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ABSTRACT

Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour
and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal
tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity
relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (ΔNTCP), including its
uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical
method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual
individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated
with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of
the number of patients who developed toxicity in each dose level/bin and the total number of patients in that
dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual
patient data when using the Delta method. With reliable NTCP models, the ΔNTCP with uncertainty might
potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to deter-
mine the appropriate ΔNTCP threshold.

Keywords: normal tissue complication probability; uncertainty; proton therapy; radiation-induced liver disease;
liver tumour
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INTRODUCTION
Proton beam therapy (PBT) has emerged as a promising radiother-
apy modality due to its favourable physical properties, in that it
allows dose escalation to the tumour and minimizes unnecessary
doses to normal tissues. With the aim of appropriate patient selec-
tion for PBT, a group of researchers at the University of Groningen,
Netherlands, first introduced the model-based approach (MBA) to
identify patients who could potentially benefit from PBT over X-ray
therapy (XRT) by using a normal tissue complication probability
(NTCP) model to estimate the risk of developing toxicity [1].
Langendijk et al. and Jokabi et al. investigated the NTCP difference
(ΔNTCP) obtained from in silico planning, comparing intensity-
modulated radiotherapy (IMRT) with intensity-modulated proton
therapy (IMPT) in head and neck cancers [1, 2]. The selective use
of PBT relies on a predefined ΔNTCP threshold, such as 10% for
Grade II or 15% for total clinical benefit, according to the Dutch
Society of Radiation Oncology (NRVO) guidelines [3]. However,
these models were derived from a statistical assumption based on a
small subset of the population, and the model uncertainty affects
the accuracy of PBT selection [4]. In other words, underestimating
ΔNTCP can eliminate the opportunity to benefit from PBT,
whereas an overly cautious practice might cause the unnecessary use
of this high-cost treatment. Therefore, uncertainty regarding the
ΔNTCP values is necessary for better clinical implementation in
the general population.

In the development of a reliable and generalized NTCP model,
using large patient cohorts from multi-institutional datasets can fur-
ther enhance the model accuracy. However, access to individual
dose–volume histogram (DVH) data might be limited in local insti-
tutions due to ethical or technical issues. Recently, Wedenberg
reported the use of dose-bin data obtained from the literature in
order to assess the uncertainty in the estimated dose–response rela-
tion for radiation myelopathy and pneumonitis using statistical
bootstrap analysis [5]. The advantage of the dose-bin method is its
practical convenience, because the data needed for analysis are the
number of patients and the number of occurrences of the endpoint
in each dose bin. This results in less ethical concern because patient
identifier data will not necessarily be revealed. Therefore, dose-bin
data is another option for acquiring individual data for large-volume
data sharing among institutions. However, the accuracy of using this
type of data has yet to be warranted.

The present study uses radiation-induced liver disease (RILD)
in liver tumour patients as a study model for describing the method-
ology of assessing ΔNTCP with uncertainty, using the 95% confi-
dence interval (95% CI), between XRT and PBT. It also compares
the results derived from individual patient datasets with those
derived from dose-bin datasets, using various methods.

MATERIALS AND METHODS
NTCP model for RILD

RILD is a dose-limiting toxicity of liver radiotherapy and occurs
with a frequency of ~5–10% when whole liver is irradiated with up
to 30–35 Gy [6, 7], but a tumour requires 60–70 Gy for curative
purposes. The most commonly used NTCP model for RILD is the
Lyman–Kutcher–Burman (LKB) model [8, 9]. The three parameters

of the LKB NTCP model are ( )TD 150 (the 50% tolerance dose of
whole organ), m (the steepness of the dose–response curve) and n
(the volume effect). To account for non-homogenous irradiation to
the organ, the generalized equivalent uniform dose (gEUD) was
adopted [10, 11]. The physical dose from the PBT plan, assuming a
RBE of 1.1, and the fractionation schemes should be converted into
gEUD as described in a supplementary document (Appendix 1).

Study scheme and virtual patient dataset generation
The study scheme is illustrated in Fig. 1. Due to the lack of a large
set of DVH data and observed toxicities in liver cancer patients, we
created a virtual patient dataset mimicking the Michigan data [12,
13]. In Monte Carlo fashion, a set of virtual patients in whom the
statistics on mean normal liver dose (MNLD) distribution and
RILD events were similar to the Michigan data was generated (REF
dataset). Subsequently, the REF dataset was organized by dividing
the dose level into equal intervals of 5 Gy (0–5 Gy, 5–10 Gy,
10–15 Gy, and so on) and then counting the number of RILD cases
and the total number of patients in each dose level/bin (dose bin,
DB, dataset) (Appendix 2).

Determination of LKB NTCP model parameters
The two types of dataset included the input data for determining
the LKB NTCP model parameters using maximum likelihood esti-
mation (MLE), where TD50 (1) and m were adjusted to maximize
the probabilities of predicting complications for those who experi-
enced RILD and of predicting no complications for those who did
not [14]. Subsequently, the variance (σ2 or var) and covariance
(cov) of TD50 (1) and m were obtained from the observed Fisher
Information Matrix (FIM). The approximate 95% CI was evaluated as
1.96 standard deviations of the mean (σ or var ), 1.96 × var ,
according to the central limit theorem.

Definition of the ΔNTCP function
With gEUD from the treatment plan and the estimated LKB NTCP
parameters, TD50 (1) and m, from MLE, the ΔNTCP between
XRT and PBT is given by the following function:

( ) = ( | ( ) )
− ( | ( ) )

f gEUD TD 1 m
gEUD TD 1 m

XRT, PBT NTCP ,
NTCP , ,

XRT 50

PBT 50

XRT

PBT

where f is a function of ΔNTCP between XRT and PBT and
gEUDXRT and gEUDPBT denote the normal liver dose for a certain
patient for XRT and PBT, respectively. TD50 (1) is the 50% toler-
ance dose for uniform distribution for the whole organ, and m is the
steepness of the dose–response curve at TD50 (1).

Determination of the ΔNTCP with uncertainty
Given the function of the ΔNTCP and the estimated var and cov
matrix, the Delta method was applied [15]. Briefly, the Delta meth-
od is a standard statistical method for obtaining an approximation
of the variance of a function.
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( ) = (∂ ∂ ) ( )
+ (∂ ∂ )(∂ ∂ ) ( ) + (∂ ∂ ) ( )
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/
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2
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where ∂f/∂TD50 and ∂f/∂m are partial differentials of f with central
estimates of TD50 and m, var(TD50) and var(m) are variances of
TD50 and m, respectively, and cov(TD50, m) is a covariance between
TD50 and m.

Four different algorithms for assessment of the ΔNTCP uncer-
tainty (95% CI) were proposed in the present study. Algorithm #1:
the Delta method was applied using the REF dataset to define
ΔNTCP with a 95% CI (ΔNTCPREF) as described above. Algorithm

#2: the same procedures were performed using the DB dataset
(ΔNTCPDB).

Using the bootstrapping technique, newly synthesized individual
datasets were generated from the DB dataset. In this case, a thousand
bootstrap replicates were generated by random sampling with replace-
ment within each dose-bin. As a result, each bootstrap replicate repre-
sented an alternative outcome in a different set of patients of the
same size from the same population and contributed to different
values of ( )TD 150 and m and to their variability (var and cov).
Algorithm #3: the family of parameters and variability were analysed
using a method introduced by Efron [16] to identify the means of

( )TD m1 ,50 , var and cov. Subsequently, the ΔNTCP with uncertainty

Fig. 1. A study scheme illustrating the proposed algorithms for identifying the NTCP and its difference (ΔNTCP) with 95%
confidence intervals. RILD = radiation-induced liver disease, NTCP = normal tissue complication probability, ΔNTCP =
NTCP difference, REF = reference, DB = dose-bin, BS = bootstrap, MLE = maximal likelihood estimation, FIM = Fisher
information matrix, DELTA = Delta method, TD50 (1) = the 50% tolerance dose for whole organ, m = steepness of dose–
response curve at ( )TD 150 , VAR = variance, COV = covariance.
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was evaluated using the Delta method (ΔNTCPBS1). Another meth-
od for assessing the uncertainty due to sampling variability was pro-
posed by Wedenberg [5] and was used here. Algorithm #4: the 95%
bootstrap CI of the ΔNTCP was estimated by analysis of the family
of NTCP and ΔNTCP values (ΔNTCPBS2).

All analyses were conducted in R statistics (R Development
Core Team, 2010) [17].

RESULTS
Estimated LKB NTCP parameters

From the generated REF dataset (Algorithm #1), the average
MNLD among 203 patients was 29.9 Gy (range, 15.2–43.7 Gy),
compared with 32 Gy (range, 14.9–44 Gy) in the Michigan study’s
original data. The average MNLD was 40 Gy and 28.9 Gy for RILD
and non-RILD patients, respectively, in the REF dataset and was
37 Gy and 31.3 Gy in the Michigan study. The re-estimated

( )TD 150 and the parameter m were 43.2 Gy (95% CI 39.1–47.3)
and 0.18 (95% CI 0.11–0.24), respectively, which were convincingly

similar to the original parameters, 43.3 Gy (95% CI 41.9–52.8) and
0.18 (95% CI 0.14–0.24) [12]. Figure 2 illustrates the estimated
NTCP and gEUD of 203 patients with 19 RILD in the REF dataset
resembling the Michigan study data (Fig. 2a), with an estimated
NTCP curve with 95% CI as a function of gEUD of normal liver,
considering cov(TD50, m) (Fig. 2b).

The re-estimated parameters from the DB dataset without
(Algorithm #2) and with the bootstrapping technique (Algorithms
#3 and 4) were compared with those from the Michigan study and
the REF dataset, as shown in Table 1. Comparisons of the NTCP
curves of Algorithm #1, #2 and #3 showed nearly identical results
(Fig. 2c). Note that no representative NTCP curves, ( )TD 150 or m
were identified for Algorithm #4 due to the nature of the uncer-
tainty estimation by curve analysis.

Estimated ΔNTCP with 95% CI
From the REF dataset (Algorithm #1), the var of ( )TD 150 and m
were 4.41 and 0.0010, respectively, which was similar to 4.323 and

Fig. 2. The generated virtual individual patient dataset (REF dataset) consisting of 203 patients with 19 RILD, mimicking the
Michigan study dataset (Fig. 2a), contributed to the estimated NTCP curve with a 95% CI, considering the covariance
(Fig. 2b). Comparisons of the NTCP curves from Algorithms #1, #2 and #3 show identical results (Fig. 2c). NTCP = normal
tissue complication probability, AE = adverse event, gEUD = generalized equivalent uniform dose, ALGO = algorithm.
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0.0010 derived from the DB dataset (Algorithm #2). The
cov(TD50, m) was calculated as 0.0519 and 0.502, respectively. The
correlation coefficient calculated from var and cov showed a positive
strong relationship between ( )TD 150 and m, with a value of 0.778 in
the REF dataset and 0.768 in the DB dataset. Using the bootstrap-
ping technique, the distribution of the model parameters from 1000
bootstrap replicates is shown in Fig. 3a and b, with a correlation coef-
ficient of 0.8. Again, var and cov were not assessed in Algorithm #4.

The ΔNTCPREF, as a function of gEUD between XRT and
PBT, is shown in the contour lines of the central estimate (Fig. 4a)
and the 95% CI lower boundary (Fig. 4b). Each line represents the

iso-ΔNTCP. With the contours of ΔNTCP, we can select the
patient for PBT based on the confidence level. For example, in
Fig. 4c, using the contour of the 95% CI lower boundary, the PBT
is favoured for those with a normal liver dose of 36 Gy or more
with the XRT plan, with a 95% confidence that the ΔNTCP is 10%
or higher. In contrast, using the contours of the central estimate,
PBT likely provides a potential benefit for patients who receive a
normal liver dose of 33 Gy or more with the XRT plan, with less
confidence. Thus, the use of a 95% CI lower boundary contour is
more conservative for patient selection for PBT than is using the
central estimate contour. However, in the area of 33–36 Gy, the

Table 1. LKB NTCP parameters with 95% confidence intervals and their variance and covariance, according to the four
proposed algorithms

Algorithms #1 #2 #3 #4a

Dataset Michigan’s data REF dataset DB dataset BS from DB dataset

LKB NTCP parameters (95% CI)

( )1TD50 , Gy 43.3 (42.9–52.8) 43.2 (39.1–47.3) 43.4 (39.4–47.5) 43.7 (38.7–48.7) NA

m 0.18 (0.14–0.24) 0.18 (0.11–0.24) 0.18 (0.11–0.24) 0.18 (0.11–0.24) NA

Variance

( )TD 150 NA 4.41 4.32 6.47 NA

m NA 0.0010 0.0010 0.0011 NA

Covariance NA 0.0519 0.0502 0.0606 NA

aNo representative NTCP curves, ( )TD 150 , m including their variability were identified for Algorithm #4 due to the nature of uncertainty estimation by curve analysis.
LKB = Lyman–Kutcher–Burman, NTCP = normal tissue complication probability, CI = confidence interval, REF = reference, DB = dose-bin, BS = bootstrapping,

( )TD 150 = the 50% tolerance dose for whole organ, m= steepness of the dose–response curve at ( )TD 150 , NA = not available.

Fig. 3. The distribution of model parameters from Algorithm #1 (▪), #2 (▴) and 1000 bootstraps (+) with the mean value #3
(♦) (Fig. 3a). The correlation coefficients (R) between TD50 and m from Algorithms #1 (solid line), #2 (dashed line) and #3
1000 bootstrap cases (+) suggested a strong relationship between TD50 and m (Fig. 3b). ( )TD 150 = the 50% tolerance dose
for whole organ, m= steepness of dose–response curve at ( )TD 150 , R = Pearson’s correlation coefficient, ALGO = algorithm.
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selection of the treatment modality should be determined by con-
sidering the trade-offs between clinical benefits and socio-economic
aspects.

The contours of the 95% CI lower boundary of the ΔNTCP at
10% among four proposed algorithms are compared in Fig. 5.
Compared with the ΔNTCPREF (Algorithm #1), the contour of the
ΔNTCPDB (Algorithm #2) was nearly indistinguishable, as were the

ΔNTCPBS1 (Algorithm #3) and the ΔNTCPBS2 (Algorithm #4).
This was true, in spite of the varying percentage differences of the
ΔNTCP. However, the contours from the bootstrapping techniques
yielded little differences. This might be due to the larger cov found
in the bootstrap dataset.

DISCUSSION
Considering the Michigan study’s parameters and the number of
patients reported in the literature [12], the REF dataset was a good
representation of the Michigan data, despite a small difference in
the MNLD. The re-identified model parameters were remarkably
similar to the original ones. However, variant 95% CI values were
observed due to the different methods used to obtain the uncer-
tainty, i.e., the profile likelihood method used in the Michigan study
versus the variance-based method based on the central limit the-
orem used in our study. With virtual simulated gEUD data from
203 patients, the ΔNTCP with 95% CI between the treatment
modalities could be determined using the Delta method. The 95%
CI lower boundary of the ΔNTCP provides a more conservative
threshold for selecting patients for PBT compared with the central
estimate. Our results also demonstrated that the LKB NTCP model
parameters and variability derived from the dose-bin dataset were
very similar to those from the individual patient dataset. Addition-
ally, the contour of the ΔNTCPDB was very similar to the one of
the ΔNTCPREF.

Liver cancer is common in Eastern and Southeastern Asia [18].
Data from Japan on comprehensive cancer statistics show that it is
the fifth most common cancer, with an estimated incidence of
45 100 cases, and liver cancer was the fifth most common cause of
cancer deaths in 2015[19]. PBT is an effective treatment modality
for both primary and secondary liver malignancies [20–25]. A pro-
spective Phase II clinical study demonstrated the efficacy and feasi-
bility of PBT in primary liver tumours [26]. Although a randomized
controlled trial (RCT) comparing PBT with standard XRT is
expected in the future, there are several obstacles impeding the

Fig. 4. Using the Delta method in Algorithm #1, the iso-ΔNTCP contours as a function of the gEUD between XRT and PBT
are drawn. Each line represents an iso-ΔNTCP with the central estimate (Fig. 4a) and the 95% CI lower boundary (Fig. 4b),
varying from 10% to 50%. The 10% ΔNTCP contours of the central estimate (ΔNTCP-CE) and 95% CI lower boundary
(ΔNTCP-95% CI LB) are depicted (Fig. 4c). gEUD = generalized equivalent uniform dose; XRT = X-ray therapy; PBT =
proton beam therapy; ΔNTCP = normal tissue complication probability difference; CE = central estimate; 95%CI LB = 95%
confidence interval lower boundary.

Fig. 5. The contours of the 95% CI lower boundary of 10%
ΔNTCP between XRT and PBT derived from four proposed
algorithms. gEUD = generalized equivalent uniform dose,
XRT = X-ray therapy, PBT = proton beam therapy, ALGO
= algorithm.
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conduct of an RCT in this situation [27, 28]. Thus, the MBA-based
NTCP model is currently more appealing due to its feasibility in
development and implementation for allocating the best treatment
modality to individual patients [1, 2, 29].

Bijman et al. assessed the model uncertainty using a probability
distribution (mean and CI) of the model coefficients from multivari-
able NTCP models in head and neck cancers and concluded that
the accuracy of the MBA on patient selection for PBT is largely
affected by the uncertainty in the NTCP models [4]. In contrast,
the uncertainty of the LKB NTCP model for RILD relies on the
model parameters’ variability, var and cov. Due to the high correl-
ation between TD50 and m, we assumed that the uncertainty of the
NTCP curves would be better estimated when cov(TD50, m) was
considered.

The mean value of the NTCP was generally applied to obtain
the ΔNTCP [1–3]. In the present study, we showed that the lower
boundary of the 95% CI, considering var and cov , was a more con-
servative threshold of ΔNTCP for decision-making regarding the
use of PBT. In clinical practice, for a certain patient, a treatment
plan comparison between XRT and PBT is performed, based on the
dosimetric difference of normal liver DVHs. When using our iso-
ΔNTCP curve (Fig. 4), if the gEUD falls within the area where the
ΔNTCP is more than the predefined ΔNTCP threshold (the area
to the right of and beneath the contour), a PBT can be chosen for a
particular patient. This 95% CI lower boundary method conserva-
tively selects those patients who potentially could benefit from PBT.
Thus, the overuse of PBT can be prevented. However, the prede-
fined threshold should be appropriately determined based on clin-
ical outcomes and cost-effectiveness studies.

Toramatsu et al. performed a dosimetric comparison between
spot-scanning proton therapy (SSPT) and IMRT in 10 HCC
patients with 13 tumours [30]. We obtained the gEUDs, or mean frac-
tion size equivalent doses (FEDs), from the XRT and PBT plan from
table 2 in Toramatsu et al.’s publication and applied them to our iso-
ΔNTCP contours. According to Toramatsu’s study, tumours with a
nominal diameter of >6.3 cm (8/13 tumours) had an average risk of
RILD of 6.2% for SSPT and 94.5% for IMRT, corresponding with our
10% iso-ΔNTCP 95% CI lower boundary contour (Fig. 6). However,
the parameter n was slightly different in our Michigan-resembling
NTCP curve (n = 1.1) and Toramatsu’s publication (n = 0.97).

Based on the types of available data, our study suggests that the
DB data can be utilized and achieves the same results as individual
patient data, with more convenience in data collection and sharing.
Algorithm #2 constantly provided results similar to those achieved
with Algorithm #1, whereas Algorithms #3 and #4 were affected by
statistical instability and consumed a large amount of time.

Due to the lack of individual patient data, we created a virtual
simulated patient dataset based on the Michigan study data, in
which the fractionation scheme was unique (1.5 Gy twice daily) and
concurrent chemotherapy was administered. In this study, the LKB
model was used to create the map, but there were several types of
NTCP models assuming different equations and parameters and
resulting in different NTCP values and ΔNTCP contours. Thus,
our iso-ΔNTCP contours should be interpreted cautiously. Further-
more, the NTCP model derived from the Michigan study was dedi-
cated to patients with normal liver function treated with XRT, and

the PBT is theoretically useful for those with impaired hepatic func-
tion (Child–Pugh B and C), as suggested by Dawson [31]. As a
result, the NTCP model needs to be prospectively developed and
needs to include these patient subgroups in order to develop an
accurate and reliable iso-ΔNTCP decision-making map. In the
future, clinical validation studies and cost-effectiveness analyses are
expected to select patients who potentially could benefit from PBT.

In conclusion, the methodology presented in this paper relies on
systematic statistical considerations of the 95% CI based on the
Delta method and, considering the variance–covariance matrix, can
be applied to other types of NTCP models and tumours. This
might ultimately establish a guideline for properly selecting patients
for proton therapy.
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