
EUROGRAPHICS 2018/ F. Post and J. Žára Education Paper

GL-Socket: A CG plugin-based framework
for teaching and assessment

C. Andujar1, A. Chica1, M. Fairen1, A. Vinacua1

1VirVIG, Computer Science Department, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain

Abstract
In this paper we describe a plugin-based C++ framework for teaching OpenGL and GLSL in introductory Computer Graphics
courses. The main strength of the framework architecture is that student assignments are mostly independent and thus can be
completed, tested and evaluated in any order. When students complete a task, the plugin interface forces a clear separation of
initialization, interaction and drawing code, which in turn facilitates code reusability. Plugin code can access scene, camera,
and OpenGL window methods through a simple API. The plugin interface is flexible enough to allow students to complete tasks
requiring shader development, object drawing, and multiple rendering passes. Students are provided with sample plugins with
basic scene drawing and camera control features. One of the plugins that the students receive contains a shader development
framework with self-assessment features. We describe the lessons learned after using the tool for four years in a Computer
Graphics course involving more than one hundred Computer Science students per year.

1. Introduction

Computer Graphics (CG) courses strongly benefit from the com-
bination of lectures with practical training on laboratory ses-
sions [TRK17]. Unfortunately, APIs for graphics programming ei-
ther pose high entry barriers to students (e.g. OpenGL), or provide
too high-level features (e.g. Unity3D) preventing Computer Sci-
ence students from completing assignments involving lower level
tasks such as object drawing and resource management (shaders,
textures). In the case of shader development, the setup and test
using bare graphics APIs is too complex and thus inaccessible
to students in the context of entry-level courses. For this reason,
modern CG courses provide students with programming frame-
works [TRK17] plus code examples to allow the students to com-
plete appropriate assignments during the lab sessions.

Although some OpenGL and GLSL frameworks are freely avail-
able and open-source, some key pedagogical features are com-
monly missing. In our view, a CG development tool for teaching
should combine the following features:

• Provide support for exercises that can be completed, tested and
assessed independently from other exercises. This lack (or at
least minimization) of inter-dependencies has proven to greatly
simplify testing, debugging, reusability and assessment. This
also means students can complete the exercises in an arbitrary
order. If they get stuck in an exercise, they can safely move on
to another one until they get the missing knowledge or receive
teacher assistance.

• Be flexible enough to allow students to complete assignments
with varying levels of difficulty and complexity, from quick as-

signments (e.g. bounding box computation, camera setup) to
more complex ones (e.g. shadow mapping, mirror reflection).

• Provide support for student self-assessment: the framework must
allow students to get a first visual validation of their code,
by comparing the output (either numerical or, most frequently,
graphical) of their solution with the instructor reference solution,
on a test set. This also implies a simple mechanism for designing
test files (describing e.g. scene and camera setup) and running
them on student solutions.

• Supports semi-automatic correction of lab exams: the tool must
support batch running of student submissions on a validation test
(different from the test set), and compare graphically the result-
ing output with that from the reference solution.

• The features above should be available both when developing
OpenGL C++ code, GLSL shaders, or both, and also for every-
day exercises and exam exercises running in a secure (e.g. no
internet connection) environment.

• The software must be multi-platform (Linux, MacOs, Windows).

The key ingredients of our C++ framework to fulfill all the re-
quirements above are:

• A plugin-based architecture that allows assignments to be cast
onto plugin/shader submissions that can be completed, tested,
self-assessed and marked independently.

• The interface consists of a minimal collection of (non-pure)
virtual methods, all of them with a default implementation.
The methods, e.g. onPluginLoad(), preFrame(), postFrame(),
drawScene(), paintGL(), have been carefully chosen to simplify
development by clearly distinguishing one-shot initialization,
per-frame setup, and drawing code. When possible, we borrowed

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159238165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

method names from frameworks that students might be familiar
with (mainly Qt). This separation fosters reusability and allows
students to focus on CG programming for the problem at hand
rather than peripheral programming tasks.

• A simple command-based language for describing a test set (plu-
gins to be loaded, scene to be loaded, camera setup, rendering
parameters, uniform values for the shaders...) such that a correct
implementation should produce the same image (up to rounding
errors or hardware specific rendering options) as the instructor
reference implementation.

We have used the GL-Socket framework for more than four
years in a 15-week introductory course on Computer Graphics
(G). Students take this 6 ECTS course during their fifth semester
of the Computer Science degree at the Facultat d’Informàtica de
Barcelona, Universitat Politècnica de Catalunya. The course re-
ceives more than one hundred students per year, being compulsory
for students following the Computing specialization, and optional
for the remaining students.

The course is preceded by a course on Graphical User Interface
Design and Usability, which also covers some CG topics related
with camera setup and 3D model representation. Students already
start with a reasonable background on C++ and Qt programming.

The course has 2 lecture hours and 2 lab hours per week. The
lab sessions are oriented to assist students while completing a list
of exercises that involve writing shaders (first half of the term) or
plugins (second half). There are two lab exams (midterm and final)
where students must complete 3-4 exercises within 2 hours (Fig. 5).

We received very positive feedback from both students and
teachers. The framework is open-source and is available online.

2. Related work

There is a myriad of frameworks available to facilitate CG devel-
opment. Here we focus on those that can be useful for introductory
CG courses, for teaching either OpenGL, GLSL shaders, or both.

Tools for shader development The growth of general program-
ming on GPUs has contributed to raising the barrier of entry to
graphics API programming. In particular, the removal in OpenGL
3.1 of many functionalities has increased the length and complexity
of the necessary code to have a minimal OpenGL application. One
way to deal with this difficulty is to focus on teaching GLSL and the
multiple shaders that are used in the modern OpenGL pipeline. In
this way we avoid the complexity of all the necessary initialization
code.

Multiple applications could be helpful in teaching shader pro-
gramming. These show immediately the result of any code pro-
vided by students on a given scene with a given set of uniforms
(values and textures). The development of many of them has been
abandoned [FXC, Ren, Bai, fCGVR] although in some cases they
have been used as base code for other projects that have tried to re-
vitalize them. The consequence is that they do not have full support
for modern versions of OpenGL.

Another set of applications make use of WebGL to offer online
services where their users can experiment with fragment shaders

directly [GLS, QJ]. These draw a single full screen quad on which
the user-programmed fragment shader is applied. The community
that forms around these websites offers great potential for educa-
tion. However they are restricted to fragment shaders and rendering
an arbitrary geometry with a regular rendering pipeline is not pos-
sible.

Some have been designed with computer graphics education in
mind. Toisoul et al [TRK17] propose an IDE that allows to load
models, change their transformations and material properties and
send them to a sequence of shaders that the student can program.
Thiesen et al [TRBB08] presented a real-time shader viewer they
used to teach a computer graphics course.

None of the tools we know of include an automatic way to com-
pare the shaders programmed by the students with those provided
as reference.

Game Engines There are several 3D game engines that could be
used to teach computer graphics (e.g. Unity3D, Unreal). To these
we may add those engines exclusively oriented to the graphic com-
ponent of an application (e.g OGRE, threeJS). These automate the
application of lighting effects, the use of camera systems, and load-
ing and visualizing models and shaders from files. All these func-
tionalities are useful in the development of graphics applications,
but their main drawback from an educational standpoint is that they
manage and tend to hide those things that a beginner needs to learn.

The alternative is to use these engines so that it is the student
who must create the objects and program the shaders from scratch,
but having the advantage of the engine infrastructure. The prob-
lem is then that the engine overcomplicates all the necessary tasks
with particular characteristics of that engine. The goal of a generic
computer graphics course should be to expose the student to the
principles that game engines tend to handle automatically.

Tools for OpenGL teaching Comparatively few tools try to teach
the entire operation of the OpenGL pipeline. A common strategy
is to offer an interactive document with small applications similar
to Java applets to display the operation of the various phases of the
pipeline [RRP00]. Despite its usefulness in exposing the essential
concepts of computer graphics, they are not as valuable for the pro-
gramming tasks that students should undertake.

It is also possible to provide a software renderer that allows the
students to learn about the whole pipeline. Fink et al [FWW12] pro-
vided such a system to their students, allowing them to teach raster-
ization and shaders using the same tool. Even though this strategy
reveals the inner workings of the graphics pipeline, working with a
regular API allows the students to program GPU accelerated appli-
cations.

Another option is to offer a platform with the necessary in-
frastructure to facilitate the development of simple applications
in OpenGL. In this direction Papagiannakis et al [PPGT14] pre-
sented glGA, a lightweight C++ framework that contains four sim-
ple examples, as well as six tasks to be completed by the students.
Miller [Mil14] also presented a C++ framework that achieves the
same goal.

WebGL [FP13] can be used to motivate students through the fast

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

iteration that scripting languages allow, but large applications tend
to be programmed in compiled languages. Also static typing al-
ready eliminates a class of programming errors.

Increasing the capabilities of this type of framework [BSP17]
makes them approach the functionalities of a graphics engine with
its added complexity. One way to reduce the impact of these ab-
straction mechanisms is to introduce them gradually, allowing users
to increasingly access OpenGL functionality [RME14].

3. Plugin architecture

Our current version uses Qt framework version 5.7 and OpenGL
3.3 (core profile), which supports Vertex Shaders (VS), Geometry
Shaders (GS) and Fragment Shaders (FS). The choice of OpenGL
version is only motivated by limitations of the graphics cards in
our current laboratories; the extension of GL-Socket to more re-
cent versions to support new shader types (e.g. tessellation control
shaders and tessellation evaluation shaders) is straightforward.

A major goal in the design of the framework is to enable a one-
to-one mapping between exercises and C++ plugins/GLSL shaders,
i.e. solving an exercise involves writing a single plugin and/or a
shader program. A second goal is to facilitate deterministic output
for a given assignment; this implies providing well-defined default
parameters for all OpenGL state variables that could affect render-
ing, including scene, camera, frame buffer configuration, and so on.

3.1. Plugin interface

class Plugin
{
public:

Plugin();
virtual ~Plugin();

virtual void onPluginLoad();
virtual void onObjectAdd();
virtual void onSceneClear();

virtual void preFrame();
virtual void postFrame();

virtual bool drawScene();
virtual bool paintGL();

virtual void keyPressEvent(QKeyEvent*);
virtual void mouseMoveEvent(QMouseEvent*);
// ...

Scene* scene();
Camera* camera();
Plugin* drawPlugin();
GLWidget* glwidget();

};

Listing 1: Plugin interface.

The plugin interface is shown in Listing 1. Some method names
such as paintGL(), keyPressEvent() and mouseMoveEvent() are
borrowed from Qt, whereas preFrame() and postFrame() methods
mimic those found in the VRJuggler vrj::App interface.

Writing a plugin simply involves deriving a class from this inter-
face. All virtual functions have a default implementation, which is
empty (except for those methods returning a boolean, which sim-
ply return false to indicate they have not been re-implemented).

This means that students only need to override a (typically small)
subset of the interface methods.

Although we use a single interface, we ask students to distin-
guish four types of plugins, depending on their main purpose and
the subset of methods they override. These four types are described
below.

3.1.1. Effect plugins

An Effect Plugin is intended to implement simple effects involving
OpenGL state changes (such as enabling alpha blending or binding
a specific shader), or drawing additional content (e.g. a bounding
box). An effect plugin typically overrides the preFrame() and/or
postFrame() methods.

The preFrame() method is called by GLWidget::paintGL() be-
fore drawing the scene. This allows plugins to execute some code
right before the scene is rendered. A typical use would be to bind a
shader affecting the whole scene, or to change other OpenGL state
variables.

Similarly, the postFrame() method is called after drawing the
scene. This allows plugins to execute some code right after the
scene has been rendered. A typical use would be to unbind a shader,
or to draw additional primitives. Effect methods are often simple
to implement because they do not need to care about drawing the
scene itself.

// blending.h
#include "plugin.h"

class Blending: public QObject, public Plugin
{

Q_PLUGIN // Uses Qt Plugin mechanism

public:
void preFrame();
void postFrame();

};

--

// blending.cpp
#include "blending.h"

void Blending::preFrame()
{

glDisable(GL_DEPTH_TEST);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glEnable(GL_BLEND);

}

void Blending::postFrame()
{

glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);

}

Listing 2: A simple plugin for enabling alpha blending.

Listing 2 shows a simple effect plugin for enabling alpha blend-
ing. Listing 3 shows an effect plugin that loads and binds a shader
program (not shown). The plugin overrides onPluginLoad(), which
is called at plugin loading time, to load, compile and link the
shaders, using the convenient Qt classes QOpenGLShaderProgram
and QOpenGLShader. Examples here have been slightly simplified
for clarity. Refer to the full code in the public repository.

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

// myshader.h
#include "plugin.h"

class MyShader: public QObject, public Plugin
{

Q_PLUGIN // Uses Qt Plugin mechanism

public:
void onPluginLoad();
void preFrame();
void postFrame();

private:
QOpenGLShaderProgram* program;

};

--

// myshader.cpp
#include "myshader.h"

void MyShader::onPluginLoad()
{

QOpenGLShader *vs, *fs;
vs = new QOpenGLShader(QOpenGLShader::Vertex, this);
vs->compileSourceFile("shader.vert");
fs = new QOpenGLShader(QOpenGLShader::Fragment, this);
fs->compileSourceFile("shader.frag");
program = new QOpenGLShaderProgram(this);
program->addShader(vs); program->addShader(fs);
program->link();

}

void MyShader::preFrame()
{

program->bind();
program->setUniformValue("modelViewProjMatrix", ...);

}

void MyShader::postFrame()
{

program->release();
}

Listing 3: A simple plugin for binding a user-defined shader.

3.1.2. Draw plugins

A Draw Plugin overrides the drawScene() method, which is in
charge of drawing all the objects forming the scene by issuing
OpenGL rendering commands. For the GL-Socket application to
work, at least one plugin must provide an implementation for this
method. When using OpenGL Core Profile, Draw Plugins must tra-
verse the scene objects to create Vertex Array Objects (VAOs).

We provide students with a default Draw Plugin, which is loaded
automatically, so that students only need to write new draw plugins
for practicing VAO definition, for example, implementing different
ways of computing per-vertex or per-corner normals on polygonal
meshes when building a VAO.

3.1.3. Render Plugins

Render Plugins override the paintGL() method, which is responsi-
ble for re-painting the scene, using one or more rendering passes.
The default Render Plugin simply clears the frame buffer and calls
the drawScene() method of the current Draw Plugin (Listing 4).
This conceptual separation of drawing and rendering facilitates
practicing with multi-pass techniques (e.g. shadow mapping) with-
out having to deal with VAOs.

3.1.4. Action Plugins

Some tasks require user code to be executed in response to user
interaction, instead of a regular per-frame execution. An Action

// render.h
#include "plugin.h"

class Render: public QObject, public Plugin
{

Q_PLUGIN // Uses Qt Plugin mechanism

public:
bool paintGL();

};

--

// render.cpp
#include "render.h"
bool Render::paintGL()
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
drawPlugin()->drawScene();
return true;

}

Listing 4: A simple plugin for rendering the scene.

Plugin overrides user input methods such as keyPressEvent(), and
mouseMoveEvent() for tasks such as camera control. Listing 5
shows an example of an Action Plugin that writes the number of
objects in the scene every time the user presses a key.

// showobjects.h
#include "plugin.h"

class ShowObjects: public QObject, public Plugin
{

Q_PLUGIN // Uses Qt Plugin mechanism

public:
void keyPressEvent(QKeyEvent*);

};

// showobjects.cpp
#include "showobjects.h"
void ShowObjects::keyPressEvent(QKeyEvent*);
{

cout << "Objects: " << scene()->objects().size() << endl;
}

Listing 5: A simple action plugin for writing the number of objects
in the scene.

3.2. Core library

We provide students with a simple C++ class library for dealing
with 3D scenes. Students are instructed to use these classes when
writing their own plugins. Here we just provide a brief overview of
the main classes in the core library.

The Scene class represents a 3D scene as a collection of 3D ob-
jects. We considered providing students with a complete scene tree
or scene graph organization of the objects, but for simplicity we
decided to represent the default scene using a stl::vector of objects.
Nonetheless, students might implement their own scene represen-
tation as part of a plugin.

The Object class represents a 3D object through a collection
of vertices and a collection of faces. The Face class represents a
(polygonal) face of a 3D object as a collection of vertex indices.
Faces do not hold directly vertex coordinates; instead, faces store
vertex indices, that is, integers indicating the position of each ver-
tex in the vector of vertices associated with every 3D Object. The

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

Object class contains code to import 3D models (our current imple-
mentation reads Wavefront OBJ files). The Vertex class represents
a vertex with a single attribute (vertex coordinates), since other at-
tributes (normal vectors, texture coordinates) are created at run-
time.

Simple math libraries for points, vectors and matrices are pro-
vided through well-documented Qt classes (QtPoint3D, QMa-
trix4x4). The Core library also provides a simple Camera class.
The Plugin class includes methods to provide access to the current
camera and scene.

3.3. GLWidget library

The GLWidget library contains a single class: GLWidget. The main
purpose of this class, which is derived from QOpenGLWidget, is to
provide a very basic implementation of the well-known methods
initializeGL(), paintGL() and resizeGL().

GLWidget has little OpenGL rendering code. Instead, most of
the GLWidget implementation is devoted to enable users to load an
arbitrary number of plugins that provide the typical features of a
3D application: setting up the OpenGL state (for example, loading
images to be used as textures), loading shaders, drawing the scene
by issuing OpenGL rendering calls, and enabling some user inter-
action (object selection, camera control...). GLWidget does not im-
plement any of the features above. These features must be provided
through plugins.

The GLWidget class holds basically three different pieces of in-
formation: a scene, a camera, and a list of loaded plugins. Most
of the code in GLWidget deals with invoking appropriate methods
from the plugins. In a nutshell,

• Everytime a new plugin is loaded, its onPluginLoad() method is
called.

• Everytime a new object is added to the scene, the onObjectAdd()
method of all loaded plugins is invoked.

• The GLWidget::paintGL() method performs three basic steps: 1)
call preFrame() for all plugins, 2) call paintGL() for the last plu-
gin that overrides it, and 3) call postFrame() for all plugins.

• Mouse and keyboard events are propagated to all loaded plugins.

3.4. GL-Socket application

The GL-Socket application uses all the libraries above to let users
open and view 3D models. For convenience, we provide students
with a script that sets up a few environment variables and then
calls the application. Environment variables set default paths (for
3D models, textures, plugins...) and plugins to be loaded automati-
cally at startup.

Figure 1 shows a screenshot right after opening the GL-Socket
application. By default, the application loads a Render Plugin pro-
viding single-pass rendering (Listing 4), a Draw Plugin based on
VAOs, and an Action Plugin providing basic rotate-zoom-pan cam-
era control. Notice that the GUI is minimalist, since the OpenGL
window fills the application window. Plugins might provide their
own GUI through Qt QWidget and QDialog classes, although most
of our assignments rely on direct keyboard/mouse interaction.

Figure 1: GL-Socket application with default plugins (left) and
shader development plugin (right).

The application is extensible via plugins implementing the in-
terface described above. Default plugins are loaded automatically
at startup whereas new plugins can be loaded at runtime. Testing a
plugin involves opening GL-Socket and loading the plugin to check
its behavior.

3.5. Examples of Plugin Assignments

Here is a sample of the kind of assignments (summarized) that we
include in our CG lab sessions:

• Write an Action Plugin that shows the current frame rate.
• Write an Action Plugin that writes the surface area of every ob-

ject in the scene.
• Write an Effect Plugin that binds a shader program for per-vertex

cartoon shading.
• Write an Effect Plugin that binds a shader program for per-

fragment Phong shading.
• Write a Draw Plugin that draws the scene with flat shading, i.e.

generating a VAO with per-corner (rather than per-vertex) nor-
mal vectors.

• Write a Draw Plugin that draws the scene including tangent, bi-
tangent and normal attributes for each vertex.

• Write a Render Plugin implementing shadow mapping.
• Write a Render Plugin implementing deferred shading.

See project repository for complete plugin examples.

4. Shader development

For some assignments, we would like students to focus exclusively
on GLSL. We thus provide a plugin for shader development, which
is loaded automatically by invoking the proper GL-Socket script.

Our current version uses OpenGL 3.3 Core Profile shaders and
thus supports Vertex Shaders (VS), Geometry Shaders (GS) and
Fragment Shaders (FS). Shaders are edited using an external edi-
tor (configurable through environment variables) rather than an in-
ternal editor as in ShaderMaker [fCGVR]. This way students can
choose their favorite editor for writing GLSL code, instead of im-
posing a less-featured custom editor.

Recall that OpenGL core profile does not provide predefined ver-
tex attributes. In order to facilitate shader development, our default
plugins provide typical per-vertex attributes (vertex, normal, color,

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

texCoord, see Listing 6) and a collection of uniform variables for
camera matrices, and lighting/material parameters (Listing 7).

layout (location = 0) in vec3 vertex; // gl_Vertex.xyz
layout (location = 1) in vec3 normal; // gl_Normal
layout (location = 2) in vec3 color; // gl_Color.rgb
layout (location = 3) in vec2 texCoord; // gl_MultiTexCoord0.st

Listing 6: Default attributes for Vertex Shaders in our framework.
Comments show their analogous deprecated versions in the Com-
patibility Profile.

uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix;
uniform mat4 modelMatrixInverse;
...

uniform vec4 lightAmbient;
uniform vec4 lightDiffuse;
uniform vec4 lightSpecular;
uniform vec4 lightPosition;

uniform vec4 matAmbient;
uniform vec4 matDiffuse;
uniform vec4 matSpecular;
uniform float matShininess;

uniform vec3 boundingBoxMin;
uniform vec3 boundingBoxMax;
uniform vec2 mousePosition;

uniform float time;

Listing 7: Uniform variables in our framework.

The shader plugin provides a pop-up menu (Figure 1) with op-
tions for shader, scene, camera, light, material, and texture manage-
ment.

When creating a new shader program (either VS+FS or
VS+GS+FS, since GS are optional), the user just provides a shader
name (e.g. phong) and the plugin automatically creates the required
files (e.g. phong.vert, phong.frag) with default content (Listing 8).
The plugin checks at every frame the time stamp of the current
shader files (.vert, .geom, .frag), so that every time students save a
shader, it is automatically loaded, compiled and bound by the ap-
plication.

Compilation or link errors, if any, are both written to the stan-
dard output (terminal) and shown on a pop-up modal dialog. We
also change the background color to red to clearly indicate that the
model is not being rendered with user-provided shaders.

The plugin automatically detects which uniforms are actually
used by the shaders (through glGetActiveUniform), and allows
users to see and edit their values. The supplemental video shows
a typical session for creating a shader using the plugin.

5. Self-evaluation tools

5.1. Overview

One of the key features of our framework is the support for student
self-assessment through a one-click option that runs a test set. The
test set contains a list of commands to automate model loading, tex-
ture loading, and for setting up specific camera, material, lighting
and uniform values (see below).

// default.vert
#version 330 core
layout (location = 0) in vec3 vertex;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec3 color;

out vec4 frontColor;
uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

void main() {
vec3 N = normalize(normalMatrix * normal);
frontColor = vec4(color,1.0) * N.z;
gl_Position = modelViewProjectionMatrix * vec4(vertex, 1.0);
}

// default.frag
#version 330 core
in vec4 frontColor;
out vec4 fragColor;

void main()
{

fragColor = frontColor;
}

Listing 8: Default code for VS+FS shader programs.

Figure 2 illustrates the testing process. The Run test option au-
tomatically loads a test file and executes its commands to capture
screenshots of the output under different test conditions specified in
the test file. These images are then compared to reference images
from the instructors, and a composite image is shown to facilitate
comparison and highlight differences, if any. Students are reminded
that passing a test does not ensure correctness nor efficiency of
the solution. Conversely, minor per-pixel differences might be at-
tributed to factors not invalidating correctness, such as hardware
or driver configuration differences, rounding errors... In practice,
visual comparison of the student’s output against the reference im-
ages has proved to be a powerful tool to quickly detect errors in a
number of assignments, from shading to animation going through
texture mapping. A further application is to identify subtle changes
between shaders, e.g. per-vertex vs per-fragment lighting.

Figure 2: Overview of the shader testing process (left) and sample
output from it (right).

5.2. Test set language

The shader development plugin supports a simple command lan-
guage for setting up the window, scene, camera, and so on. Here
we just provide an example of a test file (Listing 9). See project
repository for a complete description. Test files are supposed to be
written by instructors, although students can read public ones to
check e.g. which uniform values or texture images are being tested.
Besides self-assessment, test files have also proven to be useful to

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

quickly setup an environment for testing specific shaders; for ex-
ample, the test file can load specific images and 3D models with
a single click, thus automatizing this task and speeding up moving
from one assignment to another.

Writing new test files takes only about 1-2 minutes, starting from
existing templates.

resize 800x600 matAmbient 1.0 0.5 0.3
clearColor 1 1 1 matDiffuse 1.0 0.5 0.3

matSpecular 1.0 1.0 1.0
loadObject glass.obj matShininess 64
camera preset1 bool attenuation false

lightAmbient 0.1 0.1 0.1 grab 1
lightDiffuse 1 1 1 loadObject sphere.obj
lightSpecular 1 1 1 grab 2
lightPositionEye 0 0 0 1 ...

Listing 9: Partial example of a test file for a lighting shader. The
grab keyword saves an image with the current settings.

6. Correction aid for instructors

A great advantage of our system is the easiness of running pri-
vate test files (often distinct from the public ones) using a script.
We developed a script (not included in the project repository, as
it contains code specific to the Faculty Online Platform) that au-
tomatically collects all student submissions, tests them against a
validation set, and creates a PDF report with all the results, includ-
ing student information, source code, compile and link logs, and a
comparison image similar to that in Figure 2. Figure 3 shows an
anonymized example of such a report.

Lab Exam - Undistort

Anonymous

1 Log� �
1
2 GLsocket undistort . test
3 OpenGL Version : 3 . 3
4 OpenGL Profile : Core
5 Loaded plugin : "draw−vbo . dll"
6 Loaded plugin : "shaderloader . dll"
7 Loaded plugin : "navigate . dll"
8 Added object : glass . obj
9 Compiling VS : undistort . vert

10 compilation OK
11 Compiling FS : undistort . frag
12 compilation OK
13 COMPILES WITH NO WARNINGS� �
2 Vertex Shader� �

1 #version 330 core
2
3 layout (location = 0) in vec3 vertex ;
4 layout (location = 1) in vec3 normal ;
5 layout (location = 2) in vec3 color ;
6 layout (location = 3) in vec2 texCoord ;
7
8 out vec2 vtexCoord ;
9

10 uniform mat4 modelViewProjectionMatrix ;
11
12 void main ()
13 {
14 vtexCoord = texCoord ;
15 gl_Position = modelViewProjectionMatrix ∗ vec4 (vertex , 1 . 0) ;
16 }� �
3 Fragment Shader� �

1 #version 330 core
2
3 in vec2 vtexCoord ;
4 out vec4 fragColor ;
5 uniform sampler2D colorMap ;
6
7 void main ()
8 {
9 vec2 centered = vtexCoord∗2−vec2 (1 , 1) ;

10 float r = length (centered) ;
11 float r2 = r + 0.22∗ r∗r∗r+0.24∗r∗r∗r∗r∗r ;
12 vec2 q2 = r2 ∗ normalize (centered) ;
13 vec2 f = q2/2+vec2 (0 . 5 , 0 . 5) ;
14 if (f . s > 0 && f . s < 1 && f . t > 0 && f . t < 1)
15 fragColor = texture2D (colorMap , f) ;
16 else
17 fragColor = vec4 (0 , 0 , 0 , 1) ;
18 }� �

4 Output

2

Figure 3: Sample pages of the report generated automatically from
student submissions. The report contains student ID, compilation
logs, source code and graphical comparison. In this example the
output is correct.

7. Results and discussion

During these years, we received very positive feedback both from
students and teachers (7 teachers in the last four years). We col-
lected results from the course during the last three years, and com-
pared them with those from the other compulsory courses in the
same semester. Figure 4 compares success rates for these courses.

A one-way ANOVA analysis for independent samples on the suc-
cess rate shown in Figure 4 reveals that differences among success
rates for the different courses are statistically significant (p<0.01).
Tukey HSD Test shows that average success rate for our course (G)
is significantly higher than those of two courses (p<0.05), but not
significant with respect to the other three courses. Although these
very good results can be attributed to many factors, we believe the
lab sessions have contributed to this success.

Figure 4: Pass rate for our course (G) and the rest of compulsory
courses in same semester, for the last three years: Algorithmics,
Artificial Intelligence, Logic in CS, Programming Languages and
Theory of Computation.

We also observed a significant reduction of marking times with
respect to our old, non-plugin-based framework. Since the PDF re-
port with all graphical comparisons on the validation test is gen-
erated automatically, correction time is limited to reading the code
after gaining a strong cue on potential problems from the output
images. In many cases, specific parts of the code are checked just
to confirm a first hypothesis (e.g. specular term is missing) that be-
comes evident after seeing the composite images. Current marking
times are about 2-3 min per exercise, vs. 3-10 min we got with the
old framework version.

Teachers often write corrections as PDF annotations, thus facili-
tating exam revisions, since students can see both the output on the
private tests, and the evaluator comments and suggestions.

Exercise independence increases correction fairness. We assign
correction tasks on an exercise basis (the same exercise is marked
by the same person for all students) rather than on a group basis
(each teacher marking all exercises from her group). This min-
imizes subjective deviations, and guarantees more homogeneous
criteria for each exercise across students. It also saves coordination
time since there is no need for an agreement on fine-grained cri-
teria among evaluators; general evaluation criteria are thus much
shorter and told to students at the beginning of the course. Exer-
cise independence also minimizes discussion among teachers when
designing a lab exam; in the last years discussions have been re-
stricted to specific exercises, which are simpler to fine-tune or re-
place than a large exercise with inter-dependent parts. We also be-
lieve that this causes marks to better reflect student progress, when
compared with longer assignments with strong inter-dependencies
(where failing to complete a part due to a specific missing skill
might prevent students from completing the rest, and may exacer-
bate the problem of loss of motivation).

An additional advantage is that exercises for lab exams are ready

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

C. Andujar & A. Chica & M. Fairen & A. Vinacua / GL-Socket: A CG plugin-based framework for teaching and assessment

to be included in the exercise collection for upcoming students.
This encourages teachers to write elaborate, engaging statements
for lab exams.

Figure 5: Students using GL-Socket during a lab exam.

8. Conclusions and future work

We have described a framework for teaching OpenGL and GLSL in
the context of introductory CG courses. Learning Computer Graph-
ics techniques through plugin development has multiple advan-
tages: allows for very focused, self-contained, independent exer-
cises, enforces modularity and facilitates code reusability.

The framework (and the way we planned the lab sessions) have
some limitations though. It can be argued that plugin-based ses-
sions can be too focused on narrow topics, and students might not
develop skills for designing larger software projects were some de-
cisions require a global view of the user requirements. In our case,
other courses do address the problem of large-scale Software En-
gineering, and our experience with tens of Final Degree Projects
has shown that students have no problems to move from a nar-
row, plugin-based development to wide, global application devel-
opment.

Although our framework has (intentionally) a minimalist GUI,
students can create their own GUI for the plugins. Again, students
are not developing global skills for designing a fully-featured ap-
plication GUI, but this should not be a problem as long as the topic
is covered in a preceding course.

Despite students being instructed not to take visual comparisons
against reference images as guarantee of correctness or incorrect-
ness, we would like to minimize such differences for valid solu-
tions, specially when these are due to different hardware config-
urations (e.g. anti-aliasing forced by driver). We plan to setup a
server for running tests online, to guarantee that both reference and
user-provided shaders are executed in the same hardware or virtual
machine. The GL-Socket application will take care of all client-
server communications so that running tests will continue to require
a single click. Finally, we are also working on complementing the
composite graphical comparison by an interactive side-to-side or
alpha-blended comparison (using e.g. WebGL or streaming) which
will detect automatically differences and choose parameter values
and camera views to highlight them. This would be specially useful
e.g. for animation shaders.

Repository

Source code for our framework (application, libraries and example
plugins) is available in the following Git repository: https://
gitrepos.virvig.eu/docencia/glarena.

Acknowledgements

We would like to thank Cristina Raluca for her helpful suggestions
on interactive comparisons between student/reference outputs. This
work has been partially funded by the Spanish Ministry of Econ-
omy and Competitiveness and FEDER Grant TIN2017-88515-C2-
1-R.

References
[Bai] BAILEY M.: Glman. web.engr.oregonstate.edu/~mjb/
glman. Accessed: 2018-01-12. 2

[BSP17] BÜRGISSER B., STEINER D., PAJAROLA R.: bRenderer: A
Flexible Basis for a Modern Computer Graphics Curriculum. In EG
2017 - Education Papers (2017), Bourdin J.-J., Shesh A., (Eds.), The
Eurographics Association. 3

[fCGVR] FOR COMPUTER GRAPHICS I., VIRTUAL REALITY U. B.:
Shader maker. cgvr.cs.uni-bremen.de/teaching/shader_
maker/index.shtml. Accessed: 2018-01-12. 2, 5

[FP13] FAIRÉN M., PELECHANO N.: Introductory graphics for very
diverse audiences. In Eurographics 2013 - Education Papers, Girona,
Spain, May 6-10, 2013 (2013), pp. 9–10. 2

[FWW12] FINK H., WEBER T., WIMMER M.: Teaching a modern
graphics pipeline using a shader-based software renderer. In Eurograph-
ics 2012 – Education Papers (2012), pp. 73–80. 2

[FXC] Nvidia fx composer. developer.nvidia.com/
fx-composer. Accessed: 2018-01-12. 2

[GLS] Glsl sandbox. glslsandbox.com. Accessed: 2018-01-12. 2

[Mil14] MILLER J. R.: Using a software framework to enhance online
teaching of shader-based opengl. In Proceedings of the 45th ACM Tech-
nical Symposium on Computer Science Education (2014), SIGCSE ’14,
pp. 603–608. 2

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSIDOU E.,
TRAHANIAS P.: glGA: an OpenGL Geometric Application Framework
for a Modern, Shader-based Computer Graphics Curriculum. In Euro-
graphics 2014 - Education Papers (2014), Bourdin J.-J., Jorge J., Ander-
son E., (Eds.), The Eurographics Association. 2

[QJ] QUILEZ I., JEREMIAS P.: Shadertoy. www.shadertoy.com.
Accessed: 2018-01-12. 2

[Ren] Rendermonkey toolsuite. gpuopen.com/
archive/gamescgi/rendermonkey-toolsuite/
rendermonkey-toolsuite-ide-features. Accessed:
2018-01-12. 2

[RME14] REINA G., MÜLLER T., ERTL T.: Incorporating modern
opengl into computer graphics education. IEEE Computer Graphics and
Applications 34, 4 (2014), 16–21. 3

[RRP00] RAAB J., RASALA R., PROULX V. K.: Pedagogical power
tools for teaching java. SIGCSE Bull. 32, 3 (2000), 156–159. 2

[TRBB08] THIESEN M., REIMERS U., BLOM K., BECKHAUS S.:
Shaderschool: a tutorial for shader programming. In CGEMS: Computer
graphics educational materials source (01 2008), p. 10. 2

[TRK17] TOISOUL A., RUECKERT D., KAINZ B.: Accessible GLSL
shader programming. In Eurographics 2017 - Education Papers, Lyon,
France, April 24-28 (2017), pp. 35–42. 1, 2

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

https://gitrepos.virvig.eu/docencia/glarena
https://gitrepos.virvig.eu/docencia/glarena
web.engr.oregonstate.edu/~mjb/glman
web.engr.oregonstate.edu/~mjb/glman
cgvr.cs.uni-bremen.de/teaching/shader_maker/index.shtml
cgvr.cs.uni-bremen.de/teaching/shader_maker/index.shtml
developer.nvidia.com/fx-composer
developer.nvidia.com/fx-composer
glslsandbox.com
www.shadertoy.com
gpuopen.com/archive/gamescgi/rendermonkey-toolsuite/rendermonkey-toolsuite-ide-features
gpuopen.com/archive/gamescgi/rendermonkey-toolsuite/rendermonkey-toolsuite-ide-features
gpuopen.com/archive/gamescgi/rendermonkey-toolsuite/rendermonkey-toolsuite-ide-features

