
Noname manuscript No.
(will be inserted by the editor)

A Branch-and-Bound Approach for the Single
Machine Maximum Lateness Stochastic Scheduling
Problem to Minimize the Value-at-Risk

M. Urgo · J. Váncza
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Abstract The research in the field of robust scheduling aims at devising
schedules which are not sensitive – to a certain extent – to the disruptive
effects of unexpected events. Nevertheless, the protection of the schedule from
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of the distribution of the maximum lateness. The viability of the approach is
demonstrated through a computational experiment and the application to an
industrial problem in the tool making industry.
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1 Introduction and Problem Statement

Production scheduling in industry needs to cope with the occurrence of un-
certainty, incomplete information and unexpected events that may stem from
a wide range of sources, both internal and external. The estimation of the
duration of production activities could be inaccurate, as well as their resource
needs, the availability of machines, workers - or production resources in general
- could vary, the supplying of raw materials or work-in-progress products could
be late in relation to the scheduled time, new activities like rush orders or re-
works could need to be executed with a higher priority (Cao et al., 2001; Alfieri
et al., 2011; Makris and Chryssolouris , 2010; Mourtzis, et al., 2012; Nonaka,
et al., 2012; Attia et al., 2014; Mogre et al., 2014). Hence, robust scheduling
approaches have been developed, aiming at protecting the performance of a
schedule by avoiding or mitigating the impact of uncertain events.

Many stochastic scheduling approaches typically address the uncertainty
in the problem through a scalar performance indicator, e.g., the expected
value. Minimising the expected value of an objective function provides a sig-
nificant improvement compared to pure deterministic approaches but never-
theless it fails in comprehensively estimating the quality of the schedule from
the stochastic point of view (Alfieri et al., 2012; Tolio and Urgo, 2013; Yin
et al., 2014).
When we aim at minimizing the expected value of a scheduling objective func-
tion, e.g, the maximum lateness, we look at good performance in terms of
respecting the due dates on average, but we fail in protecting the schedule
against worst cases whose probability is low.
This is a key factor for managers aiming to maximize the expected profit but
also avoid the impact of very unfavorable events potentially causing heavy
losses. The research in the financial area has been largely addressing risk mea-
sures in the last years, focusing on the use of indicators able to consider the
impact of uncertain events both in terms of their effect and of their occurrence
probability as the Value-at-risk or the Conditional Value-at-Risk introduced
by Rockafellar and Uryasev (2002).
In the scheduling area, on the contrary, risk measures are less investigated
even if the concept of risk is often perfectly suitable to support scheduling
decisions under uncertainty (Tolio and Urgo , 2007; Tolio et al., 2011). This
is mainly due to the difficulty in calculating the distribution of scheduling
objective functions in most of the scheduling problems (Radke et al., 2013).

We consider the scheduling of the production in an industrial environ-
ment producing tailor-made products. We put the focus on a single production
phase, receiving the work-in-progress parts from the previous production step
and delivering the worked parts to the following according to a production
plan.
The arrival of the parts could undergo variations in relation to the uncertain
events affecting the production, thus, we consider the release date a stochastic
variable. Nevertheless, the delivery of the processed parts to the following pro-
duction step must respect the due dates defined in the production plan, thus,
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we consider them as deterministic. Moreover, as typical in the production of
tailor-made products, the production process is often executed for the first
time, due to the specific characteristics of the products. First, the machines
need to be setup and the process is executed a first time, verified, checked
and, if needed, adjusted. Hence, the remaining parts in the lot can be pro-
cessed. We model the processing time as a stochastic variable to consider the
variability of the setup and process adjustment phase. Moreover, we suppose
that production lots are processed one at time, hence, a whole set of resources
is modeled as a single machine processing a single job at time. This could
seem a very restrictive hypothesis. Nevertheless, since the considered group of
resources typically work on a single product (or product type) at a time (e.g.,
make-to-order shops working on a single job or batch at a time, multi-model
transfer lines), then a single resource model is a reasonable modeling approach.
Being a robust scheduling approach, the aim is to guarantee the reduction of
the propagation of the uncertain events occurring at the considered produc-
tion phase throughout the whole production plant. We propose a branch-and-
bound algorithm taking as the objective function a risk measure associated to
the maximum lateness, specifically, the minimization of the V aR of the max-
imum lateness. We restrict the analysis to static list policies with unforced
idleness allowed (Pinedo, 2008, chap. 9.5), i.e., the machine can remain idle to
wait for the release time of a scheduled job even if other jobs are ready to be
processed.

The paper is organized as follows: Section 2 summarizes the current ad-
vances for the existing stochastic scheduling approaches while Section 3 pro-
vides the problem statement as well as a description of the V aR, the risk
measure used. Section 4 describes the principles and characteristics of the
proposed branch-and-bound solution method. Section 5 reports on the com-
putational test result and Section 6 describes the industrial application case.
Finally, Section 7 concludes the paper.

2 State of the Art

In its deterministic version, the considered scheduling problem is known as
1|rj |Lmax and has been recognized to be strongly NP -hard (Lenstra et al.,
1977). A review of the existing solution approach for this scheduling problem
can be found in Kellerer (2004) and (Pinedo, 2008, chap.9). Further approaches
addressing similar scheduling problems are presented in Benmansour et al.
(2012), Scholz-Reiter et al. (2013), Gafarov et al. (2014).

In a more general perspective, the addressed scheduling problem is a special
case of the problem 1|rj , prec|fmax addressing the optimization of a generic
scheduling cost fmax that, in our case, is a function of the lateness. This
scheduling problem has been widely addressed in the literature, e.g., Carlier
(1982); Baker and Su (1974); Grabowski et al. (1986); Liu (2010); Chandra
et al. (2014).
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If we consider this class of scheduling problem and assume that all the jobs
to be scheduled are available at time t = 0, thus ignoring the release times,
the resulting scheduling problem (1|Lmax) can be solved to optimality using
the earliest due date (EDD) rule.

Referring to the stochastic counterpart, if processing times are arbitrarily
distributed and due dates deterministic, the EDD rule minimizes the expected
maximum lateness (Pinedo, 2008) in both non-preemptive static and dynamic
scheduling problems, as well as in the preemptive dynamic version. This is a di-
rect consequence of the fact that the EDD rule is optimal for the deterministic
version of the scheduling problem. Hence, it provides an optimal solution for
any sample of the processing times. Since this is valid for all the samples, then
the EDD rule also minimizes the maximum lateness in expectation (Pinedo,
2008).

This also provides a result in relation to the distribution of the maximal
lateness. In fact, given a schedule S∗ with maximum lateness L∗, the probabil-
ity of having Lmax ≤ L∗ must be less or equal to the value obtained with the
EDD schedule. Hence, the cumulative distribution of the maximum lateness
for the EDD schedule bounds from above all the cumulative distributions of
the maximum lateness for any possible schedule. This behavior can be formal-
ized in terms of stochastic order relations (Shaked and Shanthikumar, 2007;
Ross, 1983, chap.9).

The application of rearrangement inequalities to scheduling problems have
been addressed in Chang and Yao (1993). Using stochastic rearrangement in-
equalities, the authors obtain a solution for the stochastic counterpart of many
classical deterministic scheduling problems. These results have been further ex-
ploited in Zhou and Cai (1997), Cai and Zhou (2005), Cai et al. (2007) and
Wu and Zhou (2008).

The stochastic scheduling literature mostly addresses the problem of mini-
mizing the maximum expected lateness max(E[L]). In this case, the stochastic
problem is reduced to a deterministic minimization (Zhou and Cai, 1997). On
the contrary, the minimization of the expected value of the maximum lateness
E[Lmax] addresses the stochastic characteristics of the scheduling problem
taking into consideration the whole distribution of the objective function.

A problem from this class is analyzed in Wu and Zhou (2008), considering
a set of jobs with stochastic due dates and deterministic processing times to be
scheduled on a single machine to minimize the expected value of the maximum
lateness (E[Lmax]). A dynamic programming algorithm is developed whose
performance is compared to three heuristic rules. The authors also provide
an extension of the dynamic programming algorithm to cope with stochastic
processing times and due dates. However, the results presented ground on the
assumption that both the due dates and processing times are exponentially
distributed.

Cai et al. (2007) further extended the results in Chang and Yao (1993)
proving that (i) if the processing times are independent random variables and
can be likelihood-ratio ordered, (ii) the due dates are independent random
variables and can be hazard-rate ordered, (iii) the orders are agreeable, then
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the maximum lateness is stochastically minimized sequencing the jobs in non-
decreasing likelihood-ratio order of the processing times {pi} or, equivalently,
in non-decreasing hazard-rate order of the processing times {di} . We recall
that, if Lmax is stochastically minimized, then its distribution stochastically
dominates the Lmax distributions of all the other schedules and also E[Lmax]
is minimized (Chang and Yao (1993)).

When considering the release times (both deterministic and stochastic),
the problem becomes more difficult to solve. However, considering indepen-
dent generally distributed release times and processing times, if the due dates
are given as deterministic, the EDD rule still minimizes Lmax but only in the
preemptive case (Pinedo, 2008). Some further extension are available but only
assuming that the due dates are deterministic and both the release times and
processing times are exponentially distributed with the same mean (Pinedo,
2008).
Further contributions to the single problem single machine scheduling and the
due dates have been proposed in Baker and Trietsch (2009) and Baker and
Trietsch (2014), addressing due dates as a decision problem and modeling
safety times as a way to mitigate the probability of missing due dates.
Among the stochastic objective functions different from the expected value,
the variance is the most common. In fact, a trade-off between mean and vari-
ance is one of the most simple and common risk measures. A joint optimization
of expectation and variance in a single machine scheduling problem has been
proposed in De et al. (1992). In the area of Resource Constrained Project
Scheduling, many authors have addressed robustness related approaches. Ex-
ampleas are Artigues et al. (2013), considering stochastic processing times for
the jobs and proposing a scenario-relaxation algorithm and heuristic or Fang
et al. (2015), considering the stochastic resource-constrained project schedul-
ing problem and proposing an algorithm exploiting a permutation-based local
search. Flow time and completion time are also common performance indica-
tors, Sarin et al. (2009) provide closed form equations of mean and variance
for a large set of scheduling problems. However, neither exact nor heuris-
tic algorithms have been proposed for the maximum lateness single machine
scheduling problem to optimize a risk-related objective function.

Different approaches address the selection and/or assessment of the robust-
ness of a scheduling solution through simulation techniques by Burdett and
Kozan (2012, 2014) also addressing specific robustness considerations in terms
of the shape of the distribution of the objective function and/or its sensitivity.

As stated before, risk measures have been largely addressed in the financial
area, with the aim to cope with extreme events, i.e., the ones linked to the
tails of a distribution. Risk measures such as the value-at-risk (VaR) are used
in portfolio management and a large amount of literature have been written
on their mathematical properties and effectiveness in protecting investment
assets.

Stochastic scheduling using risk-related measures like the VaR has been
recently addressed in the literature. Atakan et al. (2016) address a similar
problem minimizing the VaR of a tardiness-related objective function, namely
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the Total Tardiness and the Total Weighted Tardiness for a single machine.
The authors proposes a Lagrangian relaxation-based scenario decomposition
method considering random processing times and deterministic due dates. The
approach in Atakan et al. (2016) does not take into consideration release dates
and adopt a scenario based formulation to deal with stochastic variables, dif-
ferently from what the present work that explicitly considers the stochastic
distributions of processing times and release dates.

3 Problem Formulation

We consider a set jobs A, with |A| = n to be scheduled on a single machine.
Let sj be the starting time of job j ∈ A and pj the processing time. The
preemption of jobs is not allowed, i.e., a job cannot be interrupted until it
has been completely processed at time cj = sj + pj . Each job has a a due
date dj and a release time rj . The scheduling problem aims at minimising a
function of the maximum lateness. In the present analysis we further restrict
the analysis to discrete distributions for the realease dates and processing
times and discrete values for the due dates. We limit the analysis to static
list policies, assuming that all the information related to jobs to be scheduled
are available and, moreover, we allow unforced idleness, i.e., the machine can
wait for the release time of a specific job even if there are jobs waiting for
processing.

Both the release times rj and the processing times pj are independent
stochastic variables with general discrete distributions. The objective function
is a stochastic variable itself whose distribution depends on the stochastic
variables pj and rj and on the scheduling decisions.

According to the notation used in Rockafellar and Uryasev (2002), we
consider a vector of decision variables x defining the schedule and a vector of
random variables y = r1, . . . , rn, p1, . . . , pn governed by a probability measure
P on Y that is independent of x. As an example x could define the positions
of the jobs in the sequence or can be used to identify precedence relations
between the jobs. The values of x and y univocally determine the performance
indicator z = f(x, y).

For a given set of values of the decision variables in x, we consider the
resulting distribution function for z:

Ψ(x, ζ) = P (f(x, y) ≤ ζ) (1)

As defined in Artzner et al. (1999) and using the notation in Rockafellar and
Uryasev (2002), the value-at-risk α (V aRα) of the value of the performance
indicator z associated with the decision x is:

ζα(x) = min{ζ|Ψ(x, ζ) ≥ α} (2)

If the stochastic variables in y are discrete, z = f(x, y) is concentrated in
finitely many points and Ψ(x, ·) is a step function. This applies to scenario-
based models. In such cases the definition of the VaR in (2) must be rephrased
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(Rockafellar and Uryasev, 2002).

Given x, if we assume that the different possible values of zk = f(x, y) can
be ordered as zi < z2 < · · · < zN so that P (z = zk) = pk and kα is an integer
value such that:

kα∑
k=1

pk ≥ α ≥
kα−1∑
k=1

pk (3)

then zkα is the V aRα.
In the considered scheduling problem the objective function addresses the

maximum lateness, i.e., z = fLmax(x,y) where, the decision variable x models
the selected schedule and y are the stochastic variables, i.e., the processing
times p, and the relase dates r. Being a function of the stochastic variables y,
z is also a stochastic variable.

The cumulative distribution function of Lmax is defined using the following:

Fz(x, ζ) = P (Lmax ≤ ζ|x) = P (y|fLmax(x,y) ≤ ζ) (4)

Given this distribution, we will aim at minimizing the V aR introduced in
(3) to guide the solution algorithm towards a schedule that could be consid-
ered optimal from a risk-related point of view.

The legitimacy of using the distribution defined in (4) together with the
risk measures as defined in (2) needs further considerations. As stated in Rock-
afellar and Uryasev (2002), the definition of the V aR in Eq. (2) requires spe-
cific characteristics of the function f(·, ·). Since, in the considered case, f(·, ·)
provides the value of a scheduling objective function in terms of a vector of ran-
dom variables y and decision variables x, continuity and convexity properties
cannot be assured in general. However, limiting the analysis to the considered
scheduling problem, since x defines the sequence of the jobs in a single ma-
chine scheduling problem, it is independent from the values of the stochastic
variables in y. Moreover, fLmax(x,y) is continuous and non-decreasing in y,
being Lmax a regular scheduling objective function.
In addition, since all the stochastic variables have discrete distributions, also
the objective function distribution is discrete. Hence, the definition of V aR in
(3) can be used, without any additional requirement on f(·, ·).

As demonstrated in (Ma and Wong, 2010), first-order stochastic domi-
nance also implies a dominance between the respective VaRs for any α, this
will be exploited for the definition of dominance rules in a branch-and-bound
approach.

4 Solution Approach

The problem is solved by the classical branch-and-bound method. The pro-
posed method includes an appropriate branching scheme, a method for evalu-
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ating nodes and calculating upper and lower bounds, as well as the definition
of a set of dominance rules.

4.1 Branching scheme

As described in Section 3, we consider the vector of decision variables x where
xk defines which job is scheduled in position k. This implies a branching scheme
starting from the root node (level 0) where no job has been sequenced. From
this node, n branches depart, one for each job in the list that can be the next
in the sequence. If we consider a node at the k− 1 level of the branching tree,
the partial schedule provides the sequence of the first k−1 jobs while n−k+1
branches are connected to new nodes at level k, each one with a different job
to be scheduled as the next one in the sequence. At each level k there are
n!/(n − k)! nodes (Pinedo, 2008). The proposed branching scheme is clearly
simple and other schemes have been proposed in the literature, demonstrating
better performance in addressing the deterministic version of the scheduling
problem (Carlier, 1982; Grabowski et al., 1986; Liu , 2010; Chandra et al.,
2014), Nevertheless, as shown in the following paragraph, their application to
the stochastic version of the problem is not straightforward and, moreover,
dominated in terms of computational time due to the need of recomputing
the cumulative distribution function of the schedule at each node. On the
contrary, the proposed simple branching scheme has the advantage of reducing
the number of convolution operations (see Section 4.2) and, consequently, the
time needed to evaluate a single node in the tree.

4.2 Nodes evaluation

Let us consider two subsequent jobs i, j ∈ A with stochastic processing times pi
and pj modeled by their cumulative distribution functions Fi(t) = Prob(pi <=
t) and Fj(t) = Prob(pj <= t) and the associated probability density functions
fi(t) = Prob(pi = t) and fj(t) = Prob(pj = t).

The sum of the processing times of the two jobs is a stochastic variable
and its cumulative distribution function Fi+j(t) is the convolution of Fi(t) and
Fj(t) (Agrawal and Elmaghraby, 2001).

Fi+j(t) = Fi(t) ∗ Fj(t) (5)

=

∫ t

0

Fi(t− s)dFj(s)

=

∫ t

0

Fi(t− s)fj(s)ds

Provided that the execution of the two activities starts at time 0, the cumula-
tive distribution functions of the completion times of jobs i and j (ci and cj)
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can be defined as:

Fci(t) = Fi(t) (6)

Fcj (t) = Fci(t) ∗ Fj(t) = Fi+j(t) = Fi(t) ∗ Fj(t) (7)

The release time for job j can be modeled as an additional job k with pro-
cessing time rj to be executed before j. Job k has no resource request, it is
not interfering with the jobs competing for the machine but just enforcing a
temporal constraint. Hence, job j can be executed only after both job k and
i have been completed. Provided that job j is started as soon as possible, the
cdf for its start time (sj) and completion time (cj) can be calculated as:

Fsj (t) = Fci(t) · Frj (t) (8)

Fcj (t) = Fsj (t) ∗ Fj(t) (9)

Given the cdf of the completion time of j and its due date dj , the cdf of
the lateness Lj can be calculated as:

FLj (t) = Fcj (t+ dj) (10)

Provided the cdf of the lateness for all the considered jobs, the cdf of the
maximum lateness is:

FLmax(t) =
∏
j∈A

FLj (t) (11)

and, hence, all the previous described risk measures can be calculated.
Grounding on this formulation, it is possible to calculate the distribution

of the maximum lateness for those nodes where the schedule is completely
defined, i.e., the leaves of the branching tree. On the contrary, for the other
nodes, only a partial schedule is defined, containing a subset of the jobs (S ∈
A). For the already scheduled jobs, the maximum lateness cdf can be calculated
according to the equations described above. For the unscheduled jobs (A\S ∈
A), the contribution to the objective function cannot be calculated. The aim
of the following steps is to define a way to estimate an upper bound and a
lower bound for this contribution. Given a job in the set of not scheduled jobs,
j ∈ A \ S, a lower bound for its lateness can be obtained assuming it starts
immediately after the already scheduled jobs (AS) or, if more constraining,
after its release time rj (Figure 1). Starting from the cdf of the completion
time of the already scheduled jobs FcS (t) and the cdf of the release time Frj (t),
the cdf of the earliest start time and completion time for j are:

FLBsj (t) = FcS (t) · Frj (t) (12)

FLBcj (t) = Fsj (t) ∗ Fj(t) (13)

A lower bound for the cdf of the lateness Lj can be calculate accordingly:

FLBLj (t) = FLBcj (t+ dj) (14)
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s t

Frj (t)

FcS (t)

Fj(t)

Fig. 1 Scheduling scheme for the lower bound completion time of job j ∈ A \ S.

s t

Frmax (t)

FcS (t)

Fc(A\S)\j (t) Fj(t)

Fig. 2 Scheduling scheme for the upper bound completion time of job j ∈ A \ S.

while the lower bound for the maximum lateness is:

FLBLmax(t) =
∏
j∈S

FLj (t)
∏

j∈A\S
FLBLj (t) (15)

An upper bound for the lateness Lj of the not scheduled job j ∈ A \S can
be obtained assuming that it will be sequenced as the last job in the schedule.
If we consider the not yet scheduled jobs but j and ignore their release times,
we can calculate the cdf of the sum of their processing times F(A\S)\j(t) as the
convolution of all the cdfs Fk(t) with k ∈ A \ S and k 6= j. Since the sequence
of the jobs in A\S is undefined, the contribution of the release times cannot be
calculated. However, a worst case for a job j can be defined, according to the
scheduling scheme in Figure 2, considering the distribution of the maximum
release time among the jobs to schedule:

Frmax(t) =
∏

k∈A\S
Frk(t) (16)

and then assuming that the batch of jobs to be scheduled different from j are
executed after this release time. Hence, the upper bound cdf of the completion
time for all the jobs but j is:

FUBcA\j
(t) = (FcS (t) · Frmax(t)) ∗ F(A\S)\j(t) (17)

While the upper bound cdfs of the completion time of job j is:

FUBcj (t) = FUBcA\j
(t) ∗ Fj(t) (18)

An upper bound for the cdf of the lateness Lj can be calculate as:

FUBLj (t) = FUBcj (t+ dj) (19)
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Fig. 3 Calculation of lower and upper bounds for the VaR at each node.

and the upper bound for the maximum lateness is:

FUBLmax(t) =
∏
i∈S

FLi(t) ·
∏

j∈A\S
FUBLj (t) (20)

4.3 Dominance rules

The aim of the proposed approach is to minimise maximum lateness, a regular
performance measure. In scheduling, such performance measures are functions
non-decreasing in the completion times of the jobs ci and, consequently, also
non-decreasing in their processing times pi (Pinedo, 2008, chap.2).

At each node in the branching tree, the lower bound cdf represents a sched-
ule where unscheduled jobs are executed immediately after the already sched-
uled ones. For all the successors of this node, the effective starting time of an
unscheduled job j would never be earlier than this, thus, the completion time
of an unscheduled job can only increase or remain the same compared to its
parent nodes.

Due to the regularity of the considered objective function, for a given sam-
pling of the processing times and release dates, the cdf of a node is greater or
equal to the cdf of any successor nodes for any value of the objective function.
This is also the definition for the first-order stochastic dominance and, conse-
quently, the lower bound cdf effectively provides a lower bound for the VaR of
the maximum lateness respect to all the successor nodes. A dual reasoning can
be done considering the upper bound cdfs, leading to the fact that the upper
bound cdf in a node is stochastically dominated by all the upper bound cdfs
of its successor nodes and the cdf in a leaf of the tree stochastically dominates
all the upper bound cdfs of its parent nodes.

In the end, as shown in Figure 3 the cdf of a leaf of the tree (solid) always
lies in the region bounded by the lower bound (dotted) and upper bound
(dashed) cdfs of any of its parent nodes. For these reasons the lower and
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upper bound cdfs can be used to calculate the bounds of the VaR, providing
a comparison criteria among the nodes of the search tree.

4.4 Application example

A description of the branch-and-bound approach is provided through an ex-
ample. Let us consider a set of four activities to be scheduled as described
in Table 1. All the processing time are modeled through discrete triangular
distributions while the release dates are modeled through discrete uniform dis-
tributions. The due dates are deterministic. The aim of the approach is to find
the schedule that minimizes the VaRα of the maximum lateness Lmax with
α = 0.95. As illustrated in Figure 4, the algorithm starts from the root node
r (with no scheduled job) with four different branches, associated to the each
of the four different jobs to be scheduled, i.e., {1, 2, 3, 4}. Four different nodes,
{a, b, c, d}, in the branching tree are created and evaluated. The evaluation of
a node follows the approach described in Section 4.2 to provide a lower and
upper bound cumulative distributions for the given schedule. As illustrated in
Section 4.3, these distributions also provide a lower and upper bound for the
VaRα as shown in Figure 4 where, for each node, a graph of the two bound
distributions defines the region where the distributions of the solutions de-
parting from it will lay and, consequently also the bounds for the VaR0.95.
Given the evaluation of the nodes in the first level of the branching tree, the
branch-and-bound algorithm chooses the most promising node (node c) and
proceed to the evaluation of the branches departing from it, i.e., the schedules
having job 3 as the first in the sequence and then one of the three remaining
jobs as the second. Notice that, after the evaluation of the nodes in the first
level of the tree, some branches can be pruned. Specifically the lower bounds
for the nodes b and d ( VaRLBb0.95 = 902 and VaRLBd0.95 = 965) are higher than
the upper bound of the best node selected (VaRUBc0.95 = 822), hence, both node
b and d are pruned (single tick on the arc in Figure 4). On the contrary, the
lower bound obtained in node a is lower than the upper bound in node c and,
consequently, the branches departing from node a remain in the list of the ones
to be possibly explored. The same is done for the nodes in the second level of
the tree, e, f and g resulting in node e being the most promising option to be
further explored (VaRLBe0.95 = 105 and VaRUBe0.95 = 409). The graph associated to
node e in Figure 4 shows the new bounding distributions as well as the ones
of the parent node c. As expected, as the schedule is defined, the accuracy of
the estimation increases and the distance between the bounding distributions
decreases. Also in this case, the new bounds allow the pruning of some nodes.
The lower bound of node a (VaRLBa0.95 = 492) is now higher than VaRUBe0.95 caus-
ing it to be pruned (double tick on the arc in Figure 4). Also the lower bounds
of nodes f and g are higher than VaRUBe0.95 and both f and g are pruned as
well. The algorithm proceeds following the branches departing from the only
remaining node e considering the scheduling of alternatively job 2 or 4 as the
third one in the sequence. Notice that, once the third job in the sequence
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Table 1 Exemplary scheduling instance.

Job Process Time Release Date Due Date
0 ∼ Triangular(63,108,118) ∼ Uniform(414,514) 513
1 ∼ Triangular(105,161,173) ∼ Uniform(780,870) 827
2 ∼ Triangular(50,90,99) ∼ Uniform(120,224) 201
3 ∼ Triangular(105,160,171) ∼ Uniform(818,938) 920

r

a
Schedule = 0,−,−,−
LB = 492;UB = 1116;

b
Schedule = 1,−,−,−
LB = 902;UB = 1152;

c

Schedule = 2,−,−,−
LB = 102;UB = 822;

d
Schedule = 3,−,−,−
LB = 965;UB = 1216;

e

Schedule = 2, 0,−,−
LB = 105;UB = 409;

f
Schedule = 2, 1,−,−
LB = 608;UB = 766;

g
Schedule = 2, 3,−,−
LB = 671;UB = 819;

h
Schedule = 2, 0, 1, 3
LB = 251;UB = 251;

i
Schedule = 2, 0, 3, 1
LB = 409;UB = 409;
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Fig. 4 Exemplary application of the branch-and-bound approach.

is decided, the whole sequence is also determined. Hence, nodes h and i are
leaves of the tree. The branch-and-bound approach evaluates them and selects
node h as the optimal solution with schedule {3, 1, 2, 4} and VaRh0.95 = 251.
The application of the approaches results in the evaluation of only 9 nodes
in the tree (2 of them are complete schedules) while 5 are pruned during the
exploration of the tree.
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5 Testing

The branch-and-bound algorithm has been completely coded in C++ using
the BoB++ library (Bob++, 2012; Djerrah et al., 2006) and the Boost library
(Boost, 2013). The computational experiments have been executed on 16 paral-
lel threads on a workstation equipped with an Intel Eight-Core Xeon Processor
E5-2650v2 running at 2.6 GHz and 64 GB of RAM.

To test the proposed algorithm, two aspects have been taken into consider-
ation. The first one concerns the performance of the algorithm in terms of time
needed to solve a given instance to optimality. In addition, it is also relevant
to evaluate the performance of the algorithm compared to other existing ap-
proaches. Usually, this comparison is done considering two algorithms aiming
at the same objective function but we adopted a different approach because
the distribution of the objective function introduces a significant complexity in
the problem. Even though the new approach may require more solution time,
it has some benefits that can be demonstrated in comparison with a more
simple method. We use as a comparison the solution provided by the Earliest
Due Date (EDD) rule, a simple rule that is non-optimal but can be applied in
a really fast way.

To assess the performance of the algorithm on a wide set of scheduling
problems, the test instances have been generated by varying the number of jobs
and their characteristics, i.e., processing times, release dates and due dates.
The processing times of the jobs follow a discrete triangular distribution and
have been generated defining the mean value, the coefficient of variation and
the skewness. The release times follow a discrete uniform distribution and have
been generated defining the mean value and width (or half-width). The due
dates are deterministic and have been generated considering their strictness.

To generate the test instances the following procedure has been used:

1. define the number of jobs (10 and 20).
2. for each job j, the average process time p̄i is sampled from a discrete

uniform distribution between 50 and 150 for 50% of the instances and
between 25 and 75 for the remaining ones;

3. for each job j, the coefficient of variation of the processing time is sampled
for 50% of the instances from a discrete uniform distribution between 0.4
and 0.6 and from a discrete uniform distribution between 1.4 and 1.6 for
the remaining ones;

4. for each job j, the skewness of the processing time is randomly assigned
the value −0.5, 0 or 0.5;

5. for each job j, the average release time r̄j is sampled from a discrete uniform
distribution between 1 and 10 times the average processing time;

6. for each job j, the half-width of the release time is sampled for 50% of
the instances from a discrete uniform distribution between 40 and 60 and
from a discrete uniform distribution between 120 and 160 for the remaining
ones;

7. for each job j, the deterministic value of the due date dj is sampled for
50% of the instances from a discrete uniform distribution between 0 and
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Table 2 Results.

Number of jobs Risk level Solution Time [s] Visited Nodes % Visited Nodes

10

1%

Mean 0.4388 1539 0.0247
Min 0.0250 258 0.0041
Max 1.8830 3377 0.0542
StDev 0.3164 612 0.0094

5%

Mean 0.4485 1557 0.0250
Min 0.0300 201 0.0032
Max 1.9850 4196 0.0669
StDev 0.3334 612 0.0098

25%

Mean 0.4619 1602 0.0257
Min 0.0250 254 0.0041
Max 2.2210 4239 0.0680
StDev 0.3442 654 0.0105

20

1%

Mean 70.9 76203 0.000*
Min 3.0 10326 0.000*
Max 3489.5 5033503 0.000*
StDev 171.9 236625 0.000*

5%

Mean 75.3 80519 0.000*
Min 5.1 16521 0.000*
Max 3474.2 5009033 0.000*
StDev 169.7 230398 0.000*

25%

Mean 80.2 84080 0.000*
Min 7.5 20192 0.000*
Max 3246.5 4709357 0.000*
StDev 161.0 210799 0.000*

Total

Mean 38.00 40958 0.0125
Min 0.03 201 0.000*
Max 3489.48 5033503 0.0680
StDev 124.30 164720 0.0144

50 and from a discrete uniform distribution between 150 and 200 for the
remaining ones;

8. the generated instances are used to run the optimization algorithm with
different risk levels α (1%, 5% and 25%).

In total, 620 instances have been generated for the different number of jobs
and solved considering different risk levels, for a total of 3840 experiments.

5.1 Results

The results in Table 2 show the performance of the algorithm in terms of the
time (in seconds) needed to find the optimal solution (Solution time). The table
also reports the number and fraction of the nodes of the complete branching
tree visited during the search. Both classes of results are detailed with respect
to the risk measure used and the risk level considered, moreover, for each com-
bination, the minimum, maximum, average values and the standard deviation
are reported.

Further on, Table 2 shows that, considering the whole set of instances,
the algorithm was able to find the optimal solution in an average time of 38
seconds, with a variability ranging from a minimum value of 0.03 seconds to
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a maximum value of 3489.48 seconds. Moreover, the average number of nodes
visited during the search is about 0.013% of the total number of nodes in the
branching tree (notice that the total number of nodes is equal to

∑n−1
k=1

n!
(n−k)! ).

Considering the results in relation to the different numbers of jobs in the test
instances, we see that, in case of 10 jobs, the algorithm is able to find the
optimal solution in an average time of 0.45 seconds, ranging from a minimum
of 0.0250 to a maximum of 2.2210 seconds. To find the optimal schedule it
was necessary to analyse an average of 1566 nodes of the whole branching
tree containing 6235300, thus needing the analysis of 0.0251% of them. When
considering the 20-job instances, the solution time predictably increases. On
average 75.46 seconds are needed to solve an instance to optimality, ranging
from a minimum of 3.02 to a maximum of 3489.48 seconds. The branch-and-
bound algorithm explores on average 80267 nodes out of 4.18041·1017, i.e., less
than 10−10% considered as 0.000 in Table 2. The number of nodes analysed
to solve the 20-job instances ranges from a minimum of 10326 to a maximum
of 5 033 503.

In addition, although the results seem to show a slight increase of the solu-
tion time as the considered risk level increases, there is no statistical evidence
to state that the solution time is affected by the different risk levels.

Clearly, the solution time strictly depends on the number of nodes evalu-
ated during the search. This is confirmed in Figure 5, showing a linear correla-
tion between the two values. The deviation from this linear correlation can be
easily explained considering that, given the same number of evaluated nodes,
the time needed to evaluate a given node depends on the specific scheduling
problem. In particular, the amplitude of the support of the distributions in-
fluences the time needed to perform the convolution, since the combinations
of values to be computed is greater. Furthermore, the time needed to perform
the convolution calculations also depends on the support of the distribution
and, hence, on the length of the duration of the activities and, in fact, looking
at the solution time for the different class of instances (with shorter and longer
average duration of the jobs), it is clear that if the support of the distribution
is larger, then the algorithm could require more to find the optimal solution.
This hypothesis is supported in Figure 6, reporting the average solution time
spent in each node in relation to the number of jobs to schedule. The graph
clearly shows that the average solution time increases when the number of jobs
is greater and proportionally to the average duration of the jobs. The results
confirm also that convolution is the most time consuming component of the
algorithm: handling schedules both of more and longer jobs requires calcula-
tions with cdfs having larger support. Finally, this is confirmed in Figure 7
showing that, as the average duration of the jobs decreases, the solution time
is significantly smaller, thus allowing the proposed algorithm to be easily used
on even larger instances.

A different set of considerations have been provided to compare the so-
lution obtained with the branch-and-bound algorithm against a schedule ob-
tained with the Earliest Due Date (EDD) rule. First the EDD rule is used and
the associated VaR calculated. This value is compared with the VaR of the
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Fig. 5 Scatter plot of the solution time respect to the number of visited nodes.

Fig. 6 Interval plot of the solution time [s] spent in each of the evaluated nodes.

optimal schedule coming from the branch-and-bound approach. The results
are summarised in Table 3.

If we compare them in terms of the VaR, the proposed approach performs
on average 2% better respect to a simple rule like the EDD, i.e., the schedule
obtained with the EDD has a higher VaR for a given risk level. As an exam-
ple, let us image to use the proposed approach to define an optimal schedule

Sopt minimizing the VaR5% of the maximum lateness and that VaR
Sopt
5% = 30
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Fig. 7 Interval plot of the solution time [s] in relation to the dimension of the support of
the distribution of the processing times.

Table 3 % difference in comparison with EDD rule.

Average duration Number of jobs Risk level Mean Min Max StDev

50

10
1% 3.39 0.000 100.00 8.41
5% 5.18 0.000 300.00 22.56
25% 5.66 0.000 228.57 18.84

20
1% 2.15 0.000 24.03 24.03
5% 2.28 0.000 26.09 26.09
25% 2.50 0.000 30.85 30.85

100

10
1% 0.71 0.000 16.02 16.02
5% 0.72 0.000 16.53 16.53
25% 0.71 0.000 17.59 17.59

20
1% 0.60 0.000 9.48 9.48
5% 0.61 0.000 9.84 9.84
25% 0.59 0.000 10.61 10.60

Total 2.09 0.000 300.00 9.27

days. This means that Sopt assures that the probability of having a maximum
lateness grater that 30 days is 5% and, since it is optimal, any other schedule
would have a higher value of the VaR5%. In the 40.31% of the experiments,
the branch-and-bound approach and the EDD rule provide the same value of
the objective function (although not always the same schedule).

For the remaining 59.69% of the experiments, the EDD rule provides a

different schedule SEDD with VaRSEDD5% ≥ VaR
Sopt
5% and, in the worst case,

reaches a maximum value of 300%. If, as an example, VaR
Sopt
5% = 30 days and

the % difference vs EDD is equal to 10% then, using SEDD, the VaRSEDD5% = 33
days, thus, the probability of having a maximum lateness greater than 30 days
is more than 5%.
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Metal forming tools are subject to high stress, as they must resist both high 
temperatures and high pressure. Our special carbide grades are very wear-
resistant and tough at the same time, giving them a long tool life.
When producing customized metal forming tools such as extrusion dies and 
punches, we attach great importance to an optimal combination of geometry 
and suitable materials.

If you are interested or have 
any questions, please get 
in touch with CERATIZIT 
Italia, Alserio.
Alternatively, visit www.
ceratizit.com/contact to find 
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Fig. 8 Sintered carbide tools (courtesy of Ceratizit).

Notice that the difference is higher if the duration and number of jobs
is smaller. Although a difference of 2% on average could be considered too
small to justify the proposed approach, it must be considered that stochastic
approaches based on risk measures exists to protect the addressed performance
in the worst cases, rather than addressing the average ones. As shown in Table
3 the difference in the worst case reaches the value of 300%. These extreme
cases alone provide the main justification to the adoption of the proposed
scheduling approach.

6 Industrial Application

The viability of the proposed scheduling approach has also been tested in a real
industrial environment producing tailor-made sintered carbide tools widely
used in manufacturing today (Figure 8). Carbides are composite materials
consisting of a hard material and a comparatively soft binder metal. They are
used to work with hard materials (e.g., titanium) or to achieve high cutting
speed. They are also applied to produce traditional tools or to act as tools
in other processes (e.g., extrusion, drawing, etc.). A significant part of the
production of sintered carbide tools is devoted to tailor-made tools produced
in small lots or even as a single unit.

The production of carbide tools is a powder-metallurgical process whose
principal ingredient is a mixture of powders (tungsten carbide, cobalt, nickel,
iron). As shown in Figure 9, in the first step of the production process, the
powder is pressed to obtain a near net shape sample. Then, the obtained parts
are machined according to the desired final condition and sintered applying
high temperature (1300− 1500◦C) and sometimes also significant pressure to



20

have a homogeneous and dense carbide with a high level of hardness. Dur-
ing the sintering process the volume of the parts is significantly reduced (up
to 50%). To obtain the desired final shape and the required finishing they
must undergo a grinding process. Finally, they are assembled with the other
components to form the tool.

In the industrial application, we take into consideration the production of
tailor-made tools, produced in a specific shop area in the plant and, in particu-
lar, the grinding phase. The grinding process requires a setup of the machines
to produce the specific tailor-made tool. Such tools are often produced for the
first time, hence, the process needs to be adjusted to achieve the final charac-
teristics of the products. If the analysis is restricted to a specific class of tools
(drawing dies), the grinding area works on a single lot at a time (Figure 9).

To formalise the industrial application we deal with the scheduling of jobs
at the grinding area as illustrated in the right column in Figure 9. The job to
schedule represents a lot of a tailor-made tool to be produced. The lot arrives
from the previous production step, i.e., the sintering phase. In order to model
the possible deviations of the arrival of the lots at the grinding shop, we con-
sider stochastic release times. As described before, the grinding shop processes
one lot at time, hence, we can model its behaviour as a single machine. More-
over, the grinding process entails a setup of the machines and is often adjusted
to achieve the desired specifications. For these reasons we model the process-
ing time of the lots with a stochastic distribution. The finished lots must be
delivered to the following production step according to the production plan.
Aiming at reducing the propagation of local schedule disruption throughout
the plant, we assign the lots a deterministic due date according to the produc-
tion plan and aim at minimizing the VaR of the maximum lateness.

A set of 3 test instances have been defined on the basis of historical data
from the plant. The analysis of the data showed that the different jobs at the
grinding shop can be classified into 8 classes according to the characteristics of
the tool to produce. For each of the classes, the difference between the standard
duration and the actual duration of the processing time has been analysed to
define the distribution for the different classes of products. Finally, a triangular
distribution has been fitted on these data. The distributions of the release dates
have been defined calculating the range of variability of the actual release dates
compared to the planned ones, for each class of products, in the last six months
of production. Each instance has been constructed considering a set of 30 jobs
and using the real production plan to provide the expected release date, the
due date and the class of the jobs. The latter is used to sample the distribution
of the processing time. Each of the considered instances provides the set of
jobs that are going to be executed in about 2 weeks.

The results are reported in Table 4 demonstrating that the algorithm is
able to provide an estimation of the VaR that is more accurate than the one
provided by the EDD rule of 6.63% on average, ranging from a minimum of
1.79% to a maximum of 11.69%. Moreover, it was able to find the optimal
solution analysing on average 21000 nodes out of a total of 4.55779 ·1032. Also
in this case the fraction of evaluated nodes is close to 0. Notice that, even if the
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Fig. 9 Formalization of the industrial case and of the associated scheduling problem.

Table 4 Results of the application to the industrial case.

Number Risk Visited % Visited % difference
of jobs level Nodes Nodes vs EDD

30

1%

Mean 21568 0.000* 6.60
Min 10213 0.000* 1.79
Max 34399 0.000* 11.25
StDev 12160 0.000* 4.73

5%

Mean 21591 0.000* 6.64
Min 9876 0.000* 2.27
Max 35523 0.000* 11.66
StDev 12966 0.000* 4.60

25%

Mean 20529 0.000* 6.63
Min 10629 0.000* 1.79
Max 33072 0.000* 11.69
StDev 11453 0.000* 4.12

number of jobs to schedule was 30, the solution time was less than 1 second
for all the instances, due to the fact that, since the average duration of the
jobs is about 5 hours, the support of the associated distribution is significantly
smaller than the one used in the previous experiment (on average 100).
Hence, since the time needed for the convolution operations is smaller, the
algorithm is able to schedule 30 jobs in a very short time. This provides a way
of using the algorithm also for large instances, at the price of reducing the
resolution used to estimate the processing times and the release dates and,
consequently, reducing the accuracy of the cdf’s estimation.
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7 Conclusions

A branch-and-bound approach for stochastic scheduling to minimize a stochas-
tic function of the maximum lateness has been described and demonstrated
in this paper. The proposed approach is targeted to a single machine schedul-
ing problem with deterministic discrete due dates and generally distributed
discrete processing times and release times.

Since the aim is to guarantee a robust schedule capable of providing pro-
tection against the occurrence of low probability but extremely unfavourable
events, a measure of risk is used in the stochastic objective function; in par-
ticular the value-at-risk has been considered.

The performance of the proposed branch-and-bound approach is reason-
ably fast in terms of the time needed to find the optimal solution. Clearly
the dimension of the solved instances (up to 20 jobs) is not large and, as the
number of jobs increases, the solution time will increase as well, certainly more
than linearly. However, the parallel capabilities of the implementation allow
to easily exploit the benefits of new multi core architectures or the execution
on high performance calculation environments (16 parallel threads on an Intel
Eight-Core Xeon Processor E5-2650v2).

Notice that the completion time, and hence also the lateness, is a sum of
stochastic variables and, due to the central limit theorem, as the number of
jobs increases, the distribution of the sum of their processing times converges
to a normal distribution and the proposed exact calculation using multiple
convolution steps can be approximated with the normal distribution hypothe-
ses. Due to this specific property, the proposed exact solution approach finds
its most favourable application with a ”small” number of activities, i.e., not
much greater than 20.

Moreover, the solution time also depends on the dimension of the support
of the considered distributions and, consequently, on the number of points
where it assumes a value. For this reason, using a rough estimation of the
distributions with a small number of points (shifts instead of hours) could be
used to deal with a larger number of jobs.

Clearly the adoption of more powerful but complex approaches must find
a justification in the potentially achievable benefits. To this aim, an average
benefit of about 2% with respect to the adoption of a simple dispatching rule
like the EDD could be considered low. However, as it always happens when
assessing the benefits of stochastic approaches, their primary goal is to pro-
tect the schedule in the worst cases rather than in the average ones. More
specifically, a risk-based stochastic approach mainly focuses on the capability
of distinguishing the shape of different distributions, thus being able to assess
the effects of events unlikely to occur but with a high impact on the targeted
performance. From this perspective, although an average difference of 2% re-
spect to the EDD rule seems not so relevant, a maximum difference of about
300% really matters.

As typical in lateness-related objective functions, the impact of a greater
lateness is strictly related to the type of contract between the customer and
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the supplier. Depending on the kind of penalties agreed, even a small deviation
from a negotiated maximum lateness could have a high impact.

In conclusion, prime candidates for this novel method are scheduling prob-
lems with relatively small number of jobs whose execution can be extremely
unfavourably affected by stochastic, low probability events. Further research
will address the application to different scheduling problems as well as its
exploitation in the negotiation of due dates.
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