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Abstract—The feet centres of pressure (CoP) and ground
reaction forces (GRF) constitute essential information in the
analysis of human motion. Such variables are representative of
the human dynamic behaviours, in particular when interactions
with the external world are in place. Accordingly, in this paper
we propose a novel approach for the real-time estimation of
the human feet CoP and GRFs, using the whole-body CoP
and the human body configuration. The method combines a
simplified geometrical model of the whole-body CoP and a
learning technique. Firstly, a statically equivalent serial chain
(SESC) model which enables the whole-body CoP estimation is
identified. Then, the estimated whole-body CoP and the simplified
body pose information are used for the training and validation
of the learning technique. The proposed feet CoP model is first
validated experimentally in five subjects. Then, its real-time
efficacy is assessed using dynamic data streamed on-line for one
selected subject.

Keywords—Human modelling, real-time estimation, learning
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I. INTRODUCTION

Among the key factors accounted in human motion analysis,
the knowledge of feet centres of pressure (CoP) and ground
reaction forces (GRF) is crucially important. The feet CoP
can be for example employed in gait analysis or for postural
stability assessment. On the other hand, the GRFs are repre-
sentative input data for the application of the inverse dynamics
technique and can improve dynamic consistency in simulations
on musculoskeletal models [1]. The direct measurement of
these variables can be achieved by means of force sensors,
e.g. force platforms or foot insole sensor systems, but using
these devices may impose several restrictions and in certain
condition such as slope walking, stair climbing or track
running it is difficult to obtain good results [2]. For this reason,
the interest toward approaches for the estimation of the human
feet CoP and GRFs is significantly growing. One potential
application for this kind of approach could be the extension
of the human-robot collaboration framework presented in our
previous work [3], whose aim was to monitor and prevent in
real-time excessive loadings in human joints during a human-
robot collaborative tasks. The proposed technique was based
on the real-time estimation of the translational displacement
of the whole body CoP in the presence of external forces, used
along with the GRF vectors to compute the overloading joint
torques throughout the task execution. This information was
then used to implement a robot assistance framework to make
human achieve more ergonomic body configurations.

To construct and identify the real-time CoP model employed
in the procedure we used the statically equivalent serial chain
(SESC) technique [4] along with the body pose measurements
collected by means of a motion-capture system. Since this
method allows solely to obtain the whole body CoP, the
technique proposed in [3] can currently be applied to human
biomechanical models represented by planar serial chains that
include just one GRF. The development of this reduced model
to a three dimensional (3D) one including both legs and thus
the contact forces exchanged by both feet with the ground,
would lead to a less rough approximation of the human body
and broaden the applications of the technique to more realistic
and complex 3D tasks.

Accordingly, the aim of this paper is to propose a novel
approach to estimate the feet CoP and GRFs, during double
support, on the basis of the whole body CoP and the total
GRF. After collecting sets of measurements of the human
whole body pose along with CoP and GRFs upon a large
number of static postures through external sensory systems, we
firstly identify the unknown body segment inertial parameters
(BSIPs) of the human body to develop a whole-body CoP
model with the SESC technique. Secondly, we design and train
a feed-forward artificial neural network (ANN) to estimate
the CoP and GRFs for the feet. The proposed method is
evaluated experimentally on five subject. Then, its real-time
applicability is assessed using dynamic data from a selected
subject demonstrating that the human feet CoP model could
be employed to extend the framework presented in [3].

II. OVERVIEW OF THE METHOD

In this section, we introduce our method to estimate the
feet CoP and GRFs in real-time. It is a novel technique
that combines a simplified geometrical model and a classical
learning technique. To compute the parameters that charac-
terize the model we employ the measurements collected with
a motion-capture system and force sensors. We first identify
the unknown BSIPs to estimate the whole-body CoP using
the SESC technique. Next, a mapping from the whole-body
CoP to feet CoP by means of the ANN is presented. This
consideration is to reduce the amount of modelling uncertainty
that is expected to be learnt by the ANN. Once the feet CoP
model is identified and trained, it can be employed in real-time
applications.



A. Geometrical Model: Whole-body Centre of Pressure

The whole-body centre of mass (CoM), CM =

[CMx CMy CMz]
T ∈ R3 of any branched chain (e.g.,

leg, arm, etc.) can be modeled by geometric parameters
(i.e. CoM, mass and length of each link) of the original
whole-body structure using the SESC technique [4]

CM = x0 +BΦΦΦ , (1)

where matrix B =
[
A0 · · · An

]
∈ R3×3(n+1) contains i-th

link rotation matrices Ai ∈ SO(3) with respect to ΣW . Matrix

ΦΦΦ =
[
φφφ

T
0 · · · φφφ

T
n

]T
∈R3(n+1) includes the vector of SESC

parameters φφφ i ∈ R3, which refers to mass distribution of the
human model.

To identify the unknown parameters, the whole-body CoP
can be written in regressor form as

0CM = CM−x0 = BΦΦΦ , (2)

where 0CM is the CoM represented in Σ0. The regression
matrix B and the parameter vector ΦΦΦ contain all the known
and unknown parameters of the SESC.

The identification of the parameter vector ΦΦΦ in such a
form can be considered as a classical least-squares problem.
The rotation matrix B and the human base frame vector x0
can be calculated from the measurements collected by means
of the motion-capture system. On the other hand, the CoM
vector cannot be obtained directly from a sensory system. It is
possible, though, to achieve the ground-projected CoM, which
corresponds to the CoP in the static condition. The whole-body
CoP vector CP = [CPx CPy]

T ∈R2 with respect to the ΣW can
thus be calculated using force sensors (i.e. force platforms or
an insole sensor system) as

CP =
fL ·CP,L + fR ·CP,R

fL + fR
, (3)

where, fL and fR are the GRF of left and right foot, respec-
tively. The CoP of each foot CP,L and CP,R with respect to the
ΣW calculated as follows

CP,L = x∗L +A∗L
LICP,L

and
CP,R = x∗R +A∗R

RICP,R. (4)

The superscript (.)∗ above symbolises the pre-multiplication
of the projection to the x-y ground plane. The position of
the feet x∗L and x∗R ∈ R2, and the corresponding orientations
A∗L and A∗R ∈ R2×2 are measured from the motion-capture
system. LICP,L and RICP,R correspond to the measured CoP
value with respect to the force sensor frame on left and right,
respectively. Accordingly, the least-squares problem can be
solved by the stacked matrices for p pose set of B∗ and 0CP
as W∈R2p×3(n+1) and ΩΩΩ ∈R2p×1, respectively. The vector of
the identified SESC parameters Φ̂ΦΦ ∈R3(n+1) can be calculated
as

Φ̂ΦΦ = W+
ΩΩΩ , (5)

Fig. 1: The selected wearable sensor systems: a motion-capture suit and insole
sensors.

where W+ =
(
WT W

)−1 WT is the Moore-Penrose generalised
inverse. In the static condition we can compute the CoP by
projecting onto the x-y plane the whole-body CoM estimated
by (1) with the identified SESC parameters (5).

B. Learning Technique: Feet Centres of Pressure

To estimate the feet CoP and successively compute the feet
GRFs, we employ the multi-layer ANN technique, using as
inputs the whole-body CoP estimated by the simplified SESC
model and body configurations measured with the motion-
capture system. Supporting this choice, it has been shown that
supervised multi-layer ANN with the proper input data and
a non-linear activation function are capable of representing
accurate approximations and mappings [5]. Specifically, a
feed-forward ANN with one hidden layer and enough number
of neurons in hidden layers, can fit any finite input-output
mapping problem [6].

The training of the ANN model for each subject is per-
formed in the off-line phase so as to build real-time model.
To achieve the best possible results, different combinations
of the training functions, numbers of neurons in the hidden
layer and sets of input data are tested. As regards the input
data, the whole-body ĈP from the SESC model, the orientation
matrix of the simplified human model B and the pelvis, the
left foot and the right foot positions are ultimately employed
for the training and the validation. As regards the structure,
we build a feed-forward ANN composed by one hidden layer
containing four neurons with a non-linear activation function
and an output layer with a linear function. The network is
trained with the target data (e.g. the measured feet CoP using
the force sensors) using the weights and bias values according
to Levenberg-Marquardt optimisation.

Consequently, the feet CoP ĈP,R and ĈP,L can be estimated
in real-time. In addition, deriving from (3), we can obtain the
distribution gain ζ for each foot as[

ζL ζR

]
=
[∣∣∣ ĈP−ĈP,R

ĈP,L−ĈP,R

∣∣∣ ∣∣∣ ĈP−ĈP,L

ĈP,R−ĈP,L

∣∣∣] . (6)

Using these distribution gains, even feet GRF can be easily
computed from the overall GRF.



III. VERIFICATION OF THE METHOD

This section first provides the performance evaluation of the
proposed method. Then its real-time applicability is assessed
with dynamic data during an on-line session. We will focus on
the results for the estimation of the feet CoP since it is more
meaningful for our purposes but even feet GRF, as previously
said, can be computed.

A. Model Identification and Validation

Five healthy male volunteers (age: 28.6 ± 4.3 years; mass:
84.7 ± 10.7 kg; height: 182.2 ± 2.9 cm) 1 were recruited
in the experimental session. A written informative consent
was obtained after explaining the experimental procedure.
The sensory systems employed in our experimental setup,
illustrated in Fig. 1, are wearable and light-weight so as they
do not add additional constraints on the human mobility. The
measurement of the whole-body human motion is achieved
using a wearable MVN Biomech suit (Xsens Technologies)
provided with seventeen inter-connected inertial measurement
unit (IMU) sensors. On the other hand, the calculation of the
CoP and the measurement of the vertical GRF (vGRF) are
performed using OpenGo insole sensors (Moticon GmbH).
Each subject was asked to wear the MVN Biomech suit and
the OpenGo insole sensors and then required to hold 200
static poses for the data collection. During the acquisition, the
postures were chosen by each subject arbitrarily but with the
requirement to change the orientations of each segment and
the position of the feet CoP as much as possible in between,
to obtain variables as linearly-independent as possible. The
large amount of postures collected along with their variability
are necessary to build a suitable set of input data for the
parameters identification of the proposed synergistic model.

The SESC parameters identification was done using 80
selected static poses that were considered suitable given the
level of approximation of our human model (details can be
found in [4]). Table I presents the means and the standard
errors of the position error of the CoP with respect to the ΣW to
evaluate the performance of the SESC technique. This position
error was computed in x-direction and in y-direction for all the
200 postures performed by five subjects. We compared CPwt

1Subject data is reported as: mean ± standard deviation.

TABLE I: Means and standard errors of the position errors between the whole
body CoP measured using the OpenGo insole sensors, and the CoP estimated
by the identified SESC model. The errors are computed for each subject on
the x-axis and on the y-axis across 200 postures.

Subject
CoP errors (cm)

CPx ,L CPy ,L

1 1.34 ± 0.04 1.33 ± 0.04

2 1.57 ± 0.04 1.34 ± 0.04

3 1.45 ± 0.04 1.56 ± 0.04

4 1.76 ± 0.05 1.70 ± 0.05

5 1.83 ± 0.05 1.40 ± 0.05

TABLE II: Means and standard errors of the position errors between the
CoP measured using the OpenGo insole sensors and the CoP estimated by
the ANN. This errors are computed for each subject on the x-axis and on the
y-axis for the left foot and for the right foot across 25 postures.

Subject
CoP errors (cm)

CPx ,L CPy ,L CPx ,R CPy ,R

1 1.88 ± 0.09 1.25 ± 0.06 1.63 ± 0.06 2.95 ± 0.01

2 2.14 ± 0.08 1.93 ± 0.07 1.80 ± 0.06 1.57 ± 0.06

3 1.88 ± 0.06 0.57 ± 0.02 1.53 ± 0.05 1.30 ± 0.04

4 2.28 ± 0.07 0.86 ± 0.03 1.56 ± 0.04 0.75 ± 0.03

5 1.42 ± 0.05 0.53 ± 0.01 1.57 ± 0.05 0.71 ± 0.03

and ĈPwo positions, computed with (3) using data measured by
the OpenGo insole sensors and estimated by the SESC model,
respectively. The mean position error was 1.83× 10−3m in
the x-direction and 1.40×10−3m in the y-direction across all
postures for the subject with the worst results, providing a
solid evidence on the accuracy of the on-line CoP model.

For the training of the ANN we used 160 static poses
(around 80% of the whole dataset) which were in fact adopted
as the training set. Table II presents the means and the standard
errors of the position errors between the feet CoP measured
by the OpenGo insole sensors and the estimated ones by the
ANN. This errors were computed for each subject on the
x-axis and on the y-axis for the left foot and for the right
foot across 40 postures that were used as the validation set to
examine the network performance (around the other 20% of
the whole dataset). The magnitude of the error was uniform
between the subjects, demonstrating that the proposed syner-
gistic approach can deal with varying patterns of movement
and human body models with different inertial parameters. The
consistency of the error in the x and y directions and the level
of accuracy achieved were suitable for the target applications
of this work (human-robot collaboration scenarios).

B. Real-time applicability evaluation

To conduct an effective validation of the method proposed,
its performance must be assessed in real-time employing
dynamic data as an input. One subject (age: 30 years; mass:
76.5 kg; and height: 1.78 m) was asked to wear the MVN
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Fig. 2: X coordinate of the position of the measured (red line) and estimated
(blue line) CoP for the left foot (upper chart) and for the right foot (lower
chart).



Biomech suit and the OpenGo insole sensors and move in
the workplace assuming different positions of the feet and
thus different position of the feet CoP, changing the body
configuration in between. This task was repeated for three
trials. In Fig. 2 we present the results of one trial, showing
the x coordinate of the CoP measured with the OpenGo insole
sensors (red line) and estimated by means of the proposed
method (blue line) both for the left (upper chart) and for the
right (lower chart) foot. We focus on the x coordinate of the
feet CoP position since the work that we want to extend [3]
consider so far only task that are mainly performed along the
sagittal plane. Since the estimated positions of the feet CoP
are meaningfully similar to ones measured by the external
sensors, we can assert that our method can deal with dynamic
data streamed on-line. Moreover, the values of the means and
standard deviation of the position error between the measured
and estimated feet CoP computed for each trial, presented
in Table III, provide a further evidence on the real-time
applicability of the feet CoP model. As already mentioned, the
level of accuracy achieved is suitable for the target applications
of this work, namely human-robot collaboration scenarios.

TABLE III: Means and standard deviations of the position errors between
the CoP measured using the OpenGo insole sensors and the CoP estimated
by the synergistic model. This errors are computed for each subject on the
x-axis and on the y-axis for the left foot and for the right using dynamic data
collected in real-time.

Trials
CoP errors (cm)

CPx ,L CPy,L CPx ,R CPy ,R

1 1.47 ± 1.15 0.54 ± 0.39 2.11 ± 1.69 0.61 ± 0.41

2 1.61 ± 1.30 0.95 ± 0.47 1.76 ± 1.42 0.62 ± 0.39

3 2.13 ± 0.20 1.19 ± 0.08 3.55 ± 0.53 0.98 ± 0.09

IV. CONCLUSION

In this work we proposed a novel approach for the real-time
estimation of the human feet CoP and GRFs from the whole
body CoP and the human body configurations, using wearable
and light-weight sensory systems. The method can achieve
quite accurate results in static conditions and shows promising
evidences for the real-time applications. As a result, using the
proposed technique it will be possible to extend our previous
work [3] to more realistic interaction scenarios, including the
double support phase.

Future works will focus on the improvement of the
accuracy and reliability of the proposed model by using
dynamic data as the training set.
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