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Datos experimentales del ELV para acetato de metilo o acetato de etilo + 1-butanol a 0.6 MPa. 
Predicciones utilizando Peng-Robinson EoS y los modelos de contribución por grupos.

Dades experimentals de l’ELV per l’acetat de metil o acetat d’etil + 1-butanol a 0,6 MPa. 
Prediccions utilitzant Peng-Robinson EoS i els models d’aportació per grups.
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SUMMARY

Vapor-liquid equilibrium data were obtained with 
a stainless steel ebulliometer at 0.6 MPa for methyl 
acetate + 1-butanol and ethyl acetate + 1-butanol. The 
experimental data for the binary systems were test-
ed and verified thermodynamically, showed positive 
consistency when the point-to-point test of Van Ness 
was applied. The group contribution models ASOG 
and three versions of the UNIFAC were applied to 
calculate the vapor-liquid equilibrium data and after, 
these values were compared to the experimental data. 
The approach f-f was applied by using the Peng-Rob-
inson equation of state, the classical attractive term 
was employed. The quadratic and Wong-Sandler mix-
ing rules were verified and the adjustable parameter 
of Stryjek-Vera was also applied.

Keywords VLE isobaric data, Methyl Acetate, Ethyl 
Acetate, 1-Butanol

RESUMEN

Los datos del equilibrio líquido-vapor para el acetato 
de metilo + 1-butanol y el acetato de etilo + 1-butanol 
fueron obtenidos a 0.6 MPa utilizando un ebullóme-
tro de acero inoxidable. Los datos experimentales de 
los sistemas binarios fueron comprobados y verifica-
dos termodinámicamente, observándose que presen-
tan consistencia positiva al ser aplicado el test punto 
a punto de Van Ness. Los modelos de contribución 

por grupos ASOG y tres versiones de UNIFAC fue-
ron empleados para calcular los datos del equilibrio 
líquido-vapor, posteriormente los valores calculados 
fueron comparados con los datos experimentales. La 
aproximación f-f fue utilizada aplicando la ecuación 
de estado de Peng-Robinson, utilizando el término 
atractivo clásico. Las reglas de mezclado cuadráticas 
y las de Wong-Sandler fueron verificadas y se empleó 
el parámetro ajustable de Stryjek-Vera.

Palabras clave: Datos isobáricos del ELV; acetato de 
metilo; acetato de etilo; 1-butanol.

RESUM

Les dades de l’equilibri líquid-vapor per a l’acetat de 
metil + 1-butanol i l’acetat d’etil + 1-butanol es van 
obtenir a 0,6 MPa utilitzant un ebulloscopi d’acer in-
oxidable. Les dades experimentals dels sistemes bina-
ris es van comprovar i verificar termodinàmicament, 
i es va observar que presenten consistència positiva a 
l’aplicació del test de Van Ness punt a punt. Els mo-
dels d’aportació per grups ASOG i les tres versions 
de UNIFAC van ser empleats per calcular les dades 
de l’equilibri líquid-vapor, i posteriorment els valors 
calculats van ser comparats amb els dades experi-
mentals. L’aproximació f-f es va utilitzar aplicant 
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l’equació d’estat de Peng-Robinson, utilitzant el terme 
atractiu clàssic. Les regles de barrejat quadràtiques i 
les de Wong-Sandler van ser verificades i es va utilit-
zar el paràmetre ajustable de Stryjek-Vera.

Paraules clau: Dades isobàriques de l’ELV; acetat de 
metil; acetat de etil; 1-butanol.

IINTRODUCTION

Esters and alcohols are frequently used in different 
industrial processes. Methyl acetate is used in organic 
synthesis and is also an excellent solvent for resin and 
paints, while ethyl acetate is used in the food, photo-
graphic, textile and paper industries. 1-butanol is em-
ployed in chlorination processes, as a dehydrating 
agent, in paints, lacquers and varnishes; in the phar-
maceutical industry, for tanning of hides, in the pho-
tographic industry and in perfumes. 1-butanol has also 
been studied as biodiesel due to the energy demand.

Consequently, the study of the behavior of these sub-
stances, mixtures and the determination of the va-
por-liquid equilibrium (VLE) has a scientific interest 
and is necessary in many industrial processes. That is 
why as in previous works1,2 we determined VLE data 
for ester/alcohol binary mixtures at moderate pressure. 
Data were determined at 0.6 MPa for (1) methyl acetate 
+ (2) 1-butanol (MA1B) and (1) ethyl acetate + (2) 1-bu-
tanol (EA1B). These systems were previously studied by 
different authors3-6 under several operating conditions.

VLE of MA1B has been studied at 74.66 and 127.99 
kPa by Susial and Ortega3, at 101.3 kPa by Belousov 
et al.3, Esteller et al.3, Ortega and Susial3, and Pat-
lasov et al.4; and at 0.3 MPa by Susial et al.5. VLE of 
EA1B has been studied isothermally by Alsmeyer 
and Marquardt3 and isobarically at 70.5 and 94 kPa 
by Darwish and Al-Khateib3, at 97.3 kPa by Mainkar 
and Mene6 at 101.3 kPa by Belousov et al.3, Ortega et 
al.4 and Shono et al.4; and at 0.3 MPa by Susial et al.5. 
Azeotropes have not been reported in these systems.

In this study experimental data were verified by ap-
plying the test of Van Ness7 using the FORTRAN pro-
gram8 of Fredenslund et al. The g-f approach enables to 
analyze the efficiency of the different group contribu-
tion models9-12. In addition, by using the f-f approach, 
experimental data were correlated with the Peng-Rob-
inson13 (PR) equation of state (EOS) using quadratic 
mixing rules or Wong-Sandler14 (WS) mixing rules. 
The classical attractive term or the adjustable parame-
ter of Stryjek-Vera15 (SV) were also used in both cases.

EXPERIMENTAL

Chemicals
Methyl acetate, ethyl acetate and 1-butanol (99%, 

99.9% and 99.9% mass purity, respectively) from Pan-
reac Química S.A. were used. The physical properties, 
normal boiling point (Tbp), density (ρii) and refrac-
tive index (nD) at 298.15 K have been previously pub-
lished1,2,5. These products were used as received.

	 A Kyoto Electronics DA-300 vibrating tube density me-
ter with an uncertainty of ±0.1 kg·m-3 was employed for 
density determinations of both pure components and 
VLE data. In addition, a Zusi 315RS Abbe refractometer 
with an uncertainty of ±0.0002 units was used for the 
refractive index determinations of pure components.

Equipment and procedures
An ebulliometer made of stainless steel (2 mm thick-

ness) was employed (Fig. 1) to obtain experimental VLE 
data. The apparatus operates with a 400 cm3 capacity. 
It has been built to work at moderate or high pressures. 
Flooding does not occur when working with about 800 
cm3 of mixing liquid. The liquid mixture is heated in 
a double-walled inverted vessel (E). Liquid and vapor 
circulate due to the Cotrell pump effect that takes place 
when the liquid is heated inside the boiling flask (E). 
The liquid phase is circulated across the funnel (B) to 
be collected in the C valve. The condensed vapor in the 
cooler (F) is circulated to be collected in the D valve.

The general description of the equilibrium ebulliom-
eter and the disposal of the different elements in the 
installation can be consulted in previous papers1,2,5.
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Fig. 1. Schematic diagram of the equilibrium recirculation still used for VLE 
measurements.

Fig. 1. Schematic diagram of the equilibrium recirculation 
still used for VLE measurements.

The experiments began with the cleaning of the equip-
ment. For this, about 500 cm3 of ethanol were introduced 
in the ebulliometer and the electric resistance located at 
E (see Fig. 1) was switched on; ethanol was boiled and 
kept under recirculation at atmospheric pressure for 
45 min. After this, ethanol was removed and, with the 
equipment still hot, the system was left under vacuum 
at 10 kPa (absolute pressure) for 45 min. Next, the ebul-
liometer was loaded with about 500 cm3 of acetone and 
the electric resistance located at E (see Fig. 1) was turned 
on; boiling of acetone was maintained under recircu-
lation for 45 min at atmospheric pressure. Thereafter, 
acetone was removed and before the equipment cooled, 
vacuum was applied at 10 kPa (absolute pressure) for 
45 min. Finally, the ebulliometer was closed at negative 
pressure (taking manometric pressure as reference), and 
dry nitrogen was introduced using a separate line1 until 
a pressure of about 150 kPa was reached. Before loading 
the equipment with the substances to be studied, pres-
sure was reduced to 101 kPa; this enables to introduce 
the substances without contamination. Next, the equip-
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ment was closed and charged with dry nitrogen, ready to 
operate at moderate pressure1,2,5,16.

The equilibrium still typology is of those in which 
both phases are recirculated. The ebulliometer oper-
ates dynamically by using the vapor lift pump effect. 
The equipment is made to work in co-currents flow, 
and thus, the equilibrium condition depends on the 
contact time between the non-miscible phases: the 
mass transfer process is a function of residence time. In 
other words, the equilibrium condition does not only 
depend on constant temperature and pressure. Con-
sequently, the statistical value of these two properties 
cannot be taken as the equilibrium criterion; the con-
stant composition of both phases must be also verified.

For this ebulliometer, the input/output flow of each 
phase was evaluated under different operating condi-
tions and with different binary mixtures16. With a flow 
around 25 cm3/min it was possible to obtain a com-
position in each phase that remained practically con-
stant when the renovation time was greater than 75 
min. For this reason, the mixtures studied in this work 
were kept at boiling conditions for 90 min to ensure the 
stationary state. Once the steady state was reached the 
vapor and liquid phase were both sampled. Next, the 
equilibrium was disturbed by adding one of the sub-
stances to the mixture in the ebulliometer.

A digital recorder Dostmann Electronic GmbH p655 
and two Pt100 probes with ±0.03 K uncertainty were 
employed. The calibration of the system was done by 
Dostmann Electronic GmbH. Proper operation of the 
probes installed in the equipment was verified by mea-
suring the boiling point of distilled water. Pressure 
was controlled with a pressure regulating valve (Binks 
MFG Co.) included in the nitrogen supply line. Pres-
sure was measured with a digital transducer 8311 from 
Burket Fluid Control Systems, with an operating range 
from 0.0 to 4.0 MPa (uncertainty ±0.004 MPa).

A calibration curve of composition vs. density had 
been previously obtained at 298.15 K for the systems 
of this work5. Mole fraction (xi) vs. density (ρij) data 
were verified by the adequate correlation of the ex-
cess volumes. The uncertainty was estimated to be 
less than 0.003 in mole fraction of vapor phase.

RESULTS AND DISCUSSION

Treatment and Prediction of VLE data
The VLE data T-x1-y1 for MA1B and EA1B at 0.6 

MPa are shown in Table 1. The activity coefficients of 
the liquid phase (gi) for each system were determined 
by using the following equation:
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The virial state equation truncated at the second term was employed and the second virial 

coefficients (Bii, Bij) were obtained by means of the Hayden and O’Connell17 method (see Table 

1). The liquid molar volumes of pure compounds were estimated from the equation of Yen and 

Woods18. Table 1 includes the γi values calculated from VLE data and using Eq. 1 as was 

previously indicated and by using the properties of Table 2. Literature data1,20,21 were employed 

to obtain the Antoine constants (see Table 2). A moderate positive deviation from Raoult's Law 

can be observed, probably due to a molecular association via hydrogen bonds.

(1)	

 The virial state equation truncated at the second term 
was employed and the second virial coefficients (Bii, Bij) 
were obtained by means of the Hayden and O’Connell17 
method (see Table 1). The liquid molar volumes of pure 
compounds were estimated from the equation of Yen 
and Woods18. Table 1 includes the gi values calculated 

from VLE data and using Eq. 1 as was previously indi-
cated and by using the properties of Table 2. Literature 
data1,20,21 were employed to obtain the Antoine con-
stants (see Table 2). A moderate positive deviation 
from Raoult’s Law can be observed, probably due to a 
molecular association via hydrogen bonds.

Table 1 Experimental VLE data for binary systems at 0.6 
MPa. Calculated values of second virial coefficients and 

activity coefficients of the liquid phasea

T x1 y1

B11 B22 B12 γ1 γ2K L/mol L/mol L/mol
methyl acetate (1) + 1-butanol (2)

452.24 0.000 0.000 -0.4855 -0.5675 1.00
448.61 0.034 0.108 -0.4958 -0.5855 -0.5426 1.05 1.00
448.17 0.036 0.116 -0.4970 -0.5877 -0.5442 1.07 1.00
447.31 0.044 0.140 -0.4995 -0.5921 -0.5474 1.08 1.00
446.09 0.054 0.175 -0.5031 -0.5985 -0.5520 1.12 1.00
444.77 0.068 0.213 -0.5070 -0.6056 -0.5570 1.11 1.00
444.40 0.072 0.224 -0.5081 -0.6076 -0.5584 1.11 1.00
443.38 0.084 0.251 -0.5111 -0.6132 -0.5624 1.08 1.01
441.51 0.100 0.290 -0.5168 -0.6236 -0.5697 1.08 1.02
439.49 0.120 0.343 -0.5230 -0.6353 -0.5778 1.11 1.02
436.74 0.151 0.416 -0.5317 -0.6517 -0.5891 1.12 1.00
435.16 0.166 0.437 -0.5368 -0.6615 -0.5957 1.10 1.03
433.67 0.186 0.476 -0.5416 -0.6710 -0.6021 1.10 1.02
433.02 0.192 0.486 -0.5438 -0.6752 -0.6049 1.11 1.03
427.78 0.259 0.599 -0.5614 -0.7108 -0.6284 1.11 1.01
425.72 0.288 0.635 -0.5686 -0.7257 -0.6380 1.11 1.01
423.03 0.323 0.678 -0.5782 -0.7459 -0.6509 1.11 1.01
417.51 0.418 0.761 -0.5987 -0.7907 -0.6786 1.07 1.03
417.11 0.425 0.762 -0.6002 -0.7941 -0.6807 1.07 1.05
415.14 0.456 0.784 -0.6078 -0.8114 -0.6911 1.06 1.07
413.56 0.492 0.802 -0.6140 -0.8257 -0.6996 1.04 1.10
413.19 0.501 0.801 -0.6155 -0.8291 -0.7017 1.03 1.14
410.07 0.578 0.837 -0.6281 -0.8588 -0.7191 1.00 1.22
406.15 0.659 0.880 -0.6444 -0.8988 -0.7420 1.00 1.26
404.97 0.690 0.893 -0.6495 -0.9115 -0.7491 0.99 1.29
402.47 0.753 0.914 -0.6604 -0.9394 -0.7645 0.98 1.41
401.16 0.790 0.926 -0.6662 -0.9546 -0.7728 0.98 1.49
400.18 0.812 0.937 -0.6707 -0.9662 -0.7791 0.98 1.47
397.34 0.895 0.963 -0.6837 -1.0013 -0.7978 0.98 1.70
396.45 0.920 0.971 -0.6879 -1.0128 -0.8038 0.98 1.81
396.02 0.931 0.974 -0.6899 -1.0184 -0.8067 0.98 1.91
395.56 0.943 0.977 -0.6921 -1.0244 -0.8099 0.98 2.08
395.01 0.956 0.984 -0.6947 -1.0318 -0.8137 0.99 1.91
394.91 0.961 0.986 -0.6952 -1.0331 -0.8144 0.98 1.89
394.33 0.974 0.990 -0.6979 -1.0409 -0.8184 0.99 2.07
394.10 0.979 0.991 -0.6991 -1.0441 -0.8200 0.99 2.32
393.01 1.000 1.000 -0.7043 -1.0592 1.00
a Expanded uncertainties U(0.95 level of confidence) are: 

U(T)=0.03 K, U(p)= 0.004 MPa, U(x1)=U(y1)=0.003

VLE data were tested for thermodynamic consisten-
cy by using the point-to-point test of Van Ness et al.7 
Results indicate that the experimental data for MA1B 
and EA1B binary systems at 0.6 MPa satisfy the Fre-
denslund et al.8 criterion. Results of the Redlich-Kister 
and Herington test were respectively: D=75.97 > 10% 
and ABS(D-J)=53.36 > 10 for MA1B; D=59.50 > 10% and 
ABS(D-J)=46.83 > 10 for EA1B. Therefore both system 
fails with area test. In addition, bibliographic3-5 data were 
employed for data verification of this work, and for this 
purpose all data were correlated to a polynomial equa-
tion presented in a previous paper16 as follows,
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the activity coefficients were correlated with the following thermodynamic models: the Wilson22

model, the NRTL23 model and the UNIQUAC24 model.

In the Wilson model22 the excess Gibbs function is represented by the following 

equation,
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The NRTL model23 applies the following equation for the excess Gibbs free energy,
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where αij=αji is a non-random parameter of the mixture which is associated with molecular 
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In the UNIQUAC model24 the excess Gibbs function is composed of the combinatorial 
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curves and experimental data are shown in Figs. 2 and 
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3. A significant compressive effect can be observed as 
a consequence of the applied pressure. Data from this 
study agrees with that in literature3-5.

Table 1 Continueda

T
x1 y1

B11 B22 B12 γ1 γ2K L/mol L/mol L/mol

ethyl acetate (1) + 1-butanol (2)
452.24 0.000 0.000 -0.6539 -0.5675 1.00
451.47 0.008 0.018 -0.6566 -0.5712 -0.6220 1.13 1.00
451.31 0.013 0.025 -0.6571 -0.5720 -0.6227 0.97 1.00
450.82 0.018 0.044 -0.6588 -0.5744 -0.6247 1.24 1.00
450.66 0.023 0.049 -0.6594 -0.5752 -0.6253 1.08 1.00
450.11 0.034 0.073 -0.6613 -0.5779 -0.6276 1.10 1.00
449.13 0.050 0.108 -0.6648 -0.5828 -0.6317 1.13 1.00
447.81 0.069 0.147 -0.6695 -0.5896 -0.6373 1.14 1.01
446.97 0.089 0.180 -0.6726 -0.5939 -0.6409 1.10 1.01
445.99 0.105 0.214 -0.6761 -0.5991 -0.6452 1.13 1.01
445.12 0.123 0.245 -0.6793 -0.6037 -0.6490 1.12 1.01
444.25 0.139 0.268 -0.6825 -0.6084 -0.6528 1.11 1.02
443.27 0.158 0.298 -0.6861 -0.6138 -0.6572 1.10 1.03
441.18 0.202 0.365 -0.6940 -0.6255 -0.6666 1.10 1.04
437.30 0.284 0.478 -0.7089 -0.6483 -0.6848 1.11 1.05
436.66 0.301 0.506 -0.7114 -0.6522 -0.6878 1.12 1.03
434.05 0.363 0.570 -0.7218 -0.6685 -0.7005 1.10 1.06
431.25 0.433 0.642 -0.7331 -0.6869 -0.7146 1.10 1.07
429.17 0.496 0.691 -0.7417 -0.7010 -0.7253 1.08 1.10
427.48 0.565 0.738 -0.7488 -0.7129 -0.7341 1.05 1.13
426.96 0.584 0.749 -0.7527 -0.7195 -0.7390 1.05 1.16
425.24 0.649 0.790 -0.7584 -0.7292 -0.7462 1.02 1.20
424.6 0.674 0.808 -0.7612 -0.7340 -0.7497 1.02 1.20

423.98 0.701 0.829 -0.7639 -0.7387 -0.7531 1.02 1.18
423.83 0.709 0.827 -0.7645 -0.7398 -0.7539 1.01 1.24
423.49 0.727 0.835 -0.7660 -0.7424 -0.7558 1.00 1.27
423.07 0.750 0.854 -0.7679 -0.7456 -0.7581 1.00 1.24
422.52 0.777 0.863 -0.7703 -0.7499 -0.7612 0.99 1.33
422.05 0.798 0.879 -0.7724 -0.7536 -0.7639 0.99 1.31
421.89 0.806 0.887 -0.7731 -0.7548 -0.7648 0.99 1.28
421.30 0.830 0.899 -0.7757 -0.7595 -0.7681 0.99 1.33
420.02 0.880 0.925 -0.7814 -0.7698 -0.7755 0.99 1.45
418.70 0.938 0.957 -0.7874 -0.7807 -0.7831 0.99 1.68
418.00 0.964 0.976 -0.7906 -0.7866 -0.7873 0.99 1.64
417.82 0.976 0.983 -0.7915 -0.7881 -0.7883 0.99 1.76
417.58 0.982 0.988 -0.7926 -0.7901 -0.7898 1.00 1.67
417.33 0.990 0.994 -0.7937 -0.7923 -0.7912 1.00 1.51
417.02 1.000 1.000 -0.7951 -0.7923 1.00

a Expanded uncertainties U(0.95 level of confidence) are: 
U(T)=0.03 K, U(p)= 0.004 MPa, U(x1)=U(y1)=0.003
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Fig. 2 Plot of experimental (y1−x1) vs. x1 data for MA1B (
) at 0.6 MPa. Literature data at 74.66 ( ) and 127.99 (

) kPa by Susial and Ortega3, 101.3 ( ) kPa by Ortega 
and Susial3, and 0.3 ( ) MPa by Susial et al.5 with 

fitting curves.
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Fig. 3 Experimental points of (y1−x1) vs. x1 for EA1B ( ) at 
0.6 MPa. Literature data at 70.5 ( ) and 94.0 ( ) kPa by 
Darwish and Al-Khateib3, 101.3 ( ) kPa by Ortega et al.4 

and 0.3 ( ) MPa by Susial et al.5 with fitting curves.
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being Z the coordination number, Φ the molecular fraction of segments and θ the molecular 

fraction of surfaces. τij are the adjustable parameters and ∆uij represents the average interaction 

energy of molecules. The volume and area of groups of van der Waals are used to calculate r

and q, volume and area parameters, of the UNIQUAC model (see Table 2).

The adjustable parameters in each of these models (Table 3) were obtained using the 

Nelder and Mead method25. Deviation in the sum of the squares of activity coefficient was 

minimized for both substances during optimization of the parameters. For MA1B the NRTL 

equation23 yielded the lowest mean absolute deviations (MAD) as well as standard deviations 

(SD) between experimental and calculated values for temperature and vapor compositions. 

However, the Wilson model22 yields the best correlation for EA1B, with the lowest MAD in 

both temperature and vapor phase mole fraction.

Temperature, pressure, vapor phase composition and the calculated activity coefficients 

were compared with the theoretical predictions of VLE obtained with the ASOG model9, the 

mod. UNIFAC-Lyngby model10 proposed by Larsen et al., the original UNIFAC model8 with 

Hansen et al. parameters11 and the mod. UNIFAC-Dortmund model12 proposed by Gmehling et 

al.

In the group contribution models the activity coefficient of the liquid phase are 

calculated with the following equation:

(10)          γγγ sidRe
i

Comb
ii lnlnln +=

Differences in the models arise from the interpretation given in each one about the 

combinatorial and residual contributions. In the ASOG9 model the combinatorial part is obtained 
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c the number of atoms (non hydrogen atoms) in the molecule j. The residual part is 

determined as follow,
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where Xl represent the group fraction of group l in the liquid solution. In the above expression 

(Eq. 13) the summations extend over all groups and alk, alm are the group interaction parameters.

The UNIFAC8,10-12 models are generally based on the equations of the UNIQUAC model 

for the combinatorial part, being for the clasical UNIFAC8 model,
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θ represents the molecular surface area fraction (see Eq. 9), Φ is the molecular volume fraction 

(see Eq. 9) and the pure-component lattice parameter, l, is function of van der Waals surface 
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where ψ represent the modified group volume fraction. For the mod. UNIFAC-Gmehling12
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being η the modified molecular surface area fraction and δ the modified molecular volume 

fraction. In the UNIFAC models, the residual part of the activity coefficient (Eq. 12 being ϑki

the number of groups of type k in molecule i,) is replaced by the solution-of-groups concept. The 

following equation is used for the group activity coefficient,
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where Qk is the van der Waals surface area of group k, Θ represents the group surface area 

fraction and ξ is defined by an equation that includes the group contribution parameters. Both Θ

and ξ have different expressions in the UNIFAC versions.
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Table 2 Properties of literature19 and from this work.

Tc19 Pc19 RD19 m19 Zc19 A B C Vi r q
K MPa Å D L/mol

methyl acetate
506.80 4.69 2.996 1.679 0.254 6.7347 1529.38 6.59 0.0798 2.8042 2.576

ethyl acetate
523.25 3.83 3.468 1.781 0.252 7.0337 1869.43 -22.19 0.0985 3.4786 3.116

1-butanol
562.93 4.4127 3.251 1.66 0.259 6.4296 1261.325 106.43 0.0936 3.4543 3.052
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Table 2 Properties of literature19 and from this work.
Tc19 Pc19 RD19 µ19 Zc19 A B C Vi r q
K MPa Å D L/mol

methyl acetate
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Table 3 Correlation parameters of GE/RT vs. x1, mean absolute deviations and standard deviations

model parameters MAD(y1) MAD(T)/K SD(γ1) SD(γ2) SD(GE/RT)
methyl acetate (1) + 1-butanol (2) at 0.6 MPa

Wilson22 Δλ12 = -2824.4 J·mol-1 Δλ21 = 6962.7 J·mol-1 0.019 2.04 0.11 0.14 0.015
NRTL (α = 0.47)23 Dg12 = 5996.6 J·mol-1 Dg21 = -2183.6 J·mol-1 0.018 2.04 0.10 0.12 0.018

UNIQUAC (Z = 10)24 Δu12 = 3935.6 J·mol-1 Δu21 = -2104.9 J·mol-1 0.020 2.07 0.11 0.14 0.016
ethyl acetate (1) + 1-butanol (2) at 0.6 MPa

Wilson22 Δλ12 = -1693.4 J·mol-1 Δλ21 = 4206.9 J·mol-1 0.013 0.53 0.07 0.09 0.010
NRTL (α = 0.47)23 Dg12 = 4396.8 J·mol-1 Dg21 = -1896.1 J·mol-1 0.013 0.61 0.07 0.08 0.012

UNIQUAC (Z = 10)24 Δu12 = 3185.2 J·mol-1 Δu21 = -1922.2 J·mol-1 0.014 0.57 0.07 0.09 0.011

26

Table 3 Correlation parameters of GE/RT vs. x1, mean absolute deviations and standard deviations
model parameters MAD(y1) MAD(T)/K SD(γ1) SD(γ2) SD(GE/RT)

methyl acetate (1) + 1-butanol (2) at 0.6 MPa
Wilson22 Δλ12 = -2824.4 J·mol-1 Δλ21 = 6962.7 J·mol-1 0.019 2.04 0.11 0.14 0.015

NRTL (α = 0.47)23 ∆g12 = 5996.6 J·mol-1 ∆g21 = -2183.6 J·mol-1 0.018 2.04 0.10 0.12 0.018
UNIQUAC (Z = 10)24 Δu12 = 3935.6 J·mol-1 Δu21 = -2104.9 J·mol-1 0.020 2.07 0.11 0.14 0.016

ethyl acetate (1) + 1-butanol (2) at 0.6 MPa
Wilson22 Δλ12 = -1693.4 J·mol-1 Δλ21 = 4206.9 J·mol-1 0.013 0.53 0.07 0.09 0.010

NRTL (α = 0.47)23 ∆g12 = 4396.8 J·mol-1 ∆g21 = -1896.1 J·mol-1 0.013 0.61 0.07 0.08 0.012
UNIQUAC (Z = 10)24 Δu12 = 3185.2 J·mol-1 Δu21 = -1922.2 J·mol-1 0.014 0.57 0.07 0.09 0.011

( )
/,,,,          ;

2
)SD(;

2
1)MAD( E

211
1

2
calexp

1
calexp RTGγγp,TyF

n

FF
FFF

n
F

n
n

≡
−

−
=−

−
=

∑∑

Table 4 Results of predictions using group contribution models and PR-EOS
mod. UNIFAC-

Lyngby10

OH/COOC

UNIFAC-19918,11

OH/CCOO

mod. UNIFAC-
Dortmund12

OH/CCOO

ASOG-19799

OH/COO PR13 PRSV13,15 PRWS13,14 PRSVWS13-15

methyl acetate (1) + 1-butanol (2) at 0.6 MPa
MAD(y1) 0.011 0.028 0.023 0.046 0.007 0.014 0.012 0.013

MAD(T)/K 0.93 3.32 2.76 5.93 0.82 0.47 0.37 0.45
MAD(p)/MPa 0.011 0.044 0.036 0.078

MPD(γ1) 4.12 17.81 12.78 32.96
MPD(γ2) 12.75 4.13 3.70 4.31

ethyl acetate (1) + 1-butanol (2) at 0.6 MPa
MAD(y1) 0.012 0.020 0.012 0.023 0.008 0.008 0.012 0.006

MAD(T)/K 1.17 2.16 0.70 2.39 0.74 0.38 0.55 0.26
MAD(p)/MPa 0.011 0.028 0.009 0.031

MPD(γ1) 5.33 17.45 6.16 21.18
MPD(γ2) 10.74 4.13 3.51 4.2

2
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where y represent the modified group volume frac-
tion. For the mod. UNIFAC-Gmehling12 model,
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and ξ have different expressions in the UNIFAC versions.
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where Qk is the van der Waals surface area of group 
k, Q represents the group surface area fraction and 
x is defined by an equation that includes the group 
contribution parameters. Both Q and x have differ-
ent expressions in the UNIFAC versions.

Table 4 shows prediction results from the group 
contribution models. Figs. 4 and 5 show the exper-
imental data and the fitting curves of predictions 
when using these group contribution models.
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and (dark brown color lines) mod. UNIFAC-Gmehling12 predictions.
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In general terms, the best prediction for gi was ob-
tained with the mod. UNIFAC model proposed by 
Gmehling et al.12 However, most accurate results in 
composition were found using the mod. UNIFAC 
model proposed by Larsen et al.10 The Gmehling et 
al.12 version also returns a good prediction for EA1B. 
The UNIFAC model8 with the Hansen et al.11 parame-
ters and the ASOG model9 yield poor predictions and 
higher deviations in pressure and temperature, being 
the mean proportional deviation (MPD) for the pre-
diction of the vapor phase mole fraction, respectively: 
9% and 16% for MA1B and 12% and 14% for EA1B.

Results indicate that with the current parameters, 
some of the group contribution models do not repro-
duce adequately the VLE at moderate pressures; how-
ever, it is often observed that predictions given by the 
models proposed by Larsen et al.10 and Gmehling et 
al.12 are more successful.

Modelling with PR-EOS
The reliability in VLE modelling for mixtures that 

have hydrogen bonding via proton donor and proton 
acceptor is low if proper binary interaction param-
eters are not employed, especially at high pressure. 
Consequently, the prediction of phase equilibrium 
can be done by using EOS; if necessary, using the ap-
propriate mixing rules. This is why in this work the 

Table 4 Results of predictions using group contribution models and PR-EOS

mod. UNIFAC-Lyngby10

OH/COOC
UNIFAC-19918,11

OH/CCOO
mod. UNIFAC-Dortmund12

OH/CCOO
ASOG-19799

OH/COO PR13 PRSV13,15 PRWS13,14 PRSVWS13-15

methyl acetate (1) + 1-butanol (2) at 0.6 MPa
MAD(y1) 0.011 0.028 0.023 0.046 0.007 0.014 0.012 0.013

MAD(T)/K 0.93 3.32 2.76 5.93 0.82 0.47 0.37 0.45
MAD(p)/MPa 0.011 0.044 0.036 0.078

MPD(γ1) 4.12 17.81 12.78 32.96
MPD(γ2) 12.75 4.13 3.70 4.31

ethyl acetate (1) + 1-butanol (2) at 0.6 MPa
MAD(y1) 0.012 0.020 0.012 0.023 0.008 0.008 0.012 0.006

MAD(T)/K 1.17 2.16 0.70 2.39 0.74 0.38 0.55 0.26
MAD(p)/MPa 0.011 0.028 0.009 0.031

MPD(γ1) 5.33 17.45 6.16 21.18
MPD(γ2) 10.74 4.13 3.51 4.2

26

Table 3 Correlation parameters of GE/RT vs. x1, mean absolute deviations and standard deviations
model parameters MAD(y1) MAD(T)/K SD(γ1) SD(γ2) SD(GE/RT)

methyl acetate (1) + 1-butanol (2) at 0.6 MPa
Wilson22 Δλ12 = -2824.4 J·mol-1 Δλ21 = 6962.7 J·mol-1 0.019 2.04 0.11 0.14 0.015

NRTL (α = 0.47)23 ∆g12 = 5996.6 J·mol-1 ∆g21 = -2183.6 J·mol-1 0.018 2.04 0.10 0.12 0.018
UNIQUAC (Z = 10)24 Δu12 = 3935.6 J·mol-1 Δu21 = -2104.9 J·mol-1 0.020 2.07 0.11 0.14 0.016

ethyl acetate (1) + 1-butanol (2) at 0.6 MPa
Wilson22 Δλ12 = -1693.4 J·mol-1 Δλ21 = 4206.9 J·mol-1 0.013 0.53 0.07 0.09 0.010

NRTL (α = 0.47)23 ∆g12 = 4396.8 J·mol-1 ∆g21 = -1896.1 J·mol-1 0.013 0.61 0.07 0.08 0.012
UNIQUAC (Z = 10)24 Δu12 = 3185.2 J·mol-1 Δu21 = -1922.2 J·mol-1 0.014 0.57 0.07 0.09 0.011
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PR-EOS13 using quadratic mixing rules and the WS14 
mixing rules have been used. The adjustable param-
eter employed by SV15 in the attractive term was also 
applied. The PR-EOS13 has the following equation: 
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Results indicate that with the current parameters, some of the group contribution models 

do not reproduce adequately the VLE at moderate pressures; however, it is often observed that 

predictions given by the models proposed by Larsen et al.10 and Gmehling et al.12 are more 

successful.
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The reliability in VLE modelling for mixtures that have hydrogen bonding via proton 

donor and proton acceptor is low if proper binary interaction parameters are not employed, 

especially at high pressure. Consequently, the prediction of phase equilibrium can be done by 

using EOS; if necessary, using the appropriate mixing rules. This is why in this work the PR-

EOS13 using quadratic mixing rules and the WS14 mixing rules have been used. The adjustable 

parameter employed by SV15 in the attractive term was also applied. The PR-EOS13 has the 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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The classical mixing rules, with the binary interaction parameter k1ij and k2ij were 

employed. Therefore, the am and bm parameters were:
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 

to be adequate. Therefore, the WS14 mixing rules were also applied. The WS mixing rules are 

given by:
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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NRTL model23 was used, as follows: 
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When the SV15 equation is employed, in PRSV-EOS 

m is modified according to Eq. 23, where  k0 is a func-
tion of the acentric factor, and ω and k1 are adjustable 
parameters for each pure component, as follows:
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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The classical mixing rules, with the binary interac-
tion parameter k1ij and k2ij were employed. Therefore, 
the am and bm parameters were:
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 

to be adequate. Therefore, the WS14 mixing rules were also applied. The WS mixing rules are 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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However, for non-ideal mixtures like those this pa-
per the quadratic mixing rules can not to be adequate. 
Therefore, the WS14 mixing rules were also applied. 
The WS mixing rules are given by:
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 

( ) (30)               with ijijij

N

i
N

r
rir

N

j
jijij

i

E

expG
Gx

Gx

x
RT
A

τα−=

τ

= ∑
∑

∑
∞

	           (27)

    

10

(21)          11
250





 





 −+=β

.
rTm)T(

(22)          269920542261374640 2ω.ω..m −+=

When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:

( ) (23)          70110 50
r

.
r T.Tκκm −





 ++=

(24)          019655401713184804897153137889300 32





 +−+= ω.ω.ω..κ

The classical mixing rules, with the binary interaction parameter k1ij and k2ij were 

employed. Therefore, the am and bm parameters were:

( ) ( ) (25)          11
50

ij

.N

i

N

j
jijim kaaxxa −= ∑∑

( ) (26)          21
2 ij

.N

i

N

j

ji
jim k

bb
xxb −







 +
= ∑∑

However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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where C is a numerical constant equal to  and kij = kji 
is the binary interaction parameter for each system. 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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The classical mixing rules, with the binary interaction parameter k1ij and k2ij were 
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 

to be adequate. Therefore, the WS14 mixing rules were also applied. The WS mixing rules are 

given by:
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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is an excess Helmholtz free energy model at in-
finite pressure that can be equated to a low-pressure 
excess Gibbs energy model26. In this study, the NRTL 
model23 was used, as follows: 
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When the SV15 equation is employed, in PRSV-EOS m is modified according to Eq. 23, 

where  κ0 is a function of the acentric factor, and ω and κ1 are adjustable parameters for each 

pure component, as follows:
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However, for non-ideal mixtures like those this paper the quadratic mixing rules can not 

to be adequate. Therefore, the WS14 mixing rules were also applied. The WS mixing rules are 
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where C is a numerical constant equal to ( ) 623.02/12ln −=− and kij = kji is the binary 

interaction parameter for each system. EA∞ is an excess Helmholtz free energy model at infinite 

pressure that can be equated to a low-pressure excess Gibbs energy model26. In this study, the 

NRTL model23 was used, as follows: 
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being aij=aji as well as tij and tji adjustable parameters 
to obtain agreement between theory and experiment 
for VLE. The non-randomness parameter (a) of the 
NRTL model23 was fixed to 0.47 in this study. 

Vapor pressures reported in literature1,20,21 were used 
to obtain the k1 adjustable parameter of SV15 using the 
PR equation. The critical properties employed (see Ta-
ble 2) were taken from Daubert and Danner19. SD was 
used for minimization parameters. 

The Matlab program from Martin et al.27 is an ed-
ucational program with a library of different EOS’s 
including PR13, PRSV13,15, PRWS13,14 and PRSVWS13-15. 
We developed a FORTRAN code, based on a simpli-
fied version of the above-mentioned Matlab program, 
but related by separate to PR-EOS13, PRSV-EOS13,15, PR-
WS-EOS13,14 and PRSVWS-EOS13-15.

Martin’s Matlab program27 uses inner functions, such 
as fzero, fsolve or fminsearch. These inner math func-
tions of Matlab are robust and reliable but they imply 
long times of computer use. We substitute them for our 
own FORTRAN subroutines that lead us to similar ac-
curacy. At the same time, we change Matlab programs 
structure, avoiding unnecessary loops, and eliminating 
redundant assignment sentences, improving our FOR-
TRAN code in speed of execution.

Using these new programs, our results are k1=0.0234 
(k1=0.0579128) with SD=3.27 and MPD=1.6 for methyl 
acetate; k1=0.0692 (k1=0.0646428) with SD=5.40 and 
MPD=1.2 for ethyl acetate and k1=0.4874 (k1=0.3343115) 
with SD=4.43 and MPD=1.7 for 1-butanol. 

When comparing the results with those cited in the 
literature15,28, a good match for the ethyl acetate and 
discrepancies in the other two substances is observed. 
However, while in the case of 1-butanol the tempera-
ture range used in this study for correlations is wider, 
in all cases the number of data used in this paper to ob-
tain the SV parameter, is also much higher; this, along 
with the considerable differences in both the critical 
properties and acentric factor used in the case of me-
thyl acetate and 1-butanol, can explain the differences.

The binary interaction parameters for the systems of this 
work were treated as fitting parameters of VLE data. The 
physical properties from literature19 were used for data 
processing by PR-EOS13 considering the classical b(T) 
function for the attractive interaction and also by PRSV-
EOS13,15 using the SV modification. In both cases, the 
numerical values of k1ij, k2ij with quadratic mixing rules 
were obtained. In addition, the numerical values of k1ij, 
k2ij were also calculated when the WS14 mixing rules and 
kij, tij, tji parameters were employed in PRWS-EOS13,14 and 
PRSVWS-EOS13-15. All calculated values were obtained by 
using the FORTRAN programs above mentioned.

To systematize data analysis of the MA1B and EA1B 
binary systems, it was decided to obtain the acentric 
factor, since the models are highly dependent on this 
parameter. Vapor pressures from literature1,20,21 and the 
critical properties of Daubert and Danner19 were used. 
The Nelder and Mead method25 was employed for data 
correlation. Results were: ω=0.328 (ω=0.325319) with 
SD=0.0004; ω=0.362 (ω=0.361119) with SD=0.0012 
and ω=0.599 (ω=0.594519) with SD=0.0003, for methyl 
acetate, ethyl acetate and 1-butanol, respectively. 
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To predict the compositions of the MA1B and EA1B 
binary systems at 0.6 MPa it was considered the p-x1 
bubble point scheme. The simplex method25 was used, 
and the objective function (OF) was as follows:
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Often for the Eq. 31 the maximum-likelihood principle is considered. Therefore, the 

standard deviations (SD) are employed. However, in this work uncertainties U(T); U(y1) have 

been used in Eq. 31. This amendment arises when considering that SD is a standard uncertainty, 

and therefore, its use may be sufficient when the experimental data are correlated with the 

equations of the thermodynamic-mathematical models that enable the production of adjustable 

parameters. In addition, when the models can predict VLE data, it seems more reasonable to 

consider a higher level of confidence. That is why we have selected the expanded uncertainty, 

because in this way we ensure a higher quality prediction by the models. 
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experimental data and the correlation curves obtained by using these EOS.
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Fig. 6 Representation of experimental T-x1-y1 data for the binary systems MA1B (     , )
and EA1B (   , ) at 0.6 MPa. Predictions represented by green color lines and dark 
brown color lines using PR-EOS13 and PRSVWS-EOS13-15 respectively.Fig. 6 Representation of experimental T-x1-y1 data for the 

binary systems MA1B (  , ) and EA1B ( , ) at 0.6 MPa. 
Predictions represented by green color lines and dark 

brown color lines using PR-EOS13 and PRSVWS-EOS13-15 
respectively.
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Fig. 7 Representation of experimental T-x1-y1 data for the binary systems MA1B (     , )
and EA1B (   , ) at 0.6 MPa. Predictions represented by green color lines and dark 
brown color lines using PRWS-EOS13,14 and PRSV-EOS13,15 respectively.Fig. 7 Representation of experimental T-x1-y1 data for the 

binary systems MA1B ( , ) and EA1B ( , ) at 0.6 MPa. 
Predictions represented by green color lines and dark 

brown color lines using PRWS-EOS13,14 and PRSV-EOS13,15 
respectively.

Results indicate that the best overall prediction of the 
experimental VLE data in both systems is obtained 
with the PRSVWS-EOS model13-15 as can be seen in 
Table 3 and Figs. 4 and 6. The PR-EOS model13 re-
turns reasonably good predictions when considering 
the composition of the vapor phase (see Fig. 4). The 
prediction of temperature for both systems is poor 
(see Fig. 6), when compared to the results obtained 
with models that use the SV equation15. This can be 
observed in Figs. 4, 6, 7. On the other hand, in Fig. 4 
a similar prediction of the composition of the vapor 
phase is observed with the PR-EOS13 and PRSVWS-
EOS13-15 models. Fig. 6 shows that best temperature 
predictions are archived by using the SV equation15. A 
similar behavior can be seen in Figs. 4 and 7.

Therefore, in general, when the SV equation is em-
ployed, better predictions are obtained than when the 
PR model is used. However, this does not seem enough 
to describe the thermodynamic behavior, nor for VLE 
calculations. Nevertheless, when using the WS mixing 
rules, results show that the PRSVWS model can satisfac-
torily represent the VLE, for non-ideal polar organic sys-
tems, such as the ester + alcohol mixtures of this work.

CONCLUSIONS

Experimental data for the binary mixtures methyl 
acetate/1-butanol and ethyl acetate/1-butanol at 0.6 MPa 
were obtained. The thermodynamic consistency was ver-
ified by using the point-to-point test. Results satisfy the 
global criterion of this test. In addition, data obtained in 
this work shows good agreement with bibliographic data.

Predictions by using the ASOG and UNIFAC group 
contribution models were obtained. Results show that 
the mod. UNIFAC-Lingby version returns satisfacto-
ry and best predictions, although the mod. UNIFAC-
Dortmund model returns a good prediction of EA1B. 

Experimental data were correlated with PR-EOS 
using quadratic mixing rules and the Wong-Sandler 
mixing rules. The effect on the attractive term using 
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the Stryjek-Vera parameter was also verified. Global-
ly, results show the best predictions were obtained by 
using the Stryjek-Vera parameter and Wong-Sandler 
mixing rules simultaneously. 
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