

Title: Video-On-Demand Optimization Using an Interior-
point Algorithm

Author: Luis Felipe Urquiza Aguiar

Advisor: Jordi Castro

Department: Statistics and Operations Research.

University: Universitat Politècnica de Catalunya (UPC)

Academic year: 2017/2018

Interuniversity Master
 in Statistics and

Operations Research

UPC-UB

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Master Thesis

Video-On-Demand Optimization Using an
Interior-point Algorithm

Luis Felipe Urquiza Aguiar

Advisor: Jordi Castro

Department of Statistics and Operations Research, Research Group
GNOM (Group on Numerical Optimization and Modeling)

To my daughter Nuria and my mom Yolanda.
They are two angels in my life equally beautiful.

Abstract

Keywords: CDN, VoD, optimal placement, interior point methods, BlockIP

MSC2000: 90-02, 90B15, 90B18

A Content Delivery Network (CDN) aims to provide efficient movement of massive digital
content (multimedia and files) across the Internet. This is achieved by putting the content
in servers closer to the costumer. Video-On-Demand service is an application of CDN
where videos have to be located strategically to avoid network congestion and servers’
saturation. Therefore, the problem of optimal placement of videos arises. This problem
has a block diagonal structure with linking constraints on links’ and servers’ capacities.
In this project, we solve huge instances of a video placement problem over three real
network topologies with a specialized interior point solver named BlockIP. The evaluated
instances range from 7 to 300 millions of variables and the difficulty of the instances
depends on the size of servers, links’ bandwidth and network topology. Our results: 1)
verified characteristics of BlockIP like regularization and the intensive computation in the
last iterations and 2) showed that BlockIP found optimal solution in all the evaluated
instances with a good optimality gap. On the contrary, state-of-art CPLEX cannot reach
an optimal, feasible solution in some difficult instances and needs almost twice the memory
of BlockIP. However, CPLEX solved most of feasible instances at least twice faster than
BlockIP

Contents

Chapter 1. Introduction 1
1. Interior Point Methods 2
1.1. Primal-dual path-following methods 2
2. BlockIP 5
2.1. Solving the normal equations by PCG 7
2.2. Improving the spectral radius 8
2.3. Estimating the spectral radius 9
2.4. Implementation details 9
3. Optimization for Content Delivery Networks 10
3.1. Content Delivery Networks Overview 10
3.2. Optimization models for Content Delivery Networks 12

Chapter 2. Optimal Placement for Video On Demand Systems 13
1. The problem formulation 13
1.1. Parameters and variables 13
1.2. The model 14
2. Input Instance 18

Chapter 3. Implementation and Results 27
1. Implementation Details 27
2. Results for small instances 28
2.1. Ebone 28
2.2. Sprintlink 31
2.3. Tiscali 34
3. Results for big instances 38
3.1. Ebone 38
3.2. Sprintlink 40
3.3. Tiscali 42

Chapter 4. Conclusions 45

References 47

iii

Chapter 1

Introduction

Linear programing [21] is a well-established field of operational research where
optimization problems are modeled by a linear cost function and linear constraints.
Linear programing allows researchers and practitioners of many different areas of
sciences and engineering to get an optimal solution for a variety of problems. In
particular, Telematics engineering is a increasing consuming discipline of linear pro-
graming tools because many design issues can be expressed as linear optimization
problems.

In this master project, we deal with the optimal placement of videos in a content
distribution network. The problem at hand is a current research topic in Telem-
atics engineering because videos has to be stored in different locations and satisfy
every client request. A bad videos’ distribution could saturate the network or make
impossible to serve clients’ demands. Traditionally, linear optimization problems
are solved by using the Simplex method. This method iterates on the vertices (ex-
treme points) of the feasible region until reach the one that minimizes the objective
function. Although Simplex Method is non-polynomial time, in practice it is effi-
cient, visiting only a small fraction of the total number of vertices [36]. Despite the
good performance of simplex method, other methods called Interior Point Methods
(IPM) seems to be more suitable for large-scale problems. These methods reach the
optimal solution (i.e., an extreme point) starting from a point inside the feasible
region. Moreover, IPMs take advantage of any block matrix structure in the linear
algebra operations [28]. The video placement problem to be solved in this thesis is
precisely of this kind, i.e., large-scale, block matrix structure,because variables and
constraints are associate with each video that has to be stored.

In this chapter, we summarize the most widely used IPM called primal-dual, path-
following (PD-PF). After that, we concentrate on describing an specialized IPM
solver for large-scale problems with a block matrix structure named BlockIP.
This chapter finalizes with an overview of content delivery networks, for which
video distribution network is only an special case.

1

2 1. INTRODUCTION

1. Interior Point Methods

Interior point methods are a family of non-simplex method for Linear Programing,
which appeared in 1984 with Karmarkar algorithm. These IPM algorithms iterate
through the interior of the feasible region.

Broadly, they can be classified in four categories [17]:

Affine-scaling methods: It is the simplest IPM. It computes a movement direc-
tion in a scaled feasible region. The idea is to center the search of a improve-
ment direction to avoid borders. In these methods each scaled point x̂i is
computed as:

x̂i = βixi.

Methods based on projective transformations: A representative method of
this kind is the Karmarkar algorithm. In general, scaled point in these methods
are obtained as:

x̂i =
βixi∑n
j=1 βjxj

.

Path-following methods: currently the most used methods. They do no scale
the variables. Instead, they follow the central path to reach the optimum.
The specialized solver employed in this project employs this kind of method.
The algorithm used by stat-of-art CPLEX solver also belongs to this family

Potential-reduction methods: The computed directions are decided by measur-
ing their quality through the reduction of a potential function.

1.1. Primal-dual path-following methods. The primal and dual formulations
for a linear problem (LP) are:

min cTx

s.t. Ax = b

u ≥ x ≥ 0,(1)

max bTλ− uTw
s.t. ATλ− w + z = c

z, w ≥ 0.

The Karush-Kuhn-Tucker (KKT) optimality conditions are the following:

(2)

rc ≡ A>λ+ z − w + c = 0, [dual feasibility]
rb ≡ Ax− b = 0, [primal feasibility]
rxz ≡ XZe = 0, [complementarity]
rsw ≡ SWe = 0, [complementarity]

(x, s, z, w) ≥ 0,

where x, u ∈ Rn, A ∈ Rm×n, b ∈ Rm, e ∈ Rn is a vector of 1’s; λ ∈ Rm, z ∈ Rn
and w ∈ Rn are, respectively, the vectors of Lagrange multipliers of the equality
constraints, lower and upper bounds; s = u − x; and matrices X,Z, S,W ∈ Rn×n
are diagonal matrices made up of vectors x, z, s, w.

1. INTERIOR POINT METHODS 3

We define function F (x, λ, z, w) : R3n+m −→ R3n+m as:

(3) F (xk, λk, sk) =

rc
rb
rxz
rsw

 .
By using the Newton’s method a feasible direction ∆ = (∆x,∆λ,∆z,∆w) can be
obtained as:

(4) ∇(x,λ,z,w)F (xk, λk, zk, wk)∆ = −F (xk, λk, zk, wk),

where (xk, λk, zk, wk) is the current point and if it is feasible then the two first vector
of the right hand side (i.e., primal and dual feasibility) are zero. The next point
(xk+1, λk+1, zk+1, wk+1) = (xk, λk, zk, wk)+α(∆x,∆λ,∆z,∆w), where α is the step
length and it is used to guarantee (x, z, w, s) > 0. In practice, α� 1 because points
are very close to the boundary (x, z, w) = 0 and the progress to reach the optimal
solution is slow [18]. To get a more “interior or central” direction, a perturbed
Fτ (x, λ, z, w) is used instead of F (x, λ, z, w) in (4), which leads to:

(5) ∇(x,λ,z,w)Fτ (xk, λk, zk, wk)∆ = −Fτ (xk, λk, zk, wk),

where:

(6) Fτ (x, λ, z, w) =

rc
rb

rxz − τe
rsw − τe

 , τ ∈ R+.

In addition, (x, z, w) ≥ 0 changes to (x, z, w) > 0. The set of solutions for (5) with
different values of τ is known as the primal-dual central path. Notice that, when
a point is feasible the first two vectors in 6 (i.e., rc and rb) are zero. In addition,
Fiacco et. al. [23] show that when τ → 0 the solution of (5) tends to a primal-dual
solution to the LP KKT optimality conditions.

Primal-dual path-following (PD-PF) IPMs approximately follow the central path
to the optimum. This is done by computing only one damped Newton direction for
a value of τ , then τ is reduced and a new damped Newton direction for the new
τ is computed, and so on. In this way, the computed points are not in the central
path, but they follow it. τ is reduced until 0, as follows:

(7) τ = σµ, σ ∈ (0, 1), µ =
xT z + sTw

2n
.

Notice that the perturbed complementary µ is obtained as the average of xizi and
siwi because in general xizi, siwi 6= µ,∀i. Moreover, if (x, λ, z, w) are primal and
dual feasible then 2nµ is the duality gap.

2nµ = xT (c−ATλ+ w) + sTwu = cTx− (Ax)Tλ+ (u− s)Tw + sTw
2nµ = cTx− (bTλ− uTw).

Regarding the reduction factor σ, on one hand if it reduces quickly then it forces
an aggressive direction, as in Newton’s method, and the algorithm will progress
slowly. On the other hand, if σ ≈ 1 then it forces a direction that leads to the
central path allowing significant progress in next iteration, however, the algorithm

4 1. INTRODUCTION

does not move to optimality. Thus, σ is updated according to the particular IPM
used.

So, at each iteration the PD-PF the next system of equations has to be solved:

(8)

0 AT I −I
A 0 0 0
Zk 0 Xk 0
−W k 0 0 Sk

∆k
x

∆k
λ

∆k
z

∆k
w

 =

−rc
−rb

ˆrxz
ˆrsw

 ,
where ˆrxz = −XkZke + σkµke and ˆrsw = −SkW ke + σkµke. Depending on the
movement length from (xk, λk, zk, wk) to (xk+1, λk+1, zk+1, wk+1) PD-PF algorithm
has two variants: 1) Short-step method which has the best theoretical complexity,
but the worse in practice. 2) It is the most efficient and used in practice. In
addition, both variants are polynomial time algorithm for LP [18].

We concentrate on PD-PF long step method, which iterates in a wide neighborhood
of the central path. Some features of a PD-PF long step method are [18]:

• In practice an infeasible (i.e., rc 6= 0, rb 6= 0), interior (i.e., (x0, z0, w0) > 0) is
considered to initialize the algorithm.

• σk ∈ [σminσmax] to avoid large or small reduction of µ.
• αk is in practice the maximum step length such that (x, z, w) ≥ 0, reduced by

parameter ρ ≥ 0.95.
• It has a polynomial complexity of O(n2log 1

ε), where n is the number of vari-
ables and ε is and optimality precision.
• It is the most used approach by most solvers: CPLEX, XPRESS, LIPSOL,

etc.

An excellent discussion about the theoretical properties of this and other interior-
point algorithms can be found in [41, 46, 50]. As we said, at each iteration
the system of equation (8) has to be solved. For this purpose, two techniques
are commonly used [18]: 1) augmented system, which is preferred for quadratic
programming and general nonlinear programing; and 2) Normal equations that is
more effective for most LP problems. Regarding the latter method, after eliminating
∆w and ∆z, as follows:

∆z = X−1 ˆrxz −X−1Z∆x(9)

∆w = S−1 ˆrsw + S−1W∆x,(10)

we obtain the augmented system form

(11)

[
−Θ−1 A>

A

] [
∆x
∆λ

]
=

[
r
−rb

]
,

where Θ and r are defined as

(12) Θ = (ZX−1 +WS−1 +∇2f(x))−1 r = −rc + S−1 ˆrsw −X−1 ˆrxz.

Note that, if the objective function is separable, Θ is an easily computable diagonal
matrix. Additionally, eliminating ∆x from the first group of equations of (11), the
normal equations are obtained:

(AΘA>)∆λ = −rb +AΘr(13)

∆x = Θ(A>∆λ− r).(14)

2. BLOCKIP 5

In methods based on normal equations, the Newton direction is obtained by solving
(13), (14), (9) and (10).

The most expensive step of the normal equations is AΘAT . Nonetheless, if A is
full row rank, it can be solved very efficiently with sparse Cholesky factorization.
The Cholesky factorization has to deal with three well-known difficulties:

• fill-in. Factorization can degrade sparsity by increasing the number of non-
zeros positions considerably. The solution is to find a permutation matrix P
that minimize the fill-in.
• 0 pivots. They can appear because A is not full-row rank or the solution is

degenerate. Some Cholesky factorization packages like cholmod1 tackle this
issue by replacing the zero pivot with a large value.
• Dense columns If A has at least one dense column then AΘAT is a dense

matrix. This makes it computationally very expensive. One way to deal with
dense columns is to factorize AΘAT as the sum of sparse matrix plus low rank
additional matrix. Other strategy for this issue is to use augmented system,
which is insensible to dense column. A third option, that will be employed in
this project, is to reformulate the problem at hand in such way that avoid the
presence of dense columns. This last approach might come at the price of a
higher number of variables than the initial problem.

2. BlockIP

Block-angular structures are used as a modeling tool in many situations, such as
multiperiod or multicommodity problems, two-stage stochastic problems, and, in
general, models involving linking variables or linking constraints. The resulting
optimization problems have in common a huge number of variables, and a large
number of linear constraints. Interior-point methods (IPMs) are in general com-
petitive against other techniques in those cases.

This section summarizes an efficient interior-point solver for block-angular convex
optimization problems named BlockIP proposed in [19], which relies on a com-
bination of Cholesky factorizations and preconditioned conjugate gradient (PCG)
for the solution of the normal equations at each interior-point iterations. BlockIP
includes three most relevant additional features from its Matlab predecessor in [14]:
(i) it may solve convex nonlinear separable optimization problems; (ii) the use of
quadratic regularization, which may significantly improve the quality of the pre-
conditioner as shown in [16]; (iii) an estimation of the spectral radius of a certain
matrix which intervenes in the preconditioner, following [11], which can be used as
a measure of the quality of preconditioner.

The standard form of the linearly constrained convex block-angular problems solved
by BlockIP is

1Created by Tim Davis and used in Matlab

6 1. INTRODUCTION

(15)

min

k∑
i=0

fi(x
i)

s. to

A1

. . .

Ak
L1 . . . Lk I

x1

...
xk

x0

 =

b1

...
bk

b0

0 ≤ xi ≤ ui i = 0, . . . , k.

Matrices Ai ∈ Rmi×ni and Li ∈ Rl×ni , i = 1, . . . , k define the block and linking
constraints, respectively, k being the number of blocks. Vectors xi ∈ Rni , i =
1, . . . , k, are the variables for each block. x0 ∈ Rl are the slacks of the linking
constraints. bi ∈ Rmi , i = 1, . . . , k is the right-hand-side vector for each block of
constraints, whereas b0 ∈ Rl is for the linking constraints. The upper bounds for
each group of variables are defined by ui, i = 0, . . . , k. Note that with this standard

formulation linking constraints are of the form b0 − u0 ≤
∑k
i=1 Lix

i ≤ b0. Slacks
of linking constraints play a significant role in the quality of the preconditioner,
and they should not be removed. Equality linking constraints can be formulated
by setting u0 ≈ 0. Functions fi : Rni → R, i = 0, . . . , k, are assumed to be
convex. Although the specialized IPM to be described is valid for any fi, for the
sake of efficiency we will restrict to separable functions, i.e., ∇2fi(x

i) are (positive
semidefinite) diagonal matrices. Note that any convex quadratic problem can be
transformed into a separable equivalent one by the addition of extra variables and
constraints

Exploiting the structure of A, and appropriately partitioning Θ of (12), as follows

A =

A1

. . .

Ak
L1 . . . Lk I

 Θ =

Θ1

. . .

Θk

Θ0

 ,
the matrix of system (13) can be recast as
(16)

AΘA> =

A1Θ1A
>
1 A1Θ1L

>
1

. . .
...

AkΘkA
>
k AkΘkL

>
k

L1Θ1A
>
1 . . . LkΘkA

>
k Θ0 +

∑k
i=1 LiΘiL

>
i

=

[
B C
C> D

]
,

B ∈ Rñ×ñ (ñ =
∑k
i=1 ni), C ∈ Rñ×l and D ∈ Rl×l being the blocks of AΘA>, and

Θi, i = 0, . . . , k, the submatrices of Θ associated with the k+ 1 groups of variables
in (15), i.e., Θi = (ZiX

−1
i +WiS

−1
i +∇2fi(x

i))−1. Denoting by g the right-hand-
side of (13), and appropriately partitioning g and ∆λ, the normal equations can be

2. BLOCKIP 7

1. Algorithm PCG(S,M, ḡ,∆λ20 , ε,imax)
2. // Solve S∆λ2 = ḡ by PCG with preconditioner M
3. Initializations: i := 0; r0 := ḡ − S∆λ20 ;
4. Solve Mz0 = r0; p0 := z0;
5. while ||rk|| > ε and i < imax do
6. qi := Spi;
7. αi := (z>i ri)/(p

>
i qi);

8. ∆λ2i+1 := ∆λ2i + αipi;
9. ri+1 := ri − αiqi;

10. Solve Mzi+1 = ri+1;
11. βi := (z>i+1ri+1)/(z>i ri);
12. pi+1 := zi+1 + βipi;
13. i := i+ 1;
14. end while
15. Return ∆λ2 := ∆λ2i ;
16. End algorithm

Fig. 1. The PCG algorithm for the solution of S∆λ2 = ḡ ≡ g2 −
C>B−1g1 with preconditioner M

written as

(17)

[
B C
CT D

] [
∆λ1
∆λ2

]
=

[
g1
g2

]
.

2.1. Solving the normal equations by PCG. Eliminating ∆λ1 from the first
group of equations of (17), we obtain

(D − C>B−1C)∆λ2 = (g2 − C>B−1g1)(18)

B∆λ1 = (g1 − C∆y2).(19)

System (19) is solved by performing k Cholesky factorizations, one for each diagonal
block AiΘiA

>
i , i = 1 . . . k, of B. System (18) with the Schur complement

(20) S = D − C>B−1C,

of dimension l—the number of linking constraints—, may exhibit a large fill-in, and
it is prohibitive if computed by Cholesky factorization. It will be solved by a PCG,
which is outlined in Figure 1. The preconditioner used in this work is from [12],[12].
It relies on the fact that (20) is a P -regular splitting, i.e., S is symmetric and positive
definite, D is nonsingular and D + C>B−1C is positive definite. Therefore, the
spectral radios ρ(D−1(C>B−1C)) < 1 is guaranteed by [6],[44, pp. 254–255] This
allows us to compute the inverse of S [12, Prop. 4], as

(21) (D − C>B−1C)−1 =

(∞∑
i=0

(D−1(C>B−1C))i

)
D−1.

The preconditioner M−1 is an approximation of S−1 obtained by truncating the
infinite power series (21) at some term h. For instance, for h = 0 and h = 1 we
have

M−1 = D−1 if h = 0,
M−1 = (I +D−1(C>B−1C))D−1 if h = 1.

8 1. INTRODUCTION

1. Algorithm Mz = r(D,C,B, r, h)
2. v := D−1r;
3. z0 := v;
4. for j := 1 to h do
5. zj := D−1(C>(B−1(Czj−1))) + v;
6. end for
7. Return z := zh

Fig. 2. Algorithm for computing z = M−1r

The larger h, the better the approximation of the inverse. On the other hand,
systems Mz = r (for some vectors z and r) have to be solved at each PCG iteration
(step 10 of PCG algorithm of Figure 1), and any extra term in the series means
an additional linear system solution with matrix B. This is clearly seen in the
algorithm of Figure 2, which shows how Mz = r is iteratively computed in the
specialized interior-point solver. Note that matrix C>B−1C does not need to be
built, and aside from the solution of systems with B and D, only matrix-vector
products with C and C> (i.e., with Li, L

>
i , Ai and A>i , i = 1, . . . , k) are required.

This also applies to the PCG algorithm of Figure 1. It is thus possible to partially
apply the matrix-free paradigm [29]. Efficient implementations of this matrix-
vector products for particular Ai and Li, i = 1, . . . , k, matrices can significantly
speed the computational efficiency. It is worth noting that, although (21) is valid
for any primal block-angular problem, the preconditioner is only useful in practice
for separable problems; otherwise, nondiagonal Θi matrices make systems with B
prohibitive.

2.2. Improving the spectral radius. The quality of the preconditioner depends
on ρ, which is always in [0, 1): the farther from 1, the closer M−1 is to S−1. In
practice it has been observed that ρ comes closer to 1 as we approach the optimal
solution for most instances. However, as shown in [16], non-zero Hessians reduce
ρ, and this opens the possibility for improving the preconditioner by the addition
of a quadratic regularization term

In practice, if the problem is linear or the Hessian is close to 0, a non-zero Hessian
can be added by a quadratic regularization. The interior-point solver BlockIP im-
plements two types of regularization: a proximal point and a quadratic regular-
ization. The later is based on the addition of a quadratic term to the standard
logarithmic barrier function B(x, µ) of (1)

(22) B(x, µ) , f(x) + µ

(
−

n∑
i=1

lnxi −
n∑
i=1

ln(ui − xi)

)
,

µ ∈ R+ being the barrier parameter. In the quadratic regularization introduced in
[16] B(x, µ) is replaced by

(23) BQ(x, µ) , f(x) + µ

(
1

2
x>QRx−

n∑
i=1

lnxi −
n∑
i=1

ln(ui − xi)

)
,

QR being a diagonal positive semidefinite matrix. The reduction of BQ to 0 is
controlled by µ, the standard barrier parameter.

2. BLOCKIP 9

Using either B or BQ only changes the dual feasibility of KKT conditions and
matrix Θ, defined in (2) and (12), respectively. Dual feasibility becomes

A>λ+ z − w =∇f(x) for B,and(24)

A>λ+ z − w =∇f(x) + µQRx for BQ.(25)

(25) is equivalent to (24) when µ tends to zero (i.e., when we approach the optimal
solution).The Θ matrices are

Θ = (ZX−1 +WS−1 +∇2f(x))−1 for B, and(26)

Θ =(µQR + ZX−1 +WS−1 +∇2f(x))−1 for BQ.(27)

µQR tends to zero with µ and therefore (27) approximates (26) when they are close
to the optimal solution.

2.3. Estimating the spectral radius. Although knowing the spectral radius ρ
of D−1(C>B−1C) would be instrumental to forecast the efficiency of the precon-
ditioner, its computation is impractical. However, a procedure to estimate ρ was
recently introduced in [11] for h = 0, i.e., M−1 = D−1. By linear algebra, if σmin is
the minimum eigenvalue of I −D−1(C>B−1C) then 1−σmin is the spectral radius
of D−1(C>B−1C).

The minimum eigenvalue σmin of I − D−1(C>B−1C) can be estimated from the
solution of (13) by PCG, using the Ritz values from the relation between PCG and
Lanczos method (see [35], [33, Chapter 9],[38] for details). In general, the extreme
eigenvalues of the preconditioned matrix (the ones we are interested in, for the
estimation of the spectral radius) are well approximated already during early PCG
iterations [38]. The estimation of σmin have been extended in [19] to consider any
number h ≥ 0 of terms in the power series preconditioner. For these cases ρ can be
easily estimated as h+1

√
1− σ̃min, where σ̃min is the smallest Ritz value.

2.4. Implementation details. BlockIP is written in C++, using the object
oriented paradigm. It is roughly about 14000 lines of source code, aside from
the external package for Cholesky factorization. Actually, BlockIP is only linked
to the Ng-Peyton block sparse Cholesky package [42], which only implements an
approximate minimum degree ordering; other more recent Cholesky packages can
be added in the future, which may likely improve the performance of the solver.
The package can be obtained for research purposes from http://www-eio.upc.
edu/˜jcastro/BlockIP.html. a reference manual and an example illustrating
the use of the package.

The main features that BlockIP includes are:

(1) BlockIP may handle linear, quadratic and convex linearly constrained block-
angular optimization problems.

(2) BlockIP stops at the feasible point of iteration j when the relative gap be-
tween the primal and dual objectives, denoted by pj and dj , is below some
optimality gap. The relative gap is computed as (pj − dj)/(1 + pj).

(3) BlockIP implements two types of directions: the standard Newton direction
and the second order heuristic direction of [37], which requires the solution
of two systems (13) with different right-hand-sides. Both directions can be

http://www-eio.upc.edu/~jcastro/BlockIP.html
http://www-eio.upc.edu/~jcastro/BlockIP.html

10 1. INTRODUCTION

computed by solving the normal equations by either a Cholesky factorization
or by the PCG-based approach of Subsection 2.1. In general, the reduction of
iterations caused by the second order direction is not worthwhile when using
PCG, since, as far as we know, the solution of the first system can not be
efficiently used as a warm-start for the second one. Indeed, from the results
of [12] this strategy was not successful for multicommodity flows problems.

(4) The solver implements quadratic regularizations presented in Subsection 2.2.Fol-
lowing [16], the quadratic regularization matrix QR of (23) is heuristically
updated at each interior-point iteration i as

QR := δ · i · µi/µ0I,

where µ0 and µi are the barrier parameter at the starting and current point,
and δ is a (usually small) initial regularization value. The product by i, the
iteration counter, is an attempt to compensate for the quick reduction of µi
when the optimal solution is approached.

(5) BlockIP may compute the Ritz values, and thus the spectral radius ρ, for
any number h of terms in the preconditioner.

(6) Problems can be provided in four different formats.
(a) The most efficient way is using the BlockIP callable library, which pro-

vides routines to create problems from matrices and vectors. Particular
matrix formats (network—oriented and nonoriented—, general rowwise
or columnwise, diagonal, identity, etc.) can be exploited through the
callable library. Nonlinear objective functions—including gradient and
Hessian evaluations—have to be provided as C++ routines.

(b) Problems can also be efficiently provided by an input file using a specific
format for BlockIP. This format consists on a set of scalars, vectors and
sparse matrices defining the problem parameters.

(c) Input files can also be in structured MPS format, an extension of the
well-known MPS format created for BlockIP. Standard packages can
read structured MPS files without modification.

(d) The last format is based on SML [22], a structure-conveying modeling
language based on the popular AMPL [26] modeling language. In addi-
tion to hooking BlockIP to it, SML was extended to deal with nonlinear
separable problems (see [34] for details).

3. Optimization for Content Delivery Networks

This section introduces the main ideas about Content Delivery Networks (CDN)
and how operational research has been used in this context.

3.1. Content Delivery Networks Overview. A CDN is a collection of network
elements spanning the Internet, where content is replicated over mirrored servers
(i.e., point of presence (PoP), edge or replica servers), located at the border of the
Internet service providers’ (ISP’) networks to which end-users are connected [40].
A high level architecture of a CDN is depicted in Fig. 3. The idea is to put the
most likely requested content from users in the PoPs closer to customers. In short,

3. OPTIMIZATION FOR CONTENT DELIVERY NETWORKS 11

a CDN mitigates that every request from users has to be served by the (usually
distant) origin server.

Fig. 3. High-level architecture of a CDN. [40]

A CDN can be very useful to provide high quality, live streaming coverage of major
events, distributing user generated content (e.g., YouTube), providing fast and
efficient software downloads to customers, or enhancing the performance of an e-
commerce website. A classical application, dealt in this thesis, is the Video on
Demand distribution (VoD). VoD service can be seen as a virtual video rental store
in which a user can choose and watch any program on request, at the convenience
of their time. Video is a very sensitive application from packet losses, end-to-end
delay or delay variation (jitter). Without a CDN, bandwidth is overused as each
request for the same content is retransmitted over and over from origin server and
video performance degrades (i.e., higher packet losses, delay and jitter), especially
when the number of users increases. On the other hand, With a CDN, bandwidth
usage of the content provider is optimized, as if a single end-user has requested
unique content only once. No additional investment is required by the content
provider to increase bandwidth capacity, as media content is packaged for delivery
by the CDN infrastructure, once it has been placed in the PoPs.

Two types of CDNs can be distinguished according the level of awareness of the
underlying network [40]

Pure-play CDN: CDNs that provide over-the-top (OTT) delivery of video and
audio content without the ISPs being involved in the control and distribution
of the content itself.

Carrier/Telco CDN: Broadband providers and Telcos, that provide content de-
livery as a means to reduce the demands on the network backbone and reduce
infrastructure investment

A CDN can be useful for large-scale video streaming. Good Quality of Experience
(QoE) in user for video services requires high network bandwidth and low network
loading to avoid contention. Thus, centralized video server may obtain satisfactory
performance with low video demands because of big Internet infrastructure between
them. As demand grows, QoE gets increasingly worse. A CDN can improve content
delivery by ensuring that network resources are utilized efficiently. On one hand,

12 1. INTRODUCTION

Without a CDN, bandwidth is overused as each request for the same content is
retransmitted over and over. On the other hand, with a CDN, bandwidth usage of
the content provider is optimized as media content is packaged for delivery by the
CDN infrastructure

3.2. Optimization models for Content Delivery Networks. Currently, strin-
gent requirements on quality-of-service (QoS) mechanisms, ever-increasing amount
of content to be distributed and the wild CDN market competition makes efficient
use of available resources highly relevant. Therefore, in the deployment of a CDN
arises optimization problems for resources management, allocation, and pricing.
We will concentrate on resource management and allocations in CDNs. VoD appli-
cations primarily differ from other CDN services by their requirement of significant
amounts of bandwidth.

There are three main problems about managing and allocating resources in a
CDN [48]:

Proxy Server Location Problem: Consists of finding the number and location
of a given number of proxy (also called cache or mirror) servers to be deployed,
such that a predefined measure (e.g., traffic flow, total cost) is minimized.
The mathematical models for this problem are based on or variations of, the
uncapacitated p-median or facility location problems.

Request Routing: Routing in a computer network refers to sending data from
one or more sources to one or more destinations so as to minimize the total
traffic flowing in the network. Request routing in a CDN is the process of
guiding a client’s request to a suitable proxy server that is able to serve the
corresponding request. The problem is formally defined as selecting a proxy
server to address a request for an object such that a cost function is minimized.

Object Placement: Most of the formulations for CDNs assume that the whole
content is entirely replicated onto the caching servers. Unfortunately, this
may not always be possible in situations where the objects are significantly
large in size (i.e., multimedia files) or the number of objects is huge. In those
cases only a partial replication can be performed due to the limited storage
capacity of the caching servers (i.e., PoPs). Therefore, any caching server
can only hold a subset of the content. Determining which objects should be
placed at each caching server under storage capacity restrictions is known as
the object placement problem.

A good review of the optimization problems associated with CDNs can be found
in [48] and the references therein. Mathematical models for resource allocation in
CDNs has substantially grown and become more complex problems by including
simultaneous consideration of one or more of the three main problems above.

In this project, we deal with a combined problem of video placement and request
routing. In addition, the problem to be solved considers a Carrier CDN because we
use network topologies from three major Telecommunication companies. Therefore,
the objective is to reduce the network load while guarantee that all videos are stored
at some server and user demands are satisfied without exceeding carrier network
capacities.

Chapter 2

Optimal Placement for Video On De-
mand Systems

This chapter presents the optimization model employed in this project to assign
the videos to storage locations (i.e., PoP) across a CDN. The model was originally
proposed in [4] and [3]. The objective of the model is to minimize the total data
transfer between nodes to satisfy the video demand which are not available in the
local repository. In addition, the chapter describes the topology networks and data
used to test the model.

1. The problem formulation

As we anticipated, the optimization problem aims to find the assignment strategy
for videos to minimize the network load. To provide realism to the solution, the
model considers a credible request pattern of videos for the peak hours of the
weekend. Moreover, the model considers links and disk capacity constraints.

In general, videos on CDN must be completely stored in a location. This makes the
optimization model a Mixed Integer Problem (MIP) and therefore challenging be-
cause the solutions should not be fractional. Nonetheless, even with the relaxation
of the integer variables, the problem remains difficult because of its huge number
of variables and constraints.

1.1. Parameters and variables. Table 1 summarizes the input data and deci-
sions variables used in the optimization model for location of videos in a CDN. Let
V denote the set of CDN’s PoPs. To agree with the terminology of Applegate et
al. [3], we refer to PoPs as Video Hub Offices (VHOs). The VHOs store videos to
distribute them to the local clients. L represent the set of links that connect the
nodes with an associated capacity Bl Mbps. The library of videos to be optimally
located among the VHO i ∈ V is denoted by M . Every VHO i has an storage
capacity, also known as disk capacity, Di. Alike, each video m ∈ M has a size
Sm GB and needs a bitrate of rm Mbps to be transmitted along the network. To
communicate any two nodes i, j ∈ V , they use the shortest directed path Pi,j ∈ L,
computed in advanced (i.e., the path is fixed in the model and does not change

13

14 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

Table 1. Parameters and Decision variables used in model for
VoD placement.

Parameter Value

V set of VHO (vertices)

L set of directed links
M set of videos

T set of times slices

Di disk capacity at i ∈ V (in GB)
Sm size of video m ∈ M (in GB)

Pij set of links on path from i ∈ V to serve request at j ∈ V
Bl capacity of link l ∈ L (in Mbps)

rm bitrate of video m ∈ M (in Mbps)

amj aggregate number of request for video m at VHO j

fm
j (t) number of request for video m at VHO j active at time t

cij cost of transferring one GB from VHO i to VHO j

Decision Variable Meaning

ymi binary variable indicating if video m is stored at VHO i
xm
ij fraction of request for video m at VHO j served by VHO i

regardless the traffic in the network). The path Pi,j is used to serve a request of
a video m in node j from a distant VHO i. Thus, if a video is served locally, the
path is empty Pi,i = ∅.

The total demand of a video m ∈M from each VHO j ∈ V for the week is denoted
by amj . Moreover, the simultaneous demand for videos fmj (t) from a node j at a
peak hour t ∈ T is used to ensure that the links l ∈ L are not overloaded. Finally,
cij refers the cost to transfer 1GB from node i to j. Recalling that to reach j,
the data has to travel along the path Pij , authors that proposed the VHO location
model suggest to use:

(28) cij = α|Pij |+ β,

where |Pij | refers to the number of nodes that traverses the path between i and j,
α is the cost of sending 1GB over any link in L, and β is a fixed cost for satisfying
a request such as lookup operations or local delivery.

Regarding the decision variables, xmij is the fraction of requests of video m at VHO
j that are fulfilled from VHO i. Thus, xii is the portion of videos served locally.The
other set variables ymi indicates if node i stores the video m. ymi is a binary variable
because a video cannot be stored partially.

1.2. The model. The objective of the model is to minimize the total cost of
retrieving videos from remote locations during a period, subject to constraints of
disk space and link bandwidth. The formulation of the linear relaxation of this
MIP is as follows:

1. THE PROBLEM FORMULATION 15

min
xm
ij , y

m
i

∑
m∈M

∑
i,j∈V

Smamj cijx
m
ij(29)

s.t.
∑
i∈V

xmij = 1, ∀m ∈M, j ∈ V(30)

xmij ≤ ymi , ∀m ∈M, i, j ∈ V(31) ∑
m∈M

Smymi ≤ Di, ∀i ∈ V(32)

∑
m∈M

∑
i,j∈V :
l∈Pij

rmfmj (t)xmij ≤ Bl, ∀l ∈ L, ∀t ∈ T(33)

xmij ≥ 0, ∀m ∈M, i, j ∈ V(34)

ymi ≥ 0, ∀m ∈M, i, j ∈ V.(35)

The objective function expressed by (29) is the total cost of transferring videos
among VHOs to serve the total requests of videos amj from all j ∈ V . Constraint
(30) guarantees that the total demand of video m in any VHO j is satisfied by the
sum of fractions xij served from the set of nodes i ∈ V . Therefore, xij have to be
non-negative as constraint (34) states. Constraint (31) satisfies the fact that only a
node that stores a video m can deliver requests of it. Constraint (32) refers to the
limited storage capacity of each VHO. Constraint (33) assures that the bandwidth of
each link Bl is not overflow during the rush hours of the weekend. Originally, since
a whole video has to be located in a location, this ymi must be 0 or 1, however,
in this project we focus on solving the linear relaxation expressed by constraint
(35). Indeed the (optimal) solution of the binary formulation is beyond the limits
of current technology. Solving the linear relaxation is already a hard task.

After an inspection of the problem, reader can realize that variables xmij and ymi
from different values m only appears together in constraints (33) and (32), respec-
tively. Hence, constraints (30) and (31) are arranged in |M | independent, separable,
diagonally located blocks of equations. This is precisely, the structure of problems
for which the specialized solver BlockIP was designed.

Now, we carefully study the structure of one of these identical |M | blocks. To do
this, we define xmj , ym, D(xmj) and D(ym) as:

xmj =

xm1j

xm2j
...

xmnj

 ,ym =

ym1

ym2
...

ymn

 ,D(xmj) =

xm1j 0 . . . 0

0 xm2j 0
...

. . .
...

0 0 . . . xmnj

 ,D(ym) =

ym1 0 . . . 0

0 ym2 0
...

. . .
...

0 0 . . . ym

 .

Then the block of constraints corresponding to video m is given by (36).

16 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

(36) Nm =

xm
T

1 0 · · · 0 0 0 · · · · · · 0

0 xm
T

2 · · · 0 0
...

. . . 0

... · · ·
. . .

...
...

...
. . .

...

0 0 · · · xmT

n 0 0 · · · · · · 0

D(xm1) 0 · · · 0 −D(ym)D(sm1) 0 · · · 0

0 D(xm2) · · · 0 −D(ym) 0 D(sm2) · · · 0

... · · ·
. . .

... −D(ym)
... · · ·

. . .
...

0 0 · · ·D(xmn) −D(ym) 0 0 · · ·D(smn)

,

where the rows above the horizontal line are the expansion of constraint (30). On
the other hand, rows below the horizontal line match constraint (31). In order
to agree with BlockIP format these rows include slack variables sij to write the
equations as equalities, where smj and D(smj) are:

smj =

sm1j

sm2j
...

smnj

 , D(smj) =

sm1j 0 . . . 0

0 sm2j 0
...

. . .
...

0 0 . . . smnj

 .

The dimensions of Nm (36) are (n + n2) × (2n2 + n), where n = |V | and has 4n2

non-zero positions. It is worth noting that the matrix Nm is sparse, the columns of
xmij∀i, j ∈ V only have two non-zero positions and slack variables smij∀i, j ∈ V have
a single non-zero position. That is not the case of ym columns where all of them
have n non zeros. The dense ym columns makes that the percentage of non-zeros

positions in the computation of NmNmT

is considerably higher than the Nm ones.

NmNmT

is used by BlockIP in its operation, so the a denser matrix leads to a
slower operation of the solver and more memory consumption because of the higher
number of operations.

To overcome the issue of dense columns D(ym) in (36), we will use ymij instead
of ymi ∈ ym , so variables ymij match one to one to xmij . In order to preserve the
constraints of the model we replace constraint (31) by (37) and (38). The later
equation guarantees that ymij have the same value for all j ∈ V . Therefore, the
results obtained with this constraint replacement leads to the same results of the
original model.

1. THE PROBLEM FORMULATION 17

(37) xmij ≤ ymij , ∀m ∈M, i, j ∈ V

(38) ymij − ymij+1 = 0, ∀m ∈M, i ∈ V, j ∈ V \ {n}

Eq.(39) shows the structure of a modified block of constraint N̂m ∀m ∈M .
(39)

N̂m =

xm
T

1 0 · · · 0 0 · · · · · · 0 0 · · · · · · 0

0 xm
T

2 · · · 0 0
. . . 0 0

. . . 0

... · · ·
. . .

...
...

. . .
...

...
. . .

...

0 0 · · · xm
T

n 0 · · · · · · 0n,2n2 0 · · · · · · 0

D(xm1) 0 · · · 0 −D(ym1) D(sm1) 0 · · · 0

0 D(xm2) · · · 0 −D(ym2) 0 D(sm2) · · · 0

... · · ·
. . .

...
. . .

... · · ·
. . .

...

0 0 · · ·D(xmn) −D(ymn) 0 0 · · ·D(smn)

0 0 · · · 0 D(ym1) −D(ym2) 0 · · · · · · 0 0 0 · · · 0

0 0 · · · 0 0 D(ym2) −D(ym3)
... 0 0 · · · 0

... · · ·
. . .

...
. . .

... · · ·
. . .

...

0 0 · · · 0 D(ymn−1)−D(ymn) 0 0 · · · 0

,

where ymi and D(ymi) are:

ymj =

ym1j

ym2j
...

ymnj

 , D(ymj) =

ym1j 0 . . . 0

0 ym2j 0
...

. . .
...

0 0 . . . ymnj

 .

As can be seen the total number of variables are 3n2 and the number of rows in-
creases in n2−n to reach 2n2 constraints. Despite the increment in the dimensions
of the matrix N̂m compared to Nm, its structure is more convenient for computa-
tions of BlockIP since none column has more than 3 non-zero positions.

Regarding the linking constraints of the model expressed in equations (32) and (33),
the structure of each m block of constraint Lm is shown in (40).

18 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

(40)

L̂m =

0 0 · · · 0 SmD(ym1) 0 · · · 0 0 · · · · · · 0

rmf1(1)P1D(xm1) rmf2(1)P2D(xm2) · · · rmfn(1)PnD(xmn) 0 · · · · · · 0 0 · · · · · · 0

rmf1(2)P1D(xm1) rmf2(2)P2D(xm2) · · · rmfn(2)PnD(xmn) 0 · · · · · · 0 0 · · · · · · 0

 ,

where Pj is a matrix of shortest path from every node i ∈ V to destination j. More
precisely, Pj has the following structure:

pij =

lij1

lij2
...

lij|L|

 , Pj =
(
p1j p2j . . . pnj

)
.

Notice that each column pij of matrix Pj represents the set of links that form the

shortest path between nodes i and j, where lijk = 1 means that link k is in the

shortest path pij , otherwise (i.e., lijk = 0) link k is not in the path.

The matrix L̂m is written for the optimization model with constraints (37) and

(38) instead of (31), so L̂m has 3n2 columns. The first n rows (above the horizontal
line) correspond to constraint in (32) in which if a portion yi1 of video m is stored
in node i then the disk space of node i Di must be reduced in Smyi1. Notice
that there is not need of the aforementioned constraint for other yij , i 6= 1 because
(38) guarantees that yik = yij ,∀i, j, k ∈ V . The rows below line in (40) are from
constraint (33). For the representation we use two time slices, since we will use only
two snapshots to test the model. For each time slice t there are |L| rows affected by
the request patterns of videos fj(t) and the data rate needed to send the video m.
The last n2 columns (after the last vertical line) are for slack variables of 37, which

do not play any role in the linking constraints. Despite that the structure of all L̂m

is identical among them, the actual values of the different position depend on the
size of videos Sm, request pattern of the video at different locations fj(t) and the
rate rm. In practice, to resolve a instance of the problem, we will introduce |M |
different L̂m matrices. Note that the structure of L̂m is far from ideal for the PGC
computation since D, defined in (16), is not diagonal. Moreover, L̂m have many
null columns such as those that contains pii paths (i.e., null paths).

2. Input Instance

We will use the same test suite of input instances of [4]. This test suite consists
of three topologies taken from Rocketfuel [47] and six library sizes of videos (5k,
10k, 20k, 50k, 100k, 200k and 1000K). Authors that originally formulated the
optimization problem choose two different trade-offs between disk size and link

2. INPUT INSTANCE 19

bandwidth, yielding to 42 instances (42 = 3x7x2). These synthetic instances are
designed to mimic salient features of a proprietary data set of the instances’ authors.

An instance is specified by the data parameters listed in Table 1. The set T con-
tains two time slices, representing the peak viewing hour on Friday and Saturday,
respectively. The reason is that the demand during non-peak periods does not
overload any links. In addition, the time slices of peak hours in weekend capture
the maximum link utilization over an entire week [4]. On the other hand, a greater
number of time slices (e.g., each second during a 7-day interval) might guarantee
that we never exceed the link constraint, however it makes the problem computa-
tionally hard because the size of constraints (33) is proportional to the number of
time slices in |T |.

The three topologies are taken from the following three undirected networks pub-
lished as part of the Rocketfuel [47] data sets:

Network Rocketfuel number of number of number of links/nodes
Name Code nodes undirected links ratio

edges

Tiscali AS3257 49 86 172 3.51
Sprintlink AS1239 33 69 138 4.18

Ebone AS1755 23 38 76 3.30

Table 2. Simulation Settings.

To get a network with full-duplex between each pair of nodes, the original undirected
edges were bidirected. In these networks, each node resides in a different city,
primarily major cities. Ebone spans Western Europe, plus New York City. Tiscali
spans Western Europe, plus New York, Chicago, and Washington D.C. Sprintlink
spans the United States and Europe, plus Sydney, Tokyo, Singapore and Hong
Kong. The directed path between each pair of nodes is a shortest path with respect
to hop count. Fig. 1 shows the distributions of shortest paths’ length for the three
network topologies.

0

50

100

1 2 3 4 5 6
shortest path length (hops)

nu
m

be
r

of
 s

oh
ot

es
t p

at
hs

(a) Ebone Network.

0

100

200

1 2 3 4 5 6 7
shortest path length (hops)

nu
m

be
r

of
 s

oh
ot

es
t p

at
hs

(b) Sprintlink Network.

0

200

400

600

800

1 2 3 4 5 6
shortest path length (hops)

nu
m

be
r

of
 s

oh
ot

es
t p

at
hs

(c) Tiscali Network.

Fig. 1. Histogram of shortest paths.

As can be seen, most of the shortest paths range from two to four hops. However,
the links’ utilization in terms of the number of shortest paths that use each link,
depicted in Fig. 2 for the three network topologies, is not homogeneous. On one
hand, there are a few links whose utilization is dis-proportionally high compared

20 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

to the average value. On the other, Fig. 2 shows that roughly one third of the
links has a low utilization, therefore that all links have the same capacity seems
not to be a realistic assumption. It is more likely that links with high utilization
have a bandwidth capacity larger than the other links. Nevertheless, the authors
of instances use the the same bandwidth for all links, which depends of the video
library size and disk size.

The disk size and request volume in each node (VHO) was based on the population
size of the surrounding metropolitan area that serves each node. Within each
VHO, 2% of the requests were assigned to each peak period. Thus, for each VHO
and data instance there are three distributions for the video requests: one main
distribution, used for the 96% of the requests that are off-peak, and one distribution
for each of the two peak periods (2% for each one). The videos were identified by an
index between 1 and the library size, with lower indices indicating higher aggregate
popularity.

These request distributions do not consider that popularity of videos is affected by
the geographic diversity. Thus, each VHO draws from the same three distributions.
The main video popularity distribution was derived from the YouTube distribution
published by Cha et al. [20]. Compared to the proprietary data set of [4], the
top videos in the YouTube data were disproportionately popular. Therefore, the
top 5000 videos were dropped from the YouTube distribution before rescaling it
to the library size for the instance at hand. The two peak distributions differ
both from each other and the main distribution.To measure how different are these
distributions among them, each one is represented as a vector of probabilities,
indexed by video, and quantify the difference using cosine similarity. The two peak
distributions are perturbations of the main distribution so that the cosine similarity
between the two peak distributions is about 0.98, and the cosine similarities between
the main distribution and each peak distribution is about 0.74. For each library
size, all of generated instances draw their requests from the same distributions.

Regarding the video properties, all videos in the instances have bitrates of 2 Mbps.
Each video is assigned one of four sizes 100MB, 500MB, 1GB, or 2GB, which are
meant to correspond roughly to 5-minute clips, 30-minute and 1-hour TV shows,
and 2-hour movies. Each video index was assigned one of these four sizes indepen-
dently, with probabilities of approximately 0.29, 0.28, 0.19, and 0.24, respectively.
For each combinations of topology and library size, there are two instances, one
with a small total amount of disk space, and another with a large amount of it.
There are three disk sizes. The disk of a VHO can be large, medium or small,
according to the population it serves. Each large VHO has twice the disk space
of each medium VHO, which has twice the disk space of each small VHO. For the
small-disk instances, the disk sizes are chosen so that the total disk space over all
VHOs is twice the size of the entire library. For the large-disk instances, the disk
sizes are chosen so that the disk space at a medium VHO can hold 20% of the entire
library.

As we anticipate, all links have the same bandwidth within each instance . Authors
of instances chose the actual value in such a way that both the disk capacity and
link bandwidth constraints are challenging to the optimization. To this end, the link
bandwidth for each instance is the smallest round number for which the instance

2. INPUT INSTANCE 21

0

20

40

60

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Network Links

N
um

be
r

S
P

link.color

#FF0000FF

#FF0D00FF

#FF1B00FF

#FF2800FF

#FF3600FF

#FF4300FF

#FF5100FF

#FF5E00FF

#FF6B00FF

#FF7900FF

#FF8600FF

#FF9400FF

#FFA100FF

#FFAE00FF

#FFBC00FF

#FFC900FF

#FFD700FF

#FFE400FF

#FFF200FF

#FFFF00FF

#FFFF15FF

#FFFF40FF

#FFFF6AFF

#FFFF95FF

#FFFFBFFF

#FFFFEAFF

(a) Ebone Network.

0

50

100

150

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135
Network Links

N
um

be
r

S
P

link.color

#FF0000FF

#FF0B00FF

#FF1600FF

#FF2100FF

#FF2C00FF

#FF3700FF

#FF4300FF

#FF4E00FF

#FF5900FF

#FF6400FF

#FF6F00FF

#FF7A00FF

#FF8500FF

#FF9000FF

#FF9B00FF

#FFA600FF

#FFB100FF

#FFBC00FF

#FFC800FF

#FFD300FF

#FFDE00FF

#FFE900FF

#FFF400FF

#FFFF00FF

#FFFF10FF

#FFFF30FF

#FFFF50FF

#FFFF70FF

#FFFF8FFF

#FFFFAFFF

#FFFFCFFF

#FFFFEFFF

(b) Sprintlink Network.

0

100

200

300

400

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170

Network Links

N
um

be
r

S
P

link.color

#FF0000FF

#FF0900FF

#FF1300FF

#FF1C00FF

#FF2600FF

#FF2F00FF

#FF3900FF

#FF4200FF

#FF4C00FF

#FF5500FF

#FF5E00FF

#FF6800FF

#FF7100FF

#FF7B00FF

#FF8400FF

#FF8E00FF

#FF9700FF

#FFA100FF

#FFAA00FF

#FFB300FF

#FFBD00FF

#FFC600FF

#FFD000FF

#FFD900FF

#FFE300FF

#FFEC00FF

#FFF600FF

#FFFF00FF

#FFFF0EFF

#FFFF2BFF

#FFFF47FF

#FFFF63FF

#FFFF80FF

#FFFF9CFF

#FFFFB8FF

#FFFFD4FF

#FFFFF1FF

(c) Tiscali Network.

Fig. 2. Links utilization in terms of number of shortest paths that
go through the links.

is feasible. Since the instances generated have very tight values of disk and link
capacities, in this project we create a third combination with the largest values of
capacity for disks and links. We will see that even this more feasible combination
becomes hard to solve for optimization tools.

22 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

Table 3 shows the values of disk size and bandwidth used to build the problem
instance for five video library sizes in the three network topologies. There are two
additional sizes of libraries (i.e., 200k and 1000k videos). However, we do not test
them because they are too large to be executed in our server.

Table 3. Disk sizes and link capacities for instance generation of
VHO problem.

Sprintlink Tiscali Ebone

Number of Disk Link Disk Link Disk Link Disk Link

videos type type size BW size BW size BW
(GB) (Mbps) (GB) (Mbps) (GB) (Mbps)

small large 260 2000 180 3750 440 2000

5k large small 860 425 870 150 1000 900
large large 860 2000 870 3750 1000 2000

small large 540 3750 360 8000 880 4500
10k large small 1780 700 1760 300 2020 1700

large large 1780 3750 1760 8000 2020 4500

small large 1070 7500 720 16000 1740 8500

20k large small 3530 1500 3530 650 4000 3250
large large 3530 7500 3530 16000 4000 8500

small large 2700 19000 1810 37500 4380 21000
50k large small 8910 3750 8880 1500 10070 8500

large large 8910 19000 8880 37500 10070 21000

small large 5400 38000 3600 77500 8760 45000

100k large small 17800 7200 17600 3250 20140 17000
large large 17800 38000 17600 77500 20140 45000

To conclude this section we show the topologies of the three networks, i.e., Ebone,
Sprintlink and Tiscali in Figs. 3, 4 and 5, respectively. These plots show the con-
nectivity among VHOs, their comparative disk size and the link utilization. It is
clear that they are difficult instance for the video placement problem because Links
with number of shortest path through them are not necessarily connected to VHOs
with big disk size.

2. INPUT INSTANCE 23

Links Use

Disk Size

Fig. 3. Ebone Network.

24 2. OPTIMAL PLACEMENT FOR VIDEO ON DEMAND SYSTEMS

Link Use

Disk Size

Fig. 4. Sprintlink Network.

2. INPUT INSTANCE 25

Links Use

Disk Size

Fig. 5. Tiscali Network.

Chapter 3

Implementation and Results

This chapter presents the implementation details and results from testing the VHO
instances in Ebone, Sprintlink and Tiscali networks with BlockIP solver. More
precisely, we test the BlockIP’s solver options with the smallest instances (i.e.,
5000 videos in the library) for these three networks. Afterwards, we only evaluate
bigger instances with BlockIP set up that provided best results. We decided
to follow this path because the time to solve an instance increases considerably
with the number of variables. Afterwards, in order to compare the performance of
BlockIP, we solve the same instances with CPLEX, properly configured to get a
fair analysis.

1. Implementation Details

To solve the optimal video location problem in network of Video Hub Offices, we
used the BlockIP callable library. The first step was to read the problem in-
formation, which includes: transfer cost for videos, aggregate an peak hours de-
mand, disk sizes, and paths among nodes. Then, with these data, we build block
matrix 39 and linking matrices 40, After that, we create the problem with the
routines provided by BlockIP library. The resulting program, written in C++
as BlockIP, as well as the input data can be download from http://www.
lfurquiza.com/research/codes. The zip file includes an awl script to run
a batch of problems and does not include BlockIP. BlockIP can be downloaded
from http://www-eio.upc.edu/˜jcastro/BlockIP.html.

The options of BlockIP that we will test are:

Type of direction: BlockIP has two ways to compute the direction of move-
ment: automatic and second order (predictor-corrector). The first one use the
Newton direction. The latter can be more precise than the automatic option,
nevertheless it comes at the cost of a greater number of conjugate gradient
iterations because it solves two systems of equations. A value h = 0 was
considered for the number of terms of the power series preconditioner.

Infeasibility tolerance: BlockIP allow us to set the infeasibility tolerance of
the solution provided by the solver. A high tolerance could lead to a shorter
time for getting a solution.

27

http://www.lfurquiza.com/research/codes
http://www.lfurquiza.com/research/codes
http://www-eio.upc.edu/~jcastro/BlockIP.html

28 3. IMPLEMENTATION AND RESULTS

Quadratic Regularization factor: The quadratic regularization helps linear op-
timization problems to find an optimal solution faster than without regulariza-
tion because quadratic regularization decreases the spectral radius and makes
PCG more efficient. As the regularization factor increases the importance
of quadratic terms in the objective function increases as well and this could
modify the value of the objective function and the dual feasibility condition.

We compare BlockIP results with state-of-the-art CPLEX 12.5 package. Re-
garding CPLEX, we set it to use only one thread because BlockIP do not exploit
parallelism. In addition, we set the barrier algorithm 3 and the optimality gap equal
to the obtained by BlockIP. The CPU time provided for CPLEX is only for the
barrier iterations, without crossover. All runs were carried out on a server at 2.60
GHz Intel Xeon E5-2690 CPUs with 192 gigabytes of memory, under a GNU/Linux
operating system (OpenSuse 13.2)

2. Results for small instances

The smallest instance for the three different network topology are obtained by using
the library of 5000 videos. So, the resulting problem has five thousand diagonal
blocks. The actual number of variables into a block depends on the numbers of
VHO in the network. Among the three networks, Tiscali will produce the largest
problem and Ebone the smallest one.

2.1. Ebone. As we said, the smallest instances produce 5000 blocks. In the case
of Ebone Network this number of blocks leads to a total number of variables of
7935175. The detailed information of variables and constraints are depicted in
Table 1.

Parameter Value

Block Variables 1587
Block Constraints 1058
Linking constraints 175
Total Variables 7935175
Total constraints 5290175

Table 1. Descriptive information of smallest instance in Ebone
network with a library of 5000 videos

Table 2 shows the results of testing the aforementioned BlockIP options in the 5k
instance of Ebone network. The fist two rows of each section of the Table 2 show the
results of using automatic direction, none regularization factor (i.e., Q=0) and the
infeasibility gaps of 1e-7 and 1e-2. These results indicates that a tight infeasibility
gap do not affect the solution time. Hence, we test the other options combinations
of BlockIP that uses automatic direction with an infeasibility of 1e-7.

Regarding the option second order direction, we test this option with a infeasibility
gap of 1e-2. Results show that the intensive computation operations that this

2. RESULTS FOR SMALL INSTANCES 29

options demands is not worthing for this particular problem because the optimality
gap is not better than the obtained with automatic direction. Moreover, a more
strict infeasibility gap of 1e-7 leads to the same results and increases even more the
solution time as it can be seen for the instance with disks of 440GB and links of
2200 Mbps.

The best results for the Ebone network for a library size of 5000 videos were ob-
tained with automatic direction and a quadratic regularization factor. The best
regularization factor depends on the disk size and link capacity of the instance at
hand. For the small disks and large links (i.e., 440GB and 2200 Mbps) a regu-
larization factor of 20 gets and optimality gap in the order of 1e-5 with smallest
number of PCG iterations per BlockIP major iteration (See Fig. 1a) and therefore
the greatest average number of BlockIP iterations per minute (Fig. 1b) and in the
shortest time.

0

10

20

30

40

50

60

0,0 0,1 1,0 10,0 15,0 20,0 30,0

1000/2200 1000/900 440/2200

(a) PCG iterations per BlockIP iteration
vs Quadratic regularization factor

0

1

2

3

4

5

6

7

0,0 0,1 1,0 10,0 15,0 20,0 30,0

1000/2200 1000/900 440/2200

(b) BlockIP iterations per minute vs Qua-
dratic regularization factor

Fig. 1. BlockIP performance for different values of quadratic
regularization in Ebone network with a library of 5000 videos

On the other hand, in the scenario with “big” disks and tight links capacities (1000
GB and 900 Mbps), a factor of 1.0 or 100 lead to 2% optimal solution. The more
feasible instance (1000 GB and 2200 Mbps) needs a more conservative regularization
factor of 0.1 or 1.0 to reach a 0.01% optimal solution. Notice that, the optimality
gap improvement got in the latter instance due to the use of quadratic regularization
is not as important as in the two previous, more challenging instances. Additionally,
the use of a regularization factor comes at the cost of a slightly increment in the
infeasibility of dual solutions, however it is not significant.

We also include Fig. 2 to show the performance of BlockIP decreases while it
approaches to the optimum solution, as it was pointed out in [19]. Results showed
in Fig. 2 are from the most time demanding instance of “small” disks - “large” links.
As in the reader can notice in the last 25% of iterations the estimated spectral radius
of the inverse of (20) is 1 (See Fig. 2a) and therefore the number of PCG iterations
needed in those cases increases considerable (Fig. 2b). From these results, it is
reasonable to conclude that most of the solution time is due to the last iterations.
However, for VHO problem is not possible to switch to full Cholesky factorization
to overcome this issue, as [19] suggested, because of the size of the problem.

30 3. IMPLEMENTATION AND RESULTS

T
y
p
e

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

D
u
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s
.

G
a
p

V
a
l
u
e

F
e
a
s
.

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

0
.
0

2
0
1

3
.
0
5
3
8
0
8
e
+
0
7

3
.
4
4
e
-
0
2

2
.
8
4
5
7
7
9
e
+
0
7

4
.
2
0
e
-
1
6

6
.
8
1
e
-
0
2

1
0
1
2
8

1
1
9
.
6
9

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
2

0
.
0

2
0
1

3
.
0
5
3
8
0
8
e
+
0
7

3
.
4
4
e
-
0
2

2
.
8
4
5
7
7
9
e
+
0
7

4
.
2
0
e
-
1
6

6
.
8
1
e
-
0
2

1
0
1
2
8

1
2
0
.
0
7

4
4
0
/
2
2
0
0

S
.
O
.

1
e
-
7

0
.
0

8
6

3
.
7
5
6
2
7
3
e
+
0
7

9
.
0
5
e
-
0
3

-
1
.
7
3
3
2
3
9
e
+
0
7

3
.
3
0
e
-
1
5

1
.
4
6
e
+
0
0

1
6
7
6
0

2
0
8
.
6
4

4
4
0
/
2
2
0
0

S
.
O
.

1
e
-
2

0
.
0

8
6

3
.
7
5
6
2
7
3
e
+
0
7

9
.
0
5
e
-
0
3

-
1
.
7
3
3
2
3
9
e
+
0
7

3
.
3
0
e
-
1
5

1
.
4
6
e
+
0
0

1
6
7
6
0

1
8
1
.
2
7

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

0
.
1

1
9
9

3
.
0
5
4
5
0
1
e
+
0
7

3
.
4
3
e
-
0
2

2
.
8
4
5
9
5
9
e
+
0
7

1
.
1
0
e
-
0
6

6
.
8
3
e
-
0
2

9
8
9
6

1
2
1
.
4
9

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
.
0

2
1
8

3
.
0
2
5
8
2
4
e
+
0
7

2
.
6
9
e
-
0
2

2
.
8
7
5
2
3
4
e
+
0
7

1
.
1
9
e
-
0
5

4
.
9
8
e
-
0
2

1
2
1
4
1

1
4
7
.
5
1

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
0
.
0

2
2
5

2
.
9
9
1
4
3
2
e
+
0
7

1
.
7
6
e
-
0
2

2
.
9
6
6
6
4
0
e
+
0
7

7
.
0
8
e
-
0
5

8
.
2
9
e
-
0
3

1
0
5
8
9

1
3
0
.
4
1

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
5
.
0

2
0
4

3
.
0
1
4
6
5
6
e
+
0
7

2
.
3
4
e
-
0
2

3
.
0
0
4
5
6
2
e
+
0
7

1
.
0
5
e
-
0
4

3
.
3
5
e
-
0
3

7
1
2
1

9
0
.
3
4

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

2
0
.
0

1
8
2

3
.
0
4
5
1
2
3
e
+
0
7

3
.
1
1
e
-
0
2

3
.
0
4
4
9
3
8
e
+
0
7

1
.
4
5
e
-
0
4

6
.
0
9
e
-
0
5

5
0
3
8

7
9
.
3
0

4
4
0
/
2
2
0
0

a
u
t
o

1
e
-
7

3
0
.
0

2
1
6

2
.
9
8
8
4
7
1
e
+
0
7

1
.
5
7
e
-
0
2

3
.
0
7
1
9
4
3
e
+
0
7

1
.
5
6
e
-
0
4

2
.
7
9
e
-
0
2

8
3
1
2

1
0
5
.
2
5

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

0
.
0

1
2
3

1
.
0
0
8
8
2
3
e
+
0
7

2
.
9
0
e
-
0
3

9
.
7
6
1
6
6
8
e
+
0
6

9
.
1
9
e
-
0
6

3
.
2
4
e
-
0
2

2
2
9
4

3
3
.
4
2

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
2

0
.
0

1
2
3

1
.
0
0
8
8
2
3
e
+
0
7

2
.
9
0
e
-
0
3

9
.
7
6
1
6
6
8
e
+
0
6

9
.
1
9
e
-
0
6

3
.
2
4
e
-
0
2

2
2
9
4

3
3
.
4
5

1
0
0
0
/
9
0
0

S
.
O
.

1
e
-
2

0
.
0

9
5

1
.
0
8
2
8
9
2
e
+
0
7

5
.
8
6
e
-
0
5

7
.
9
4
2
9
6
0
e
+
0
6

7
.
1
1
e
-
0
6

2
.
6
7
e
-
0
1

1
5
6
9
1

1
7
2
.
3
0

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

0
.
1

1
0
4

1
.
0
4
1
6
6
9
e
+
0
7

1
.
2
1
e
-
0
2

9
.
4
3
3
7
1
3
e
+
0
6

6
.
2
6
e
-
0
6

9
.
4
4
e
-
0
2

1
4
3
7

2
3
.
7
3

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

1
.
0

1
2
1

1
.
0
1
0
3
3
2
e
+
0
7

3
.
4
3
e
-
0
3

9
.
8
0
7
5
0
2
e
+
0
6

9
.
7
6
e
-
0
6

2
.
9
3
e
-
0
2

2
1
3
1

3
2
.
7
6

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

1
0
.
0

1
2
2

1
.
0
0
6
9
1
9
e
+
0
7

2
.
6
2
e
-
0
3

1
.
0
2
7
9
3
5
e
+
0
7

4
.
7
3
e
-
0
5

2
.
0
9
e
-
0
2

2
0
7
3

3
1
.
3
2

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

1
5
.
0

1
2
8

1
.
0
0
7
7
6
3
e
+
0
7

2
.
8
3
e
-
0
3

1
.
0
5
4
2
8
8
e
+
0
7

7
.
1
7
e
-
0
5

4
.
6
2
e
-
0
2

2
1
5
1

3
2
.
4
9

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

2
0
.
0

1
4
1

1
.
0
0
7
3
8
1
e
+
0
7

2
.
7
6
e
-
0
3

1
.
0
7
4
5
8
8
e
+
0
7

8
.
6
4
e
-
0
5

6
.
6
7
e
-
0
2

2
5
3
9

3
8
.
6
6

1
0
0
0
/
9
0
0

a
u
t
o

1
e
-
7

3
0
.
0

1
5
6

1
.
0
0
6
7
5
2
e
+
0
7

2
.
1
7
e
-
0
3

1
.
1
1
3
9
1
0
e
+
0
7

1
.
2
2
e
-
0
4

1
.
0
6
e
-
0
1

2
9
8
2

4
4
.
2
2

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

0
.
0

1
5
4

9
.
6
8
9
6
2
1
e
+
0
6

6
.
7
7
e
-
0
5

9
.
6
8
7
8
9
1
e
+
0
6

3
.
9
5
e
-
0
8

1
.
7
9
e
-
0
4

1
6
1
3

2
8
.
8
4

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
2

0
.
0

1
5
4

9
.
6
8
9
6
2
1
e
+
0
6

6
.
7
7
e
-
0
5

9
.
6
8
7
8
9
1
e
+
0
6

3
.
9
5
e
-
0
8

1
.
7
9
e
-
0
4

1
6
1
3

2
8
.
5
3

1
0
0
0
/
2
2
0
0

S
.
O
.

1
e
-
2

0
.
0

7
1

9
.
8
2
4
9
7
1
e
+
0
6

2
.
2
6
e
-
0
5

9
.
6
1
0
2
2
1
e
+
0
6

6
.
9
6
e
-
0
7

2
.
1
9
e
-
0
2

2
8
4
6

3
7
.
0
7

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

0
.
1

1
5
0

9
.
6
8
8
2
9
4
e
+
0
6

7
.
7
3
e
-
0
5

9
.
6
8
7
6
9
7
e
+
0
6

1
.
4
5
e
-
0
7

6
.
1
7
e
-
0
5

1
4
6
9

2
6
.
2
6

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
.
0

1
4
5

9
.
6
8
8
5
7
4
e
+
0
6

5
.
4
9
e
-
0
5

9
.
6
8
7
7
8
4
e
+
0
6

6
.
2
5
e
-
0
7

8
.
1
6
e
-
0
5

1
2
5
7

2
4
.
1
6

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
0
.
0

1
5
4

9
.
6
8
9
3
9
2
e
+
0
6

4
.
9
3
e
-
0
5

9
.
6
9
7
0
7
7
e
+
0
6

1
.
4
4
e
-
0
6

7
.
9
3
e
-
0
4

1
3
8
6

2
6
.
4
3

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

1
5
.
0

1
5
4

9
.
6
8
7
4
9
9
e
+
0
6

6
.
4
1
e
-
0
5

9
.
6
8
8
8
3
6
e
+
0
6

8
.
5
9
e
-
0
8

1
.
3
8
e
-
0
4

2
4
5
1

3
9
.
5
5

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

2
0
.
0

1
9
3

9
.
6
8
8
0
6
2
e
+
0
6

8
.
0
1
e
-
0
6

9
.
6
9
7
4
1
5
e
+
0
6

1
.
0
1
e
-
0
6

9
.
6
5
e
-
0
4

2
4
0
6

4
0
.
4
3

1
0
0
0
/
2
2
0
0

a
u
t
o

1
e
-
7

3
0
.
0

2
3
9

9
.
6
8
8
3
0
6
e
+
0
6

4
.
6
9
e
-
0
6

9
.
7
1
2
9
1
6
e
+
0
6

2
.
6
8
e
-
0
6

2
.
5
4
e
-
0
3

4
1
0
8

6
5
.
9
5

T
a
b
l
e
2
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

E
b

o
n

e
n

et
w

o
rk

w
it

h
a

li
b

ra
ry

o
f

5
0
0
0

v
id

eo
s

(d
ia

g
o
n

a
l

b
lo

ck
s)

.
T

h
is

p
ro

b
le

m
h

as
79

35
17

5
va

ri
ab

le
s

2. RESULTS FOR SMALL INSTANCES 31

0,25

0,35

0,45

0,55

0,65

0,75

0,85

0,95

1,05

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

Q=0
Q=20

(a) Spectrum ratio vs BlockIP iterations

0

20

40

60

80

100

120

140

160

180

200

220

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

Q=20
Q=0

(b) PCG iterations vs BlockIP iterations

Fig. 2. BlockIP performance along iterations in Ebone network
with a library of 5000 videos. The results are from an instance with
average disk size of 440GB and link’s bandwidth of 2200 Mbps

The results obtained with CPLEX are shown in Table 3. CPLEX is faster than
BlockIP for the VHO problem. Nevertheless, CPLEX is only able to find an op-
timal solution for the most feasible problem among the three evaluated instances.
CPLEX was unable to find feasible primal solutions for the challenging combina-
tions of small disks/large link capacities and big disks / small link capacities.

Type Iter Primal Objective Dual Objective Opt. Time
Value Feas. Gap Value Feas. Gap Gap (min)

440/2200∗ 241 3.0255e+07 5.14e-01 2.8462e+07 1.57e-6 5.92e-02 18.64

1000/900∗ 186 1.0163e+07 1.35e-01 9.8543e+06 4.31e-07 3.05e-02 14.88

1000/2200 157 9.6879e+06 2.98e-05 9.6879e+06 3.28e-07 1.55e-07 12.71

Table 3. Results with CPLEX for Ebone network with a library
of 5000 videos. Non-optimal solutions are marked with ∗

For the small instance in the Ebone network we can conclude that BlockIP finds
optimal and feasible solutions in very tight instances (i.e., problems with a small
feasible region). However, when VHO instances are more feasible, CPLEX clearly
outperforms BlockIP in terms of processing time.

2.2. Sprintlink. For the Sprintlink network the 5000 blocks reach a total number
of 16335309 variables. The details are in Table 4. Table 5 shows the results of
testing options of BlockIP options in the 5k instance of Sprintlink network. As for
Ebone network, the fist two rows of each section of the table show the results of using
automatic direction, none regularization factor (i.e., Q=0) and the infeasibility gaps
of 1e-7 and 1e-2. These results agree with Ebone ones regarding that a relaxed
infeasibility gap (i.e., 1e-2) does not degrade the solution but in these instances
it reduces the solution time. Hence, we test the other options combinations of
BlockIP that uses automatic direction with an infeasibility of 1e-2. Regarding the
option second order direction, we test this option with a infeasibility gap of 1e-2.
Results show that the intensive computation operations that this option demands

32 3. IMPLEMENTATION AND RESULTS

Parameter Value

Block Variables 3267
Block Constraints 2178
Linking constraints 309
Total Variables 16335309
Total constraints 10890309

Table 4. Descriptive information of smallest instance in Sprint-
link network with a library of 5000 videos

is not worthing for this particular problem, except for the more feasible instance.
Contrary to what is expected, the optimality gap is worse than the obtained with
automatic direction for the two complicate instances (i.e., small disk- large links
and vice versa). Again here, as happened in the Ebone instance, a more strict
infeasibility gap of 1e-7 leads to the same results and increases even more the
solution time as it can be seen for the instance with average disks of 260GB and
links of 2000 Mbps.

The results for the Sprintlink network clearly improves when automatic direction
and a quadratic regularization factor are applied together. As in the Ebone case, the
best regularization factor depends on the disk size and link capacity of the instances.
For the small disks and large links (i.e., 260GB and 2000 Mbps) a regularization
factor of 20 (the same factor obtained for Ebone) gets an optimality gap in the order
of 1e-5 with smallest number of PCG iterations per BlockIP major iteration (See
Fig. 3a), the highest average number of BlockIP iterations per minute (Fig. 3b) and
in the shortest time. On the other hand, in the scenario with “big” disks and tight
links capacities (860 GB and 425 Mbps), factors of 0.1 or 1.0 lead to a 6% optimal
solution. To solve the more feasible instance (1000 GB and 2200 Mbps) the same
conservative regularization factors of 0.1 or 1.0 can be used to reach a 0.01% optimal
solution. It is important to note that in the latter instance, BlockIP, using second-
order direction without regularization factor, finds an optimal solution faster than
using automatic direction and quadratic regularization.

0

10

20

30

40

50

60

70

80

0,0 0,1 1,0 10,0 15,0 20,0 30,0

260/2000 860/425 860/2000

(a) PCG iterations per BlockIP iteration
vs Quadratic regularization factor

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0,0 0,1 1,0 10,0 15,0 20,0 30,0

260/2000 860/425 860/2000

(b) BlockIP iterations per minute vs Qua-
dratic regularization factor

Fig. 3. BlockIP performance for different values of quadratic
regularization in Sprintlink network with a library of 5000 videos

2. RESULTS FOR SMALL INSTANCES 33

T
y
p
e

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

D
u
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s

G
a
p

V
a
l
u
e

F
e
a
s

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
7

0
.
0

2
4
1

3
.
6
3
0
4
5
5
e
+
0
7

1
.
4
2
e
-
0
3

3
.
5
9
2
1
5
2
e
+
0
7

1
.
2
9
e
-
0
5

1
.
0
6
e
-
0
2

1
5
9
3
5

4
5
9
.
3
0

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

0
.
0

2
4
1

3
.
6
3
0
4
5
5
e
+
0
7

1
.
4
2
e
-
0
3

3
.
5
9
2
1
5
2
e
+
0
7

1
.
2
9
e
-
0
5

1
.
0
6
e
-
0
2

1
5
9
3
5

3
8
6
.
4
7

2
6
0
/
2
0
0
0

S
.
O
.

1
e
-
7

0
.
0

1
4
9

4
.
3
5
9
2
9
5
e
+
0
7

1
.
3
3
e
-
0
3

1
.
8
2
6
2
1
3
e
+
0
6

3
.
2
3
e
-
0
6

9
.
5
8
e
-
0
1

4
1
2
7
3

9
1
8
.
6
3

2
6
0
/
2
0
0
0

S
.
O
.

1
e
-
2

0
.
0

1
4
9

4
.
3
5
9
2
9
5
e
+
0
7

1
.
3
3
e
-
0
3

1
.
8
2
6
2
1
3
e
+
0
6

3
.
2
3
e
-
0
6

9
.
5
8
e
-
0
1

4
1
2
7
3

8
1
5
.
9
5

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

0
.
1

2
4
0

3
.
6
3
0
4
9
5
e
+
0
7

1
.
4
2
e
-
0
3

3
.
5
9
2
5
7
6
e
+
0
7

1
.
2
9
e
-
0
5

1
.
0
4
e
-
0
2

1
5
8
7
6

3
8
3
.
4
9

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
.
0

2
3
8

3
.
6
2
8
9
9
8
e
+
0
7

1
.
2
5
e
-
0
3

3
.
5
9
6
8
9
8
e
+
0
7

1
.
3
3
e
-
0
5

8
.
8
5
e
-
0
3

1
5
1
0
6

3
6
5
.
5
0

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
0
.
0

2
2
8

3
.
6
3
1
6
1
1
e
+
0
7

1
.
3
6
e
-
0
3

3
.
6
3
1
8
6
1
e
+
0
7

4
.
7
6
e
-
0
5

6
.
9
0
e
-
0
3

1
0
8
3
7

2
6
6
.
4
8

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
5
.
0

2
0
5

3
.
6
6
5
9
3
7
e
+
0
7

4
.
0
1
e
-
0
3

3
.
6
6
6
2
5
9
e
+
0
7

1
.
2
4
e
-
0
4

8
.
7
8
e
-
0
5

6
7
8
5

1
8
3
.
6
9

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

2
0
.
0

1
8
9

3
.
7
1
1
5
4
8
e
+
0
7

8
.
4
8
e
-
0
3

3
.
7
1
1
8
3
6
e
+
0
7

2
.
2
7
e
-
0
4

7
.
7
5
e
-
0
5

4
8
2
0

1
3
4
.
8
3

2
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

3
0
.
0

2
8
2

3
.
6
1
9
4
3
8
e
+
0
7

3
.
2
2
e
-
0
4

3
.
6
6
8
5
1
2
e
+
0
7

7
.
5
6
e
-
0
5

1
.
3
6
e
-
0
2

1
8
5
5
7

4
6
2
.
1
5

8
6
0
/
4
2
5

a
u
t
o

1
e
-
7

0
.
0

1
6
2

1
.
0
4
0
2
2
8
e
+
0
7

3
.
3
0
e
-
0
2

9
.
3
9
5
1
6
4
e
+
0
6

5
.
6
5
e
-
0
6

9
.
6
8
e
-
0
2

8
7
0
1

2
1
6
.
7
9

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

0
.
0

1
6
2

1
.
0
4
0
2
2
8
e
+
0
7

3
.
3
0
e
-
0
2

9
.
3
9
5
1
6
4
e
+
0
6

5
.
6
5
e
-
0
6

9
.
6
8
e
-
0
2

8
7
0
1

2
1
4
.
4
7

8
6
0
/
4
2
5

S
.
O
.

1
e
-
2

0
.
0

1
1
2

1
.
0
3
5
8
4
0
e
+
0
7

2
.
5
0
e
-
0
5

8
.
5
3
8
7
7
9
e
+
0
6

4
.
6
8
e
-
0
6

1
.
7
6
e
-
0
1

4
0
8
5
4

9
0
4
.
9
8

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

0
.
1

1
6
0

1
.
0
4
0
0
9
5
e
+
0
7

3
.
2
9
e
-
0
2

9
.
4
0
6
1
5
1
e
+
0
6

5
.
6
2
e
-
0
6

9
.
5
6
e
-
0
2

8
3
5
4

2
0
7
.
1
5

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

1
.
0

1
6
3

1
.
0
3
2
4
8
3
e
+
0
7

2
.
8
6
e
-
0
2

9
.
6
0
3
3
4
0
e
+
0
6

1
.
0
0
e
-
0
5

6
.
9
9
e
-
0
2

8
6
6
5

2
1
4
.
4
1

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

1
0
.
0

2
0
6

9
.
8
4
9
4
2
4
e
+
0
6

4
.
7
9
e
-
0
3

1
.
0
2
6
5
0
5
e
+
0
7

3
.
4
4
e
-
0
5

4
.
2
2
e
-
0
2

1
1
2
8
9

3
2
8
.
6
3

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

1
5
.
0

2
1
8

9
.
8
5
2
5
5
8
e
+
0
6

4
.
8
4
e
-
0
3

1
.
0
5
5
6
2
5
e
+
0
7

4
.
9
7
e
-
0
5

7
.
1
4
e
-
0
2

1
1
7
2
2

2
8
1
.
9
7

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

2
0
.
0

3
4
9

9
.
0
5
4
7
1
3
e
+
0
6

1
.
3
2
e
-
0
4

9
.
2
4
6
5
2
6
e
+
0
6

1
.
1
7
e
-
0
5

2
.
1
2
e
-
0
2

2
5
5
0
3

5
9
3
.
9
7

8
6
0
/
4
2
5

a
u
t
o

1
e
-
2

3
0
.
0

4
0
0

9
.
3
3
2
7
9
5
e
+
0
6

5
.
6
2
e
-
0
4

1
.
0
0
0
4
9
4
e
+
0
7

3
.
9
6
e
-
0
5

7
.
2
0
e
-
0
2

2
8
7
9
5

8
1
9
.
8
9

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
7

0
.
0

2
3
8

9
.
4
6
5
2
9
5
e
+
0
6

3
.
8
6
e
-
0
6

9
.
4
6
0
4
5
9
e
+
0
6

6
.
9
1
e
-
0
7

5
.
1
1
e
-
0
4

7
3
5
5

2
4
0
.
9
3

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

0
.
0

2
3
8

9
.
4
6
5
2
9
5
e
+
0
6

3
.
8
6
e
-
0
6

9
.
4
6
0
4
5
9
e
+
0
6

6
.
9
1
e
-
0
7

5
.
1
1
e
-
0
4

7
3
5
5

1
9
9
.
1
9

8
6
0
/
2
0
0
0

S
.
O
.

1
e
-
2

0
.
0

1
1
7

9
.
4
6
6
4
7
4
e
+
0
6

5
.
7
9
e
-
0
7

9
.
4
5
9
7
6
9
e
+
0
6

1
.
5
5
e
-
1
3

7
.
0
8
e
-
0
4

6
9
2
5

1
7
7
.
2
7

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

0
.
1

2
4
3

9
.
4
6
4
6
3
1
e
+
0
6

3
.
7
1
e
-
0
6

9
.
4
6
1
4
9
7
e
+
0
6

4
.
0
4
e
-
0
7

3
.
3
1
e
-
0
4

8
2
4
3

2
2
0
.
8
9

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
.
0

2
3
9

9
.
4
6
4
0
4
9
e
+
0
6

3
.
0
3
e
-
0
6

9
.
4
6
2
9
8
4
e
+
0
6

2
.
7
1
e
-
0
7

1
.
1
3
e
-
0
4

7
8
0
4

2
0
9
.
7
3

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
0
.
0

2
6
4

9
.
4
6
2
9
5
3
e
+
0
6

1
.
8
4
e
-
0
6

9
.
4
6
9
3
0
5
e
+
0
6

5
.
0
8
e
-
0
7

6
.
7
1
e
-
0
4

7
5
5
7

2
2
5
.
6
6

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

1
5
.
0

3
0
9

9
.
4
6
2
7
2
2
e
+
0
6

2
.
9
1
e
-
0
6

9
.
4
6
5
1
4
2
e
+
0
6

1
.
6
0
e
-
0
7

2
.
5
6
e
-
0
4

1
1
2
8
4

2
9
8
.
7
8

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

2
0
.
0

3
4
7

9
.
4
6
2
7
1
4
e
+
0
6

1
.
1
3
e
-
0
6

9
.
4
6
4
8
4
5
e
+
0
6

1
.
4
4
e
-
0
7

2
.
2
5
e
-
0
4

1
3
4
2
3

3
5
1
.
2
8

8
6
0
/
2
0
0
0

a
u
t
o

1
e
-
2

3
0
.
0

4
0
0

9
.
4
6
2
7
6
5
e
+
0
6

8
.
6
3
e
-
0
7

9
.
4
7
4
8
4
8
e
+
0
6

7
.
9
6
e
-
0
7

1
.
2
8
e
-
0
3

1
4
2
9
0

3
7
7
.
8
0

T
a
b
l
e
5
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

S
p

ri
n
tl

in
k

n
et

w
o
rk

w
it

h
a

li
b

ra
ry

o
f

5
0
0
0

v
id

eo
s.

T
h

is
p

ro
b

le
m

h
a
s

1
6
3
3
5
3
0
9

va
ri

ab
le

s

34 3. IMPLEMENTATION AND RESULTS

We also include Fig. 4 to show how the performance of BlockIP decreases while
it approaches to the optimum solution because the spectral radius of the inverse of
S (20) is 1 in those cases (See Fig. 4a)).

0,25

0,35

0,45

0,55

0,65

0,75

0,85

0,95

1,05

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

Q=0
Q=20

(a) Spectrum ratio vs BlockIP iterations

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

Q=0
Q=20

(b) PCG iterations vs BlockIP iterations

Fig. 4. BlockIP performance along iterations in Sprintlink net-
work with a library of 5000 videos. The results are from an instance
with average disk size of 260GB and link’s bandwidth of 2000 Mbps

The results obtained with CPLEX are shown in Table 6. CPLEX is faster than
BlockIP for the VHO problem. Nevertheless, CPLEX was unable to find feasible
primal solutions for the challenging combination of big disks/small link capacities.

Type Iter Primal Objective Dual Objective Opt. Time
Value Feas Gap Value Feas Gap Gap (min)

260/2000 346 3.61158e+07 3.2e-04 3.61133e+07 3.2e-04 6.8e-05 71.03

860/425* 264 9.85287e+06 5.8e-01 9.65577e+06 1.9e-06 2.0e-02 65.72

860/2200 200 9.46269e+06 3.8e-06 9.46269e+06 4.4e-07 1.1e-08 41.73

Table 6. Results with CPLEX for Sprintlink network with a
library of 5000 videos. Non-optimal solutions are marked with ∗

For the small instance in the Sprintlink network we can conclude that BlockIP
finds optimal and feasible solutions in very tight instances (i.e., problems with a
small feasible region) while CPLEX can not perform well in one of them. When
VHO instances become more feasible, second-order direction should be considered
an strong option to solve the problem. However, in the same more feasible instances,
CPLEX clearly outperforms BlockIP in terms of processing time and optimality
gap.

2.3. Tiscali. The results shows that Tiscali network is the most difficult and large
topology among the three tested in this project. The smallest problem for Tiscali,
with 5000 videos reach to a total number of 36015393 variables. The details are in
Table 7.

2. RESULTS FOR SMALL INSTANCES 35

Parameter Value

Block Variables 7203
Block Constraints 4802
Linking constraints 393
Total Variables 36015393
Total constraints 24010393

Table 7. Descriptive information of smallest instance in Tiscali
network with a library of 5000 videos

Table 8 shows the results of testing options of BlockIP options in the 5k instance
of Tiscali network. In Tiscali network, unexpectedly a relaxed infeasibility gap (i.e.,
1e-2) increases the solution time but it does not degrade the optimality gap. Hence,
we test the other options combinations of BlockIP that uses automatic direction
with an infeasibility of 1e-7. Regarding the option second order direction, we test
it with a infeasibility gap of 1e-2. Results show that the intensive computation of
this option is worthing only for the more feasible instance of this problem. This
behavior was also observed in Sprintlink network. For the instance with large disk
and small link bandwidth, the optimality gap is worse than the obtained with
automatic direction. Also here, as happened in the two previous networks, the
second-order direction with a more strict infeasibility gap of 1e-7 only increases the
solution time as it can be seen for the instance with average disks of 180GB and
links of 3750 Mbps.

A quadratic regularization factor with automatic direction improves considerably
the optimality gap and/or solution time. For the small disks and large links (i.e.,
180GB and 3750 Mbps) Q=30, the largest one the tested values, gets an optimality
gap in the order of 1e-5 with smallest number of PCG iterations per BlockIP major
iteration (See Fig. 5a), the highest average number of BlockIP iterations per
minute (Fig. 5b) and in the shortest time. Regarding the scenario with “big” disks
and small links capacities (870 GB and 150 Mbps), only factor Q=1.0 leads to a
6% optimal solution.

0

20

40

60

80

100

120

140

0 . 0 0 . 1 1 . 0 10.0 15.0 20.0 30.0

180/3750 870/150 870/3750

(a) PCG iterations per BlockIP iteration
vs Quadratic regularization factor

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 . 0 0 . 1 1 . 0 10.0 15.0 20.0 30.0

180/3750 870/150 870/3750

(b) BlockIP iterations per minute vs Qua-
dratic regularization factor

Fig. 5. BlockIP performance for different values of quadratic
regularization in Tiscali network with a library of 5000 videos

36 3. IMPLEMENTATION AND RESULTS

T
y
p
e

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

D
u
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s

G
a
p

V
a
l
u
e

F
e
a
s

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

0
.
0

3
4
7

3
.
2
8
6
7
2
9
e
+
0
7

8
.
0
0
e
-
0
5

3
.
2
6
4
0
8
8
e
+
0
7

2
.
9
6
e
-
0
5

6
.
8
9
e
-
0
3

2
7
0
6
3

1
4
0
4
.
2
0

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
2

0
.
0

3
4
7

3
.
2
8
6
7
2
9
e
+
0
7

8
.
0
0
e
-
0
5

3
.
2
6
4
0
8
8
e
+
0
7

2
.
9
6
e
-
0
5

6
.
8
9
e
-
0
3

2
7
0
6
3

1
6
0
2
.
9
8

1
8
0
/
3
7
5
0

S
.
O
.

1
e
-
7

0
.
0

2
5
7

3
.
2
9
0
4
8
0
e
+
0
7

1
.
2
6
e
-
0
7

3
.
2
6
4
8
7
4
e
+
0
7

8
.
7
3
e
-
1
0

7
.
7
8
e
-
0
3

4
6
3
6
1

2
3
8
3
.
0
4

1
8
0
/
3
7
5
0

S
.
O
.

1
e
-
2

0
.
0

2
5
7

3
.
2
9
0
4
8
0
e
+
0
7

1
.
2
6
e
-
0
7

3
.
2
6
4
8
7
4
e
+
0
7

8
.
7
3
e
-
1
0

7
.
7
8
e
-
0
3

4
6
3
6
1

2
2
8
0
.
4
5

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

0
.
1

3
4
4

3
.
2
8
7
0
4
0
e
+
0
7

8
.
3
7
e
-
0
5

3
.
2
6
4
3
1
3
e
+
0
7

2
.
9
8
e
-
0
5

6
.
9
1
e
-
0
3

2
6
3
4
1

1
3
7
9
.
3
9

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

1
.
0

3
2
9

3
.
2
8
6
7
5
4
e
+
0
7

7
.
9
8
e
-
0
5

3
.
2
6
6
4
2
6
e
+
0
7

2
.
7
7
e
-
0
5

6
.
1
9
e
-
0
3

2
1
3
0
3

1
3
9
2
.
4
6

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
0
7

1
0
.
0

2
7
6

3
.
2
8
8
4
8
7
e
+
0
7

6
.
4
8
e
-
0
5

3
.
2
8
8
2
0
8
e
+
0
7

4
.
8
6
e
-
0
5

8
.
5
0
e
-
0
5

9
8
2
5

5
6
5
.
6
5

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

1
5
.
0

3
6
1

3
.
2
7
6
6
1
8
e
+
0
7

2
.
1
5
e
-
0
6

3
.
2
7
7
4
3
9
e
+
0
7

9
.
8
2
e
-
0
7

2
.
5
0
e
-
0
4

1
9
1
5
3

1
2
8
3
.
9
8

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

2
0
.
0

2
2
7

3
.
3
3
0
2
6
8
e
+
0
7

6
.
1
7
e
-
0
4

3
.
3
3
0
3
5
8
e
+
0
7

1
.
6
4
e
-
0
4

2
.
7
0
e
-
0
5

5
3
9
4

3
3
4
.
8
6

1
8
0
/
3
7
5
0

a
u
t
o

1
e
-
7

3
0
.
0

2
0
8

3
.
3
9
5
3
5
3
e
+
0
7

2
.
1
1
e
-
0
3

3
.
3
9
5
2
1
6
e
+
0
7

3
.
4
0
e
-
0
4

4
.
0
3
e
-
0
5

4
1
5
4

2
7
0
.
6
0

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

0
.
0

2
8
9

6
.
8
8
4
5
4
2
e
+
0
6

3
.
2
3
e
-
0
2

6
.
0
2
9
0
0
3
e
+
0
6

7
.
1
5
e
-
0
6

1
.
2
4
e
-
0
1

3
3
7
0
2

1
7
3
8
.
9
4

8
7
0
/
1
5
0

a
u
t
o

1
e
-
2

0
.
0

2
8
9

6
.
8
8
4
5
4
2
e
+
0
6

3
.
2
3
e
-
0
2

6
.
0
2
9
0
0
3
e
+
0
6

7
.
1
5
e
-
0
6

1
.
2
4
e
-
0
1

3
3
7
0
2

1
9
4
5
.
8
7

8
7
0
/
1
5
0

S
.
O
.

1
e
-
2

0
.
0

1
6
5

6
.
7
8
7
0
8
5
e
+
0
6

3
.
4
1
e
-
0
6

5
.
2
7
9
1
3
5
e
+
0
6

6
.
2
1
e
-
0
6

2
.
2
2
e
-
0
1

8
8
1
5
0

4
6
7
5
.
0
0

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

0
.
1

2
9
1

6
.
8
9
2
3
0
4
e
+
0
6

3
.
3
0
e
-
0
2

6
.
0
7
2
0
6
6
e
+
0
6

7
.
1
1
e
-
0
6

1
.
1
9
e
-
0
1

3
3
1
5
1

2
0
5
3
.
6
8

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

1
.
0

2
8
4

6
.
8
6
2
5
7
3
e
+
0
6

3
.
1
2
e
-
0
2

6
.
4
2
6
4
3
5
e
+
0
6

1
.
4
0
e
-
0
5

6
.
3
6
e
-
0
2

2
8
8
3
0

1
5
1
1
.
5
7

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

1
0
.
0

4
0
0

6
.
3
6
8
2
2
9
e
+
0
6

3
.
3
4
e
-
0
3

7
.
1
6
9
2
4
5
e
+
0
6

3
.
5
1
e
-
0
5

1
.
2
6
e
-
0
1

3
6
5
5
4

2
0
5
0
.
8
0

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

1
5
.
0

4
0
0

6
.
0
7
9
9
5
6
e
+
0
6

6
.
7
4
e
-
0
3

7
.
9
4
7
1
9
8
e
+
0
6

7
.
4
5
e
-
0
5

3
.
0
7
e
-
0
1

3
0
9
7
8

1
9
5
0
.
6
2

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

2
0
.
0

4
0
0

6
.
5
2
6
1
7
4
e
+
0
6

7
.
7
7
e
-
0
3

9
.
0
6
5
5
5
5
e
+
0
6

1
.
0
5
e
-
0
4

3
.
8
9
e
-
0
1

3
3
0
0
1

1
7
3
3
.
3
0

8
7
0
/
1
5
0

a
u
t
o

1
e
-
7

3
0
.
0

4
0
0

6
.
7
4
4
8
4
8
e
+
0
6

1
.
1
6
e
-
0
2

1
.
2
2
3
5
7
0
e
+
0
7

2
.
3
2
e
-
0
4

8
.
1
4
e
-
0
1

3
5
1
0
7

1
8
4
6
.
4
2

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

0
.
0

3
5
8

5
.
8
5
9
1
8
1
e
+
0
6

2
.
4
5
e
-
0
6

5
.
8
5
8
9
5
9
e
+
0
6

7
.
4
7
e
-
0
9

3
.
7
9
e
-
0
5

1
5
6
0
2

8
8
3
.
2
1

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
2

0
.
0

3
5
8

5
.
8
5
9
1
8
1
e
+
0
6

2
.
4
5
e
-
0
6

5
.
8
5
8
9
5
9
e
+
0
6

7
.
4
7
e
-
0
9

3
.
7
9
e
-
0
5

1
5
6
0
2

8
9
0
.
6
4

8
7
0
/
3
7
5
0

S
.
O
.

1
e
-
2

0
.
0

1
4
5

5
.
8
5
9
2
9
5
e
+
0
6

2
.
7
4
e
-
0
6

5
.
8
5
8
9
3
1
e
+
0
6

7
.
3
8
e
-
1
7

6
.
2
2
e
-
0
5

6
6
1
4

3
7
7
.
7
9

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

0
.
1

3
5
7

5
.
8
5
9
3
0
0
e
+
0
6

2
.
8
0
e
-
0
6

5
.
8
5
8
8
7
3
e
+
0
6

2
.
8
7
e
-
0
8

7
.
2
9
e
-
0
5

1
5
0
9
3

8
6
2
.
6
3

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

1
.
0

3
5
0

5
.
8
5
9
1
7
9
e
+
0
6

2
.
2
e
-
0
6

5
.
8
5
9
4
9
7
e
+
0
6

2
.
0
5
e
-
0
8

5
.
4
2
e
-
0
5

1
3
0
9
0

7
6
6
.
1
8

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

1
0
.
0

4
0
0

5
.
8
9
0
3
6
7
e
+
0
6

2
.
0
7
e
-
0
5

6
.
4
3
6
7
4
4
e
+
0
6

2
.
6
5
e
-
0
5

9
.
2
8
e
-
0
2

1
0
2
3
1

6
3
5
.
1
9

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

1
5
.
0

4
0
0

5
.
8
9
4
0
7
7
e
+
0
6

9
.
1
2
e
-
0
5

7
.
2
7
3
5
5
8
e
+
0
6

6
.
4
0
e
-
0
5

2
.
3
4
e
-
0
1

9
2
4
8

6
9
4
.
9
4

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

2
0
.
0

1
4
2

1
.
7
2
9
0
2
2
e
+
0
7

4
.
8
3
e
-
0
2

1
.
7
2
9
0
6
8
e
+
0
7

1
.
2
1
e
-
0
3

2
.
6
2
e
-
0
5

8
4
0

1
0
1
.
8
4

8
7
0
/
3
7
5
0

a
u
t
o

1
e
-
7

3
0
.
0

4
0
0

5
.
9
8
0
8
9
3
e
+
0
6

1
.
0
7
e
-
0
4

9
.
4
9
4
3
5
0
e
+
0
6

1
.
5
4
e
-
0
4

5
.
8
7
e
-
0
1

7
8
4
2

5
3
0
.
6
4

T
a
b
l
e
8
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

T
is

ca
li

n
et

w
o
rk

w
it

h
a

li
b

ra
ry

o
f

5
0
0
0

v
id

eo
s.

T
h

is
p

ro
b

le
m

h
a
s

3
6
0
1
5
3
9
3

va
ri

ab
le

s

2. RESULTS FOR SMALL INSTANCES 37

The most feasible instance tested (i.e., big disk and high bandwidth capacities)
is the fastest to be solved. In this case Q=1.0 provides the best results in terms
of optimality gap (5e-5) and in a competitive time. A solution with a shorter
gap was found with Q=20, however, we do not consider it because the value of
the objective function is much higher than the obtained with other regularization
factors. This atypical result require further analysis. As with the Sprintlink net-
work, BlockIP using second-order direction without regularization factor finds an
optimal solution much faster than using automatic direction and quadratic regu-
larization in this instances.

We also include Fig. 4 to show the performance of BlockIP decreases in terms of
PCG iterations while it approaches to the optimum solution because the spectral
radius of the inverse of S (20) is 1 in those cases (See Fig. 4a)). Hence, if the
optimality gap is reduced then the solution time could improve significantly.

0,25

0,35

0,45

0,55

0,65

0,75

0,85

0,95

1,05

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

Q=0
Q=30

(a) Spectrum ratio vs BlockIP iterations

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

Q=0
Q=30

(b) PCG iterations vs BlockIP iterations

Fig. 6. BlockIP performance along iterations in Tiscali network
with a library of 5000 videos. The results are from an instance with
average disk size of 260GB and link’s bandwidth of 2000 Mbps

The results obtained with CPLEX are shown in Table 9. CPLEX cannot reach
optimal, feasible primal solutions for both challenge combinations (i.e., small disk
/large link capacities and viceversa). However, CPLEX is faster than BlockIP for
the VHO problem in the third instance (the most feasible).

Type Iter Primal Objective Dual Objective Opt. Time
Value Feas Gap Value Feas Gap Gap (min)

180/3750* 363 3.29959e+07 2.24e-1 3.27562e+7 1.95e-6 7.2e-3 177.1

870/150* 260 6.75114e+06 2.23 6.04147e+06 1.49e-6 1.05e-1 126.53

870/3750 161 5.85910e+06 1.70e-3 5.85910e+06 2.13e-6 9.55e-7 83.2

Table 9. Results with CPLEX for Tiscali network with a library
of 5000 videos. * means not optimal/feasible solutions

Our results show that BlockIP finds optimal and feasible solutions in both tight
instances, even when its performance degrade quickly in the last iterations. On the

38 3. IMPLEMENTATION AND RESULTS

other hand, CPLEX outperforms BlockIP in both processing time and optimality
gap, only in the instance with big disks and large links’ bandwidth. It is important
that, as happened in Sprintlink network, BlockIP with second-order direction it
is a strong option to solve the problem with the third instance because it reach the
optimum faster than with automatic direction.

3. Results for big instances

In this section, we test the best BlockIP settings in the most feasible instances of
the three networks with video libraries from 10000 to 200000 videos (blocks in the
problem). Table 10 summarizes the options that we will try in the big disk, large
link capacities instances.

Network
BlockIP options

name
Type of Feasibility Quadratic
Direction Gap Regularization factor

Ebone auto 1e-7 1.0

Sprintlink
auto 1e-2 1.0

second-order 1e-2 0.0

Tiscali
auto 1e-7 1.0

second-order 1e-2 0.0

Table 10. Best BlockIP settings for most feasible instances of
VHO problem with a library of 5000 videos.

3.1. Ebone. For this network we present results considering the best setting (qua-
dratic factor Q=1.0, feasibility gap of FG=1e-7) and with default setting (Q=0,
FG=1e-7). We aim to get a better idea on how quadratic regularization help in
these big instances.

Table 11 reports the size of the video library, the total number of variables and
constraints, the options used in BlockIP, the number of iterations, the value of
the objective function, the total number PCG iterations and the solution time. The
same table, also includes the corresponding values, if applicable, for the solutions
obtained by CPLEX solver.

Results show that as the library size doubles its size, BlockIP , in average, triples
its solution time. On the contrary, CPLEX increases its solution time in the same
proportion that the video library does. This fact can be seen in Fig. 7a.

Fig. 7b shows the low consumption of RAM memory of BlockIP compared to
CPLEX. In fact, BlockIP needed almost the half of memory than CPLEX for the
VHO problems that have solved. This careful use of memory of BlockIP allowed
to solve a very huge instance in Ebone network (200k videos, last result in Table 11)
while CPLEX ran out of memory in the process.

3. RESULTS FOR BIG INSTANCES 39

P
r
o
b
l
e
m

I
n
f
o

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

N
o
b
l
o
c
k
s

V
a
r
i
a
b
l
e
s

C
o
n
s
t
r
a
i
n
t
s

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

5
k

7
9
3
5
1
7
5

5
2
9
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

1
5
4

9
.
6
8
9
6
2
1
e
+
0
6

6
.
7
7
e
-
0
5

1
.
7
9
e
-
0
4

1
6
1
3

2
8
.
8
4

a
u
t
o

1
e
-
7

1
.
0

1
4
5

9
.
6
8
8
5
7
4
e
+
0
6

5
.
4
9
e
-
0
5

8
.
1
6
e
-
0
5

1
2
5
7

2
4
.
1
6

C
P
L
E
X

1
5
7

9
.
6
8
7
9
e
+
0
6

2
.
9
8
e
-
0
5

1
.
5
5
e
-
0
7

N
/
A

1
2
.
7
1

1
0
k

1
5
8
7
0
1
7
5

1
0
5
8
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

1
8
2

1
.
9
1
9
5
6
9
e
+
0
7

1
.
8
5
e
-
0
5

1
.
8
2
e
-
0
4

2
3
5
1

7
8
.
5
1

a
u
t
o

1
e
-
7

1
.
0

1
6
8

1
.
9
1
9
6
6
9
e
+
0
7

1
.
9
8
e
-
0
5

2
.
2
1
e
-
0
4

1
7
1
7

7
5
.
1
7

C
P
L
E
X

1
7
8

1
.
9
1
9
3
6
2
e
+
0
7

4
.
4
7
e
-
0
3

3
.
6
e
-
0
6

N
/
A

3
0
.
9
6

2
0
k

3
1
7
4
0
1
7
5

2
1
1
6
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

2
0
0

3
.
8
1
5
4
9
5
e
+
0
7

1
.
9
8
e
-
0
5

1
.
0
8
e
-
0
3

2
1
7
9

1
5
1
.
2
4

a
u
t
o

1
e
-
7

1
.
0

2
0
0

3
.
8
1
4
3
7
5
e
+
0
7

1
.
6
8
e
-
0
5

1
.
3
3
e
-
0
4

2
1
5
1

1
5
0
.
3
5

C
P
L
E
X

1
9
7

3
.
8
1
4
0
1
1
7
e
+
0
7

1
.
6
6
e
-
0
2

1
.
2
e
-
0
5

N
/
A

6
3
.
2

5
0
k

7
9
3
5
0
1
7
5

5
2
9
0
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

2
5
6

9
.
3
5
2
0
6
8
e
+
0
7

4
.
1
4
e
-
0
5

3
.
3
0
e
-
0
3

3
9
8
5

6
0
0
.
5
5

a
u
t
o

1
e
-
7

1
.
0

2
4
8

9
.
3
5
1
1
0
5
e
+
0
7

3
.
6
0
e
-
0
5

1
.
4
7
e
-
0
3

3
1
1
0

5
9
9
.
3
0

C
P
L
E
X
n
o
n
-o

p
ti
m

a
l

2
4
2

9
.
3
5
0
8
3
4
1
e
+
0
7

1
.
5
7
e
+
0
0

1
.
2
e
-
0
3

N
/
A

1
9
9
.
4
3

1
0
0
k

1
5
8
7
0
0
1
7
5

1
0
5
8
0
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

3
3
9

1
.
9
1
4
7
4
6
e
+
0
8

2
.
4
4
e
-
0
6

4
.
2
3
e
-
0
4

6
1
0
0

1
8
1
1
.
0
5

a
u
t
o

1
e
-
7

1
.
0

3
2
3

1
.
9
1
5
0
6
4
e
+
0
8

3
.
9
9
e
-
0
6

9
.
5
1
e
-
0
5

5
5
9
0

1
6
6
9
.
7
6

C
P
L
E
X

2
1
8

1
.
9
1
4
6
1
7
1
e
+
0
8

4
.
7
7
e
-
0
2

2
.
0
e
-
0
5

N
/
A

3
8
9
.
9

2
0
0
k

3
1
7
4
0
0
1
7
5

2
1
1
6
0
1
7
5

a
u
t
o

1
e
-
7

0
.
0

3
9
9

3
.
8
0
4
3
8
5
e
+
0
8

3
.
2
4
e
-
0
5

2
.
9
7
e
-
0
3

7
4
0
7

4
5
2
1
.
5

T
a
b
l
e
1
1
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

E
b

o
n

e
n

et
w

o
rk

w
it

h
v
id

eo
li

b
ra

ri
es

fr
o
m

5
0
0
0

to
2
0
0
0
0
0

v
id

eo
s

(d
ia

g
o
n
a
l

b
lo

ck
s)

.

40 3. IMPLEMENTATION AND RESULTS

4

16

64

256

1024

4096

0 25 50 75 100 125 150 175 200

BlockIP

CPLEX

(a) Solution Time (log scale) vs Library size (thousands of videos)

0

25

50

75

100

125

150

175

200

225

0 25 50 75 100 125 150 175 200

BlockIP

CPLEX

(b) RAM Memory (GB) vs Library size (thousands of videos)

Fig. 7. Resource use comparison between BlockIP and CPLEX
as function of the number of videos for Ebone network. Results are
from the most feasible instance (big disks and high link capacity).
Dashed lines and red points were drawn from estimations

It is important to notice that, as happen in the small instances, sometimes CPLEX
cannot find a feasible, optimal solution. This is the case of Ebone instance with
50000 videos. Although BlockIP is slower than CPLEX, BlockIP solves this
instance satisfactorily.

3.2. Sprintlink. For this network we present results considering the best setting
(quadratic factor Q=1.0, feasibility gap of FG=1e-2) and with default setting (Q=0,
FG=1e-2). In addition, we have tested BlockIP with the second-order direction
for the instance with 10000 videos.

Table 12 reports the results for Sprintlink with the same format used for Ebone
network. Notice that for a video library of 10000 videos, second-order direction
does not improves solution time of automatic direction. Fig. 8a and Fig. 8b shows
the same behavior observed in Ebone. As the video library doubles its size, the so-
lution time of BlockIP , increases at 2.5 times. On the contrary, CPLEX increases
its solution time at the same rate that the video library does. Regarding memory
use, BlockIP clearly outperforms CPLEX. CPLEX needs almost twice the mem-
ory space than BlockIP. Due to the fact that BlockIP needs less memory than
CPLEX, it solved an instance with 100000 videos satisfactorily –this instance has
more 326 millions of variables– while CPLEX got out of memory. The last instance
that CPLEX tried to solved was the one with a video library of 50000 videos. In
this case, CPLEX did not reach an feasible primal solution and it ended with a fea-
sibility gap of 8.54. In the same instance BlockIP reached a remarkable feasibility
gap of 1e-4.

3. RESULTS FOR BIG INSTANCES 41

P
r
o
b
l
e
m

I
n
f
o

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

N
o
b
l
o
c
k
s

V
a
r
i
a
b
l
e
s

C
o
n
s
t
r
a
i
n
t
s

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

5
k

1
6
3
3
5
3
0
9

1
0
8
9
0
3
0
9

a
u
t
o

1
e
-
2

0
.
0

2
3
8

9
.
4
6
5
2
9
5
e
+
0
6

3
.
8
6
e
-
0
6

5
.
1
1
e
-
0
4

7
3
5
5

1
9
9
.
1
9

S
.
O

1
e
-
2

0
.
0

1
1
7

9
.
4
6
6
4
7
4
e
+
0
6

5
.
7
9
e
-
0
7

7
.
0
8
e
-
0
4

6
9
2
5

1
7
7
.
2
7

a
u
t
o

1
e
-
2

1
.
0

2
3
9

9
.
4
6
4
0
4
9
e
+
0
6

3
.
0
3
e
-
0
6

1
.
1
3
e
-
0
4

7
8
0
4

2
0
9
.
7
3

C
P
L
E
X

2
0
0

9
.
4
6
2
6
9
e
+
0
6

3
.
8
e
-
0
6

1
.
1
e
-
0
8

N
/
A

4
1
.
7
3

1
0
k

3
2
6
7
0
3
0
9

2
1
7
8
0
3
0
9

a
u
t
o

1
e
-
2

0
.
0

2
8
9

1
.
8
7
6
3
7
4
e
+
0
7

8
.
4
8
e
-
0
6

1
.
5
3
e
-
0
3

8
8
5
4

5
2
9
.
4
9

S
.
O

1
e
-
2

0
.
0

1
4
1

1
.
8
7
5
5
9
3
e
+
0
7

7
.
8
0
e
-
0
7

4
.
4
7
e
-
0
4

9
5
3
3

4
8
4
.
6
8

a
u
t
o

1
e
-
2

1
.
0

2
7
9

1
.
8
7
5
9
6
8
e
+
0
7

5
.
3
2
e
-
0
6

2
.
8
3
e
-
0
4

7
6
3
4

4
4
5
.
6
1

C
P
L
E
X

1
9
6

1
.
8
7
5
0
3
2
5
e
+
0
7

3
.
0
0
e
-
0
3

7
.
4
e
-
0
7

N
/
A

8
6
.
9
1

2
0
k

6
5
3
4
0
3
0
9

4
3
5
6
0
3
0
9

a
u
t
o

1
e
-
2

0
.
0

3
3
9

3
.
7
5
5
3
6
4
e
+
0
7

9
.
3
0
e
-
0
6

1
.
6
8
e
-
0
3

1
0
8
4
7

1
1
7
6
.
1
6

a
u
t
o

1
e
-
2

1
.
0

3
3
0

3
.
7
5
2
9
2
0
e
+
0
7

2
.
1
4
e
-
0
6

9
.
6
6
e
-
0
5

1
0
9
8
1

1
1
5
3
.
8
4

C
P
L
E
X

2
1
1

3
.
7
5
1
9
3
4
6
e
+
0
7

1
.
3
6
e
-
0
2

1
.
2
e
-
0
7

N
/
A

1
9
7
.
4
3

5
0
k

1
6
3
3
5
0
3
0
9

1
0
8
9
0
0
3
0
9

a
u
t
o

1
e
-
2

0
.
0

4
0
0

9
.
4
8
0
4
3
8
e
+
0
7

2
.
9
8
e
-
0
4

2
.
7
1
e
-
0
2

8
2
6
9

2
4
3
4
.
4
1

a
u
t
o

1
e
-
2

1
.
0

4
0
0

9
.
4
1
9
1
9
0
e
+
0
7

4
.
7
0
e
-
0
5

1
.
4
6
e
-
0
3

9
1
2
6

2
6
4
2
.
2
7

C
P
L
E
X
n
o
n
-o

p
ti
m

a
l

2
7
2

9
.
3
9
5
6
4
5
4
e
+
0
7

8
.
5
4
e
+
0
0

1
.
3
e
-
0
3

N
/
A

5
6
6
.
6
5

1
0
0
k

3
2
6
7
0
0
3
0
9

2
1
7
8
0
0
3
0
9

a
u
t
o

1
e
-
2

1
.
0

4
0
0

1
.
8
8
4
2
1
1
e
+
0
8

2
.
4
4
e
-
0
6

7
.
9
2
e
-
0
3

6
2
7
9

4
1
9
1
.
5
2

T
a
b
l
e
1
2
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

S
p

ri
n
tl

in
k

n
et

w
o
rk

w
it

h
v
id

eo
li

b
ra

ri
es

fr
o
m

5
0
0
0

to
1
0
0
0
0
0

v
id

eo
s

(d
ia

g
o
n

a
l

b
lo

ck
s)

.

42 3. IMPLEMENTATION AND RESULTS

4

16

64

256

1024

4096

0 25 50 75 100

BlockIP CPLEX

(a) Solution Time (log scale) vs Library size (thousands of videos)

0

25

50

75

100

125

150

175

200

225

250

0 25 50 75 100

BlockIP CPLEX

(b) RAM Memory (GB) vs Library size (thousands of videos)

Fig. 8. Resource use comparison between BlockIP and CPLEX
as function of the number of videos for Sprintlink network. Results
are from the most feasible instance (big disks and high link capac-
ity). Dashed lines and red points were drawn from estimations

3.3. Tiscali. Tiscali is the most complex and large network that we used in this
project. Solve large instances of this network takes too much time. Therefore,
we only analyzed the instance of 10000 videos and compared its results against
the smallest instance of 5000 videos. For the instance with 10000 videos, we con-
figure a optimality gap of 0.01% in an effort to reduce solving time. Even so,
BlockIP lasted around 18 hours to solve this instance. The solution time ratio
between BlockIP and CPLEX is around 5, which is similar to the obtained in the
two previous network topologies.

Finally, it is worth noting that the solution time difference between BlockIP with
second-order direction and automatic direction is not as big in the 10000 videos
instance as in the smallest one. We recall that the same behavior was also present
in Sprintlink network. This empirical result could indicate that in this particular
problem, second-order direction is more valuable in small-size instances.

3. RESULTS FOR BIG INSTANCES 43

P
r
o
b
l
e
m

I
n
f
o

O
p
t
i
o
n

B
l
o
c
k
I
P

P
r
i
m
a
l

O
b
j
e
c
t
i
v
e

O
p
t
.

C
.

G
r
a
d
.

T
i
m
e

N
o
b
l
o
c
k
s

V
a
r
i
a
b
l
e
s

C
o
n
s
t
r
a
i
n
t
s

D
i
r
.

F
e
a
s
.

R
e
g
.

I
t
e
r
a
t
.

V
a
l
u
e

F
e
a
s

G
a
p

G
a
p

i
t
e
r
a
t
.

(
m
i
n
)

5
k

3
6
0
1
5
3
9
3

2
4
0
1
0
3
9
3

a
u
t
o

1
e
-
7

1
.
0

3
5
0

5
.
8
5
9
1
7
9
e
+
0
6

2
.
2
e
-
0
6

5
.
4
2
e
-
0
5

1
3
0
9
0

7
6
6
.
1
8

S
.
O
.

1
e
-
2

0
.
0

1
4
5

5
.
8
5
9
2
9
5
e
+
0
6

2
.
7
4
e
-
0
6

6
.
2
2
e
-
0
5

6
6
1
4

3
7
7
.
7
9

C
P
L
E
X

1
6
1

5
.
8
5
9
1
0
e
+
0
6

1
.
7
0
e
-
3

9
.
5
5
e
-
7

N
/
A

8
3
.
2

1
0
k

7
2
0
3
0
3
9
3

4
8
0
2
0
3
9
3

a
u
t
o

1
e
-
7

1
.
0

3
7
3

1
.
2
2
1
0
9
5
e
+
0
7

1
.
1
8
e
-
0
4

9
.
5
4
e
-
0
3

7
9
5
1

1
0
9
3
.
6
8

S
.
O

1
e
-
2

1
.
0

1
5
3

1
.
2
0
2
2
5
6
e
+
0
7

2
.
0
9
e
-
0
7

9
.
2
0
e
-
0
3

7
5
1
2

1
0
5
3
.
1
7

C
P
L
E
X

1
8
2

1
.
1
9
5
3
5
7
7
e
+
0
7

4
.
6
5
e
-
0
3

3
.
1
7
e
-
0
6

N
/
A

1
8
8
.
3
1

T
a
b
l
e
1
3
.

R
es

u
lt

s
w

it
h
B
l
o
c
k
I
P

fo
r

E
b

o
n

e
n

et
w

o
rk

w
it

h
v
id

eo
li

b
ra

ri
es

fr
o
m

5
0
0
0

a
n

d
1
0
0
0
0

v
id

eo
s

(d
ia

g
o
n

a
l

b
lo

ck
s)

.

Chapter 4

Conclusions

In this thesis, we have solved large instances of a problem of optimal placement of
videos for the VoD service by using the specialized BlockIP, which was designed
for problems with block diagonal structure. Results show that, given a fixed amount
of memory, BlockIP can deal with problems that contain twice the number of
variables compared to the problems that state-of-art CPLEX can solve.

BlockIP was able to solve instances with more than 300 millions of variables with
optimality and feasibility gaps around 10−3. However, this memory efficiency has a
downside in the time needed by BlockIP to find an optimal solutions, which is two
or three times slower than CPLEX. In addition, we corroborate the propositions
in [19] about the degradation of BlockIP performance when it approaches to the
optimum and how a quadratic regularization factor can speed up the solution time.
Other interesting result is that BlockIP found feasible, optimal solutions in some
complicate instances when CPLEX cannot reach feasibility.

PCG performance is completely related with structure of linking constraints. In
the video location problem of this thesis, the linking constraints depends on: size
of disks, links capacities and network topology. The latter is particular important
because solution time varies considerably from one topology to another although
the instances have similar number of variables.

The VoD service considered in this work, has huge video libraries, however, videos
could be grouped if they have similar request pattern and/or size. This grouping
strategy could make the problem easier to solve and should be tested.

In this thesis, we used a Carrier CDN with very challenging topologies. On the
other hand, overlay CDNs usually have much simpler topologies by connecting
sites through paths from one to three hops. These straightforward topologies could
potentially be favorable for the PCG computations. Finally, modifications in the
problem model as the use of additional costs to extend links or disk capacities are
relevant from a CDN’s management point of view and constitute future work.

45

References

[1] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point meth-

ods for linear and quadratic optimization, Optimization Methods & Software 11 (1999), pp.
275–302.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.

Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users’ Guide, Third
edition, SIAM, Philadelphia, PA, 1999.

[3] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan, Optimal
Content Placement for a Large-Scale VoD System, IEEE/ACM Transactions on Networking

24 (2016), no. 4, pp. 2114–2127.

[4] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan, Optimal
Content Placement for a Large-scale VoD System, Proceedings of the 6th International Con-

ference (New York, NY, USA), Co-NEXT ’10, ACM, 2010, pp. 4:1–4:12.

[5] S. Bellavia, J. Gondzio and B. Morini, A matrix-free preconditioner for sparse symmetric
positive definite systems and least-squares problems, SIAM Journal on Scientific Computing

35 (2013), pp. A192-A211.

[6] M. Benzi, Splittings of symmetric matrices and a question of Ortega, Linear Algebra and its
Applications 429 (2008), pp. 2340-2343.

[7] L. Bergamaschi, J. Gondzio and G. Zilli, Preconditioning indefinite systems in interior point

methods for optimization, Computational Optimization and Applications 28 (2004), pp. 149–
171.

[8] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming
Problems. Theory and Practice, Kluwer: Boston, 2002.

[9] D. Bienstock and O. Raskina, Asymptotic analysis of the flow deviation method for the

maximum concurrent flow problem, Mathematical Programming 91 (2002), pp. 479–492.
[10] R. E. Bixby, Solving real-world linear programs: a decade and more of progress, Operations

Research, 50 (2002), pp. 3–15.

[11] S. Bocanegra, J. Castro and A.R.L. Oliveira, Improving an interior-point approach for large
block-angular problems by hybrid preconditioners, European Journal of Operational Research

231 (2013), pp. 263–273.

[12] J. Castro, A specialized interior-point algorithm for multicommodity network flows, SIAM
Journal on Optimization 10 (2000), pp. 852–877.

[13] J. Castro, Solving difficult multicommodity problems through a specialized interior-point al-
gorithm, Annals of Operations Research, 124 (2003), pp. 35–48.

[14] J. Castro, An interior-point approach for primal block-angular problems, Computational Op-

timization and Applications 36 (2007), pp. 195–219.
[15] J. Castro, Recent advances in optimization techniques for statistical tabular data protection,

European Journal of Operational Research 216 (2012), pp. 257-269.

[16] J. Castro and J. Cuesta, Quadratic regularizations in an interior-point method for primal
block-angular problems, Mathematical Programming 130 (2011), pp. 415–445.

[17] J. Castro, Interior Point Methods [Lecture Notes], (2014), pp. 1–36.

[18] J. Castro, Primal-dual path-following methods [Lecture Notes], (2014), pp. 1–90.
[19] J. Castro, Interior-point solver for convex separable block-angular problems, Optimization

Methods and Software 31 (2016), no. 1, pp. 88–109.

47

48 REFERENCES

[20] M. Cha, H. Kwak, P. Rodriguez, Y-Y. Ahn, and S. Moon, I tube, you tube, everybody tubes:

Analyzing the world’s largest user generated content video system, Proceedings of the 7th

ACM SIGCOMM Conference on Internet Measurement (New York, NY, USA), IMC ’07,
ACM, 2007, pp. 1–14.

[21] J. J. Cochran, An Introduction to Linear Programming, Wiley Encyclopedia of Operations

Research and Management Science, Major Reference Works, 2010.
[22] M. Colombo, A. Grothey, J. Hogg, K. Woodsend and J. Gondzio, A structure-conveying mod-

elling language for mathematical and stochastic programming, Mathematical Programming

Computation, 1 (2009), pp. 223–247.
[23] A. V. Fiacco and G. P. McCormick, Nonlinear programming: Sequential unconstrained min-

imization techniques, 2nd Ed. SIAM, 1990.

[24] K. Fountoulakis and J. Gondzio, A second-order method for strongly convex l1-regularization
problems, Technical Report ERGO-14-005, School of Mathematics, The University of Edin-

burgh, 2014.
[25] K. Fountoulakis, J. Gondzio and P. Zhlobich, Matrix-free interior point method for com-

pressed sensing problems, Mathematical Programming Computation 6 (2014), pp. 1–31.

[26] R. Fourer, D.M. Gay and D.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Second edition, Thomson Brooks/Cole, Toronto, Canada, 2003.

[27] A. Frangioni and C. Gentile, New preconditioners for KKT systems of network flow problems,

SIAM Journal on Optimization 14 (2004), pp. 894–913.
[28] J. Gondzio and A. Grothey, Direct Solution of Linear Systems of Size 109 Arising in Opti-

mization with Interior Point Methods. In R. Wyrzykowski, J. Dongarra, N. Meyer, and J.

Waśniewski (Eds.), Parallel Processing and Applied Mathematics Springer Berlin Heidelberg,
2006, pp. 513–525.

[29] J. Gondzio, Matrix-free interior point method, Computational Optimization and Applications

51 (2012), pp. 457–480.
[30] J. Gondzio, Convergence analysis of an inexact feasible interior point method for convex

quadratic programming, SIAM Journal on Optimization 23 (2013), pp. 1510–1527.
[31] J. Gondzio and R. Sarkissian, Parallel Interior Point Solver for Structured Linear Programs,

Mathematical Programming 96 (2003) pp. 561–584.

[32] C. Keller, N.I.M. Gould and A.J. Wathen, Constraint preconditioning for indefinite linear
systems, SIAM Journal on Matrix Analysis and Applications 21 (2000), pp. 1300–1317.

[33] G.H. Golub and C.F. Van Loan, Matrix Computations, Third edition, The Johns Hopkins

University Press, Baltimore, MA, 1996.
[34] X. Jiménez, A modelling and optimization environment for large-scale block-angular prob-

lems (in Catalan), MSc thesis, Barcelona School of Informatics, Universitat Politècnica de

Catalunya, 2012.
[35] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differ-

ential and integral operators, Journal of Research of the National Bureau of Standards 45

(1950), pp. 225–280.
[36] David G Luenberger and Yinyu Ye, The Simplex Method BT - Linear and Nonlinear Pro-

gramming, Springer International Publishing, Cham, 2016, pp. 33–82.
[37] S. Mehrotra, On the implementation of a primal–dual interior point method, SIAM Journal

on Optimization 2 (1992), pp. 575–601.

[38] G. Meurant, The Lanczos and Conjugate Gradient Algorithms: from Theory to Finite Pre-
cision Computations, SIAM, Philadelphia, PA, 1006.

[39] P. Munari and J. Gondzio, Using the primal-dual interior point algorithm within the branch-
price-and-cut method, Computers & Operations Research 40 (2013), pp. 2026–2036.

[40] P. Mukaddim, Cloud-Based Content Delivery and Streaming, ch. 1, pp. 1–31, Wiley-

Blackwell, 2014.

[41] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer,
Boston, MA, 2004.

[42] E. Ng and B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor com-
puters, SIAM Journal on Scientific Computing 14 (1993), pp. 1034–1056.

[43] A.R.L. Oliveira and D.C. Sorensen, A new class of preconditioners for large-scale linear sys-

tems from interior point methods for linear programming, Linear Algebra and its Applications

394 (2005), pp. 1–24.

REFERENCES 49

[44] J.M. Ortega, Introduction to Parallel and Vector Solutions of Linear Systems, Plenum Press,

New York, NY, 1988.

[45] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling algorithm for
minimum-cost flow on bipartite uncapacitated networks SIAM Journal on Optimization, 3

(1993), pp. 516–537.

[46] C. Roos, T. Terláky and J.-P. Vial, Interior Point methods for linear optimization, 2nd Ed.,
Springer, Boston, MA, 2006.

[47] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, Measuring ISP topologies with

Rocketfuel, IEEE/ACM Transactions on Networking 12 (2004), no. 1, pp. 2–16.
[48] B. Tolga and E. Ozgur, CDN Modeling, Wiley-Blackwell, 2014, , ch. 9, pp. 179–202.

[49] R.J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer, Boston, MA,

1996.
[50] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.

	main.pdf
	Chapter 1. Introduction
	1. Interior Point Methods
	1.1. Primal-dual path-following methods

	2. BlockIP
	2.1. Solving the normal equations by PCG
	2.2. Improving the spectral radius
	2.3. Estimating the spectral radius
	2.4. Implementation details

	3. Optimization for Content Delivery Networks
	3.1. Content Delivery Networks Overview
	3.2. Optimization models for Content Delivery Networks

	Chapter 2. Optimal Placement for Video On Demand Systems
	1. The problem formulation
	1.1. Parameters and variables
	1.2. The model

	2. Input Instance

	Chapter 3. Implementation and Results
	1. Implementation Details
	2. Results for small instances
	2.1. Ebone
	2.2. Sprintlink
	2.3. Tiscali

	3. Results for big instances
	3.1. Ebone
	3.2. Sprintlink
	3.3. Tiscali

	Chapter 4. Conclusions
	References

