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Abstract: The Cuinchy-Fontinettes reach belongs to the inland waterways in the north of
France. It is equipped with limnimeters that measure water level data for the management of
the water resources. These data can be corrupted by constant or intermittent faults. Hence,
it is necessary to detect and localize these faults in order to guarantee efficient management
actions. The proposed fault diagnosis method is based on the analysis of the parameters of
a grey-box model. These parameters are obtained from available real data by using a sliding
window, whose size is determined based on the level of excitation of input signals. Then, several
scenarios involving constant and intermittent faults are proposed to discuss the performance of
the proposed FDI approach as well as the effect of the sliding window size on the results.
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1. INTRODUCTION

The Cuinchy-Fontinettes reach (CFr) belongs to the inland
waterways in the north of France. It is equipped with
controlled gates that are used to regulate the levels by
dispatching volumes of water and with locks that make
possible the navigation of boats along the waterway. The
management condition to be fulfilled aims at keeping the
water levels close to the setpoint, which is known as the
normal navigation level (NNL). The design and imple-
mentation of control algorithms such as those proposed
in (Segovia et al., 2017b; Horváth et al., 2014c) require
the measurement of levels. However, these measurements
can be corrupted by several types of faults, which can
lead to undesired control actions. Thus, fault detection
and isolation (FDI) techniques must be designed to de-
tect and localize the faults. Blesa et al. (2010) proposed
a fault detection method based on a linear parameter-
varying (LPV) model in order to detect faults that occur in
open-channel systems. Model-based method and intervals
models have been proposed in (Segovia et al., 2017a; Blesa
et al., 2014) respectively, for sensor fault detection in
inland waterways. A comparison of FDI methods to detect
leaks in an irrigation network has been carried out in
(Bedjaoui and Weyer, 2011). Nabais et al. (2012) proposed
another sensor FDI approach for irrigation canals based on
residual generation. An unknown input observer (UIO) de-
sign for delayed LPV systems represented in the polytopic
framework which has been applied to an open flow canal
is proposed by Hassanabadi et al. (2016). FDI techniques
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based on classification techniques, black-box models or
recursive subspace identification method have been pro-
posed in (Pocher et al., 2011, 2012) and (Akhenak et al.,
2013), respectively. A combination of a physical model and
a classification algorithm has been designed in (Horváth
et al., 2014a) and developed in (Duviella et al., 2013) by
considering the grey-box model detailed in (Horváth et al.,
2014b). In this paper, the FDI approach is based on the
evolution of the grey-box parameters over the time. The
parameters of the grey-box model are estimated based on
real input/output data using a sliding window. Some rules
to tune the length of the time window and guarantee the
fitting of the identified model are proposed. The tuning
of the time window length is discussed by considering
real data from the CFr and three fault scenarios. The
paper is organized as follows: the CFr and the management
objectives are detailed in Section 2. The grey-box model
is presented in Section 3. Section 4 describes the proposed
FDI approach. Finally, the modeling and FDI techniques
are illustrated in Section 5 by means of a case study.

2. THE CUINCHY-FONTINETTES REACH

2.1 Management objectives

The CFr that is located in the north of France plays a
crucial role in the transport and the water resources man-
agement of the waterways due to its location. During flood
periods, the CFr is used to share water volumes between
the Aa and the Lys watersheds. During drought periods,
it is used to appropriately dispatch the available water
resources among the watersheds. The objective is to make
navigation possible during the arranged schedule. In order
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to ensure the navigability of vessels, it is required that
the water levels be inside the interval that is defined by
considering a tolerance range around the NNL, i.e. lower
and higher navigation levels (LNL and HNL, respectively).

2.2 Description

The CFr is 42 km long and delimited by the Cuinchy
lock upstream and the Fontinettes lock downstream. It
is equipped with gates in Cuinchy (beside the lock) and at
Aire-sur-la-Lys with the gate of Porte de Garde, located
28 km downstream of Cuinchy (see Fig. 1), and with
three limnimeters that allow measuring the water levels at
Cuinchy (LC), Aire-sur-la-Lys (LA) and Fontinettes (LF )
with a sample time k = 1 min. The controlled discharges
are applied by means of the Cuinchy lock and gate (QC),
the Porte de Garde gate (QA) and the Fontinettes lock
(QF ). These magnitudes are measured each 15 min.

Cuinchy gate and lock

Fontinettes lock
Porte de Garde

LA

LC

LF
QF

QA

QC

Fig. 1. Schematics of the CFr.

The CFr is an open-channel flow characterized by non-
linear dynamics with large time delays. In addition, its
dynamics are impacted by strong resonance phenomena
due to a negligible slope along its course. Lock operations
create waves that travel back and forth along the reach
during several hours until their attenuation.

2.3 Fault diagnosis in the CFr

In this system, faults mainly occur on sensors. They can
be due to an offset error of the measurement during sev-
eral hours (persistent faults), to transmission problems
(intermittent faults) or to a combination of both (transient
faults that lead to persistent faults). These faults can have
a strong impact on the water level control, where the con-
sideration of wrong data can lead to a system malfunction.
Hence, sensor faults must be diagnosed. The main chal-
lenge of sensor fault diagnosis lies in the characteristics of
the CFr: a large-scale system with nonlinear dynamics and
large time delays. Moreover, when real data are considered,
it is necessary to deal with strong uncertainties. While
classical diagnosis approaches can face some difficulties,
data-based approaches seem more suitable to deal with
real data, as it was shown in (Duviella et al., 2013). The
remaining task consists in detecting intermittent faults.

Thus, a grey-box model-based approach is designed to
diagnose sensor faults by considering real data of the
CFr, from October 30, 2013 (Thursday) to November 17,
2013 (Sunday). Part of these data are used to estimate
the parameters of the grey-box model and determine the
validity intervals of its main parameters. The remaining

data are used to test the designed approach by introducing
artificial faults.

3. GREY-BOX MODEL

3.1 Description

The structure of the grey-box model is a first order plus
time delay for every input/output pair:

ŷk+1 = Ayk|τ +Buk|τ (1)

where input variables uk|τ ∈ Rn2×1 correspond to
a combination of the components of the input vector
uk=[u1k . . . u

n
k ]T with the corresponding delays, and ulk =

Qlk ∀l = 1, ..., n are the different discharges along the canal.

Similarly, the output variables yk|τ ∈ Rn2×1 correspond
to a combination of the components of the output vec-
tor yk=[y1k . . . y

n
k ]T with the corresponding delays, where

yik = Lik ∀i = 1, ..., n are the different level measurements

along the canal (see Fig. 2). Matrices A ∈ Rn×n2

and

B ∈ Rn×n2

are defined under the assumption that each
actuator is equipped with one limnimeter. The matrix
τ ∈ Nn×n given in Eq. (2) gathers the time delays between
the measurement points Li and Lj , and also between the
discharge Qi and the measurement point Lj , respectively.
For instance, the value of τi,j ∈ N is the time delay between
the measurement points Li (resp. Qi) and Lj .

τ =


0 τ1,2 · · · τ1,n
τ2,1 0 · · · τ2,n

...
...

. . .
...

τn,1 τn,2 · · · 0

 (2)

L L L1 2 n

T1,2
1,n

2,1 2,n

n,1

n,2

Q1
QnQ2

Lock

Limnimeter
T

T
T

T

T

Fig. 2. Time delays τi,j between measurement points.

The time delays are determined according to the well-
known relations given in (Litrico and Fromion, 2004).

The vector yk|τ is expressed as:

yk|τ = [L1
k L

2
k−τ1,2 · · · Lnk−τ1,n L1

k−τ2,1 L
2
k · · · Lnk−τ2,n

· · · L1
k−τn,1

L2
k−τn,2

· · · Lnk ]
T (3)

Likewise, uk|τ reads as follows:

uk|τ = [Q1
k Q

2
k−τ1,2 · · · Qnk−τ1,n Q1

k−τ2,1 Q
2
k · · · Qnk−τ2,n

· · · Q1
k−τn,1

Q2
k−τn,2

· · · Qnk ]
T (4)

Matrix A is defined as the direct sum of vectors Aii, i.e.
A=

⊕n
i=1Aii (B is expressed similarly):

A =


A11 0n 0n 0n

0n A22 0n 0n

0n 0n

. . . 0n

0n 0n 0n Ann

 (5)



withAii =
[
ai,1 · · · ai,n

]
and 0n the zero vector of length

n. ai,i is the parameter that links ŷik+1 to yik with no delay.

Equation (1) is rewritten as follows:

ŷk+1 =M Φk (6)

with M = [A B] and Φk = [yk|τ uk|τ ]T . Then, M is the
solution of the linear least squares problem. N samples of
the measured discharges Qik and levels Lik are considered
in its computation:

M =Y Φ
T

(Φ Φ
T

)−1 (7)

with Y = [yχ+1 · · · yN ], Φ = [Φχ · · · ΦN−1], and
χ = max(τ ) + 1, where max(τ ) is the maximum entry
of matrix τ given in (2).

3.2 Identification based on a sliding window

It is also possible to identify the parameters of the grey-
box model by using sliding windows. In doing so, a model
more reactive to changes and that follows more precisely
the dynamics of the reach can be obtained. The value
of M given in Eq. (7) is determined by considering a
time window of size Nw. Hence, a temporal matrix Mk

is computed at every instant k:

Mk =Yk Φ
T

k

(
Φk Φ

T

k

)−1
(8)

with Yk = [yk+χ+1−Nw
· · · yk], Φk = [Φk+χ−Nw

· · ·Φk−1].

The parameters aj,ik and bj,ik ∀i, j = 1...n are obtained from
Mk = [Ak Bk].

The time window Nw is tuned according to persistent ex-
citation indicators in the inputs. The estimation of the pa-
rameters is done when the input persistent exciting order
is high enough, as it is proposed in section 13.2 in (Ljung,
1999). The Matlab command pexcit is used to determine
these indicators. There is no a priori maximum value of
Nw. However, the larger Nw is, the lower the re-activity
of the grey-box model would be, i.e. the modification time
of the parameters’ values would be bigger.

3.3 Validation step

The following fit coefficients are used to determine the
accuracy of the grey-box model with respect to the mea-
surements.

• Pearson product-moment correlation coefficient mea-
sures the linear dependence between two variables:

Ri =

N∑
k=1

(
yik − λyi

) (
ŷik − λŷi

)
√

N∑
k=1

(
yik − λyi

)2√ N∑
k=1

(
ŷik − λŷi

)2 (9)

with λyi and λŷi the mean value of measured and
estimated water levels, respectively. This coefficient
is bounded between +1 (total positive linear correla-
tion) and -1 (total negative linear correlation), and 0
means that there is no linear correlation.

• Nash-Sutcliffe model efficiency coefficient is used to
assess the predictive power of hydrological models
(Nash and Sutcliffe, 1970):

Ei = 1−

N∑
k=1

(
yik − ŷik

)2
N∑
k=1

(
yik − λyi

)2 (10)

Ei can range from 1 to −∞, where 1 indicates a
perfect match of modeled and observed values, 0 cor-
responds to the case in which the model predictions
are as accurate as the mean of observed data and
Ei < 0 means that the model predictions are less
accurate than the mean of observed data. It can also
be expressed in percent when its value is positive.

Once the size of the time window Nw is tuned and the
proposed model is validated, the coefficients of matrices
Ak and Bk can be used to design the FDI strategy.

4. FAULT DIAGNOSIS

The fault diagnosis focuses on level sensor faults:

Lik = Li,0k + ∆i
k, ∀i = 1, ..., n (11)

where Li,0k denotes the level i and ∆i
k the fault at time k.

As (1) provides the level estimations ŷk+1, the most
straightforward fault detection method consists in evaluat-
ing the difference between the level sensor measurements
and the estimations:

rik = yik − ŷik, ∀i = 1, ..., n (12)

where rik is the temporal residual of the i-th level sensor.
The fault detection test can be formulated as follows:

φr
i

k =

{
0 if rik ∈ [σi, σi]⇒ No Fault

1 otherwise
(13)

with bounds σi and σi the maximum positive and negative
deviations of the residual rik in a fault-free scenario.

A similar approach is followed by considering the grey-box
model parameters. The main idea is that, under normal
conditions, the dynamics of the reach are always similar,
and therefore the parameters of the model fluctuate within
a narrow interval. Hence, bounds are determined in a fault-
free scenario for each parameter of matrix Mk: [aj,i, aj,i]

and [bj,i, bj,i]. Conditions on persistent excitation and on
the fitting indicators given in Eqs. (9)–(10) must be met.

Thus, the parameter fault signals φa
j,i

k and φb
j,i

k can be

generated in a similar way as φr
i

k in (13):

φa
j,i

k =

{
0 if aj,ik ∈ [aj,i, aj,i]⇒ no fault

1 otherwise
(14)

φb
j,i

k is computed as φa
j,i

k but considering the parameter

estimations bj,ik and the bounds [bj,i, bj,i] in (14).

A fault is detected when one fault signal φa
j,i

k or φb
j,i

k is
activated, i.e. its value equals 1. The isolation of the fault
benefits from the time delays that characterize the reach
dynamics as proposed in (Puig and Blesa, 2013). Indeed,
the effect of a fault in the limnimeter Li (∆i

k) in the

estimation of the level in the limnimeter Lj (ŷjk) is delayed
by τi,j . For instance, when a fault ∆i

k occurs, the temporal

residual fault signal φr
i

k and the parametric fault signals

φa
j,i

k and φb
j,i

k ∀i = 1, · · · , n should be activated in the first



place. In the case of parametric fault signals, the effect of
the fault ∆i

k is more direct on the estimation of parameter

ai,ik . Next, the effect of the fault will be propagated to
the nearest measurement point j, which will affect the
estimation of the level and the parameters. As the effect
of the fault ∆i

k is attenuated in the propagation, it might
be observed only in the nearest measurement points.

The estimation of the grey-box parameters is carried out
by considering sliding windows of size Nw. Therefore, an
extra delay between the fault occurrence and the effect in
the fault signals is often present. By fulfilling the persistent
excitation condition, the delay in the fault detection might
be reduced using a smaller Nw. However, this improvement
might be lost at the expense of the requirement of larger
bounds on the parameters. It is thus necessary to reach a
satisfactory trade-off between Nw and the detection time.

5. MODELLING AND FAULT DETECTION RESULTS

5.1 Modelling

Real data from the limnimeters and discharges are re-
synchronized by considering a sampling time of 1 minute.
Then, the delays between each part of the CFr are esti-
mated according to the characteristics of the system (the
values are in minutes):

τ =

[
0 78 115
79 0 37
116 37 0

]
(15)

According to these delays, the input and output vectors
uk|τ ∈ R9 and yk|τ ∈ R9 are built by considering the

following inputs and outputs: u1k = QCk , y1k = LCk for
Cuinchy; u2k = QAk , y2k = LAk for Aire-sur-la-Lys; and
u3k = QFk , y3k = LFk for Fontinettes.

To determine the minimum required size of the time
window Nw, data from five consecutive days starting from
October 30, 2013 (Thursday) are considered. Fig. 3 depicts
the discharges and the levels in Cuinchy, Aire-sur-la-Lys
and Fontinettes. The level of excitation of the input signals
are computed for these data and depicted in Fig. 3.e
for Nw = 960 (16 hours), Nw = 1020 (17 hours) and
Nw = 1440 (24 hours). There is a peak of poor excitation
level only for Nw = 960. For Nw = 1020 and Nw = 1440,
the excitation levels are suitable and always equal to the
maximum value 50. Figure 4 depicts the level of excitation
of input signals pexcit according to Nw. It is shown that
the minimal length of the window is Nw = 963. Thus,
we consider that the minimal length of the window is
Nw = 1020 corresponding to 17 hours. That means that at
least 40 % of the data of Nw has to correspond to periods
with lock operations.

The same data are used to identify a model for each
window with Nw = 1020. The levels L̂ik are estimated as
outputs of the grey-box model. The real measurements
Lik and the estimated L̂ik are depicted in Fig. 5 in blue
and dashed red lines, respectively, for each of the three
limnimeters. Notice that these values are relative to the
NNL, i.e. Lik=0 corresponds to the NNL in Fig. 5.

The Nash-Sutcliffe (Ei) and correlation (Ri) coefficients
are computed and their average values for the three
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limnimeters are given in Table 1 by considering the time
window sizes Nw = 1020 and Nw = 1440. The quality
of the models is confirmed in both cases even if it seems
better for the largest time window. A time window of 24



hours (Nw = 1440) covers a whole day of navigation at
each step time, which seems to be the main reason of the
observed effectiveness of the models.

Table 1. Average values of Nash-Sutcliffe (Ei)
and correlation (Ri) coefficients

Nw = 1020 Nw = 1440

Limnimeter Ei [%] Ri [%] Ei [%] Ri [%]

LC 88 94 95 95
LA 85 92 87 93
LF 70 84 76 87

Finally, the identified parameters of the grey-box models
for both time window sizes are depicted in Fig. 6 in red
and blue lines, respectively. Their minimum and maximum
values are computed to determine the intervals of the
ai,ik parameters. These values are depicted in dashed lines
and are summarized in Table 2. As expected, the larger
the time window is, the smaller the intervals are. These
intervals will be used to detect and isolate faults.

Table 2. Boundaries on the grey-box models

Nw = 1020 Nw = 1440

Parameter min max min max

a11 0.88 0.95 0.89 0.95
a22 0.76 0.92 0.8 0.89
a33 0.58 0.81 0.61 0.74
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Fig. 6. Values of the ai,ik parameters and determined
thresholds: (a) a1,1. (b) a2,2. (c) a3,3.

5.2 FDI in limnimeters

Levels from five consecutive days starting from November
12, 2013 (Tuesday) are considered in order to test the
proposed FDI approach. Three faulty scenarios are created
by adding artificial faults to the real measurements. Fault
f1 corresponds to a constant fault of -8 cm on the level
LC . Fault f2 consists in an intermittent fault that becomes
constant over time with a magnitude of 1.5 cm on the level
LA. This fault lasts until the end of the considered period
of time. Fault f3 is an intermittent fault with a magnitude
of 5 cm on the level LF during a bounded time. The
features of the three faults are summarized in Table 3. The
intermittent faults are generated according to Gaussian
random signals, which means that two consecutive scenar-
ios cannot be identical. Hence, 500 simulations based on
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Fig. 7. Water levels in: (a) Cuinchy. (b) Aire-sur-la-Lys. (c)
Fontinettes. Measured levels in blue solid line (free-
fault case), in red dashed line (impacted by faults).

the Monte Carlo approach are performed to determine the
average, minimum and maximum fault detection delays
τD. One of them is depicted in Fig. 7 with the three
measured levels in blue solid line (free-fault case) and red
dashed line (with faults). The time occurrence and the
duration of the faults are indicated with black arrows.
Due to the dynamics of the CFr and the magnitude of
the faults, their detection is not obvious.

Table 3. Considered faults

Fault Magn. [cm] Occurrence (dd:hh:mm) Duration [min]

f1 -8 01:16:44 200
f2 1.5 02:14:44 2016
f3 5 00:01:24 300

The FDI approach is performed by considering the ai,ik
parameters and the predefined thresholds (see Table 2).
These parameters change during the simulation as de-
picted for the 25 first simulations and Nw = 1020 in Fig.
8. The parameter a1,1 crosses the upper threshold after
the occurrence of the fault f1, which allows detecting the
occurrence of one fault. The isolation is done by consid-
ering which parameter is affected by the fault. Here, the
fault f1 is isolated because the limnimeter LC is impacted.
The detection and isolation of faults f2 and f3 is achieved
by considering the parameters a2,2 and a3,3, respectively.
The faults are detected when these parameters cross one
of the bounds. It can be observed that the generation of
the intermittent faults based on random signals has an
impact on the estimation of the grey-box parameters. The
detection delays τD depend clearly on the dynamics of the
intermittent faults. However, the faults f1 and f3 can be
detected after 4 h in average, and only the parameter

residual fault signals φa
j,i

k are activated. The detection
delay τD of f2 is larger due to its very gradual occurrence.

The average, minimum and maximum detection delays τD
are computed by considering 500 simulations and the sizes
Nw = 1020 and Nw = 1440. They are presented in Table
4. For a constant fault f1, a smaller length of the time
window leads to smaller detection delays. For intermittent
faults, the time window with length Nw = 1440 leads to



a better average performance, even if the minimum time
delays are perceptibly worse.

Table 4. Detection delay of each fault [min]

Nw = 1020 Nw = 1440

Fault λτD min τD max τD λτD min τD max τD
f1 217 217 217 247 247 247
f2 1196 1107 2367 1155 1107 1247
f3 243 147 387 221 157 447

The knowledge of the navigation schedule is taken into
account and leads to Nw = 1440 (24 hours). All the
dynamics of a navigation day are considered. This value
allows meeting the required level of excitation of the
inputs and the detection of constant and intermittent
faults with very small magnitudes considering real data.
The performance of the FDI approach remains good even
if a smaller time window (Nw = 1020) can improve it in
some cases. It is shown that the detection and isolation
of constant and intermittent faults can be performed by
dealing with the grey-box model parameters.
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Fig. 8. Value of the ai,ik parameters (blue) and determined
thresholds (black) in the faulty case: (a) a1,1, (b) a2,2,
(c) a3,3, for the 25 first simulations.

6. CONCLUSION

A grey-box model-based diagnosis approach for sensor
faults on the Cuinchy-Fontinettes reach is proposed in
this paper. It allows detecting and isolating constant and
intermittent faults by considering the evolution of the
grey-box model parameters on sliding windows. Rules for
the determination of the sliding window sizes based on the
level of excitation of the input signals are proposed. Then,
several fault simulations are realized, confirming the good
performance of the proposed FDI approach.
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Segovia, P., Blesa, J., Horváth, K., Rajaoarisoa, L., Ne-
jjari, F., Puig, V., and Duviella, E. (2017a). Fault
detection and isolation in flat navigation canals. In
4th International Conference on Control, Decision and
Information Technologies, 1–6.

Segovia, P., Rajaoarisoa, L., Nejjari, F., Puig, V., and
Duviella, E. (2017b). Decentralized control of inland
navigation networks with distributaries: application to
navigation canals in the north of France. In American
Control Conference (ACC), 2017, 3341–3346. IEEE.


