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Modern computers are based on the von Neumann architecture in which computation and 
storage are physically separated: data are fetched from the memory unit, shuttled to the 
processing unit (where computation takes place) and then shuttled back to the memory unit to 
be stored. The rate at which data can be transferred between the processing unit and the 
memory unit represents a fundamental limitation of modern computers, known as the memory 
wall. In-memory computing is an approach that attempts to address this issue by designing 
systems that compute within the memory, thus eliminating the energy-intensive and time-
consuming data movement that plagues current designs. Here we review the development of in-
memory computing using resistive switching devices, where the two-terminal structure of the 
devices and the direct data processing in the memory can enable area- and energy-efficient 
computation. We examine the different digital, analogue, and stochastic computing schemes 
that have been proposed, and explore the microscopic physical mechanisms involved. Finally, 
we discuss the challenges in-memory computing faces, including the required scaling 
characteristics, in delivering next-generation computing. 
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Over the past 50 years, progress in computing and information technology was based on the 

downscaling of the metal-oxide-semiconductor field-effect transistor (MOSFET), which served as the 

workhorse of the semiconductor industry for analogue and digital circuits. This downscaling enabled digital 

CMOS systems to sustain an exponential increase of the operating frequency and the number of devices per 

area at each technology generation [1]. Today, however, the operation frequency and device density have 

reached a plateau, which stems from at least two barriers: the dissipated power is so large that the 

temperature increase on the chip cannot be sustained without significant performance degradation [2]; and 

there exists an increasing performance gap between the central processing unit (where the data is processed) 

and the computer memory (where data is stored), which is known as the memory wall [3]. It has been 

evaluated that, for many computing tasks, most of the energy and time are consumed in data movement, 

rather than computation [4]. These problems are expected to be exacerbated as applications become more 

data centric, where computing tasks consists of machine-learning operations such as object, image, and 

speech recognition. 

Modern technologies are tackling these barriers from many angles, from the component level to the 

systems architecture design. Measures include the extensive use of parallelism, such as the graphics 

processing unit (GPU), which enhances the parallelism by using many cores (even more than 100), each with 

a dedicated or shared high-throughput connection with the memory. Also, application-specific processors 

known as accelerators are designed to match the exact computing algorithms and data flow [5]. For instance, 

the tensor processing unit (TPU) has been recently developed for accelerating the multiply-accumulate 

(MAC) operation, which constitutes the major workload in the inference phase of neural networks in data 

centers for image and speech recognition [6]. Another solution is the introduction of memory chips with 

enhanced bandwidth, such as the hybrid memory cube (HMC) [7], and high bandwidth memory (HBM) [8], 

where high data-transfer rate and high memory density are achieved by stacking multiple memory chips with 

through-silicon via (TSV) interconnect.  

New and emerging nonvolatile memory concepts have also been introduced into the traditional 

memory hierarchy to reduce the ‘distance’ between computing and the data [9]. These new memories, which 

are grouped under the name ‘resistive switching devices’ in this work, have unique storage principles which 

are not based on charge, as in conventional Flash memory and random access memory (RAM), for example, 

static RAM (SRAM) and dynamic RAM (DRAM). The storage concept relies instead on the physics of the 

active materials and the device where they are integrated. These memories include resistance switching 

RAM (RRAM) [10], phase change memory (PCM) [11], magneto-resistive RAM (MRAM) [12], and 

ferroelectric RAM (FeRAM) [13]. Although some of these memories have led to commercial technologies 

which are available on the market [14], they are still too slow, have limited data bandwidth, or are too 

expensive, to significantly contribute to solve the memory bottleneck.  

Instead of re-engineering conventional systems by individual improvements in parallelism, memory 

bandwidth, or memory concept- in-memory computing aims to radically subvert the von Neumann 

architecture by carrying out calculations in situ, exactly where the data are located [15]. This approach is 



 3 

similar to the computing scheme in the human brain, where information is processed in sparse networks of 

neurons and synapses, without any physical separation between computation and memory [16]. In-memory 

computing offers a clear advantage by totally removing the latency and energy burdens of the memory wall. 

However, this new architecture requires computational memory devices that can both store data and compute 

at the same time, usually by device physics or other physical laws, such as the Ohm’s law and the 

Kirchhoff’s law in electrical circuits.  

Here we review the in-memory computing schemes that have been proposed in both digital and 

analogue spaces, covering the device physics, the processing algorithms, and the circuit architectures that 

perform computing tasks within memory. 

  

Computational memory technologies 

In-memory computing generally requires fast, high density, low power, scalable memory devices, 

such as RRAM, PCM, MRAM, and FeRAM sketched in Fig. 1. All these devices are 2-terminal elements, 

where the application of a voltage results in a change of the materials property. For instance, RRAM 

(Fig. 1a) consists of a metal-insulator-metal (MIM) stack, where a filamentary path is initially created by soft 

electrical breakdown, or forming, induced by the application of a voltage. The large concentration of defects, 

e.g., oxygen vacancies in metal oxides [17] or metallic ions injected from the electrodes [18], are then driven 

by field-induced migration and diffusion in this conductive filament (CF) [19]. Application of a positive 

voltage to the top electrode, where the defects are concentrated with higher density, induces defect migration 

toward the bottom electrode, thus causing the transition to the low resistance state (LRS), due to enhanced 

conduction at defect sites. Application of a negative voltage induces defect migration back to the top 

electrode, thus causing the transition to the high resistance state (HRS) due to the disconnection of the CF. 

These transitions can be seen in the idealized current-voltage (I-V) characteristic in Fig. 1b, where the set 

transition to the LRS and the reset transition to the HRS occur at opposite voltages. Similar to the bipolar 

RRAM concept in Fig. 1b, unipolar RRAMs have also been presented, where the set and reset processes both 

occur under the same voltage polarity because of the dominant role of Joule heating in creating and 

dissolving the CF [20,21]. Also, non-filamentary switching has been demonstrated in RRAM by interface 

switching, where the voltage-induced defect migration result in a uniform change of a Schottky or tunneling 

barrier across the whole device area [22]. All these devices rely on the diffusion and migration of defects and 

will be referred to as RRAM throughout this Review Article.   

In PCM (Fig. 1c), the active material is a chalcogenide phase change material, such as Ge2Sb2Te5 

[23], which can remain in either crystalline or amorphous states for long periods of time, e.g., 10 years at 

moderately high temperature. Starting from the amorphous state, the application of voltage pulses with 

relatively low amplitude causes the crystallization induced by Joule heating (Fig. 1d), whereas the 

application of pulses at higher amplitudes can lead to local melting and consequent amorphization. The 

crystalline phase has a low resistance because of the large concentration of carriers, while the amorphous 
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phase has a high resistance due to its intrinsic semiconductor nature originating from Fermi level pinning at 

mid gap [24]. A typical PCM cell has a mushroom shape shown in Fig. 1c, where the pillar-like bottom 

electrode confines heat and current, thus resulting in a hemispherical shape of the molten material. Pore-like 

PCM cells have been shown to be more energy efficient and more scalable than mushroom cells, thanks to a 

better confinement of heat and current [25]. 

RRAM and PCM share many similar features, which make them quite promising technologies for in-

memory computing. First, they are both nonvolatile, and the resistance ratio is generally above a factor 10, 

which allows clear discrimination between digital 0 and 1, as well as making multilevel operation possible. 

Both devices operate at moderate-high switching speed (typically below 100 ns and even in the sub-ns 

regime [26,27]). Finally, they both display a better endurance as compared to the conventional Flash storage 

devices [28]. On the other hand, the morphology of materials change is different in the two cases, namely 

filamentary switching in the case of RRAM versus thermally-induced volume change in PCM. Also, the 

switching phenomena are different in that RRAM states are chemically distinct because of redox reactions 

and migration, while the PCM phases are only physically different (i.e., no change of materials composition).  

Fig. 1e shows a magneto-tunnel junction (MTJ), which is the building block for most MRAM 

devices. The MTJ consists of an MIM structure with two ferromagnetic metal layers, e.g. the CoFeB alloy, 

and a thin tunnel oxide, e.g., MgO. The two ferromagnetic layers are referred to as either the pinned layer 

(where the magnetic polarization is structurally fixed to act as a reference) or the free layer (where the 

magnetic polarization is free to change upon programming). The two ferromagnetic polarizations can thus be 

either parallel (same direction) or antiparallel (opposite direction), which results in a low and a high 

resistance of the MTJ, respectively, due to the tunnel magneto-resistive (TMR) effect [29]. To flip the state 

of the MTJ, the spin transfer torque (STT) has emerged in the recent years as a scalable, low energy 

mechanism [30]. In STT-MRAM, the transition to the parallel state takes place directly by conduction 

electrons, which are first spin polarized by the pinned layer, then rotate the free layer magnetic polarization 

by magnetic momentum conservation [31]. To rotate the free layer magnetization in the antiparallel state, an 

opposite voltage, hence current direction, is needed, as shown in Fig. 1f. The relative change of resistance, 

also called magneto-resistance ratio, is typically around 200%, or a factor of three [32]. STT-MRAM is 

characterized by a high switching speed, which can lower than 1 ns, and by a high endurance above 1014 

[33].  

RRAM, PCM, and MRAM are all resistive switching memories, as the physical switching is 

reflected in a change of resistance. On the other hand, FeRAM in Fig. 1g relies on the polarization switching 

in a ferroelectric material, such as a perovskite material [13], or doped-HfO2 [34]. Here, the individual 

ferroelectric dipoles change their orientation in response to the voltage applied to the MIM stack (Fig. 1h). 

Instead of impacting the MIM stack resistance, ferroelectric switching changes the charge induced on the 

metallic electrodes of the MIM capacitance, which can be sensed by integrating the current over a voltage 

sweep. To gain a resistance change by ferroelectric switching, one should adopt a ferroelectric field-effect 

transistor (FeFET) structure with three terminals, where the change in dielectric polarization causes a 
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variation in the resistance of the FeFET channel [35]. The resistance change in the FeFET thus enables in-

memory computing elements such as neuromorphic synapses [36].  

 

Digital computing by binary resistive switching 

In the last 20 years, in-memory digital computing has focused on identifying novel logic gate 

concepts with lower energy and area consumption. Digital computing with nanomagnets [37], quantum dots 

[38], and even single atoms [39] have been demonstrated experimentally, although the control of the 

individual cells via voltage and current signals appears challenging. Resistive switching devices, such as 

RRAM, offer several advantages in digital computing, such as the direct access by interconnect lines, the 

capability to electrically reconfigure the device, and nanoscale miniaturization [40]. Fig. 2 shows various 

options to carry out digital Boolean operations with RRAM, differing by the type of input, the type of output, 

and the physical operation to describe the logic function. In the logic gate of Fig. 2a, the 2 input states X1 and 

X2 are represented by the voltage values applied to the top and bottom electrodes, respectively, while the 

output of the logic operation is stored as the resistance of the physical element, therefore the scheme will be 

referred to as the V-R logic gate [41]. The computing element is a bipolar-switching RRAM device, where 

the application of a positive voltage to the top electrode leads to a transition to the HRS, and the application 

of a negative voltage to the top electrode leads to a transition to the LRS. (To represent the switching 

polarity, the RRAM device is drawn as an arrow pointing to the electrode being biased to negative during set 

transition to the LRS). The output of the computation is the resistive state, namely a logic value 0 for HRS, 

and 1 for LRS, where the RRAM device is initially prepared in state 1. The logic gate behaves as follows: if 

the input logic voltages are equal, namely X1 = X2 = 0, or X1 = X2 = 1, then the overall voltage drop across 

the RRAM device is zero, thus the RRAM state remains unchanged (Y = 1, see the truth table in Fig. 2b). On 

the other hand, the configuration X1 = 1 and X2 = 0 causes a transition to the HRS, hence Y = 0. Finally, the 

configuration X1 = 0 and X2 = 1 is ineffective as the device is already in state 1. The resulting logic operation 

is the material implication (IMP), where the output is always 1, except for the condition X1 = 1 and X2 = 0, 

where the logic implication is not satisfied. Since IMP is functionally complete, all 16 Boolean functions can 

be realized by suitable combinations of more IMP operations [41]. The V-R gate can also be generalized as a 

majority gate if the initial state of the RRAM device is also considered as a possible input value [42]. The V-

R concept can also be generalized to serial/parallel arrangements of more resistive switches to perform 

conventional logic operations (e.g., AND) in just one step [43]. 

The V-R logic gate in Fig. 2a is a nonvolatile concept, in that the output state remains stored as the 

resistive state without any voltage bias, thus allowing a considerable saving of static power.  On the other 

hand, the sequential cascade of 2 operations, where the first gate’s output is directly used as the second 

gate’s input, is impossible, as input and output signals are physically different [44]. Converting the output 

resistance into an input voltage can be achieved by additional circuits, typically located out of the memory 

area, which however increase the size, complexity and power consumption of the computing system. As a 
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result, the V-R gate cannot be ascribed to fully in-memory logic schemes, as the computing flow must ‘exit’ 

the memory circuit to convert resistive states into input voltage values. 

Fig. 2c shows the V-V logic, also referred to as threshold logic unit. In the V-V logic gates, both 

input and output values are described by digital voltages, being either low or high to represent a 0 or a 1, 

respectively [45]. The V-V logic gate can be viewed as a one-layer neural network, where any input voltage 

Vj stimulates a current Ij given by Ohm’s law Ij = Gj(Vj-Vcom), where Gj is the conductance of the j-th 

resistive switch and Vcom is the potential of the common node in Fig. 2c. Currents are then summed by 

Kirchhoff’s law at the common node, thus leading to Vcom =  RLSIj = RLSGj(Vj-Vcom), where RL is the load 

resistance connecting the common node to ground. The common voltage is thus given by Vcom = 

SGjVj//(1/RL+SGj), which describes a weighted sum of input voltages. The common node is usually 

connected to a rectifying stage, such as a comparator, which restores a digital value for the output Vout, given 

by Vout = f(Vcom-VT), where f is a highly-nonlinear function, and VT is an internal threshold voltage, hence 

the name ‘threshold logic’. The Boolean function is thus described by the input/output characteristic in 

Fig. 2d, where all input values are linearly separated between configurations yielding output 0 or 1. The 

position of the separating line is dictated by the weights Gj and by VT, which are carefully tuned to obtain 

any generic linearly-separable Boolean function (AND in Fig. 2d) [46]. Similar to the V-R logic scheme, the 

comparator is a relatively massive circuit that must be located out of the memory area. Also, each input 

voltage must be obtained by a conversion from a stored value (typically a resistance state R), while the 

resistive switch simply stores the weight for the logic operation, i.e., part of the information required to 

execute a program code, rather than the input/output values themselves. On the other hand, cascading is 

possible in V-V logic, as input and output voltages share the same physical nature and amplitude range. 

Fig. 2e shows the R-R logic, where both input and output values are the resistive states of the 

memory elements, and the logic operation is carried out within the memory [47]. This is a true, cascadable 

in-memory operation, which is also referred to as stateful logic [48,49], as it relies on the nonvolatile states 

of the resistive elements. Similar to the V-V logic, logic computation is carried out based on physical laws, 

such as Ohm’s and Kirchhoff’s laws, except that the comparator function is taken by one of the resistive 

units in the logic gate, thus enabling true in-memory computation. For instance, in the IMP gate of Fig. 2e, 

two resistive switches in parallel configuration with input states X1 and X2 are biased with voltages Vset-D 

and Vset+D, respectively, where Vset is the nominal voltage to induce a set transition, and D is a relatively 

small fraction, e.g., 10%, of Vset. In case X1 is in the HRS (input logic value 0), the voltage Vset+D will drop 

entirely across X2, thus leading to an unconditional set operation. As a result, the output state, which is X2 at 

the end of the computation, or X2’, is unconditionally equal to 1 (see the truth table in Fig. 2f). On the other 

hand, if X1 is in LRS (input logic value 1), the voltage across X1 and X2 will be only 2D, thus insufficient for 

the switching of either X1 or X2, i.e., the input states will remain unchanged, thus resulting in the IMP 

operation. More Boolean functions can be obtained by sequentially repeating IMP on more devices [47]. 
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Similar stateful logic gates were proposed by changing the circuit architecture, e.g., adopting a serial 

switch arrangement [50], or more resistive switches in parallel [51, 52]. For instance, Fig. 2g shows an OR 

logic gate consisting of two serially-connected resistive switches, where the intermediate node is left 

floating, i.e., free to change its potential according to the voltage divider made by the two switches. If the 

two input states are equal, e.g., X1 = X2 = 0, then the voltage divides equally across the two devices, thus 

remaining below the threshold Vset for set transition. On the other hand, if only one of the two input devices 

is high, the other input with low conductance will have a large voltage drop across it, thus inducing set 

transition. This operation yields an OR function with either switch serving as the output. Other functions, 

such as IMP and logic inversion (NOT), can be realized with the same architecture but different applied 

voltages [50]. The R-R logic concept has been extended to other memory devices, such as PCM [53] and 

STT-MRAM [54], thus confirming the universal application of digital in-memory computing. 

Stateful R-R logic gates have several advantages over V-V and V-R schemes, including the 

possibility of sequentially cascading multiple operations, the reconfiguration of the Boolean function by the 

applied voltage pulses, and the true in-memory processing capability. Both the data and the code, containing 

the type of operation and the data address, can be stored in the same memory circuit, e.g., a crosspoint 

RRAM array. The code can be read and executed on data within the memory, thus overcoming the typical 

memory bottleneck of today’s computing architecture [55]. A key limitation of in-memory digital computing 

is the time and energy burden due to the physical switching process within the device. Resistive switching in 

RRAMs today requires at least a voltage of about 1 V, with a current consumption in the range of 10 µA and 

a time of about 10 ns, which yields an energy of approximately 0.1 pJ per operation. For comparison, this is 

the same energy that is consumed in the 45 nm CMOS technology for a 32-bit integer addition, which 

consists of many individual Boolean logic steps [4]. Even lower energy consumption is estimated for 

advanced technology nodes, e.g., only few fJ for an 8-bit addition [56] in a 7 nm CMOS generation. Such a 

large gap stems from the physics of the device itself, which involves electron drift and capacitive charging in 

CMOS logic gates, while RRAM relies on the motion of ionic species, which require a relatively large local 

electric field and temperature by Joule heating for their hopping migration [19]. The high electric field and 

local temperature in RRAM switching also results in significant degradation, eventually inducing an 

irreversible breakdown of the MIM interfaces [57]. This is a major limitation compared to charge-based 

CMOS logic circuits, where device degradation is almost negligible within the expected lifetime, e.g., 1016 

cycles in the case of a SRAM embedded in the same chip as the CPU. The relatively large operating current 

can cause unwanted ohmic voltage drops along the signal line, which can be avoided by increasing the width 

of the metallic interconnect, thus losing some of the high-density advantages of the crosspoint memory 

architecture. An additional area overhead is taken by the periphery control logic, including latches for 

synchronous propagation of the signal and row/column multiplexers. Either issues have not been adequately 

addressed in the literature so far.
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Computing by cumulative resistive changes 

Digital computing with RRAM generally takes advantage of binary transition, e.g., a set transition 

from HRS to LRS. More degrees of freedom can be gained by extending to the multilevel domain, where the 

application of repeated pulses induces a controllable, fractional variation of the device resistance. This is 

shown in Fig. 3 for a PCM device, where the set transition consists of a gradual crystallization of an 

amorphous region, and an increasing crystallization fraction results in a decreasing resistance. Fig. 3a shows 

the simulated temperature profile during programming and the distribution of amorphous/crystalline phases 

within a PCM device for an increasing crystallization time [53]. As the time increases, the thickness of the 

amorphous material decreases because of crystallization, thus causing a decrease of the threshold voltage VT 

and the device resistance. 

Gradual resistive switching is a key concept for analog computing. It can, for example, enable 

arithmetic summation, Fig. 3b [57]. Here, addition 3 + 4 is carried out in a single PCM element, used as a 

nanoscale abacus [58]. First, the two limits of the conductance scale are defined, namely, the HRS 

corresponding to the fully amorphized PCM after the reset operation, and the LRS corresponding to the 

partial crystalline state obtained after the repetition of N pulses, e.g., N = 8 in Fig. 3b. The device is thus 

initialized in the HRS with resistance R0, and a number of pulses corresponding to the first addend and the 

second addend are applied, i.e., 3 pulses in the first stage, and 4 pulses in the second stage. Finally, the 

number of pulses to reach the LRS resistance R8 is evaluated by a program/verify loop, which yields the N-

complement of the correct solution, e.g., 1 = 8-(4+3) in Fig. 3b [57]. 

The concept of the accumulating PCM counter can be extended to several applications in the realm 

of analog computing, such as the decomposition in prime factors [59], the gradual potentiation of a PCM 

artificial synapse [60,61], and the logic summation, namely digital OR within a single PCM [53]. In the latter 

case, the digital operation is executed by sequential pulses, rather than a single step as in Fig. 2, where each 

pulse is counted by the PCM for digital addition in a cascadable R-R logic gate. Summation can also be 

extended to the concept of integration of analog pulses, or spikes, which is an essential feature of integrate-

and-fire neurons in spiking neural networks [57,62]. This is illustrated by Fig. 3c, showing the concept of a 

McCulloch-Pitts neuron receiving weighted spiking signals from several pre-synaptic sources. The spikes are 

summed, e.g., by Kirchhoff’s law summation of currents at the input of the neuron circuit, and integrated 

within a PCM, as shown in Fig. 3d [62]. The PCM accumulates the incoming spikes, eventually hitting the 

LRS threshold which triggers the generation of a fire event, namely an output spiking signal. A key 

advantage of the PCM neuron is its nanoscale miniaturization, as opposed to the conventional capacitor-

based charge integration, where the capacitor typically occupies a relatively large area of the circuit, e.g., 

about 60 µm2/pF in a 28 nm CMOS technology [63], thus limiting the maximum number of neurons in a 

neuromorphic chip. Similar concepts of integrating neurons were shown by adopting threshold switching in a 

Mott insulator [64] or volatile RRAM with unstable Ag filaments [65]. In these works, the spike-

accumulating device spontaneously returns to the off-state after fire, in contrast to the PCM neuron which 
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must instead be reset to return to the off-state [62]. Pulse accumulation in nanoscale elements has been 

demonstrated in RRAM devices, where repeated pulses cause incremental reset transition because of the 

gradual increase of the depleted gap disconnecting the conductive path [66]. Cumulative change of resistance 

has been adopted for analog synapses in artificial neural networks using both filamentary [67-69] and 

interface-switching RRAM devices [70], as well as ferroelectric devices [71] and domain-wall STT-MRAM 

devices [72]. Weight update in floating gate synapses has also been demonstrated by charge integration [72], 

although this implementation suffers from typically large voltage and expensive double-poly integration 

process. 

<-- Box 1: 
Stochastic random bit generation 

A significant drawback of resistive memory devices for both memory and computing is their 

stochastic variation, which originates from the microscopic switching mechanisms. For instance, set 

transition in a RRAM consists of the field- and temperature-activated migration of defects, each of them 

moving along different paths and correspondingly different energy barriers. As a result, the set voltage 

changes from cycle to cycle even for the same device, as a result of the multiple variables (migration 

barriers, local configurations, concentration gradient, etc.) affecting the set process. In addition, the 

conductive filament formed by the set transition also changes from cycle to cycle, thus causing a variable 

resistance of the LRS [74] from cycle to cycle. Similarly, the reset voltage and the HRS resistance 

experience stochastic variations which cause errors in the digital operations in Figs. 2 and 3. For instance, the 

IMP logic gate in Fig. 2c relies on the repeatability of Vset, in terms of both the cycle-to-cycle variability, and 

a suitable degree of matching of device characteristics between the two cells of the logic gate. Similarly, the 

accuracy of the PCM arithmetic adder in Fig. 3b depends on the repeatability of pulse-induced 

crystallization, which is inherently stochastic due to the random atomic configurations within the amorphous 

phases [75].  

Variability can be turned into a resource in a random number generator (RNG). Although RNG is 

not strictly an in-memory computing tool, it has an important function in cryptography and data security. The 

generation of random keys is also instrumental in the physical unclonable function (PUF)-  a one-way 

function for the authentication of hardware chips [76]. The PUF provides a response to an external challenge, 

the function generating the response cannot be captured or cloned, thus preventing chip counterfeiting and 

hacking [77].  RNG is also an enabling tool in probabilistic spiking neural networks, where noise is used as a 

resource to mimic the stochastic release of synaptic neurotransmitter, or the stochastic opening and closing 

of membrane channels [78]. The conventional schemes for generating random numbers usually rely on 

software and hardware techniques, which create a seed-dependent stream of deterministic pseudo-random 

numbers [79]. To develop a true RNG (TRNG), a physical entropy source is needed, e.g., noise or variability 

of switching phenomena in memory devices. 

Fig. 4 shows examples of stochastic phenomena in RRAM and their exploitation for RNG. Random 

telegraph noise (RTN) in Fig. 4a is a typical phenomenon taking place in either HRS or LRS; RTN results 
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from metastable defect fluctuations near the conductive path [80]. RTN appears as a random change of the 

current from a low value I0 to a high value I1, thus sampling the current at random time yields a bimodal 

probabilistic distribution as shown in Fig. 4b. The random bit can thus be generated by reading the current 

value, and attributing I0 to bit 0, and I1 to bit 1 [81]. The RTN site is generally difficult to control in terms of 

both amplitude and uniformity, i.e., the sub-distributions in Fig. 4b should be equal to ensure a 50% 

probability of generating either 0 or 1. RTN is also affected by temperature and applied bias, which also 

leads to drift and instability of the RTN entropy source.  

The quality of the generated random numbers can be improved by exploiting switching variability, 

such as the stochastic delay time in Fig. 4c. When a constant voltage close to Vset is applied to a RRAM in 

the HRS, set transition takes place after a delay time tD, which varies from cycle to cycle due to statistical 

changes in the electrical and ionic conductive paths within the device [74]. A random number can be 

generated by dividing the time in equally spaced intervals Dt as in Fig. 4d, and attributing bit 0 or 1 to the 

switching event taking place in even or odd windows, respectively. This scheme improves bit randomness, as 

the probability of generating 0 or 1 is close to 50% provided that tD is sufficiently larger than Dt [82]. Instead 

of measuring the delay time for switching, the state of the device can be conveniently measured after a fixed 

amount of time, as shown in Fig. 4e. Here, a voltage equal to the median value of the stochastic Vset is 

applied to a RRAM device in the HRS, thus statistically resulting in a set transition for 50% of the times. The 

resistance distribution of the final states after stochastic switching thus shows a bimodal distribution of HRS 

and LRS (Fig. 4f), which can be attributed to bit 0 and 1, respectively [83]. This technique was also applied 

to stochastic computing, where a single device can represent an analogue value corresponding, e.g., to the 

fraction of HRS in Fig. 4f [84]. For the generated random numbers to be uniform, the exact value of <Vset> 

should be known, which requires a preliminary probability tracking procedure to initialize the RNG [85]. 

Similar voltage-based RNG schemes were developed adopting STT-MRAM devices, which benefit from a 

higher cycling lifetime and higher switching speed [85,86]. The need of a probability tracking can be 

overcome by differential TRNGs (Fig. 4e), where the competition within two switching devices randomly 

yields HRS-LRS or LRS-HRS pairs, which can be attributed to bit 0 and 1, respectively, with 50% 

probability [87]. 

Overall, in-memory TRNG provide physical random numbers with high randomness quality, as 

assessed by standard tests [82,85,87], and simple circuit layout, consisting of just few switching devices and 

some external control for stochastic programming and read. Due to its higher stability and better endurance, 

STT-MRAM devices appear the best device option to implement TRNGs. On the other hand, PUF circuits, 

which require only random initialization and an optional runtime reconfiguration, may be developed with 

PCM and RRAM circuits, thus benefitting from a lower cost and easier integration in the CMOS process 

flow. 

end Box 1--> 

Analog computing with crosspoint arrays 
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In-memory computing can adopt not only microscopic physical phenomena, but also universal 

circuit laws such as the Kirchhoff’s and Ohm’s law in resistive memory arrays. A typical example is the 

crosspoint array, consisting of multiple intersections between row and column orthogonal electrodes, each 

intersection containing a resistive memory element, such as a RRAM [88] or a PCM [89]. The crosspoint 

memories are extremely attractive to reduce the bit cell size, as the individual device area is just 4F2, where F 

is the lithographic feature size in the process technology. From the viewpoint of in-memory computing, the 

crosspoint array naturally provides a hardware accelerator for analogue, approximated matrix vector 

multiplication (MVM). Fig. 5a illustrates the concept of MVM in a crosspoint array, where a voltage Vj is 

applied to the j-th column, with j = 1, 2, …, N, where N is the number of rows and columns. The voltage-

induced currents of each resistive element are collected at the grounded rows, yielding a total current: 

Ii = SjGijVj       (1) 

at the i-th row, where Gij is the conductance of the resistive memory at row i and column j. Eq. (1) is the 

analogue product of the conductance matrix Gij and the voltage vector Vj , which implements a hardware-

based MVM via Ohm’s and Kirchhoff’s laws [90]. The analogue MVM in the crosspoint can be carried out 

in just one step, as opposed to the digital MAC operation, which is a time- and energy-consuming step in 

classical computers. Note that a significant amount of energy for crosspoint-based MVM is spent in 

operating analog-digital converters (ADCs) that transform the digital input vector into analog voltages Vj, in 

cases where the input of the calculations does not come directly from analog sensors, or where further digital 

processing of the output is needed [91]. A fair comparison of energy and area efficiency should therefore 

consider both direct (crosspoint) and indirect (periphery) contributions [92]. 

Crosspoint MVM can be adopted for a broad range of problems, including image compression [91], 

sparse coding [93], and implementation of artificial neural networks (ANNs), where Gij has the meaning of a 

synaptic weight, Vj is a pre-synaptic spike amplitude, and Ii is the input signal to the i-th neuron [69,70]. For 

instance, Fig. 5a represents a 3x3 ANN with 3 input neurons and 3 output neurons, where synaptic weights 

can be trained directly in hardware by gradient-descent algorithm and backpropagation, taking advantage of 

pulse accumulation in PCM and RRAM for updating the weights. The MVM scheme can be used to 

implement a content addressable memory (CAM), that is an associative memory which provides the location 

of the memory where the digital content is the best match to an input set of digital data. Fig. 5b shows the 

CAM concept, namely a crosspoint array with stored digital data Gij, and a set of input data Vj [52]. The row 

current in Eq. (1) provides an analogue match function, which is maximum for the input data being closest to 

the stored data Gij.  

While MVM relies on the precise voltage control of columns and rows for MVM operations, 

alternative biasing techniques can be used, e.g., to generate stochastic challenge-response PUFs. Fig. 5c 

shows a crosspoint PUF, where random conductance values Gij are stored, and all lines are left floating 

except for column j* and row i*, which are biased to V and 0, respectively. The current sensed at row i* 

includes not only the current of element (i*,j*), but also a number of sneak-path currents, flowing across the 
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indirectly biased resistive elements at floating rows/columns in the array [94]. Sneak-path currents are 

generally unwanted in memory arrays where the individual memory cell must be sensed to read the stored 

data. As a result of sneak-path currents in the crosspoint PUF, the output current is a complicated (hence 

hardly clonable) function of i*, j*, V, and Gij. The same concept can be generalized by biasing an arbitrary 

number of columns, serving as the input challenge [94]. Thanks to the good scalability and stochastic 

variation of resistance, the crosspoint PUF appears a promising solution for hardware security in the IoT. 
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Outlook 

In-memory computing provides a promising approach to overcome the limitations of existing von 

Neumann based computing approaches. However, there are many technical issues that must be addressed for 

in-memory computing to become a viable solution in information technology. It has been mentioned that 

switching variability is a major concern for deterministic computing (for example, the IMP logic gate of 

Fig. 2c can result in errors due to the cell-to-cell and cycle-to-cycle variations of Vset in RRAM). On the 

other hand, inherently stochastic functions, such as stochastic integration in artificial neurons and RNGs, 

benefit from switching variations in memory elements. It should be noted that statistical variability also 

affects memory operation for storage [74], although in such case it can be managed at the system level by 

algorithms that verify and correct the memory state soon after programming and correct for errors after a 

read operation. Similar verify techniques that are difficult to implement in computing and may affect the 

benefits of a pure in-memory computing system. 

Besides variations, memory instability can also limit the accuracy of in-memory computing, 

particularly for analogue operations in crosspoint computing. For instance, even assuming a precise tuning of 

array elements Gij by verify techniques in Fig. 5a, the conductance Gij, might be affected by spontaneous 

fluctuations, thus causing MVM inaccuracies. Instability particularly affects RRAM devices, as the 

localization in the LRS and HRS makes the resistance extremely sensitive to individual atomic transitions 

close to the conductive path [80]. PCM devices are less affected by instability due to the bulk-type 

conduction mechanism present in these devices. However, the resistance can drift in time as a result of the 

metastable nature of the amorphous state [95]. Resistance drift originates from structural relaxation of the 

amorphous phase after quenching from the liquid phase and consists of a decrease of the defect concentration 

and an increase of band gap and resistivity. Drift can be alleviated by increasing the read current [96], and 

adopting a core-shell structure of the memory cell, where the conduction path flows away from the core 

amorphous phase via a metallic shell layer [97]. In general, drift and noise increase their effects at high 

memory resistance, which also suffers from a higher nonlinearity of conductance, due to field- and 

temperature-induced enhancement of transport [91]. On the other hand, programming states at low resistance 

requires relatively high currents, thus impacting the energy efficiency of the computing system. Higher 

operating currents also raise the parasitic voltage drop across the metallic lines constituting the rows and 

columns of the memory array. As a result of resistance variation and nonlinearity, crosspoint arrays only 

compute approximate results, which should be restricted to a limited set of error-tolerant tasks, e.g., pattern 

recognition, page ranking, and data inference. Given this intimate device-system interaction, the design and 

optimization of the memory device should rely on a detailed consideration of the system-level performance 

metrics, including accuracy, energy efficiency, and switching speed. The memory device, as a result, will 

most likely be different from those targeted for digital data storage. 

A key requirement for in-memory computing to become a mainstream technology is scaling. The 

growth of internet data has been driving the scaling of Flash memory density by 40% increase per year, to 

sustain the storage capacity in mobile computers and data centres [98]. To enable a similar growth rate for 
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in-memory computing, crosspoint memory arrays should scale down. The density increase can be obtained 

by a decrease of the individual cell size (for example, by reducing the diameter of the RRAM device in 

Fig. 6a). Reducing the size of the computing element, however, raises concerns about the control of 

switching parameters and increased cell-to-cell variability. With the device downscaling, the interconnect 

line and the periphery circuit area should correspondingly decrease. However, interconnect downscaling 

causes an increase of series resistance, due to both the geometry scaling and the enhanced surface scattering 

[99]. The increased line resistance complicates the operation of the crosspoint circuit due to parasitic voltage 

drops, especially at high operating currents. Methods to reduce the interconnect resistivity include the use of 

novel materials, such as carbon nanotube and graphene [100], and alternative scaling paths. 

To overcome the difficulties of in-plane scaling, novel 3D array architectures have been proposed, 

such as the horizontal stacked 3D structure in Fig. 6b [89], and the vertical 3D structure in Fig. 6c [101]. The 

vertical 3D structure offers a better processing yield and cost efficiency with respect to horizontal 3D 

structures, as the critical lithography steps are limited to the creation of the pillar across the multiple 

electrode/spacing layers. In fact, in a vertical 3D array, memory cells are formed at the crossing between a 

horizontal plane and a vertical pillar, consisting of a core-shell structure with a metallic core and an 

insulating shell serving as the switching layer. Within a 3D array, high density can be achieved by increasing 

the number of stacked layers, instead of reducing the cell size and line width. The horizontal cell-cell pitch 

can be reduced by decreasing the thickness of the switching layer, which strongly favours RRAM and 

FeRAM memories thanks to the ultrathin switching layer, as opposed to relatively thick PCM and STT-

MRAM elements. Vertical 3D arrays have been recently demonstrated for in-memory computing 

applications, where 3D RRAM devices were used as multiplication-addition-permutation (MAP) kernels to 

classify and associate data for an integrated hyper-dimensional computing system [102]. Addressing the 

multiple technology challenges of 3D co-integration of memory devices, CMOS periphery, and low-

resistivity interconnect, can serve as a future highway for high density, energy efficient in-memory 

computing. 

To assess the full potential of in-memory computing, one should consider the individual computing 

blocks, such as the logic gates for Boolean operations or the crosspoint array that are discussed earlier in this 

article, and also system-level aspects such as the periphery circuit, the area efficiency, and the time and 

energy efficiency of the system. For instance, operating the logic gates in Fig. 3 requires a control logic in 

the periphery, biasing the lines of selected data while optimizing the crosspoint area use for maximum 

parallelism, and minimizing the interaction between independent operations, and the disturb to unselected 

bits. Other important considerations include power and clock delivery, especially for circuits in which the 

signal lines also need to supply the power and for circuits that need multi-phase clocks or precisely timed 

clocks. Without a critical assessment of the control system and algorithms, a comparison with conventional 

von Neumann computers is not possible. Similarly, comparing digital MAC and crosspoint-based MVM 

requires a detailed evaluation of the system complexity, periphery circuit area, error tolerance, memory array 

utilization, and overall energy efficiency. In this scenario, choosing a suitable application plays a significant 
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role, where in-memory computing might be better suited to data intensive, error tolerant tasks. The 

development of improved devices, with higher endurance, lower cycle-to-cycle variation, lower energy 

consumption, and lower instability, might considerably advance in-memory computing concepts and 

accelerate its adoption in the information communication technology world. 

In-memory computing can subvert the conventional architecture of the computer and eliminate the 

memory wall of today’s computing systems. Various schemes have been proposed to compute within 

resistive switching devices by exploiting the device physics to perform digital, analogue and stochastic 

computation. Although highly promising, significant efforts are still needed to address the interdisciplinary 

challenges of device optimization, circuit design, and system management. The development of resistive 

switching devices for storage is likely to strongly accelerate in-memory computing as a feasible alternative 

technology in post-Moore microelectronic industry. 
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Figure Captions 

 

Fig. 1 | Computational memory devices. (a,b) Resistive switching random access memory 

(RRAM) structure and current-voltage (I-V) characteristic of a bipolar switching device. The set transition 

from the high resistance state (HRS) to the low resistance state  (LRS) occurs at positive voltage due to the 

formation of a filament shunting the top and bottom electrodes, while the reset transition from LRS to HRS 

under negative voltage indicates the voltage-induced filament disconnection.(c,d) Phase change memory 

(PCM) structure and resistance change characteristic, showing the resistance measured after a voltage pulse 

is applied to a PCM device in the amorphous state. The decrease of resistance indicates increasing 

crystalized volume in the active material, while the increase of resistance above the melting point indicates 

increasing amorphous volume. (e,f) Magnetic tunnel junction (MTJ) structure and resistance-voltage (R-V) 

characteristic of a spin transfer torque magnetic random access memory (STT-MRAM) device. The parallel 

(P) and antiparallel (AP) states have low and high resistance, respectively, which can be attained at positive 

and negative voltage, respectively. (g,h) FeRAM structure and polarization-voltage hysteretic characteristic. 

The orientation of electrical dipoles causes permanent positive polarization at positive voltage, and negative 

polarization at negative voltage.  

 

Fig. 2 | RRAM-based digital logic gates. (a,b) V-R logic gate and corresponding truth table for 

material implication (IMP). The V-R logic gate consists of a single resistive switch, where the input/output 

signals are the applied voltages at the 2 ends of the device, and the switch conductance state, respectively. 

(c,d) V-V logic, also known as the threshold logic gate, and the input/output characteristic. Input and output 

signals are the applied voltages at the input nodes, and the output of the comparator stage. The four 

configurations of input values can be linearly separated according to the weights Gj and the comparator 

threshold VT, thus yielding a reconfigurable Boolean function. The input/output characteristic indicates an 

AND function, where low and high values of Y are indicated as filled and open symbols, respectively. (e,f) 

Parallel R-R stateful logic and corresponding truth table. Unconditional set transition occurs for X1 = 0, 

while no switching takes place for X1 = 1, thus resulting in an IMP operation. (g,h) Serial R-R stateful logic 

for OR operation and corresponding truth table. Conditional set transition from 0 to 1 takes place for odd 

input states, thus resulting in an OR operation. R-R logic is the only true in-memory option, as it is fully 

resident in the memory circuit. 

 

Fig. 3 | Analogue computing in a PCM device. (a) Numerical simulations of the temperature 

profile during programming and the phase distribution within a mushroom-type phase change memory 

(PCM) device after an increasing number of 50 ns pulses. More applied pulses lead to an increasing 

crystalline phase, causing a decrease of threshold voltage and resistance. (b) Arithmetic summation of 

addends 4 and 3 by pulse accumulation in a PCM. (c) Integrate-and-fire neuron, where integration is carried 



 26 

out by accumulating incoming spikes in a PCM element. (d) Synaptic potentiation by cumulative 

crystallization in a PCM synapse. 

 

Fig. 4 | Stochastic computing with resistive switching devices. (a,b) Random telegraph noise 

(RTN) current fluctuations and corresponding probabilistic distribution function (PDF), attributing random 

bit values 0 and 1 to current sub-distributions I0 and I1, respectively. (c,d) Applied voltage pulse, its current 

response evidencing the random delay time tD, and PDF of tD with equally spaced time window to uniformly 

attribute bit values 0 and 1. (e,f) Measured I-V curves evidencing cycle-to-cycle variation of Vset, and PDF of 

the resistance measured after stochastic set, where sub-distributions of the high resistance state (HRS) and 

the low resistance state (LRS) are attributed to bits 0 and 1, respectively. (g) Differential pair for generating 

uniform sequences of random bits without probability tracking. 

 

Fig. 5 | Analogue computing in crosspoint arrays. (a) Matrix-vector multiplication (MVM) within 

an artificial neural network (ANN), where input voltages Vj serve as pre-synaptic (input) neuron signals, and 

the array conductance Gij describes the synaptic weight. The output row current Ii provides the sum of 

weighted currents feeding the post-synaptic neuron. (b) Content-addressable memory (CAM) concept 

adopting MVM of input data Vj and stored data Gij. The MVM provides the best match to data, where the 

maximum response yields the address of input data. (c) Crosspoint physical unclonable function (PUF) for 

generating a response I* to a challenge, namely, the configuration of biased columns. The PUF relies on 

multiple sneak paths to yield a random unclonable function. 

 

Fig. 6 | Crosspoint memory architecture and scaling. (a) Resistance switching random access 

memory (RRAM) crosspoint structure with a single memory layer. To increase the device density, the 

RRAM diameter should be reduced. (b) Horizontal stacked 3D array, where device stacking enables density 

multiplication, roughly by the number of layers. (c) Vertical 3D array, combining high density and cost-

effective processing technology. 
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