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ORBIT RAISING AND DE-ORBIT FOR COPLANAR SATELLITE 
CONSTELLATIONS WITH LOW-THRUST PROPULSION 

Simeng Huang,* Camilla Colombo,† and Franco Bernelli Zazzera‡ 

This paper deals with the planar transfer problem (i.e. orbit raising and de-

orbiting phases) for low Earth orbit coplanar satellites constellation. The objec-

tives are to minimize the total time of transfer and to maximize the miss distance 

during these phases so as to minimize the collision hazard. A Blended Error-

Correction (BEC) steering law, consisting of tangential thrust and inertial thrust 

based on the offset in mean orbital parameters, is developed to design the trans-

fer trajectory for a single satellite. The semi-analytical technique is used to eval-

uate the variation in orbital parameters over one orbit revolution to reduce the 

computation load. The numerical results show that the BEC steering law is able 

to identify near time-optimal solutions and the semi-analytical results have good 

accuracy. For multiple satellites transfer, the orbit transfer trajectory designed 

for a single satellite is used as a baseline for a global multi-satellite analysis of 

the miss distance among pair satellites during the orbit raising and de-orbiting 

phases. Considering limits on the transfer starting time for de-orbit mission, 

multi-objective optimization is used to find out the optimal transfer starting time 

for each satellite. 

INTRODUCTION 

In the recent past, several companies, including OneWeb, SpaceX and Samsung, disclosed 

their plan to build up large constellations consisting of hundreds to thousands of satellites in low 

Earth orbit (LEO). The purpose is to provide high-speed and global internet services, even to the 

most rural areas1. Latest news includes details about the setting up of assembly and test facilities 

for some of them, demonstrating that the large constellation is no more a notional proposal but 

will be a realistic space mission asset. With such a large number of satellites added to the LEO 

environment, a higher collision hazard will be posed to the operating objects in the already con-

gested regime2. Therefore, the already operational demanding phases of orbit raising, from park-

ing orbits up to the operational orbit, and de-orbit to re-entry altitudes are also challenged by a 

higher risk of collision. The electric low-thrust propulsion, which can provide continuous and 

high exhaust velocity so as to reduce the on-board fuel mass, will be used to execute the orbit 

transfer3. 
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This paper deals with the orbit raising and de-orbiting phases, considering the requirements 

and constraints arising from the presence of multiple satellites. As a preliminary study, this paper 

focuses on planar transfer for coplanar satellites. The objectives of the mission design in this pa-

per are to minimize the total time of transfer and to maximize the miss distance so as to lower the 

collision hazard as much as possible. The problem of orbit transfer for multiple satellites is con-

ducted via two layers: the first layer is to design the time-optimal transfer trajectory for a single 

satellite; the second layer is to propose the transfer strategy for multiple satellites and to find out 

the optimal transfer starting time for each satellite by using multi-objective optimization. 

Direct method has been widely used to solve the trajectory optimization problem with low-

thrust propulsion. The idea is to transform the optimization problem into NonLinear Program-

ming (NPL) problem by properly discretizing time. However, the number of design variables, 

which depends on the number of time nodes, is usually huge. Considering multiple satellites in 

this study, the direct method is not computationally efficient. Ruggiero et al. implemented a sim-

ple error-correction method for closed-loop guidance4. The idea is similar to feedback control and 

can also be used for designing steering law. Gao employed three simple steering laws, tangential 

steering, inertial steering and piecewise constant yaw steering over different orbital arcs in every 

revolution to efficiently change the semi-major axis, eccentricity and inclination, respectively5. 

Kluever et al. computed the time history of optimal thrust direction by blending the extremal 

feedback control laws, in this way he succeeded in changing the semi-major axis, eccentricity and 

inclination simultaneously6. To cope with the planar transfer problem for multiple satellites, this 

paper takes advantages of the References 4, 5, and 6 and develops a Blended Error-Correction 

(BEC) steering law, which is a blend of tangential thrust and inertial thrust based on the offset in 

mean orbital parameters. 

Due to the low ratio of thrust-to-weight, the travel time might be up to several months and the 

transfer trajectory usually consists in hundreds to thousands of revolutions. The integration of 

such a long-duration trajectory is time-consuming. Therefore, semi-analytical technique is used in 

this paper to reduce the computation load. 

The paper is organized as follows. Firstly, the dynamics model is presented. Then, the blended 

error-correction steering law is demonstrated after a brief introduction of the tangential thrust and 

the inertial thrust model; a numerical comparison is conducted to verify the feasibility of the pro-

posed steering law. Next, two sets of semi-analytical solutions of orbital parameters (semi-major 

axis, eccentricity and argument of perigee) for both missions are derived; a numerical comparison 

is conducted to show the accuracy of these semi-analytical solutions. In the last section, the anal-

ysis for miss distance is firstly carried out, base on which, the transfer strategy for a given test 

case is proposed; considering the limits on transfer starting time for de-orbit mission, the tech-

nique of multi-objective optimization is used to find out the optimal transfer starting time for each 

satellite. 

DYNAMICS MODEL 

The scope of the present work is planar transfers. So the thrust acceleration vector lies within 

the orbital plane and the orbital parameters to be discussed are semi-major axis, eccentricity, ar-

gument of perigee and (true, eccentric and mean) anomaly. 

The derivatives of orbital parameters given by Gauss’ equations7 in terms of thrust accelera-

tion are 
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where, ur and uθ are the radial and transversal components of the thrust acceleration vector re-

spectively, a is the semi-major axis, e is the eccentricity, ω is the argument of perigee, E is the 

eccentric anomaly, θ is the true anomaly, r = a(1 – e cosE) is the orbit radius, p = a(1 – e2) is the 

semi-latus rectum, h = (μp)1/2 is the angular momentum with μ being the Earth’s gravitational 

constant, n = (μ/a3)1/2 is the mean motion. Because the thrust acceleration is much smaller (usual-

ly ≤ 10-6 km/s2) than the gravitational acceleration (> 10-4 km/s2), the derivative of the eccentric 

anomaly can be approximated as 
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The relation between true anomaly and eccentric anomaly is given by8 
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Then dividing Eqs. (1) – (3) by Eq. (5) and substituting Eq. (6), after some manipulations, the 

derivatives of orbital parameters with respect to eccentric anomaly are derived: 
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Eqs. (7) – (9) will be integrated to evaluate the variations of orbital parameters over one revo-

lution with the use of semi-analytic techniques, previous to which, the steering law should firstly 

be defined. 

STEERING LAW 

For low-thrust propulsion, the magnitude of thrust force is fixed by the thruster; only the thrust 

direction is controllable. The in-plane thrust direction is described by the pitch angle α, defined in 

this paper as the angle measured counterclockwise from the orbit radius direction to the thrust 

direction, shown in Figure 1. 
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Figure 1 Definition of the pitch angle. 

The radial and transversal components of the thrust acceleration vector are given by 

 cosru u = , sinu u =  (10) 

where u is the magnitude of the thrust acceleration vector, given by9 
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with η being the efficiency, P being the power, g0 being the Earth’s gravitational acceleration at 

sea-level, Isp being the specific impulse, and m being the spacecraft mass. The loss of spacecraft 

mass is governed by9 
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One objective of this paper is to minimize the total time of transfer for multiple satellites. 

Therefore for a single satellite, the transfer trajectory needs to be designed to be time-optimal. 

Two steering laws, tangential thrust and inertial thrust, are used and blended to simultaneously 

change semi-major axis and eccentricity. Apart from the advantage of time efficiency, these two 

steering laws also benefit the integration for the single-average technique, because the derivatives 

of the orbital parameters by these two steering laws can be expressed in a simple fashion. 

Tangential Thrust 

The tangential thrust is the most efficient steering law to change the semi-major axis, an in-

stantaneously optimal solution is derived by setting ∂(da/dE)/∂α = 0. The thrust vector is always 

aligned with the velocity vector. If the pitch angle is set to be equal to the flight path angle γ (the 

angle between radius vector and velocity vector), i.e., α = γ, then the thrust direction is along the 

velocity direction and the semi-major axis will be instantaneously increased. If the pitch angle is 

set as α = γ + π, then the thrust direction is opposite to the velocity direction and the semi-major 

axis will be instantaneously decreased.  

According to the relation between flight path angle and eccentric anomaly, which is 
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ur and uθ are given by 
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where the sign + and – represent that the semi-major axis is to be increased and decreased respec-

tively. 

Substituting Eq. (14) into Eqs. (7) – (9), the derivatives of the orbital parameters with respect 

to the eccentric anomaly by using tangential thrust are derived: 
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Inertial Thrust 

The inertial thrust is a near optimal steering law to change the eccentricity5,10. The thrust vec-

tor is always perpendicular to the periapsis. If the pitch angle is set to α = π/2 − θ, then the eccen-

tricity will be increased. If the pitch angle is set to α = 3π/2 – θ, then the eccentricity will be de-

creased. 

According to Eq. (6), which is the relation between true anomaly and eccentric anomaly, ur 

and uθ are given by8 
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where the sign + and – represent that the eccentricity is to be increased and decreased respective-

ly. 

Substituting Eq. (14) into Eqs. (7) – (9), the derivatives of orbital parameters with respect to 

eccentric anomaly by inertial thrust are derived: 
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Blended Error-Correction (BEC) Steering Law 

The final thrust acceleration is obtained by blending the tangential and inertial thrust based on 

the offset in the orbital parameters, expressed as follows: 

 t t i ic c= +u u u   (22) 

where, ut and ui are the tangential and inertial thrust acceleration vector respectively, ct and ci are 

the coefficients for the tangential and inertial thrust, respectively. 

The error in the orbital parameter is defined as the ratio between the error of the instantaneous 

mean orbital parameter with respect to the target value and the difference between the initial val-

ue and the target value4. The errors in semi-major axis and eccentricity are given by 
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where, af and ef are the desired target values of semi-major axis and eccentricity, whereas a0 and 

e0 are the initial values, the symbol |▫| represents the absolute value of the generic variable ▫. 

As abovementioned, the orbital parameters which are mostly changed by tangential and iner-

tial thrust are the semi-major axis and the eccentricity respectively. Therefore, ct and ci are set to 

be proportional to ka and ke, respectively. Noticing that the magnitudes of ut and ui are u, ct and ci 

must be normalized. After using the cosine law, ct and ci are given by 

 
2 2 2 cos ,

a
t

a e a e t i

k
c

k k k k
=

+ + u u

, 
2 2 2 cos ,

e
i

a e a e t i

k
c

k k k k
=

+ + u u

  (24) 

where ,t iu u  represents the angle between ut and ui, and cos ,t iu u  is given by 
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with sign (▫) being the sign of the generic variable ▫. 

With the use of the BEC steering law, the derivatives of the orbital parameters with respect to 

the eccentric anomaly are given in the following form: 
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where, x = [a, e, ω]T, (+ dx/dE)t and (+ dx/dE)i are given by Eqs. (15) – (17) and Eqs. (19) – (21) 

respectively with the sign + representing that the signs of the equations are positive. 

Numerical Results 

To verify the feasibility of the devised models, a comparison is conducted between the trajec-

tories obtained by the BEC and the optimal steering law for a de-orbit mission. Here, the optimal 

steering law 
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is derived by setting ∂a(1 – e)/∂E = 0 and ∂2a(1 – e)/∂E2 ≥ 0 such that the perigee can be lowered 

fastest. The reason why not using this optimal steering law for de-orbit mission is because, for 

this complicated form it is difficult to obtain the semi-analytic solutions; this will be attempted in 

a future extension of this work.  

Table 1 lists the characteristics of the spacecraft considered. The data is from PARASOL, a 

small LEO satellite11. Table 2 lists the initial and the stopping conditions for the test case of de-

orbit mission, where hf = a(1 – e) – RE is the target re-entry altitude of the perigee. Note that the 

initial eccentricity is set to be 10-4 instead of 0 to accommodate with the singularity in the deriva-

tive of argument of perigee in Eq. (3). 

Table 1 Characteristics of the spacecraft 

m0 (kg) Thruster η (%) P (W) Isp (s) 

120 Stationary Plasma Thruster (SPT) 39.23 150 1500 

Table 2 Parameters for the de-orbit mission 

Initial condition Stopping condition 

a0 (km) e0 ω0 (deg) E0 (deg) hf (km) 

1200 + RE 10-4 0 0 300 

 

The target values in Eq. (23) is set to af  = (300 + RE) and ef = 1, respectively. Figure 2 to Fig-

ure 4 present the comparison between the optimal and the BEC steering law in terms of perigee 

altitude, semi-major axis and eccentricity. The travel time of the optimal and BEC method are 

73.52 days and 76.63 days respectively. The error of the travel time, defined by the ratio of the 

difference between the travel time obtained by the two steering laws and the travel time obtained 

by the optimal steering law, is relatively small, equal to 4.29%. This is enough to demonstrate 

that the BEC method is near time-optimal. From the comparison of semi-major axis and eccen-

tricity, it can be seen that the time history of the perigee altitude by the BEC method is very close 

to the optimal method even if there are obvious differences in semi-major axis and eccentricity. 
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Figure 2 Comparison in the perigee altitude. 

 

Figure 3 Comparison in the semi-major axis. 

 

Figure 4 Comparison in the eccentricity. 
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SEMI-ANALYTICAL TECHNIQUE 

The magnitude of the low-thrust acceleration is typically on the order of 10-4g or less12. In a 

single orbit revolution, the variation in a, e and ω due to such a small force is negligible and it is 

enough to assume a, e and ω to be constant over one orbit revolution. Then the transfer trajectory 

is obtained by updating the orbital parameters after every revolution until the stopping condition 

is reached. The integration problem is transformed into evaluating the variations of orbital param-

eters over one revolution: 
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Note that the lower and upper limit of the integral should be the entrance and exit eccentric 

anomaly in eclipse. However as a preliminary study, the Earth’s shadow effect will not be con-

sidered in this paper, neither will the J2 effect. This will be done in a future work. 

No closed-form solution exists for Eq. (28). It is thus necessary to expand them in power of 

eccentricity, which is small (≤ 0.1) for LEO missions, before integrating. Thanks to the simple 

form of Eqs. (15) – (17) and Eqs. (19) – (21), the only term to be expanded is the denominator of 

the coefficients, i.e., ( )
1 2

2 2 2 cos ,a e a e t ik k k k
−
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Orbit Raising 

The orbit raising mission in this paper is assumed to raise the spacecraft from the near-circular 

parking orbit to the circular operating orbit. The errors in semi-major axis and eccentricity are 

given accordingly to 
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where, the superscript r represents the mission of orbit raising, and ∆a = af – a. 

Then substituting Eq. (29) into Eq. (24) and expanding the term 
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+ + u u  up to O(e2), the coefficients of the tangential and inertial thrust 

can be approximated as 
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where R is a polynomial in the eccentricity, given by 
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Substituting Eq. (30) into Eq. (26), after some manipulations, the variations of orbital parame-

ters over one revolution for orbit raising are derived: 
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De-Orbiting 

An efficient de-orbit strategy is to lower the perigee to the point where the atmospheric drag 

will lower the apogee quickly until the natural re-entry happens. To lower the perigee as fast as 

possible, the target semi-major axis and eccentricity are chosen as 
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Then the errors of semi-major axis and eccentricity are 
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where, the superscript d represents the mission of de-orbiting, and ∆e = ef – e. 

Similar to orbit raising, substituting Eq. (36) into Eq. (24) and expanding the term 
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can be approximated as  
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where D is a polynomial in the eccentricity, given by 
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with D0, D1 and D2 being 
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Substituting Eq. (37) into Eq. (26), after some manipulations, the variations of orbital parame-

ters over one revolution for de-orbit are derived: 
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where at
Fd , at

Ed , ai
Fd , ai

Ed , et
Fd , et

Ed , ei
Fd  and ei

Ed  are the binomials of eccentricity in the form of d# 

= d0# + d1#e + d2#e2, with the subscripts 0, 1 and 2 being the coefficients of e0, e1 and e2 respec-

tively, given by 
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Eqs. (40) and (41) contain some elliptic integrals to be evaluated once per revolution: 
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is the first kind incomplete elliptic integral 13, and 
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is the second kind incomplete elliptic integral13. 
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Numerical Results 

To verify the accuracy of the semi-analytical solutions, a comparison is conducted between 

the semi-analytical solutions and the accurate integration of the full dynamics equations. The ini-

tial and stopping conditions for the test case of the orbit raising mission are listed in Table 3, 

while the spacecraft characteristics and the parameters for the de-orbit mission have been listed in 

Table 1 and Table 2 respectively. 

Table 3 Parameters for the orbit raising mission 

Initial condition Stopping condition 

a0 (km) e0 ω0 (deg) E0 (deg) af (km) ef 

500 + RE 10-3 0 0 1200 + RE ≤ 10-4 

 

Figure 5 to Figure 10 present the time histories of the orbital parameters by the accurate inte-

gration and the semi-analytical integration for both missions. From Figure 5, Figure 6, Figure 8 

and Figure 9, it can be seen the good accuracy of the semi-analytical solutions for the semi-major 

axis and eccentricity. In Figure 7, the semi-analytical solution for the argument of perigee during 

the orbit raising mission shows a good accuracy up to e = 10-4 until the eccentricity is too small 

that the accurate integration breaks down, being written in Keplerian elements. While in Figure 

10, the semi-analytical solution for the argument of perigee during the de-orbit mission has rela-

tively large errors, which might be due to the singularity in the derivatives for the argument of 

perigee and the eccentric anomaly (Eqs. (3) and (4)) because the initial eccentricity of the de-orbit 

mission is too small (10-4). This could be furtherly solved by using non-singular orbital elements. 

 

Figure 5 Time history of the semi-major axis for the orbit raising mission. 
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Figure 6 Time history of the eccentricity for the orbit raising mission. 

 

Figure 7 Time history of the argument of perigee for the orbit raising mission. 

 

Figure 8 Time history of semi-major axis for de-orbit mission. 
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Figure 9 Time history of the eccentricity for the de-orbit mission. 

 

Figure 10 Time history of the argument of the perigee for the de-orbit mission. 

Table 4 presents the results obtained by the semi-analytical technique and the precise integra-

tion. The results show good agreement between the two methods. 

Table 4 Results by the semi-analytic technique and the precise integration 

Mission 

Semi-analytical technique Precise integration 

af (km) ef tf (days) af (km) ef tf (days) 

Orbit raising 7578.2 4×10-7 62.85 7578.5 4×10-7 62.86 

De-orbiting 7189.0 0.0711 76.63 7189.4 0.0712 76.63 

ORBIT TRANSFER FOR MULTIPLE SATELLITES 

The collision problem will arise when transferring multiple satellites. The mission objective is 

now not only the minimization of total transfer time, but also the maximization of the inter-

satellite miss distance. In this study, the miss distance is the minimum distance between any pair 
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of satellites in the constellation during transfer. The miss distance can be derived by evaluating 

the relative distances for all pairs of satellites at every time step. This computation process needs 

the transfer trajectories of all satellites, which can be easily obtained by the semi-analytical solu-

tions. 

Miss Distance Analysis 

Figure 11 and Figure 12 presents the miss distance as a function of the time difference at 

which the transfer among the satellites is started in terms of different argument of perigee differ-

ence for the orbit raising and de-orbiting mission respectively. In these graphs, ∆ω = 1 × 2π/8 is 

the argument of perigee difference between a satellite and the first successive satellite; ∆ω = 2 × 

2π/8 is the argument of perigee difference between a satellite and the second successive satellite, 

etc. For the test case of this paper, the constellation consists of 8 evenly spaced satellites and the 

relative distance is evaluated at time intervals of 100 s. The mission conditions are same as the 

previous sections. 

   

a) Time difference ≤ 5 × 104 s b) Time difference ≥ 4 × 104 s 

Figure 11 Miss distance vs time difference to start the transfer for the orbit raising mission. 

   

a) Time difference ≤ 1 × 104 s b) Time difference ≥ 1 × 104 s 

Figure 12 Miss distance vs time difference to start the transfer for the de-orbiting mission. 

It can be seen from the above figures that for both missions, the miss distances for all pairs of 
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satellites maintain relatively large if the starting time difference is within the first few revolutions, 

but then decline rapidly to dozens or even several kilometers as the starting time difference in-

creases. 

The reason behind this is the resonance of longitudes. Here, the notation longitude is the sum 

of argument of perigee and true anomaly. The relative distance between a pair of satellites not 

only depends on the radii difference but also the longitude difference. The resonance of the longi-

tude is the longitude difference being equal to integral multiple of 2π rad, at which instant the 

satellites pass by each other and the relative distance is small. In this case, the miss distance will 

be accordingly small. 

Specifically in this paper, the resonance of longitude is equivalent to the resonance of the true 

anomaly because the argument of perigee solved by the semi-analytic technique does not change 

with time. The derivative of the true anomaly given by the Gauss’ equations7 is 
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Similar with dE/dt, dθ/dt can be approximated as 
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It can be seen from Eq. (56) that the magnitude of dθ/dt is dictated by the semi-major axis and 

the eccentricity. For two trajectories, the small difference of semi-major axis and eccentricity 

leads to small difference of the magnitude of dθ/dt and consequently in true anomaly. 

Take the argument difference of 1× 2π/8 for the de-orbit mission as an example. Figure 13 to 

Figure 15 present the time histories of the semi-major axis, eccentricity and longitude difference 

as well as cos∆(ω + θ) and the relative distance for the starting time difference of 5 × 103 s and 

1.4 × 106 s. 

  

a) Time difference = 5 × 103 s b) Time difference = 1.4 × 106 s 

Figure 13 Time histories of the semi-major axis and the eccentricity (de-orbit, ∆ω = 1× 2π/8). 
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a) Time difference = 5 × 103 s b) Time difference = 1.4 × 106 s 

Figure 14 Time histories of the true anomaly (de-orbit, ∆ω = 1× 2π/8). 

   

a) Time difference = 5 × 103 s b) Time difference = 1.4 × 106 s 

Figure 15 Time histories of cos∆(ω + θ) and relative distance (de-orbit, ∆ω = 1× 2π/8). 

For small starting time difference, the semi-major axis difference and the eccentricity differ-

ence are both small, as shown in Figure 13 a). Therefore, the longitude difference increases slow-

ly with time and will not be able to reach zero, as shown in Figure 14 a). This means that no reso-

nance happens so that the miss distance is relatively large, as shown in Figure 15 a). While for 

large starting time difference, the semi-major axis difference and the eccentricity difference are 

both large, as shown in Figure 13 b). Therefore, the longitude difference increases fast with time, 

as shown in Figure 14 b). So the resonance happens many times and the miss distance is small, as 

shown in Figure 15 b). 

Transfer Strategy 

According to Figure 11 and Figure 12, obviously for both missions, the best orbit transfer 

strategy is to start the transfer for all satellites at the same time such that the total time of transfer 

is minimum while the miss distance is maximum. 

For no doubts in orbit raising mission, it is favorable that the satellites start to raise orbits at 

the same time so that the constellation can provide services to the Earth as soon as possible. But 
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for de-orbit mission, there might exist some limits on the descending starting time. To maximize 

profits in practical applications, it might be desirable to retain residual performances during de-

orbiting. That is to say, the satellites start to de-orbit at different times such that some of the satel-

lites keep providing services to the Earth while the others are de-orbiting. 

Noticing from Figure 12, the miss distance between satellites in opposite positions, i.e., ∆ω = 

4× 2π/8, is maximum if the two satellites start to de-orbit at the same time. Moreover, from geo-

metric point of view, it is always preferable to hold the constellation structure symmetric so as to 

maximize the residual performances (e.g., coverage and robustness). For these two reasons, four 

types of de-orbit strategy are proposed for the test case of 8 satellites constellation. As shown in 

Figure 16, in strategy 1, the satellites start to de-orbit at the same time in groups of four, while in 

strategy 2 – 4, the satellites start to de-orbit in groups of two. In these graphs, t0, t1, t2 and t3 repre-

sent the starting time to de-orbit. 

  

a) Strategy 1 b) Strategy 2 

  

c) Strategy 3 d) Strategy 4 

Figure 16 De-orbiting strategies. 

Multi-Objective Optimization 

The cost functions of the multi-objective optimization problem are given by 
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 1 min totalJ t=   (57) 

 2 min missJ d= −   (58) 

where, ttotal is the total time of transfer and dmiss is the miss distance. 

The design variable is the starting time, i.e., t1 for Strategy 1, t1, t2 and t3 for Strategy 2 – 4. 

Assume that the constellation has to be de-orbited within 3.5 months. According to the numerical 

results by previous sections, the de-orbit time for a single satellite is about 2.5 months. Thus, all 

satellites have to start de-orbit within 1 month. The lower and upper bounds for starting time are 

listed in Table 5. A multi-objective global optimizer is used to search for the Pareto front solu-

tions through a multi-agent-based search approach hybridized with a domain decomposition 

technique developed by Vasile14. 

Table 5 Lower and upper bounds for the starting time 

Strategy t0 (days) 

Lower bound  Upper bound (days) 

t1 (days) t2 (days) t3 (days) t1 (days) t2 (days) t3 (days) 

1 0 15   30   

2 – 4 0 7.5 15 22.5 30 30 30 

 

Figure 17 presents the optimization results for Strategy 1. 

   

a) Total time of transfer vs starting time b) Miss distance vs starting time 
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c) Total Time of transfer vs starting time 

Figure 17 Optimization results for strategy 1. 

Figure 18 to Figure 20 present the optimization results for Strategy 2 to 4. Although only one 

set of Pareto front is found, there is a series of starting time resulting in the same transfer time and 

miss distance. 

 

Figure 18 Optimization results for strategy 2. 
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Figure 19 Optimization results for strategy 3. 

 

Figure 20 Optimization results for strategy 4. 

The detailed optimization results for each strategy are listed in Table 6 to Table 9 in Appen-

dix: Optimization Results. 

Comparing the optimization results of these four strategies, Strategy 1 has shorter transfer 

time and larger miss distance than Strategy 2 – 4, but more residual performance is retained by 

Strategy 2 – 4. Therefore, one conclusion can be drawn: there is a trade-off between residual per-

formance, total time of transfer and miss distance. 

CONCLUSION 

This paper dealt with the planar transfer problems (orbit raising and de-orbiting) for LEO co-

planar satellites constellation with low-thrust propulsion. Aiming to solve the collision problem 

arising at the presence of multiple satellites, the objectives of this paper are to minimize the total 

time of transfer and to maximize the miss distance. The orbit transfer problem has been conduct-

ed via two layers: the first layer is the trajectory design for a single satellite; the second layer is 

the transfer strategy design and the multi-objective optimization for multiple satellites. 

For the first layer, the blended error-correction (BEC) steering law has been firstly presented. 
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The BEC steering law is the blend of tangential thrust and inertial thrust, both of them being time 

efficient and in simple fashion. The coefficients of tangential thrust and inertial thrust are respec-

tively set to be proportional to the instantaneous errors of semi-major axis and eccentricity with 

respect to the target values, and are properly normalized. The numerical comparison with the op-

timal steering law for the test case of de-orbit shows that the BEC steering law is feasible and 

near time-optimal. Based on the BEC steering law, two sets of semi-analytical solutions of the 

variations of orbital parameters over one revolution for orbit raising and de-orbit have been ob-

tained by using the semi-analytical technique so as to reduce the computation load. Before inte-

grating, the denominator of coefficients is expanded in powers of eccentricity up to O(e2). The 

numerical comparison with the precise integration shows a good accuracy of the semi-analytical 

solutions. 

For the second layer, a detailed analysis has been firstly done for the miss distance, revealing 

the influence of longitude resonance on the miss distance. The analysis shows that the best trans-

fer strategy is to start to transfer all satellites at the same time. Considering the limits on the trans-

fer starting time for de-orbit mission, four transfer strategies for a test case of 8 satellites constel-

lations have been proposed. For each strategy, a multi-objective optimization has been carried 

out. The design variable is the transfer starting time of each satellite. The optimization results 

show the trade-off between residual performance, total time of transfer and miss distance. 

As a preliminary study, the Earth’s oblateness and the eclipses are not considered in this paper. 

Further research will include theses effects and extend the planar transfer to non-planar transfer. 
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APPENDIX: OPTIMIZATION RESULTS 

Table 6 Optimization Results for Strategy 1. 

t1 (days) Total time of transfer (days) Miss distance (km) 

15 91.6319 2.5757 

15.0012 91.6331 2.9834 

15.0023 91.6343 6.5720 

15.0475 91.6794 6.6081 

15.0486 91.6806 8.9317 

15.7870 92.4190 9.4330 

16.0150 92.6470 10.2728 

17.1551 93.7870 10.8619 

Table 7 Optimization results for strategy 2. 

(Total time of transfer = 99.13 days, Miss distance = 4.96 km) 

t1 (days) t2 (days) t3 (days) 
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8.07 15.16 22.5 

8.27 15.36 22.5 

10.17 15.01 22.5 

10.20 15.01 22.5 

10.29 15.02 22.5 

10.61 15.06 22.5 

10.65 15.05 22.5 

10.71 15.02 22.5 

10.76 15.81 22.5 

10.78 15.05 22.5 

11.24 15.11 22.5 

11.34 15.04 22.5 

11.38 15.13 22.5 

11.70 15.07 22.5 

11.78 15.05 22.5 

11.84 15.88 22.5 

12.62 15.12 22.5 

14.75 15.62 22.5 

14.93 15.62 22.5 

15.59 15.05 22.5 

Table 8 Optimization results for strategy 3. 

(Total time of transfer = 99.13 days, Miss distance = 4.96 km) 

t1 (days) t2 (days) t3 (days) 

8.74 22.05 22.5 

9.02 21.23 22.5 

9.41 19.37 22.5 

9.67 16.02 22.5 

9.84 19.61 22.5 

9.89 19.62 22.5 

10.11 17.55 22.5 

10.41 22.21 22.5 

10.47 22.21 22.5 

10.51 17.31 22.5 

10.60 21.70 22.5 
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10.64 21.72 22.5 

10.64 21.72 22.5 

12.55 20.44 22.5 

12.68 21.46 22.5 

13.48 21.26 22.5 

13.71 21.27 22.5 

13.91 19.94 22.5 

13.92 21.22 22.5 

14.09 21.12 22.5 

14.74 21.13 22.5 

15.45 17.12 22.5 

15.47 16.92 22.5 

15.58 17.12 22.5 

15.61 17.27 22.5 

15.85 16.33 22.5 

15.87 16.19 22.5 

Table 9 Optimization results for strategy 4. 

(Total Time of transfer = 99.13 days, Miss distance = 4.96 km) 

t1 (days) t2 (days) t3 (days) 

7.64 21.46 22.5 

7.67 20.06 22.5 

7.71 15 22.5 

7.71 21.28 22.5 

7.72 19.90 22.5 

7.72 21.36 22.5 

7.83 19.07 22.5 

7.86 21.99 22.5 

8.29 19.11 22.5 

8.29 19.12 22.5 

8.43 21.50 22.5 

8.44 21.50 22.5 

8.48 21.36 22.5 

9.17 21.90 22.5 

9.65 21.61 22.5 
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9.97 15 22.5 

9.97 20.80 22.5 

10.03 21.68 22.5 

10.34 16.01 22.5 

10.41 15 22.5 

10.44 15 22.5 

10.45 18.90 22.5 

10.98 22.29 22.5 

11.76 21.71 22.5 

13.56 19.86 22.5 

13.61 15.42 22.5 

13.62 15.43 22.5 

13.65 15.41 22.5 

13.99 15 22.5 

14.01 15 22.5 

14.02 22.47 22.5 

14.85 15.15 22.5 

14.85 15.14 22.5 

14.88 19.86 22.5 

15.35 19.48 22.5 

15.62 19.04 22.5 

15.87 15.39 22.5 

16.19 15 22.5 

16.94 15 22.5 

16.97 17.97 22.5 

17.09 17.70 22.5 

17.58 21.20 22.5 

17.66 17.88 22.5 

17.70 22.24 22.5 

17.71 17.33 22.5 

19.30 16.99 22.5 

19.56 22.26 22.5 

19.94 15.59 22.5 

20.87 20.87 22.5 
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21.26 20.79 22.5 

21.73 22.35 22.5 

21.91 16.19 22.5 

21.92 16.18 22.5 

21.92 16.19 22.5 

21.92 18.03 22.5 
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