resultant string and S the
concatenation of the strings S; (1 <1i < k). Now suppose that X is a suffix of S, beginning
at position ¢ of S (i.e. ¢ is the suffiz position of X in S). This position of S corresponds to
a unique string S} for some j (1 < j < k). We call j the string identifier of X in S. Define
the left character of X in S to be the (i — 1)th character of S if i > 1, or $y (a symbol not
occurring in ¥) if ¢ = 1.

We build the suffix tree 7 for the string S, storing two pieces of information at each leaf
node. Recall that each leaf node v of 7 corresponds to a unique suffix X of S. Define the
string identifier of v in S to be the string identifier of X in .S, and define the left character
of v in S similarly. Store both of these values at v. (For the purposes of this algorithm, it is
not necessary to store at v the suffix position of X in S.) It is clear that the construction of
this paragraph may be carried out in O(n) time, which is the time required to build a suffix
tree [2].

For a node v of 7, let 7, denote the subtree of 7 with root v. Let C(v) denote the
number of distinct string identifiers that appear at the leaves of 7,,. Define a matching node
of T to be an internal node v of 7 such that C(v) = k. It follows that a string P is a
substring of L if and only if P is, or is a prefix of, the path label of some matching node v
of 7. Thus a string P is a maximal substring of L implies that P is the path label of some
matching node v of 7. Computing C(v) for each node v may be carried out in O(n) time
overall [7]. We now consider R-tight matching nodes. Such a node v is a matching node such
that no child of v in 7 is a matching node.

Claim 4.4. Let v be a matching node of T and let P be the path label of v. Then v is an
R-tight matching node if and only if Po & L, for any o € 3.

Proof of Claim 4.4. Suppose that v is an R-tight matching node and Q = Po < L, for some
o € 3. Then Q £ S; for each j (1 < j < k), which implies that there are k suffixes X;
(1 <j <k)of S such that, for each j (1 < j < k), X; has string identifier j in S, and @ is a
prefix of X;. Thus, by definition of 7, there is a matching node w in 7,, where w is a child
of v (w has path label R, such that either @ = R, or @) is a prefix of R). Thus v has a child
that is a matching node, a contradiction. Conversely, suppose that Po < L for each o € X,
and v is not an R-tight matching node. Then v has a child w that is a matching node; let
(@ be the path label of w. Then by definition of 7, there is some o € X such that Po is a
prefix of @ (possibly Po = Q). Thus we reach a contradiction, since < L implies that
Po £ L. O

It is clear that the R-tight matching nodes may be determined by a straightforward
traversal of 7, in O(n) time, once the C'(v) values have been computed. By Claim 4.4, the
path label of an R-tight matching node is a substring of L that cannot be extended to the
right to give another common substring of L. Next, we show how to locate substrings that
cannot be extended to the left, in addition to being non-extendible to the right. For an R-
tight matching node v of 7 and for any o € ¥, let D, (v) denote the number of distinct string
identifiers among all leaves of 7, with left character ¢ in S. Define an LR-tight matching
node v to be an R-tight matching node v such that, for all o € ¥, D, (v) < k.

Claim 4.5. Let v be an R-tight matching node of T and P be the path label of v. Then v is
an LR-tight matching node if and only if cP & L, for any o € 3.

Proof of Claim 4.5. Suppose that v is an LR-tight matching node and @ = ¢P < L, for
some o € ¥. Then Q < S; for each j (1 < j < k), which implies that there are k suffixes
X; (1 <j <k)of S such that, for each j (1 < j < k), P is a prefix of X;, X; has string
identifier j in S, and o is the left character of X; in S. Thus, by construction of 7, we

10

for each leaf node w of 7, loop
let o be the left character of w;
if o € ¥ then
add w to S, v;
end if;
end loop;
for each nonempty set S, loop
D, (v) := 0;
for each w € S, ,, loop
let ¢t be the string identifier of w;
if not visited[t] then
visited[t] := true;
D,(v) := Dy(v) + 1;
if D,(v) = k then
halt; {v is not LR-tight}
end if;
end if;
end loop;
for each w € S, ,, loop
let ¢t be the string identifier of w;
visited[t] := false;
end loop;
end loop;
{v is LR-tight}

Figure 1: An algorithm for deciding whether v is an LR-tight matching node, given that v
is an R-tight matching node of 7.

have that 7, has a leaf node with left character o and string identifier j in S, for each j
(1 <j <k). Hence D,(v) = k, a contradiction. Conversely, suppose that o P & L for each
o € ¥, and v is not an LR-tight matching node. Then there is some o € X such that 7, has
a leaf node with left character o and string identifier j in L, for each j (1 < j < k). Hence
Q) = o P satisfies Q < Sj, for each j (1 < j < k), so that Q < L, a contradiction. O

By Claim 4.5, a string P is a maximal substring of L if and only if P is the path label of
an LR-tight matching node v of 7. We now show how to efficiently determine the R-tight
matching nodes that are LR-tight matching nodes.

Claim 4.6. The LR-tight matching nodes in T may be found in O(n) time.

Proof of Claim 4.6. An algorithm for deciding whether a given R-tight matching node v of
T is LR-tight is shown in Figure 1. The algorithm calculates only those D, (v) values for
which 7, contains at least one leaf node with left character o € 3 (otherwise we may assume
that D,(v) = 0); once such a value has been computed, if D,(v) = k then v cannot be an
LR-tight matching node. If this is not the case after all such computations, v is LR-tight.

To begin, the algorithm makes one pass over the leaf nodes in 7, constructing the sets
Ssv, where o € 3. Initially we assume that S,, = (), and at the termination of the first for
loop, each S, contains the leaf nodes in 7, having left character o. Clearly, with suitable
data structures, these sets may be constructed in O(r) overall time (avoiding the explicit
initialisations Sy, := (), and they use O(r) total space, where r is the number of leaf nodes
in 7,.

The second for loop considers in turn each nonempty set S, ,. For each, the number of
distinct string identifiers among leaf nodes of 7, having left character o is computed. This is
done with the aid of a boolean array visited, having k entries. We assume that every entry

11

visited is initialised to false at the very outset (i.e. before the algorithm is invoked on any
R-tight matching node), and once Dy, has been computed, those values of visited that were
altered are reset to false. Clearly the second for loop may be implemented to run in O(r)
overall time and O(k + r) total space.

Given that distinct R-tight matching nodes contain disjoint sets of leaf nodes, it follows
that the overall time and space used by the algorithm of Figure 1 for all R-tight matching
nodes is O(n). O

Thus Claim 4.6 implies that all pre-suf-maximal substrings of L may be identified in O(n)
time by representing each such substring « as a pair (4, j), so that o comprises all characters
of S between positions ¢ and j inclusive (assuming that, in practice, each edge label 3 of T
is represented similarly by a pair of indices (k,1) [8, p.104]). O

Corollary 4.7. A shortest (sub-,char-)mazimal substring of a set of strings L can be found
in time O(n+13), where | is the length of the shortest string, and a shortest pre-suf-mazimal
substring can be found in time O(n).

Proof. Consider the suffix tree 7 defined in the proof of Theorem 4.3. Having marked all
the LR-tight matching nodes of 7, a final traversal of the tree will establish an LR-tight
matching node v of smallest string depth, in O(n) time. By construction, the path label P of
v corresponds to a shortest pre-suf-maximal substring of L. Thus the overall time complexity
of this algorithm is O(n). To find a shortest maximal substring it is enough to find a shortest
pre-suf-maximal substring that is not subsequence of some other pre-suf-maximal substring.
Since there are at most [pre-suf-maximal substrings this can be done in time O(I*) and the
time bound of the corollary follows. Similarly, shortest (sub-,char-)maximal substrings can
be found. O

Corollary 4.8. Let L be a set of strings, let T be a string, and let [be the length of the
shortest string in L. Then

1. The following time bounds hold for the Fized Supersequence (sub-,char-,pre-suf-)Mazx-
imal Common Substring problems: i) (sub-,char-) mazimal: O(n +1 - |T| + 13), i)
pre-suf-mazimal: O(n+1-|T)).

2. The following time bounds hold for the Fized Subsequence (sub-,char-,pre-suf-)Maximal
Common Substring problems: i) (sub-,char-) mazimal: O(n+13), i) pre-suf-mazimal:
O(n+1?).

Proof. The proofs of Theorem 4.3 and Corollary 4.7 show how all maximal, sub-maximal,
char-maximal, and pre-suf-maximal substrings of L can be found. In each case there are
O(1) such substrings, and each substring can be tested as to whether it is a subsequence of
T in O(|T) time. O

Table 2 summarizes the complexity results of this section.

5 Minimal Supersequences, Maximal Subsequences

The problem of finding for a given set of strings, a shortest (respectively longest) of the
following sequences was studied by several authors: minimal supersequence, maximal non-
supersequence, maximal subsequence, or minimal non-subsequence [4, 9, 10, 13, 17, 19]. It
is known that each of these problems is NP-hard. Moreover, it is known that finding a
longest minimal supersequence, shortest maximal subsequence and shortest maximal non-
supersequence are MAX SNP-hard over an alphabet of size 2, i.e. there does not exist

12

Type of shortest | longest fixed fixed
maximality supersequence 1’ | subsequence T'

maximal
sub-maximal On+1B)| Om) | On+1-|T|+13) O(n +13)
char-maximal [7]

pre-suf-maximal O(n) On+1-1T)) O(n +1?)

Table 2: Complexity of maximal substring problems: [=length of shortest string in L,
n=total length of strings in L, ¥=alphabet

a polynomial time approximation scheme for these problems unless P=NP [14]. In the
following we show that finding a longest minimal non-subsequence is MAX SNP-hard over
an alphabet of size 2. It remains open as to whether each of the problems of finding a
shortest supersequence, longest subsequence, shortest non-subsequence and a longest non-
supersequence is MAX SNP-hard over an alphabet of constant size (when it exists). In
addition, we consider the problem of finding for a set of strings maximal and minimal (non-
)super- and (non-)subsequences of arbitrary length that contain (or do not contain) a given
string as a substring. For most of these problems we show NP-hardness even over an alphabet
of size 2.

Theorem 5.1. Given a set L of strings over an alphabet of size 2 it is MAX SNP-hard to
find a longest minimal non-subsequence of L.

Proof. We only sketch the proof, as it is somewhat similar to the proofs of the MAX SNP-
hardness results in [14]. We L-reduce the Independent and Dominating Set-B problem to
our problem (see [14]). The problem is to find for a graph G = (V, F') with maximum degree
B a smallest vertex set V! C V, |[V'| < k such that for every v € V — V' there exists w € V'
with {v,w} € F (i.e., V' is a dominating set) and for all u,v € V', {u,v} € E (i.e., V' is an
independent set). Define a set L of strings over {0,1}: for i € [0 : n] let S; = (10)*11(01)"~".
For each edge ¢; = {v;,v;} € E, i < j, 1 € [1:m] let T; = (01)*10(01)/~*~10(01)"70. Set
L={S;|ie[0:n]}U{Th,Ts,...,Tin}.

No minimal non-subsequence of L contains > n + 3 zeros since every string in L contains
< n+1 zeros. Clearly, every minimal non-subsequence of L containing n + 2 zeros contains
no one and therefore has length n 4+ 2. Every minimal non-subsequence S of L has <n + 3
ones since every string in L has < n + 2 ones. If S has exactly n + 3 ones then S = 1713, It
can be shown for k < % — 3 that there exists a minimal non-subsequence of L with length
> 2n—k+1 > n+5+4 > n+3 if and only if there exists an independent dominating set of size
< k for G. Further, L has an optimal solution with length < 2n+1—o0pt(G) < (2B+3)opt(G)
where opt(G) is the size of the optimal solution for G. Hence we have an L-reduction. [

Definition 5.2. Fixed Substring Minimal Common Supersequence:

Given: A set L of strings and a string T over an alphabet 3.

Question: Does there exist a minimal supersequence of L which contains T as a substring?
Fixed Substring Maximal Common Non-Supersequence, Fixed Substring Maximal Com-

mon Subsequence, Fixed Substring Minimal Common Non-Subsequence, Fixed Superstring

Minimal Common Supersequence and Fixed Superstring Maximal Common Subsequence are

defined analogously.

Clearly, Fixed Superstring Minimal Common Supersequence and Fixed Superstring Max-
imal Common Subsequence are polynomial-time solvable. For the other problems, we need
the following theorem shown in [14].

13

Theorem 5.3. Given a set L of strings over a binary alphabet and integers ko, k1. The
following problems are NP-complete: Find a string containing exactly ko zeros and ki ones
that is a (1) supersequence of L ((ko,k1)-Super), (2) subsequence of L ((ko,k1)-Sub), (3)
non-supersequence of L ((ko, k1)-Non-Super), (4) non-subsequence of L ((ko,k1)-Non-Sub).

The proof of Theorem 5.3 in [14] shows that the problems remain NP-complete in the
following special cases (that we use in this section): (1) (ko, k1)-Super: each 1-run of a string
in L has length 1, each string in L contains ko — 1 zeros and ends with a zero, (2) (ko, k1)-Sub:
each 1-run of a string in L has length 1.

Theorem 5.4. The following problems are NP-complete over an alphabet of size 2 even if
the given non-substring T has constant length: (a) Fized Substring Minimal Common Super-
sequence, (b) Fized Substring Mazimal Common Subsequence, (c¢) Fized Substring Mazimal
Common Non-Supersequence, (d) Fized Substring Minimal Common Non-Subsequence.

Proof. We prove only (a) and (b). Results (c) and (d) can be proved by reductions from
(ko, k1)-Non-Supersequence and (ko, k1)-Non-Subsequence. To prove (a) we reduce (ko, k1)-
Supersequence. Let the set L* = {T}* | | € [1 : m|} of strings be an instance of (ko, k1)-Super
where each 1-run has length 1, each string contains ky — 1 zeros and ends with a zero.
We define a set L of strings over {0,1} and a string 7" as follows. Let 7' = 1100011 and
L =L'U{Sy, S} with L' = {T;*1101 | T; € L*}, Sp = 0%011, S; = (10)*11000. It is now
easy to verify that there exists a supersequence S* for L* with kg zeros and k; ones iff there
exists a minimal supersequence S of L with substring 7.

In fact, let S be a minimal supersequence of L with substring 7". Since S is supersequence
of L it must be of the form S’0S”, where S” contains the subsequence 1101 and S’0 is a
supersequence of L*. Clearly S’ has at least kg — 2 zeros. Since the prefixes of the strings in
L that might have to be embedded in S’ (i.e., L* U Prefi,(So) U Pre for, +2(S1)) have only
1-runs of length 1 and S is minimal, it must be that S’ has only 1-runs of length one. Hence,
the substring 7" of S can only be embedded in the suffix S” of S. Since Sy is the only string
that can support a second 1-run of length two in S” there can be at most kg — 1 zeros in S’.
Since Sp is the only string that can support a 0-run of length three in S” there can be at
most kq zeros in S’. Hence S0 is a supersequence of L* with at most k; ones and at most
ko zeros.

Vice versa, let S* be a supersequence of L* that contains exactly kg zeros and kq ones;
we can assume that S* has only 1-runs of length 1, since all strings in L* have this property.
Then S = 5*1100011 is a minimal supersequence for L with substring 7. Indeed, to embed
L' in S, the first 1-run of length two in the suffix 1100011 of S is required. To embed Sy in
S, the second 1-run of length two in the suffix 1100011 of S is required. To embed 57 in S,
the 0-run of length three in the suffix 1100011 of S is required. Moreover, to embed Sy and
S1 in S every zero and every one in S* is required.

(b) We reduce (ko, k1)-Subsequence. Let strings 7}", [€ [1 : m] be an instance of (ko, k1)-
Sub where each 1-run has length 1. We define a set L of strings over the alphabet {0, 1} and
a string T as follows. Let T = 011011, Sy = (10)*°10111011, and S; = 0% (10%0)¥10110111.
For each string T, [€ [1 : m] let T} = T;701110111. Set L = {So, S1} U{T1, T, ..., T}
It is shown in the following that there exists a subsequence with kg zeros and k; ones of
{T} | 1 € [1 : m]} iff there exists a maximal subsequence of L that contains the substring 7T'.

Let S be a maximal subsequence of L with substring T'. Consider an embedding of S into
L. Due to the maximality of S, for every 1-run of length 2 in T there must be a string S’ in
L such that both ones of the 1-run are mapped onto an 1-run in S’ of length > 2. Otherwise
a zero could be inserted between the ones. The maximality implies that this is possible only
when T is a suffix of S, i.e. § is of the form S = T*T for some string 7. The rightmost
zero of T in S must be mapped onto the rightmost zero of Sy. Otherwise, in each string of L

14

there would be the subsequence 111 to the right of the zeros onto which the rightmost zero
of T in S is mapped. Similarly it follows that, both ones of the run 11 of T in S are mapped
onto the second (seen from the right) 1-run of S;. Due to the maximality of S it follows that

(%) the left zero of T in S has to be mapped onto the second (seen from the right) zero
in Sy and onto the second zero in S7.

Therefore T* is a subsequence of the strings 7}*, I € [1 : m| that contains exactly ko zeros
(this is clear since Sy contains only kg zeros to the left of the second rightmost zero and since
(*) would not be satisfied if 7™ contains < kg zeros). Moreover, T contains exactly k; ones
(this is clear since Sp contains only k; ones to the left of the second rightmost zero and since
() would not be satisfied if T* contains < k; ones).

On the other hand assume that there exists a subsequence 7 of {T}* | | € [1 : m|} with kg
zeros and kj ones. Clearly every 1-run of T* has length one. Then T™ is a subsequence of the
prefix (10)%01 of Sy and a subsequence of the prefix 0%0(10%0)*1 of S;. In every embedding
of T* into the prefix (10)*°1 of Sy the rightmost character of T* can not be embedded to the
left of the rightmost 0-run. Similarly, in every embedding of T* into the prefix 0o (10*0)k1
of S; the rightmost character of T* can not be embedded to the left of the rightmost 0-run.
It is easy to show that S = T*T is a maximal subsequence of L. O

Remarks: (1) Similar proofs show NP-completeness for the following problems:

(a) Find a minimal supersequence that contains two 1-runs of length 2 and one O-run of
length 3.

(b) Find a maximal subsequence that contains two 1-runs of length 2.
(¢) Find a maximal non-supersequence that contains a 1-run of length 2.

(d) Find a minimal non-subsequence that contains a 1-run of length 3 and a 1-run of length
5.

(2) Fixed Substring Minimal Common Supersequence, Fixed Substring Maximal Com-
mon Subsequence, Fixed Substring Maximal Common Non-Supersequence, and Fixed
Substring Minimal Common Non-Subsequence are NP-complete for strings over {0, 1}
when one requires additionally that the string T is a suffix (or prefix) of constant length
of the minimal supersequence (maximal subsequence, maximal non-supersequnce, min-
imal non-subsequence) S.

Definition 5.5. Fixed Non-Substring Minimal Common Supersequence:
Given: A set L of strings and a string T over an alphabet 3.
Question: Does there exist a minimal supersequence of L that does not contain T as a
substring?

Fixed Non-Substring Maximal Common Non-Supersequence, Fixed Non-Substring Max-
imal Common Subsequence, and Fixed Non-Substring Minimal Common Non-Subsequence
are defined analogously.

Theorem 5.6. The following problems are NP-complete over an alphabet of size 2 even if
the given non-substring T has constant length: (a) Fized Non-Substring Minimal Common
Supersequence, (b) Fized Non-Substring Maximal Common Subsequence, (c¢) Fized Non-
Substring Mazximal Common Non-Supersequence.

15

Proof. We prove only (a); (b) and (c) can be proven by reduction from (ko, k1)-Subsequence.
To prove (a) we reduce (ko, k1)-Supersequence. Let the set L* = {7} | | € [1 : m]} of strings
be an instance of (ko, k1)-Super where each 1-run has length 1. We define a set L of strings
over {0, 1} and a string T" as follows. Let T'= 11 and L = L'U{Sy, S1} with L' = {T;*11011},
So = 0500111, S; = 1%11110, Sy = 0011011, and S3 = 1¥111011. We show that there exists
a supersequence with kg zeros and ki ones of L* iff there exists a minimal supersequence of
L that does not contain the substring 7T'.

Let S be a minimal supersequence of L that does not contain substring 7. Since S
is a supersequence of L' U So,S3 it has a subsequence of the form 5’11011 where S’ is a
supersequence of L* and contains at least kg zeros and k; ones. Since S does not contain
T there must be at least two additional zeros between the 1-runs of length two in S’/11011.
Since S5 contains only one zero the other zero must be supported by S2. But then can not
contain > ko + 1 zeros because otherwise Sy can be embedded in $'11011. Similarly, since
Sy contains only kg + 1 zeros and kg of them can can be embedded into S’ it follows that
one additional zero must be supported by S3. This not possible when S’ contains > ki + 1
zeros. Thus, S’ is a subersquence of L* that contains exactly ko zeros and ki ones.

Vice versa, let S* be a supersequence of L* that contains exactly kg zeros and k; ones.
Since every string in L* has only 1-runs of length one it can be assumed that S* has this
property. The it is easy to verify that S = 5*1010101 is a minimal supersequence of L that
does not contain substring 7' = 11. O

Theorem 5.7. The Fized Non-Substring Minimal Common Non-Subsequence problem can
be solved in linear time over any alphabet.

Proof. Let a string T and a set L of strings over an alphabet ¥ be an instance of our problem.
Assume |X| > 2 (Otherwise the problem is trivial). There exists an a € X, such that T' & a*.
Let k be the maximum number of a’s occurring in a string of L. Then S = a**! is a minimal

non-subsequence of L that does not contain the substring T'. O

Definition 5.8. Fixed 2-Non-Substring Minimal Common Non-Subsequence:

Given: A set L of strings and two strings Th and Ty over an alphabet .

Question: Does there exist a minimal supersequence of L that does not contain either of the
strings T1 and Ty as a substring?

Theorem 5.9. The Fized 2-Non-Substring Minimal Common Non-Subsequence problem is
NP-complete over an alphabet of size 2 even if the given non-substrings have constant length.

Proof. We reduce the 3-SAT to our problem. Let C = {C1,Cy, ..., C,,} be a set of clauses of
size three over a set of variables V' = {v1, va,... , v,}. We define a set L of strings over {0,1}
and strings 7} and T3 as follows: Let Ty = 00000, Ty = 11, So = (170)™~11™. For each
variable v; € V let T; = (10)7C¢-D+100(10)7(=)+41 77 = (10)7¢=D+10(10)%0(10)7(=2+11,
T! = (10)70=D+20(10)20(10)"™=)+11. For each clause C; let T,,; be a string with 7n
zeros and 7n — 2 ones. In T,4; there is a one at both ends and between each two zeros
with the following exceptions i) not between the 7(h — 1) + 1th and 7(h — 1) + 2th zero,
if v, € (, ii) not between the 7(h — 1) + 2th and 7(h — 1) + 3th zero, if v € Cj. Set
L ={So} U{T;, T/, T |i € [1 :n]} U{T; | i € [n+1:n+ m]}. Note that each string in
L — with the exception of Sy — contains exactly 7n zeros. Now it can be shown that a
C-satisfying truth assignment of V' exists when there exists a minimal non-subsequence of L
that contains neither of the strings 77 and 15 as a substring. O

In all the NP-hardness proofs of this section the string 7' (respectively the strings 77 and
T5 in the proof of Theorem 5.9) is not dependent on the instance of the reduced problem.
E.g. it is an NP-hard problem to decide for a given set of strings if there exists a minimal

16

shortest longest fixed fixed
substring non-substring
minimal NPc: MAX SNP: NPc: NPc:
supersequence || =2 X =2 X =2 |X| =2
[5] [14] Th. 20 Th. 22
maximal MAX SNP: NPc: NPc: NPc:
subsequence || =2 1] =2 || =2 || =2
[14] [10] Th. 20 Th. 22
maximal MAX SNP: NPc: NPc: NPc:
non-supersequence || =2 X =2 X =2 |2 =2
[14] [19] Th. 20 Th. 22
minimal NPc: MAX SNP: NPc: O(n), Th. 23
non-subsequence || =2 X =2 X =2 (NPc: 2 fixed
[13] Th. 17 Th. 20 | non-substr. Th. 25)

Table 3: Complexity of minimal supersequence and maximal subsequence problems:
P=polynomial time, NPc=NP-complete, MAX SNP=MAX SNP-hard, n=total length of
strings, X=alphabet

supersequence that contains the string 11100011000 as a substring. An interesting question
is for which strings T the corresponding problems are NP-hard and for which strings the
problems become polynomial time solvable. Note, e.g., that the problem to decide whether
for a given set L of strings a minimal supersequence exists that contains the substring 0 is
polynomial time solvable (There exists such a minimal supersequence iff there exists a string
in L that contains a 0).

Table 3 summarizes the complexity results of this section.

6 Open Problems

Some remaining open problems are to characterise the complexities of finding a minimal
superstring and of finding a longest (sub-,char-,e-)minimal superstring, given a set of strings.
Also it is an interesting question whether the four remaining open problem from the classical
minimal/maximal shortest/longest (non)super-/subsequence problems are MAX SNP-hard
for strings over alphabet of size 2, i.e. finding a shortest supersequence, a longest subsequence,
a longest non-supersequence, and a shortest non-subsequence.

Acknowledgements

We thank the anonymous referees for their detailed and valuable comments. One referee
provided ideas that helped to simplify the proofs of Theorems 3.3, 5.4, and 5.6, and to
strengthen Theorem 3 so that it holds for an alphabet of size 2.

References

[1] A.Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of shortest
superstrings, J. ACM 41 (1994) 630—647.

[2] M. Farach, Optimal suffix tree construction with large alphabets, Proceedings of FOCS
'97: the 38th Annual IEEE Symposium on Foundations of Computer Science (IEEE
Computer Society, 1997) 137-143.

17

[3] C.B. Fraser, Subsequences and Supersequences of Strings. PhD Thesis, (Dept. of Com-
puting Science, University of Glasgow, 1995).

[4] C.B. Fraser, R.W. Irving, and M. Middendorf, Maximal common subsequences and min-
imal common supersequences, Information and Computation 124 (1996) 145-153.

[5] J. Gallant, D. Maier, and J.A. Storer, On finding minimal length superstrings, JCCS 20
(1980) 50-58.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability, (W.H. Freeman, San Francisco,
1979).

[7] L.C.K. Hui, Color set size problem with applications to string matching, Proceedings of
CPM ’92: the 3rd Annual Symposium on Combinatorial Pattern Matching, (Springer-
Verlag, 1992), LNCS 644, 230-243.

[8] D. Gusfield, Algorithms on strings, trees and sequences, (Cambridge University Press,
1997).

[9] T. Jiang and M. Li, On the Approximation of Shortest Common Supersequences and
Longest Common Subsequences, SIAM J. Comput. 24 (1995) 1122-11309.

[10] D. Maier, The complexity of some problems on subsequences and supersequences, J.
ACM. 25 (1978) 322-336.

[11] D.F. Manlove, Minimaximal and maximinimal optimisation problems: a partial order-
based approach, PhD thesis, (Department of Computing Science, University of Glasgow,
1998).

[12] F. Massaglia, P. Poncelet, R. Cischetti, An efficient algorithm for Web usage mining,
Networking and Information Systems Journal, 2:571-603, 1999.

[13] M. Middendorf, The shortest common nonsubsequence problem is NP-complete, Theo-
ret. Comput. Sci., 108 (1993) 365-369.

[14] M. Middendorf, On finding minimal, maximal, and consistent sequences over a binary
alphabet, Theoret. Comput. Sci. 145 (1994) 317-327.

[15] M. Middendorf, Plan Merging und verwandte Probleme, Habilitation thesis, (Faculty of
Economics, University of Karlsruhe, 1998).

[16] C.H. Papadimitrou and M. Yannakakis, Optimization, approximation and complexity
classes, JCCS 63 (1991) 425-440.

[17] K.-J. Réih& and E. Ukkonen, The shortest common supersequence problem over binary
alphabet is NP-complete, Theoret. Comput. Sci. 16 (1981) 187-198.

[18] V. G. Timkovsky, Complexity of common subsequence and supersequence problems and
related problems, Cybernetics, 25: (1990) 565-580.

[19] L. Zhang, On the approximation of longest common non-supersequences and shortest
common non-subsequences, Theoret. Comp. Sci. 143 (1995) 353-362.

18

	ManlovestringsCover.pdf
	http://eprints.gla.ac.uk/archive/00001094

	ManlovestringsCover.pdf
	http://eprints.gla.ac.uk/archive/00000308/

