

Effect of plant resistance and BioAct WG (*Purpureocillium lilacinum* strain 251) on *Meloidogyne incognita* in a tomato–cucumber rotation in a greenhouse.

Journal:	Pest Management Science
Manuscript ID	PM-16-0239.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Giné, Ariadna; Universitat Politecnica de Catalunya, Departament d'Enginyeria Agroalimentària i Biotecnologia Sorribas, Francisco; Universitat Politecnica de Catalunya, Departament d'Enginyeria Agroalimentària i Biotecnologia
Key Words:	<i>Cucumis sativus</i> , Biological control, Doble-cropping system, Integrated management, Root-knot nematodes, <i>Solanum lycopersicum</i>

1	Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251)
2	on <i>Meloidogyne incognita</i> in a tomato–cucumber rotation in a greenhouse.
3	Ariadna Giné and Francisco J Sorribas [*]
4	
5	Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica
6	de Catalunya. Esteve Terradas 8, 08860 Castelldefels, Barcelona, Spain
7	
8	Corresponding author: francesc.xavier.sorribas@upc.edu
9	
10	Running title: Effect of plant resistance and BioAct WG on RKN in greenhouse.
11	
12	Abstract
13	BACKGROUND: The effectiveness of combining resistant tomato with BioAct WG
14	(Purpureocillium lilacinum strain 251; Pl251) against Meloidogyne incognita was
15	assessed in a tomato-cucumber rotation in greenhouse over two years. Additionally, the
16	enzymatic activity of the fungus, the percentage of fungal egg and juvenile parasitism,
17	cardinal temperatures and the effect of water potential on mycelia growth and the soil
18	receptivity to Pl251 were determined in vitro.
19	RESULTS: Plant resistance was the only factor that suppressed nematode and crop
20	yield losses. Percentage of egg parasitism in plots treated with BioAct WG was less
21	than 2.6 %. However under in vitro conditions, Pl251 showed protease, lipase, and
22	chitinase activities, and parasitized 94.5 % of eggs, but no juveniles. Cardinal
23	temperatures were 14.2, 24-26, and 35.4 °C. The maximum Pl251 mycelial growth was
24	at -0.25 MPa and 25 °C. Soil temperatures and water potential in the greenhouse were in

3
4
5
5
0
1
8
9
10
11
12
13
1/
15
16
10
17
18
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

1 the range of the fungus. However, soil receptivity was less in greenhouse soil,

2 irrespective of sterilization, than in sterilized sand.

3 CONCLUSIONS: Plant resistance was the only factor able to suppress nematode

4 densities, disease severity and yield losses, and to protect the following cucumber crop.

5 Environmental factors involved in soil receptivity could have negatively affected fungus

- 6 effectiveness.
- 7

8

Kev words

9 Biological control, *Cucumis sativus*, doble-cropping system, integrated management,

10 root-knot nematodes, *Solanum lycopersicum*.

11

12 1 INTRODUCTION

13 Spain is the main producer of vegetables under protected cultivation in the

14 Mediterranean area, with 71.003 ha.¹ The major crops are tomato (*Solanum*

15 *lycopersicum* L.) and cucumber (*Cucumis sativus* L.), frequently cultivated in a double

16 cropping system.² Greenhouse tomato is grown on 18.501 ha with an annual production

17 of 1.881.922 tonnes, which represents 38 % of the tomato production area and 47 % of

the total yield. Greenhouse cucumber is grown on 7.768 ha with an annual yield of

717.693 tonnes, representing 88 % of the total production area and 95 % of the total
vield.¹

Root-knot nematodes (RKN), *Meloidogyne* spp., are one of the most important soil
pathogens limiting horticulture production worldwide, especially under protected
cultivation.³ *Meloidogyne* spp. are widely spread in all vegetable production areas in
Spain. Yield losses caused by RKN can reach 60 % in tomato and 88 % in cucumber.^{4,5}
RKN is mainly managed by fumigant and non-fumigant nematicides.⁶ However, the

http://mc.manuscriptcentral.com/pm-wiley

Page 3 of 60

1

Pest Management Science

2
3
4
5
6
7
8
q
10
10
10
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
20
24
20
32
33
34
35
36
37
38
39
40
<u>Λ</u> 1
41
42 40
43
44
45
46
47
48
49
50
51
52
52
55
04 55
55
56
57
58
59
60

limitations imposed by the Directive 2009/128/EC have encouraged research finding
 alternatives to chemical pesticides as well as to design effective and durable strategies
 to manage RKN.

There are a large number of non-chemical alternatives to control RKN³, including 4 crop rotation with resistant cultivars and biological control. In nematology, resistance is 5 6 defined as the ability of a plant to suppress infection, development and/or reproduction of plant-parasitic nematodes.⁷ Therefore, resistant tomato cultivars or rootstocks 7 carrying the *Mi*-gene are widely used because of their effectiveness in suppressing *M*. 8 arenaria, M. incognita and M. javanica.^{4,7} However, its expression can be limited by i) 9 constant soil temperatures above 28 °C at transplanting,⁸ ii) the genetic background of 10 the tomato cultivar or rootstock,⁹ iii) RKN species: not effective against *M. hapla*, *M.* 11 *chitwoodi* race 3, ¹⁰ *M. enterolobi*, ¹¹ or *M. exigua*; ¹², and iv) virulent populations, which 12 can occur suddenly or be selected by repeated cultivation of resistant cultivars.^{13,14} 13 Inclusion of resistant tomato cultivars in a cropping sequence helps to suppress the 14 reproduction of RKN and to reduce yield losses of the following susceptible crop,¹⁵ such 15 as cucumber,² because yield losses are related to nematode densities in soil at 16 transplanting.¹⁶ 17 Several microorganisms have been evaluated for biological control of plant-parasitic 18 nematodes.¹⁷ The use of biological control agents able to suppress the buildup of RKN 19 20 can be of interest to reduce the pressure on R genes avoiding the selection of virulent 21 populations and contribute to maintain nematode densities below the economic

22 threshold level. Out of those, *Purpureocillium lilacinum* (formerly *Paecilomyces*

23 *lilacinus*) strain 251 (Pl251) is the only biological nematicide listed in the annex 1 of the

- 24 European register of active substances.¹⁸ *Purpureocillium lilacinum* is a common soil
- 25 hyphomycete able to parasitize RKN sedentary stages by direct hyphal penetration and

1	by using hydrolytic enzymes. ¹⁹⁻²¹ Besides, the effectiveness of Pl251 to control RKN
2	has been widely reported under controlled conditions and in pot tests, ²²⁻²⁴ although few
3	reports are available on its effectiveness under field conditions. ^{25,26}
4	The aim of the present study was to evaluate the effectiveness of combining the
5	resistant tomato cv. Monika with P. lilacinum strain 251 (BioAct WG [®] , Belchim Crop
6	Protection, Londerzeel, Belgium) over two consecutive growing seasons in a
7	greenhouse to manage RKN in a tomato-cucumber rotation. Additionally, in vitro
8	experiments were carried out to determine extracellular enzymes produced by Pl251 and
9	its capability to parasitize eggs and second-stage juveniles of RKN, as well as to know
10	cardinal temperatures and the effect of temperature and water potential on mycelia
11	growth, and soil receptivity to Pl251.
12	
13	2 MATERIAL AND METHODS
14	2.1 Greenhouse trial
15	The field trial was conducted in a 700 m^2 greenhouse infested with <i>M. incognita</i> in
16	Viladecans (41° 17' 18''N; 2° 2' 39''E, Barcelona, Spain) during, 2011 and 2012. The
17	soil was a sandy loam with 83.8 % sand, 6.7 % silt and 9.5 % clay; pH 8.7; 1.8 % of
18	organic matter (w/w) and 0.5 dS/m of electric conductivity. Soil was infested with M .
19	incognita in 2007 and rotations with resistant or susceptible tomato cultivars and
20	cucumber or black fallow were carried out from 2008 to 2010.
21	The rotation sequence consisted of resistant tomato cv. Monika (bearing the Mi gene)
22	or the susceptible cv. Durinta from March to July, followed by cucumber cv. Dasher II
23	cultivated from July to October-November. Individual plots of 9.6 m ² comprising of 4
24	rows with 6 plants per row. Plant specing was 50 cm between rows and 55 cm within
	Tows with 6 plants per tow. Plant spacing was 50 cm between tows and 55 cm within

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
4U 14	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	rows. The distance between individual plots was 110 cm between rows and 100 cm
2	along rows.

3	In 2011, combinations of resistant (TR) or susceptible tomato (TS) with or without
4	BioAct WG preceding cucumber with or without BioAct WG were assessed. Each
5	combination was replicated 10 times according to a stratified randomized block design.
6	In 2012, the combinations were located on the same plots as in 2011 with slight
7	modifications. Plots cultivated with TR did not receive any treatment with BioAct WG
8	because of results obtained in 2011. Then, combinations including TR or TS without
9	BioAct WG were replicated 10 times, and 20 for the combination TS with BioAct WG.
10	Cucumber crop cultivated after TS with application or not application of BioAct WG
11	was replicated 15 times, and five times each combination after TR.
12	Dates and rates of application of BioAct WG to soil and seedlings were as
13	recommended by the manufacturer. Briefly, the first soil application of the commercial
14	product BioAct WG (1 x 10^{10} viable spores g ⁻¹ of <i>P. lilacinus</i> strain 251 dried on
15	glucose) was carried out 14 days before transplanting by drip irrigation at a rate of 0.4 g
16	m ⁻¹ linear and 10 cm width. The following fungal applications to soil were repeated at
17	the same rate at six weeks interval; two applications during the tomato and cucumber
18	crops in 2011 and cucumber in 2012, and three during the tomato crop in 2012.
19	Seedlings were watered with a suspension of 0.1 g BioAct WG 1 L ⁻¹ just before
20	transplanting.
21	Tomato was cultivated from 31 st March to 6 th July (98 days), and cucumber from 29 th
22	July to 26 th October (90 days) in 2011. In 2012, tomato was cultivated from 5 th March to
23	17 th July (135 days) and cucumber from 31 st July to 5 th November (98 days).
24	The plants were irrigated by drip irrigation and fertilized weekly with a NPK solution
25	(15–5–30) at 31 kg ha ⁻¹ and iron chelate and micronutrients at 0.9 kg ha ⁻¹ . Crops were

vertically trellised. Weeds were removed manually during and between cropping cycles. Tomato yield was assessed from the first six fruit sets produced from the eight central plants in each plot. Fruits were harvested according to commercial standards as they reached maturity. Similar, cucumber fruits were harvested from the eight central plants of each plot when they reached the standard commercial size. Total yield per crop cycle was expressed as kilograms plant⁻¹. Soil temperatures were recorded at 30 min intervals in order to estimate the number of the nematode generations, and the effect of soil temperature on the fungus growth. In 2011 were recorded with soil probes 107 (Campbell Scientific, Logan, USA) placed at a depth of 15 cm. In 2012, soil temperatures and water potential were recorded at the same interval and soil depth with 5TM and MPS-1 probes (Decagon devices, Inc. Pullman, USA). Composite soil samples were collected from each plot at the beginning and at the end of each crop to estimate initial (Pi) and final (Pf) nematode population densities,

respectively. Each soil sample consisted of eight subsamples from the top 30 cm taken with an auger (2.5 cm diameter). Soil samples were sieved through a 4 mm aperture screen to remove stones, and carefully homogenized to extract nematodes from 500 cm³ by Baermann trays.²⁷ Second-stage juveniles (J2) that migrated to the water were collected one week later, concentrated on a 75 µm sieve, counted, and then expressed as number of J2 per 250 cm³ of soil. At the end of each crop, plants were removed with a pitchfork, cut at ground level, and the disease severity was assessed using the Zeck's galling²⁸ index on a scale of 0 to 10, where 0 means complete and healthy root system (no galls observed) and 10 means plants and roots dead. Afterwards, the roots were weighted and chopped into 2 cm long segments and two 10 g subsamples were used to extract eggs by blender maceration in a 1 % NaOCl solution.²⁹ After 10 minutes of

1	maceration, the egg suspension was passed through a 75 μ m sieve, to retain the plant
2	material, and a 25 μ m sieve to retain the eggs. The number of eggs was counted and
3	expressed per gram of fresh root weight.
4	To assess fungal egg parasitism, the procedure described in Giné et al. ³⁰ was used. In
5	brief, 20 egg masses per individual plot were handpicked from the remaining roots and
6	placed in a watchglass containing sterile demineralised water. The outer part of the
7	gelatinous matrix was removed, and eggs were dispersed in an Eppendorf
8	microcentrifuge tube containing 1 mL of sterile demineralised water with a pestle. A
9	333 μ L aliquots of egg suspension were spread onto each of three replicated Petri plates
10	containing a growth restricting medium, ³¹ and incubated at 25 °C \pm 0.5 °C in the dark.
11	Number of parasitized eggs was recorded after 24 and 48 hours under a dissecting
12	microscope and percentage of egg parasitism was then calculated as the number of
13	parasitized eggs per plate per total eggs per plate. Eggs were considered parasitized if
14	fungal hyphae grew from inside of unhatched eggs. Parasitized eggs were individually
15	transferred to the growth restricting medium to establish pure cultures and fungal
16	species were identified by cultural and morphological characteristics. ³²
17	2.2 Extracellular enzymes production
18	Extracellular enzyme production by Pl251 was evaluated using a semiquantitative API
19	ZYM ® (BioMérieux, Marcy l'Etoile, France) system which identifies 19 cellular
20	enzymes, i.e. alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14),
21	leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, chymotrypsin,
22	acid phosphatase, naphtol-AS-BI phosphohydrolase, α -galactosidase, β -galactosidase,
23	β -glucuronidase, α -glucosidase, β -glucosidase, nacetyl- β -glucosaminidase, α -
24	mannosidase and α - fucosidase.

		Pest Management Science
1		
2 3	1	Conidia of Pl251 were collected from 3-week-old cultures of the fungus growing on
4 5	2	potato dextrose agar (PDA; 39 g L ⁻¹) at 25°C in the dark. The colony was washed with 5
6 7 8	3	mL of sterile distilled water. The number of conidia was then counted with a
9 10	4	haemocytometer and adjusted to 1×10^6 conidia mL ⁻¹ . The API ZYM system was used
11 12	5	according to the manufacturer's instructions. Briefly, 65 μ L of the conidia suspension
13 14	6	was placed into each cupule, and incubated at 25 °C for 6 h in the dark. ³³ Enzyme
15 16 17	7	activity was observed after addition of a drop of each ZYM A and ZYM B reagents
18 19	8	and exposed to sunlight for an hour to eliminate the yellowing from the reagents. The
20 21	9	enzyme production was assessed according to the scale from 0 (no enzyme production)
22 23	10	to 5 (maximum enzyme production) according the color chart provided by the
24 25 26	11	manufacturer. The experiment was carried out once.
20 27 28	12	2.3 Capability of Pl251 to parasitize Meloidogyne incognita eggs and J2 in vitro
29 30	13	Individual plugs of 9 mm-diameter from the edge of a Pl251 colony growing on PDA
31 32	14	were placed in the centre of a total of six Petri dishes (90 mm) containing water agar
33 34	15	(agar 12 g L ⁻¹), and incubated at 25 °C \pm 0.5 °C in the dark for 3 days.
35 36 37	16	Surface sterilized eggs or J2 of the same <i>M. incognita</i> population used to inoculate
38 39	17	the soil of the greenhouse in 2007 and maintained in tomato in pots were used to
40 41	18	determine the parasitic ability of Pl251. Meloidogyne incognita was identified by
42 43	19	morphology of perineal pattern, esterase pattern, and SCAR marker. Eggs from 30 egg
44 45 46	20	masses handpicked from tomato roots were surface sterilized following the protocol of
40 47 48	21	Verdejo et al. ³⁴ with some modifications. Egg masses were placed into a conical sterile
49 50	22	tube with 1 mL of a 0.5 % NaOCl solution for four min. and were shaken at 30 s
51 52	23	intervals for 10 seconds. After that, the solution was diluted 10 times with sterile
53 54 55	24	distilled water and left undisturbed for 30 min. to allow the eggs to settle at the bottom
55 56 57	25	of the tube. Then, eggs were taken and spread into three Petri dishes at 1 cm of the edge
58 59		
60		http://mc.manuscriptcentral.com/pm-wilev
		·

2

3

1

Pest Management Science

2
2
3
4
5
5
6
7
8
0
9
10
11
40
12
13
14
45
15
16
17
10
10
19
20
21
21
22
23
24
24
25
26
27
21
28
29
30
30
31
32
33
55
34
35
36
50
37
38
30
10
40
41
42
1 <u>0</u>
43
44
45
40
46
47
48
40
49
50
51
50
5Z
53
54
5.
55
56
57
E0
20
50

60

of the colony of the Pl251 using a sterile Pasteur pipette, and incubated at 25 °C \pm 0.5
°C in the dark for one week. The assessment of egg parasitism was carried out as
described previously.

Second-stage juveniles of *M. incognita* were obtained by extraction of eggs from 4 tomato roots by the Hussey and Barker method²⁹ and left to emerge on Baermann 5 trays.²⁷ Then, J2 were surface sterilized following the Mountain³⁴ procedure with some 6 7 modifications. Briefly, a suspension of 100 J2 in 0.5 mL water was placed in a conical sterile tube containing streptomycin 0.1 % for 4 hours. The suspension was shaken at 8 9 one hour interval for 10 seconds. The solution was then diluted 20 times with sterile 10 distilled water and left undisturbed for 30 min. for J2 to settle at the bottom of the tube. Then, J2 were taken and placed in three Petri dishes at 1 cm of the edge of the Pl251 11 colony using a sterile Pasteur pipette, and incubated at 25 °C \pm 0.5 °C in the dark for one 12 week. The assessment of J2 parasitism was carried out as described previously for egg 13 14 parasitism.

Percentage of parasitism was then calculated as the number of unhatched parasitized
eggs or J2 per Petri dish divided by the number of unhatched eggs or J2 per Petri dish.
Experiments were conducted once.

2.4 Cardinal temperatures and the effect of temperature and water potential on
Pl251 mycelia growth *in vitro*

Cardinal temperatures of Pl251 were determined placing individual 9 mm-diameter
plugs of Pl251 in the center of each of 24 Petri dishes containing water agar (WA; 12 g
L⁻¹). Petri dishes were incubated at 4, 10, 15, 20, 25, 30, 35 or 40°C in the dark (three
dishes per temperature). Minimum and maximum diameters (mm) of fungal growth
were measured every 24 h until the colonies occupied 80 % of the surface of the Petri

plate. The mycelia growth rate (mm day ⁻¹) was calculated as the relation between mean
 colony diameter (mm) and growth time (day).

Concurrently, the effect of water potential (Ψ) and temperature on Pl251 growth was assessed. Water agar media with different concentrations of Polyethylene Glycol 8000 (PEG8000) was prepared according to the Michel's equation³⁶ to achieve Ψ between 1.25, -1, -0.75, -0.5 and -0.25 MPa. Mycelia plugs of 9 mm diameter from the edge of a fungal the colony were placed in the centre of the Petri plates and then incubated at 15, 20, 25, and 30 °C in the dark. Each combination of temperature-PEG8000 concentration was repeated three times. Minimum and maximum diameters of fungal growth were measured daily until the colonies occupied 80 % of the surface of the Petri plate. For each water potential, a linear regression was calculated between the mean diameter of the colony per day and the temperature, and the slopes were used to construct the regressions to determine the effect of temperature and water potential on mycelia growth. Experiments were repeated once.

2.5 Soil receptivity

Soil collected from BioAct WG non-treated plots of the greenhouse trial was assessed for receptivity to the fungal isolate. A part of soil was two times sterilized at 121 °C for 1 h within 24 h. The other part remained non-sterilized. The experiment was carried out following the procedure described by Monfort *et al.*³⁷ Briefly, 40 g of sterilized or non-sterilized air-dried soil was placed in Petri dishes and saturated with sterile distilled water. Soils included in the experiment were: (i) sterilized greenhouse soil; (ii) non-sterilized greenhouse soil and (iii) sterilized sand. A polyvinylidene difluoride (PVDF) membrane (0.22-µm-pore-size and 45 mm-diameter) was sterilized at 121 °C for 20 min and placed on top of the soil ensuring full contact. A 4 mm-diameter plug of Pl251 was placed in the middle of each membrane. Petri dishes were

Pest Management Science

2
3
4
5
6
7
8
9
10
14
10
12
13
14
15
16
17
18
19
20
21
21 22
22
23
24
25
26
27
28
29
20
21
20
32
33
34
35
36
37
38
39
40
11
+ I 10
4Z 40
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

then sealed and incubated at 25 °C \pm 0.5 °C in the dark. After three weeks, the membranes were washed with sterile distilled water and then dried in a laminar air flow cabinet. Then, the membranes where incubated in a solution of 1 % trypan blue in lactic acid for 12 h at room temperature to stain the mycelia . After that, the excess of the stain was removed with sterile distilled water, and minimum and maximum colony diameters were measured. The experiment was repeated once.

2.6 Statistical analysis

Statistical analyses were done using SAS v. 9 (SAS Institute Inc.). Data from field 8 9 experiments were transformed when required to log10 (x + 1) or square-root (x+0.5) to 10 normalize the data. The greenhouse trial was analyzed by analysis of variance by the general lineal model (PROC GLM) according to a factorial design to compare the effect 11 of the tomato cultivar, the application of BioAct WG, and the interaction (except for 12 tomato 2012), on nematode densities in soil, eggs in roots, disease severity, and crop 13 yield per cropping season. Analysis of variance was also carried out to compare the 14 effect of the temperature and kind of soil on the growth of Pl251. 15

16

7

173**RESULTS**

18 **3.1 Greenhouse trial**

Minimum, maximum and average soil temperatures during the cultivation of each crop and year are provided in Table 1. Accumulated soil temperatures during the tomato and cucumber crops in 2011 were 1504 DD (degree days; base temperature (Tb) = 10 °C) and 1473 DD (Tb = 11.4 °C), respectively. According to thermal requirements of tomato and cucumber, ^{5,38} *M. incognita* completed two generations in tomato (thermal constant (S) = 600-700 DD over Tb=10 °C),³⁸ and in cucumber (S = 500 DD over Tb = 11.4 °C).⁵

1	In 2011, the tomato cultivar was the only factor that explained differences ($P < 0.05$)
2	in nematode densities in the soil and roots, galling index and crop yield, both in tomato
3	and cucumber (Tables 2 and 3). Nematode densities in the soil, roots and the galling
4	index at the end of the resistant tomato crop were 8, 6 and 18 % those recorded at the
5	end of the susceptible cultivar, which yielded 78 % less than the resistant one. The
6	percentage of fungal egg parasitism at the end of the crop was less than 0.1 $\%$ (Table 2).
7	At cucumber transplanting, higher ($P < 0.05$) soil nematode densities occurred in plots
8	preceded by a susceptible than a resistant tomato cultivar. Galling indices were lower (P
9	< 0.05) after a resistant than a susceptible tomato cultivar. Eggs from cucumber plants
10	were only recovered from plants preceded by a resistant tomato because cucumber
11	following susceptible tomato died (data not shown). Egg parasitism by the fungus was
12	less than 0.5 % (Table 3).
13	In 2012, accumulated temperatures during the tomato and cucumber crops were 1959
14	(Tb = 10 °C) and 1524 DD (Tb = 11.4 °C), respectively. Hence, <i>M. incognita</i> completed
15	three generations in both crops according to its thermal requirements. In this cropping
16	season, the tomato cultivar was also the factor responsible for the differences ($P < 0.05$)
17	in nematode densities in the soil and roots, disease severity, as well as crop yield in both
18	tomato and cucumber crops (Tables 4 and 5). As in the previous season, cucumber
19	following susceptible tomato had higher ($P < 0.05$) nematode levels at transplanting,
20	and all plants died at the end of the experiment. The percentage of fungal egg parasitism
21	at the end of tomato and cucumber crops was 2.4 and 2.6 %, respectively (Table 5).
22	3.2 Extracellular enzymes production
23	Six extracellular enzymes were produced by Pl251. The enzyme produced in highest
24	amounts by the fungus was leucine arylamidase (value of the color scale: 5) followed by

esterase and acid phosphatase (value of the color scale: 4), esterase-lipase (value of the

6

1	color scale: 3) and the lowest were naphtol-AS-BI- phosphohydrolase and N-acetyl- β -
2	glucosaminidase (value of the color scale: 2).
3	3.3 Capability of Pl251 to parasitize RKN eggs and J2 in vitro
4	Pl251 parasitized 94.91 % \pm 2.88 (mean \pm standard error) of <i>M. incognita</i> unhatched
5	eggs. However, no J2 were parasitized.
6	3.4 Cardinal temperatures and the effect of temperature and water potential on
7	Pl251 mycelia growth <i>in vitro</i>
8	Mycelia growth of Pl251 occurred between 14.2 °C (minimum) and 35.4 °C
9	(maximum), with 24-26 °C as the optimal growth temperatures range (Figure 1). No
10	growth was detected at 4, 10 and 40 °C. The water potential (-1.25 to -0.25 MPa)
11	directly influenced the mycelia growth of Pl251. The mycelia growth was higher at
12	optimal temperatures (25 °C) and highest water potential (-0.25 MPa), followed by 30
13	°C, 20 °C and 15 °C (Figure 2).
14	3.5 Soil receptivity
15	The mycelia growth of Pl251 in sterile sand (2.55cm \pm 0.06; mean \pm standard error)
16	was 91.83 % higher ($P < 0.05$) compared with non-sterile (0.18cm ± 0.06; mean ±
17	standard error) or sterile greenhouse soil (0.23 cm \pm 0.07 ; mean \pm standard error).
18	However, no differences ($P > 0.05$) were found between sterile and non-sterile
19	greenhouse soil.
20	4. DISCUSSION
21	The effectiveness of combining a tomato cultivar carrying the <i>Mi</i> gene for resistance
22	to M. incognita and BioAct WG based on the nematode antagonist P. lilacinum strain
23	251 against RKN has been assessed in a tomato - cucumber rotation under greenhouse
24	conditions. The initial hypothesis considered a synergistic effect of both methods to
25	suppress nematode densities. The first one, mediated by plant resistance, should

	r est management ocience
1	suppress nematode infection, development and reproduction. The second one, due to
2	Pl251, should parasitize eggs produced by nematodes that escaped plant resistance. In
3	the following cucumber crop, fewer RKN at transplanting after resistant tomato should
4	mean more percentage of egg parasitism, because most egg masses should be on the
5	root surface favoring egg infection, as well as reduce yield losses due to fewer J2 at
6	transplanting. However, the hypothesis was not confirmed in our trial, with plant
7	resistance being the only factor that consistently suppressed RKN. The effectiveness of
8	tomato cultivars or rootstocks carrying the Mi gene against RKN in greenhouses in
9	Spain was consistent with previous reports. ^{4,9,14,15} In this study, resistant tomato
10	suppressed disease severity and reproduction by $82 - 91$ % and $87 - 95$ % compared to
11	the susceptible cultivar, each year, respectively. The effect of intermittent peaks of soil
12	temperatures over 28 °C did not affect the effectiveness of the <i>Mi</i> gene as previously
13	reported. ³⁹ During the tomato crop in 2011, the numbers of days with maximum soil
14	temperatures over 28 °C were 23, after 35 days of transplanting, and 38 days, after 62
15	days of transplanting in 2012. In addition, the benefit of cropping a resistant tomato
16	cultivar on yield losses of the following susceptible crop was also observed as
17	previously stated. ^{2,15}
18	Unlike to plant resistance, there are few reports about the effectiveness of BioAct
19	WG alone and/or in combination with other control methods against RKN under
20	Mediterranean conditions. ^{25,26} In studies conducted in Greece and Turkey, BioAct WG
21	did not provide satisfactory RKN control. However, in several in vitro and pot tests the
22	antagonistic capability of Pl251 against several plant-parasitic nematode species was
23	reported. ^{11,20-24,40-42} The ability of Pl251 to penetrate eggs and cuticles of sedentary
24	stages of RKN by mechanical and chemical mechanisms has been reported. ^{20,21} The
25	results obtained by the API ZYM method showed high protease and lipase activity and
	http://mc.manuscriptcontral.com/pm_wilov

2
3
4
5
6
0
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
22
32
33
34
35
36
37
20
30
39
40
41
42
43
44
15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
59
60

1	low chitinase activity able to degrade the main components of egg shell and nematode
2	cuticle. ⁴³ Therefore, a high proportion of egg parasitism was expected, as it was in our
3	<i>in vitro</i> experiment (94.9 %). In addition, Kahn <i>et al.</i> ²¹ pointed out the parasitic ability
4	of Pl251 on all stationary stages of <i>M. javanica</i> , that is: eggs, juvenile contained in eggs,
5	post-infective juvenile stages: from swollen J2 to J4, and females, but they did not
6	assess the effect on the mobile infective J2. The results of this study showed that Pl251
7	was not able to parasitize the infective J2 stage of <i>M. incognita</i> neither sedentary stages
8	of RKN because Pl251 is not a root endophyte of tomato or cucumber plants. ^{44,45} Thus,
9	Pl251 could exert its parasitic potential only on eggs and juveniles contained in eggs
10	that remained in soil at the end of the crop, or on those produced on roots and exposed
11	to the soil. In fact, in greenhouse conditions, the percentage of egg parasitism was less
12	than 2.6 % in both crops and years. Moreover, microorganisms associated to the
13	gelatinous matrix of the egg masses can inhibit fungal egg parasites as Pochonia
14	<i>chlamydosporia</i> . ⁴⁶ Thus, fungal application did not affect nematode development even
15	though four applications per-crop and year.
16	Environmental factors can play an important role in nematode biocontrol. ⁴⁷ Rumbos
17	et al. ⁴² reported a negative correlation between the persistence of Pl251 in soil and the
18	sand content of soil. Thus, sandy soils, as in this study (83.8 % sand) would not be
19	suitable for the fungus. However, the test of soil receptivity showed that mycelia growth
20	was better in sterilized sand than in the sterilized sandy loam soil from the greenhouse
21	experiments. This indicates that other factors different to microbial communities or
22	thermo-sensitive chemicals in soil could limit the effectiveness of Pl251 because
23	mycelia growth was equally poor in sterile and non-sterile sandy loam soil from the
24	greenhouse.

Pest Management Science

Page 16 of 60

2	
3	
4	
5	
6	
1	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
4Z 13	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59 60	
bυ	

1

1	Soil temperatures during the cropping period or time of application could also affect
2	BioAct WG effectiveness. In this study, cardinal temperatures of mycelia growth were
3	determined. Maximum temperature of Pl251 mycelia growth in water agar was similar
4	to that reported by Kiewnick, ⁴¹ but not the optimal range, which was less wide (24-26 vs
5	24-30 °C). Moreover, in this study, minimum temperature was also estimated (14.2 °C)
6	because low soil temperatures at transplanting tomato in spring $(17 - 19 \text{ °C})$ could
7	affect fungal and thus its effectiveness. Soil temperatures during the cultivation of
8	tomato and cucumber were in the range of the fungus development according to
9	cardinal temperatures, but 37 out of 98 days and 60 out of 90 days during each tomato
10	crop were over optimal temperatures, and 63 out of 135 and 59 out of 98 days during
11	each cucumber crop. At soil temperatures between the optimal for fungal growth (24-26
12	^o C) and the optimal for <i>M</i> incognita development (30 ^o C), ⁴⁸ the nematode could take
13	advantage over Pl251 that can reduce its effectiveness. In fact, at temperatures of $28 \pm$
14	1.5 °C no dose-response relationship was observed but it did at 25 ± 1 °C. ²⁴
15	The soil water potential recorded during the cropping period should not affect the
16	fungal growth because it was near field capacity (-0.033MPa), and according to the
17	results in <i>in vitro</i> test, Pl251 mycelia grow more at higher water potential.
18	Another putative explanation for the lack of efficacy of BioAct WG in the
19	greenhouse trial could be the content of glucose in the formulation, which inhibits the
20	protease activity and consequently the capability to parasitize RKN eggs. ⁴⁹
21	The present study aimed to demonstrate the usefulness of combining plant resistance
22	with BioAct WG to manage RKN. However, Pl251 was not able to parasitize eggs in
23	greenhouse due to suboptimal soil temperatures for several days during the cropping
24	period and/or inhibition of enzymes produced by the fungus by the components of the
25	formulation and/or non-thermo-sensitive chemical factors in soil. Therefore, no

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 //1	
+1 10	
4Z 40	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
Э4 5-	
55	
56	
57	
58	
59	
60	

1	synergistic effect was observed. Resistant tomato suppressed nematode reproduction
2	and yield losses of tomato as well as yield losses of the following cucumber crop, but
3	nematode populations increased at the end of the crop. P. lilacinum is found naturally
4	worldwide, ⁴⁷ and it has been isolated from RKN in Spain. ³⁰ Pl251 was isolated from
5	Philippines, ⁴⁶ and despite its effectiveness to parasitize eggs <i>in vitro</i> , well is known that
6	native isolates can be more suitable and can performance better than the foreign ones in
7	field conditions. ⁵⁰ More studies are needed to optimize BioAct WG usage and to
8	improve knowledge on optimal environmental conditions to improve its effectiveness.
9	ACKNOWLEDGMENTS
10	This research was founded by INIA project RTA-2010-00017-C02 and FEDER support
11	from European Union. The authors would thank Belchim Crop Protection España for
12	providing BioAct WG. The authors also would acknowledge Miriam Pocurull, Maria
13	Julià, Sheila Alcalá, Christian Gómez and Miquel Massip for greenhouse and laboratory
14	support and Timothy Michael Barager for revision of the written English.

15

16 **REFERENCES**

- 17 1 Anuario de estadística agraria. ed. by Ministerio de Agricultura, Alimentación y
- 18 Medio Ambiente, Madrid, España (2013).
- 2 Ornat C, Verdejo-Lucas S and Sorribas FJ, Effect of the previous crop on population
 densities of *Meloidogyne javanica* and yield of cucumber. *Nematropica* 27:85-
- 21 90 (1997).
- 22 3 Sikora R and Fernandez E, Nematode parasites of vegetables, in *Plant Parasitic*
- 23 *Nematodes in Subtropical and Tropical Agriculture*, eds. by Luc M, Sikora RA
- and Bridge J, CAB International Wallingford, UK, pp. 319–392 (2005).

1	4 Sorribas FJ, Ornat C, Verdejo-Lucas S, Galeano, M and Valero J, Effectiveness and
2	profitability of the Mi-resistant tomatoes to control root-knot nematodes. $Eur J$
3	Plant Pathol 111(1):29-38 (2005).
4	5 Giné A, López-Gómez M, Vela MD, Ornat C, Talavera M, Verdejo-Lucas S and
5	Sorribas FJ Thermal requirements and population dynamics of root-knot
6	nematodes on cucumber and yield losses under protected cultivation. Plant
7	Pathol 63(6):1446-1453 (2014).
8	6 Talavera M, Sayadi S, Chirosa-Rios M, Salmeron T, Flor-Peregrin E and Verdejo-
9	Lucas S, Perception of the impact of root-knot nematode-induced diseases in
10	horticultural protected crops of south-eastern Spain. Nematology 14(5):517-527
11	(2012).
12	7 Roberts PA, Concepts and consequences of resistance, in <i>Plant Resistance to</i>
13	Parasitic Nematodes, eds. by Starr JL, Cook R and Bridge J, CABI
14	International, Wallingford, pp. 23-41 (2002).
15	8 Dropkin VH, The necrotic reaction of tomatoes and other hosts resistant to
16	Meloidogyne: Reversal by temperature. Phytopathology 59:1632-1637 (1969).
17	9 Cortada L, Sorribas F J, Ornat C, Andrés M F and Verdejo-Lucas S, Response of
18	tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne
19	arenaria, M. incognita and M. javanica. Eur J Plant Pathol 124(2):337-343
20	(2009).
21	10 Brown CR, Mojtahedi H, Santo GS and Willamson VM, Effect of the Mi gene in
22	tomato on reproductive factors of Meloidogyne chitwoodi and M. hapla, J
23	Nematol 29 (3):416-419(1997).

1	11 Kiewnick S, Dessimoz M and Franck L, Effects of the Mi-1 and N root-knot
2	nematode-resistance gene on infection and reproduction of Meloidogyne
3	enterolobii on tomato and pepper cultivars. J Nematol 41(2):134-139 (2009).
4	12 Silva RV, Oliviera RDL, Ferreira PS and Castro DB, Efeito do gene Mi na
5	reprodução de populações de Meloidogyne exigua em tomateiro. Nematol Bras
6	32 :150-153 (2008).
7	13 Ornat C, Verdejo-Lucas S and Sorribas FJ, A population of <i>Meloidogyne javanica</i> in
8	Spain virulent to the <i>Mi</i> resistance gene in tomato. <i>Plant Dis</i> 85 :271-276 (2001).
9	14 Verdejo-Lucas S, Cortada L, Sorribas FJ and Ornat C, Selection of virulent
10	populations of <i>Meloidogyne javanica</i> by repeated cultivation of <i>Mi</i> resistance
11	gene tomato rootstocks under field conditions. Plant Pathol 58(5):990-998
12	(2009).
13	15 Talavera M, Verdejo-Lucas S, Ornat C, Torres J, Vela MD, Macias FJ, Cortada L,
14	Arias DJ, Valero J and Soriibas FJ, Crop rotations with Mi gene resistant and
15	susceptible tomato cultivars for management of root-knot nematodes in plastic-
16	houses. Crop Prot 28(8):662–667 (2009).
17	16 Seinhorst JW, The relation between nematode density and damage to plants.
18	Nematologica 11 (1):137-154 (1965).
19	17 Sikora RA, Management of the antagonistic potential in agricultural ecosystems for
20	the biological control of plant parasitic nematodes. Annu Rev Phytopathol
21	30 (1):245-270 (1992).
22	18 EUROPEAN UNION (2009). Regulation (EC) No 1107/2009 of the European
23	Parliament and of the Council of 21 October 2009 concerning the placing of
24	plant protection products on the market and repealing Council Directives

1	79/117/EEC and 91/414/EEC. Official Journal of the European Union L309, pp.
2	50.
3	19 Holland RJ, Williams KL and Khan A, Infection of Meloidogyne javanica by
4	Paecilomyces lilacinus. Nematology 1(2):131-139 (1999).
5	20 Khan A, Williams KL and Nevalainen HK, Effects of Paecilomyces lilacinus
6	protease and chitinase on the eggshell structures and hatching of Meloidogyne
7	<i>javanica</i> juveniles. <i>Biol Control</i> 31 (3):346-352 (2004).
8	21 Khan A, Williams KL and Nevalainen HK, Infection of plant-parasitic nematodes by
9	Paecilomyces lilacinus and Monacrosporium lysipagum. Biocontrol 51(5):659-
10	678 (2006).
11	22 Kiewnick S and Sikora RA, Biological control of the root-knot nematode
12	Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control
13	38 (2):179-187 (2006).
14	23 Kiewnick S and Sikora RA, Evaluation of Paecilomyces lilacinus strain 251 for the
15	biological control of the northern root-knot nematode Meloidogyne hapla
16	Chitwood. Nematology 8(1):69-78(2006).
17	24 Kiewnick S, Neumann S, Sikora RA, and Frey JE, Effect of Meloidogyne incognita
18	inoculum density and application rate of Paecilomyces lilacinus strain 251 on
19	biocontrol efficacy and colonization of egg masses analyzed by real-time
20	quantitative PCR. Phytopathology 101 (1):105-112 (2011).
21	25 Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA and Gowen SR, The
22	combined effect of the application of a biocontrol agent Paecilomyces lilacinus,
23	with various practices for the control of root-knot nematodes. Crop Prot
24	27 (3):352-361 (2008).

1	26 Kaşkavalci G, Tüzel Y, Dura O and Öztekin GB, Effects of alternative control
2	methods against Meloidogyne incognita in organic tomato production. Ekoloji
3	18 (72):23-31 (2009).
4	27 Whitehead AG and Hemming JR, A comparison of some quantitative methods of
5	extracting small vermiform nematodes from soil. Ann Appl Biol 55(1):25-38
6	(1965).
7	28 Zeck WM, A rating scheme for field evaluation of root-knot nematode infection.
8	Pflanzenschutz-Nachrichten 24:141-144 (1971).
9	29 Hussey RS and Barker KR, A comparison of methods of collecting inocula of
10	Meloidogyne spp. including a new technique. Plant Dis Rep 57:1025-1028
11	(1973).
12	30 Giné A, Bonmatí M, Sarro A, Stchiegel A, Valero J, Ornat C, Fernández C and
13	Sorribas FJ, Natural occurrence of fungal egg parasites of root-knot nematodes,
14	Meloidogyne spp. in organic and integrated vegetable production systems in
15	Spain. BioControl 58(3):407-416 (2013).
16	31 Lopez-Llorca LV and Duncan JM, New media for the estimation of fungal infection
17	in eggs of the cereal cyst nematode, Heterodera avenae Woll. Nematologica
18	32 (4):486-489 (1986).
19	32 Samson RA, Paecilomyces and some allied Hyphomycetes. Studies in Mycology,
20	No. 6. Centraalbureau voor Schimmelcultures, Baarn, The Netherlands. (1974).
21	33 Castellá G, Bragulat MR and Cabañes FJ, Extracellular enzymatic activity of
22	Fusarium section Liseola isolates. <i>Mycopathologia</i> 144 (1):55-60 (1999).
23	34 Verdejo S, Jaffee BA and Mankau R, Reproduction of Meloidogyne javanica in plant
24	roots genetically transformed by Agrobacterium rhizogenes. J Nematol
25	20 (4):599-604 (1988).

1	35 Mountain WB, A method of culturing plant parasitic nematodes under sterile
2	conditions. Proc Helminthol Soc Wash 22(1):49-52 (1955).
3	36 Michel BE, Evaluation of the water potential of solutions of polyethylene glycol
4	8000 both in the absence and presence of other solutes. <i>Plant Physiol</i> 72(1):66-
5	70 (1983).
6	37 Monfort E, Lopez-Llorca LV, Jansson HB and Salinas J, In vitro soil receptivity
7	assays to egg-parasitic nematophagous fungi. Mycological Progress 5(1):18-23
8	(2006).
9	38 Ferris H, Roberts PA and Thomason IJ, Nematodes, in Integrated Pest Management
10	for Tomatoes, ed.; Statewide Integrated Pest Management Project; Division of
11	Agriculture and Natural Resources, University of California, pp 60–65. (1985).
12	39 Verdejo-Lucas S, Blanco M, Cortada L and Sorribas F J, Resistance of tomato
13	rootstocks to Meloidogyne arenaria and Meloidogyne javanica under
14	intermittent elevated soil temperatures above 28 °C. Crop Prot 46:57-62 (2013).
15	40 Khan A, Williams KL and Nevalainen HK, Control of plant-parasitic nematodes by
16	Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol
17	51 (5):643-658 (2006).
18	41 Kiewnick S, Effect of temperature on growth, germination, germ-tube extension and
19	survival of Paecilomyces lilacinus strain 251. Biocontrol Sci Techn 16(5):535-
20	546 (2006).
21	42 Rumbos C, Mendoza A, Sikora R and Kiewnick S, Persistence of the
22	nematophagous fungus Paecilomyces lilacinus strain 251 in soil under controlled
23	conditions. <i>Biocontrol Sci Techn</i> 18 (10):1041-1050 (2008).
24	43 Bird AF and Bird J, The structure of nematodes. Academic Press, San Diego. (1991).

Page 23 of 60

:	44 Holland RJ, Williams KL and Nevalainen KH, Paecilomyces lilacinus strain
:	Bioact251 is not a plant endophyte. <i>Australas Plant Path</i> 32 (4):473-478 (2003).
3	45 Rumbos CI and Kiewnick S, Effect of plant species on persistence of <i>Paecilomyces</i>
	<i>lilacinus</i> strain 251 in soil and on root colonization by the fungus. <i>Plant Soil</i>
Į	283 (1-2):25-31 (2006).
(46 Kok CH and Papert A, Microflora of <i>Meloidogyne</i> egg masses: species composition,
-	population density and effect on the biocontrol agent <i>Verticillium</i>
8	<i>chlamydosporium</i> (Goddard). <i>Nematology</i> 3 (8): 729-734 (2001).
9	47 Stirling GR. Biological control of plant-parasitic nematodes: soil ecosystem
10	management in sustainable agriculture. CAB International, Wallingford, UK
1:	1 (2014).
12	48 Ploeg AT and Maris PC, Effects of temperature on the duration of the life cycle of a
13	Meloidogyne incognita population. Nematology 1(4):389-393 (1999).
14	49 Bonants PJM, Flitters PFL, Thijs H, den Belder E, Waalwijk C and Henfling JWDM,
1	A basic serine protease from <i>Paecilomyces lilacinus</i> with biological activity
10	5 against Meloidogyne hapla eggs. Microbiology 141(4):775-784 (1995).
1	50 Sorribas FJ, Ornat C, Galeano M and Verdejo-Lucas S, Evaluation of a native and
18	3 introduced isolate of <i>Pochonia chlamydosporia</i> against <i>Meloidogyne</i>
19	<i>javanica. Biocontrol Sci Techn</i> 13 (8): 707-714 (2003).
20	

- 1 Table 1. Cropping dates of the rotation sequence tomato-cucumber and soil
- 2 temperatures in the greenhouse during two consecutive growing seasons.

V	Creat	Creaning Jeter	Average soil	Minimum and maximum		
Year	Стор	Cropping dates	temperature (°C) ^a	temperatures (°C) ^b		
2011	Tomato	31 March-6 July	25.4	19.8-34.3		
	Cuaumahan	20 July 26 October	27.9	20.2.22.0		
	Cucumber	29 July-26 October	27.8	20.2-32.9		
2012	Tomato	5 March-17 July	24.4	17.0-31.4		
	Cucumber	31 July-5 November	27.0	17.5-31.2		

3 ^a Average soil temperature at 15cm depth: mean of daily mean temperatures during the

4 cropping period.

^b Absolute minimum or maximum soil temperature at 15cm depth during the cropping

6 period.

Table 2. Initial (Pi) and final (Pf) population densities of Meloidogyne incognita in soil, galling index, eggs per gram of root, percentage of fungal

egg parasitism, and yield of the resistant tomato cv. Monika (TR) and susceptible cv. Durinta (TS) alone or combined with the application of

BioAct WG cultivated from 31st March to 6th July of 2011.

	Tomato	Pi	Pf	Galling	Eggs g ⁻¹	Egg	Yield
BloAct WG	cultivar	(J2 250 cm ⁻³ soil)	(J2 250 cm ⁻³ soil)	index ^b	root	parasitism (%)	(kg plant ⁻¹)
No application	TR	663±241 a	334±113 b	1.2±0.2 b	421±1100 b	0±0	1.5±0.2 a
	TS	612±182 a	2347±331 a	6.8±0.2 a	7499±347 a	0±0	0.3±0.2 b
Application	TR	579±210 a	100±24 b	1.3±0.2 b	482±110 b	0.04 ± 0.02	1.3±0.1 a
	TS	576±161 a	3300±649 a	7.4±0.2 a	6957±441 a	0.02±0.01	0.3±0.1 b

Data are mean \pm standard error of 10 replicates.

..x weeks a. ^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width:

in seedling before transplanting at 0.1 g L^{-1} rate.

^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

Different letters in the same column indicate differences (P < 0.05) according to Tukey's test.

Table 3. Initial (Pi) and final (Pf) population densities of Meloidogyne incognita in soil, galling index, eggs per gram of root, percentage of fungal egg parasitism, and yield of the cucumber cv. Dasher II alone or combined with the application of BioAct WG cultivated after resistant tomato cv. Monika (TR) or susceptible cv. Durinta (TS) from 29th July to 26th October of 2011.

	Previous	Pi	Pf	Galling	Eggs g ⁻¹	Egg	Yield
BioAct WG	Crop	(J2 250 cm ⁻³ soil)	(J2 250 cm ⁻³ soil)	index ^b	root	parasitism (%)	(kg plant ⁻¹)
No application	TR	241±99 b	357.85±91 a	6.6 ±0.6 b	1352±561 a	0±0	0
	TS	3202±700 a	234.60±99 b	9.7±0.3 a	179±121 b	0±0	0
Application	TR	193±80 b	684.30±183 a	6.9±0.7 b	3094±956 a	0.44±0.27	0
	TS	2446±243 a	185.05±64 b	10.0±0 a	0±0 b	0.09±0.09	0

Data are mean \pm standard error of 10 replicates.

^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width: .A WEEK

in seedling before transplanting at 0.1 g L^{-1} rate.

^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

Different letters in the same column indicate differences (P < 0.05) according to Tukey's test.

Table 4. Initial (Pi) and final (Pf) population densities of Meloidogyne incognita in soil, galling index, eggs per gram of root, percentage of fungal

egg parasitism, and yield of the susceptible cv. Durinta (TS) alone or combined with the application of BioAct WG, and the resistant tomato cv.

Monika (TR) alone, cultivated from 5th March to 17th July of 2012.

BioAct WG ^a	Tomato cultivar	Pi (J2 250 cm ⁻ ³ soil)	Pf (J2 250 cm ⁻ ³ soil)	Galling index ^b	Eggs g ⁻¹ root	Egg parasitism (%)	Yield (kg plant ⁻¹)
No application	TR	358±91 a	1009±232 b	2.9±0.3 b	811±250 b	0	2.2±0.1 a
	TS	185±80 b	4498±705 a	7.2±0.3 a	6406±1695 a	0	0.9±0.2 b
Application	TS	363±106 a	4010±513 a	7.7±0.3 a	8586±989 a	2.39±1.23	0.8±0.1 b

Data are mean ± standard error of 10 replicates of the combination of "no BioAct application with TR or TS" and 20 replications of the combination of "BioAct application with TS".

^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width: eeks .

in seedling before transplanting at 0.1 g L^{-1} rate.

^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

Different letters in the same column indicate differences (P < 0.05) according to Tukey's test.

Pest Management Science

Table 5. Initial (Pi) and final (Pf) population densities of Meloidogyne incognita in soil, galling index, eggs per gram of root, percentage of fungal egg parasitism, and yield of the cucumber cv. Dasher II alone or combined with the application of BioAct WG cultivated after resistant tomato cv. Monika (TR) or susceptible cv. Durinta (TS) from 31st July to 5th November of 2012.

	Previous	Pi	Pf	Galling	n -l (Egg parasitism	Yield
BioAct WG	Crop	(J2 250 cm ⁻³ soil)	(J2 250 cm ⁻³ soil)	index ^b	Eggs g ⁺ root	(%)	(kg plant ⁻¹)
No application	TR	1187±400 b	1379±253 a	7.6±1.1 b	1083±381	0±0	0.2±0.1 a
	TS	4319±464 a	659±162 ab	10.0±0 a	na	na	0.03±0.002 b
Application	TR	801±199 b	768±184 ab	8.7±0.5 b	3646±1482	2.60±1.01	0.10±0.04 a
	TS	3968±695 a	522±217 b	10.0±0 a	na	na	0.02±0.002 b

Data are mean \pm standard error of 15 replicates of the combination each combination with TS and 5 replicates of each combination with TR.

six weeks a ^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width:

in seedling before transplanting at 0.1 g L^{-1} rate.

^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

Different letters in the same column indicate differences (P < 0.05) according to Tukey's test.

Na: no available

1	Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251)
2	against o n <i>Meloidogyne incognita</i> in a tomato–cucumber rotation in plastic a
3	greenhouse.
4	Ariadna Giné and Francisco J Sorribas [*]
5	
6	Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica
7	de Catalunya. Esteve Terradas 8, 08860 Castelldefels, Barcelona, Spain
8	
9	Corresponding author: francesc.xavier.sorribas@upc.edu
10	
11	Running title: Effect of plant resistance and BioAct WG (P. lilacinus strain 251)
12	against-on RKN in greenhouse.
13	
14	Abstract
15	BACKGROUND: The effectiveness of combining resistant or susceptible tomato
16	cultivars with BioAct WG (Purpureocillium lilacinum strain 251; Pl251) against
17	Meloidogyne incognita was assessed in into a tomato-cucumber rotation in a plastic
18	greenhouse over during two years. Additionally, In addition enzymatic activity of the
19	fungus, the percentage of fungal eggs or and juveniles parasitism, cardinal temperatures
20	and the effect of water potential on mycelia growth and the soil receptivity to Pl251,
21	were determined in vitro. experiments were conducted to determine the
22	RESULTS: Plant resistance was the only factor that suppressed nematode
23	reproduction, and tomato and the following cucumber crop yield losses. Percentage of
24	fungal egg parasitism in plots treated with BioAct WG was less than 2.6%. However in
25	under in vitro conditions, Pl251 showed protease, lipase, and chitinase activities, and

1	parasitized 94.5% of <i>M. incognita</i> eggs, but no juveniles. Cardinal temperatures were
2	14.2, 24-26, and 35.4 °C. The maximum Pl251 mycelial growth was at -0.25 MPa and
3	25 °C. Soil temperatures and water potential in the greenhouse field conditions were in
4	the range of the fungus development. However, soil receptivity was less in the plastic
5	greenhouse soil, irrespective of sterilization, than in sterilized sand.
6	CONCLUSIONS: No synergistic effect of combining resistant cultivars and BioAct
7	WG was observed, being with Plant resistance was the only factor able to suppress
8	nematode densities, disease severity and yield losses, and to protect the following
9	susceptible cucumber crop. Soil temperatures in field for fungal growth and
10	Environmental factors involved in soil receptivity could have negatively affected its
11	fungus effectiveness.
12	
13	Key s words
14	Biological control, Cucumis sativus, doble-cropping system, integrated management,
15	root-knot nematodes, Solanum lycopersicum.
16	
17	1 INTRODUCTION
18	Spain is the main producer of vegetables under protected cultivation in the
19	Mediterranean area, dedicating with 71.003 ha. ¹ The major crops belong to Solanaceae
20	and Cucurbitaceae families. The most important are tomato (Solanum lycopersicum L.)
21	and cucumber (Cucumis sativus L.), two of the most cultivated crops, which are
22	frequently cultivated in a double cropping system. ² In gGreenhouse, tomato is cultivated
23	in grown on 18.501 ha with an annual production of 1.881.922 tonnes, which represents
24	38% of the tomato production area and 47% of the total tomato surface and yield,
25	respectively. Concerning Greenhouse cucumber, it is grown on in 7.768 ha with an

1	annual yield of 717.693 tonnes, which representing an-88% of the total production area
2	and 95 % of the total yield cucumber surface and production, respectively.¹
3	Root-knot nematodes (RKN), Meloidogyne spp., are one of the most important soil
4	pathogens limiting horticulture production worldwide, especially under protected
5	cultivation. ³ Meloidogyne spp. isare widely spread in all vegetable production areas in
6	Spain. Yield losses caused by RKN can reach 60% in tomato and 88% in cucumber. ^{4,5}
7	RKN is mainly managed by fumigant and non-fumigant nematicides. ⁶ However, the
8	limitations imposed by the Directive 2009/128/EC into the EU countries have
9	encouraged research finding alternatives to chemical pesticides as well as to design
10	effective and durable strategies to manage plant damaging organisms such as RKN.
11	There are a large number of non-chemical available alternatives to chemicals to
12	control RKN, ³ including crop rotation with resistant cultivars plants and biological
13	control. In Nematology, plant resistance is defined as the ability of a plant to suppress
14	infection, development and/or reproduction of plant-parasitic nematodes. ⁷ Therefore,
15	resistant tomato cultivars or rootstocks carrying the Mi-gene are widely used because of
16	their effectiveness in suppressing <i>M. arenaria, M. incognita</i> and <i>M. javanica</i> RKN. ^{4,7}
17	However, its expression can be conditioned limited by i) by constant soil temperatures
18	above 28 $^{\circ}$ C at transplanting, ⁸ ii) by the genetic background of the tomato cultivar or
19	rootstock, ⁹ and iii) by RKN species: not effective against <i>M. hapla</i> , race 3 of <i>M</i> .
20	<i>chitwoodi</i> race 3, ¹⁰ <i>M. enterolobi</i> , ¹¹ or <i>M. exigua</i> ; ¹² , as well as and iv) virulent
 21	populations, which can occur suddenly or be selected by repeated cultivation of resistant
 22	cultivars tomatoes. ^{13,14} Inclusion of resistant tomato cultivars in a cropping sequence
 23	contributes helps to suppress the multiplication reproduction of RKN and to reduce
 24	yield losses of the following susceptible crop, ¹⁵ such as cucumber, ² because yield losses
 25	are related to nematode densities in soil at transplanting. ¹⁶

1	Several microorganisms have been evaluated as for biological control of plant-
2	parasitic nematodes ₅ . ¹⁷ The use of biological control agents able to suppress the buildup
3	of RKN can be of interest to reduce the pressure on R genes avoiding the selection of
4	virulent populations and contribute to maintain nematode densities below the economic
5	threshold level. howeverOut of those, Purpureocillium lilacinum (formerly
6	Paecilomyces lilacinus) strain 251 (Pl251) is the only biological control agent included
7	as nematicide listed in the annex 1 of the European register of active substances. ¹⁸
8	Purpureocillium lilacinum is a common soil hyphomycete able to parasitize RKN
9	sedentary stages by direct hyphal penetration and by using hydrolytic enzymes. ¹⁹⁻²¹
10	Besides, the effectiveness of Pl251 to manage control RKN has been widely reported in
11	under controlled conditions and in pot tests, ²²⁻²⁴ although few reports are available on its
12	effectiveness in under field conditions are available. ^{25,26}
13	The aim of the present study was to evaluate the effectiveness of combining the
14	resistant tomato cv. Monika with and <i>P. lilacinum</i> strain 251 (BioAct WG [®] , Belchim
15	Crop Protection, Londerzeel, Belgium) over two consecutive growing seasons in a
16	greenhouse to manage RKN in a tomato-cucumber rotation sequence. Additionally,
17	several in vitro experiments were carried out to determine extracellular enzymes
18	produced by Pl251 and its capability to parasitize eggs and second-stage juveniles of
19	RKN, as well as to know cardinal temperatures and the effect of temperature and water
20	potential on mycelia growth, and soil receptivity to Pl251to the fungus isolate.
21	
22	2 MATERIAL AND METHODS
23	2.1 Field Greenhouse trial
24	The field trial was conducted in a 700 m ² plastic greenhouse infested with M .

incognita in Viladecans (41° 17' 18''N; 2° 2' 39''E, Barcelona, Spain) during two

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
20	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

1	consecutive years, 2011 and 2012. The soil texture was a sandy loam with 83.8% sand,
2	6.7% silt and $9.5%$ clay; pH 8.7 ; $1.8%$ of organic matter (w/w) and 0.5 dS/m of electric
3	conductivity. Soil was infested with <i>M. incognita</i> in 2007 and rotations with resistant or
4	susceptible tomato cultivars and cucumber or black fallow were carried out from 2008
5	to 2010.
6	The rotation sequence consisted of was integrated by resistant tomato cv. Monika
7	(bearing the <i>Mi</i> gene) or the susceptible cv. Durinta cultivated from March to July,
8	followed by cucumber cv. Dasher II cultivated from July to October-November.
9	Individual plots of 9.6 m^2 comprising of 4 rows with 6 plants per row. Plant spacing was
10	50 cm between rows and 55 cm within rows. The distance between individual plots was
11	110 cm between rows and 100 cm along rows.
12	In 2011, combinations of resistant (TR) or susceptible tomato (TS) with or without
13	BioAct WG preceding cucumber with or without BioAct WG were assessed. In 2011,
14	eight combinations were included in the experiment: (i) TR BioAct-C BioAct; (ii) TR
15	BioAct-C; (iii) TR-C BioAct; (iv) TR-C; (v) TS BioAct-C BioAct; (vi) TS BioAct-C;
16	(vii) TS-C BioAct; (viii) TS-C. Each combination was replicated five 10 times
17	according to a stratified randomized block design. In 2012, the combinations were
18	located at on the same plots than as in 2011 with slight modifications. Plots cultivated
19	with resistant tomato TR did not receive any treatment with BioAct WG because of
20	results obtained in 2011 , but did when cucumber was cultivated . Then, combinations of
21	susceptible tomato with or without BioAct WG and resistant tomato without BioAct
22	WG preceding cucumber with or without BioAct WG were assessed. including TR or
23	TS without BioAct WG were replicated 10 times, and 20 for the combination TS with
24	BioAct WG. Cucumber crop cultivated after TS with application or not application of
25	BioAct WG was replicated 15 times, and five times each combination after TR. six

1	combinations were assessed: (i) TR-C BioAct; (ii) TR-C; (iii) TS BioAct-C BioAct; (iv)
2	TS BioAct-C; (v) TS-C BioAct; (vi) TS-C.
3	Dates and rates of application of BioAct WG to soil and seedlings were those as
4	recommended by the manufacturer. Briefly, the first soil application of the commercial
5	product BioAct WG (1 x 10^{10} viable spores g ⁻¹ of <i>P. lilacinus</i> strain 251 dried on
6	glucose) was carried out 14 days before transplanting by drip irrigation at a rate of 0.4 g
7	m ⁻¹ linear and 10 cm width. The following fungal applications to soil were repeated at
8	the same rate at six weeks interval; two applications during the tomato and cucumber
9	crops in 2011 and cucumber in 2012, and three during the tomato crop in 2012.
10	Seedlings were watered with a suspension of 0.1 g BioAct WG 1 L ⁻¹ just before
11	transplanting.
12	Tomato was cultivated from 31 st March to 6 th July (98 days), and cucumber from 29 th
13	July to 26 th October (90 days) in 2011. In 2012, tomato was cultivated from 5 th March to
14	17 th July (135 days) and cucumber from 31 st July to 5 th November (98 days).
15	The plants were irrigated by drip irrigation and fertilized weekly with a NPK solution
16	(15-5-30) at 31 kg ha ⁻¹ and iron chelate and micronutrients at 0.9 kg ha ⁻¹ . Crops were
17	vertically trellised. Weeds were removed manually during and between cropping cycles.
18	Tomato yield was assessed from the first six fruit sets produced from the eight central
19	plants in each plot. Commercial standard Fruits were harvested according to commercial
20	standards as they reached maturity. Similar, cucumber fruits were harvested from the
21	eight central plants of each plot were harvested when they reached the standard
22	commercial size. Total yield per crop cycle was expressed as kilograms plant ⁻¹ .
23	Soil temperatures were recorded at 30 min intervals in order to estimate the number
24	of the nematode generations, and the effect of soil temperature on the fungus growth. In
25	2011 were recorded with soil probes 107 (Campbell Scientific, Logan, USA) placed at a

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

1	depth of 15 cm. In 2012, soil temperatures and water potential were recorded at the
2	same interval and soil depth with 5TM and MPS-1 probes (Decagon devices, Inc,
3	Pullman, USA).
4	Composite soil samples were collected from each plot at the beginning and at the end
5	of each crop to estimate initial (Pi) and final (Pf) nematode population densities,
6	respectively. Each soil sample consisted in of eight subsamples from the firsts top 30
7	cm of depth tacked taken with an auger sampling tube (2.5 cm diameter). Soils samples
8	were sieved through a 4 mm aperture screen to remove stones from soil, and carefully
9	homogenized to extract nematodes from 500 cm ³ by Baermann trays. ²⁷ Second-stage
10	juveniles (J2) that migrated to the water were collected one week later, concentrated on
11	a 75 μ m sieve, counted, and then expressed as number of J2 per 250 cm ³ of soil. At the
12	end of each crop, plants were removed with a pitchfork, cut at ground level, and the
13	disease severity was assessed using the Zeck's galling ²⁸ index on a scale of 0 to 10,
14	where 0 means complete and healthy root system (no galls observed) and 10 means
15	plants and roots dead. Afterwards, the roots were weighted bulked and chopped into 2
16	cm long segments and two 10 g subsamples were used to extract eggs by blender
17	maceration in a 1% NaOCl solution. ²⁹ After 10 minutes of maceration, the egg
18	suspension was passed through a 75 μ m sieve, to retain the plant material, and through a
19	25 μ m sieve to retain the eggs. The number of eggs was counted and expressed per
20	gram of fresh root weight.
21	To assess fungal egg parasitism, the procedure described in Giné et al. ³⁰ was used. In
22	brief, 20 egg masses per individual plot were handpicked from the remaining roots and
23	placed in a watchglass containing sterile demineralised water. The outer part of the
24	gelatinous matrix was removed, and eggs were dispersed in an Eppendorf
25	microcentrifuge tube containing 1 mL of sterile demineralised water with a pestle. A

http://mc.manuscriptcentral.com/pm-wiley

	Pest Management Science
1	333 μ L aliquots of eggs suspension were was spread onto each of three replicated Petri
2	plates containing a growth restricting medium, ³¹ and incubated at 25 °C \pm 0.5 °C $\frac{1}{41}$ or $\frac{1}{100}$
3	the dark. Number of parasitized eggs was recorded after 24 and 48 hours under a
4	dissecting microscope and percentage of egg parasitism was then calculated as the
5	number of parasitized eggs per plate per total eggs per plate. Eggs were considered
6	parasitized if fungal hyphae grew from inside of unhatched eggs. Parasitized eggs were
7	individually transferred to the growth restricting medium to establish pure cultures and
8	fungal species were identified by cultural and morphological characteristics. ³²
9	2.2 Extracellular enzymes production
10	Extracellular enzyme production by Pl251 was evaluated using a semiquantitative API
11	ZYM ® (BioMérieux, Marcy l'Etoile, France) system which identifies 19 cellular
12	enzymes, i.e. alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14),
13	leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, chymotrypsin,
14	acid phosphatase, naphtol-AS-BI phosphohydrolase, α -galactosidase, β -galactosidase,
15	β -glucuronidase, α -glucosidase, β -glucosidase, nacetyl- β -glucosaminidase, α -
16	mannosidase and α - fucosidase.
17	Conidia of Pl251 were collected from 3-week-old cultures of the fungus growing on
18	potato dextrose agar (PDA; 39 g L ⁻¹) at 25°C at in the dark. The colony was washed
19	with 5 mL of sterile distilled water. The number of conidia was then counted with a
20	haemocytometer and adjusted to 1×10^6 conidia mL ⁻¹ . The API ZYM system was used
21	according to the manufacturer's instructions. In brief-Briefly, 65 μ L of the conidia
22	suspension was dispended placed into each cupule, and incubated at 25 °C for 6 h at in
23	the dark. ³³ Enzyme activity was observed after addition of a drop of each ZYM A and
24	ZYM B reagents and exposed to sunlight for an hour to eliminate the yellowing from
25	the reagents. The enzyme production was assessed according to the scale from 0 (no
	http://mc.manuscriptcentral.com/pm-wilev

1	enzyme production) to 5 (maximum enzyme production) according the color chart
2	provided by the manufacturer. The experiment was carried out once.
3	2.3 Capability of Pl251 to parasitize RKN <i>Meloidogyne incognita</i> eggs and J2 in
4	in vitro test
5	Individual plugs of 9 mm-diameter from the edge of a Pl251 colony growing in on
6	PDA-was-were placed at in the centre of a total of six Petri dishes (90 mm) containing
7	water agar (bacteriological agar 12 g L ⁻¹), and incubated at 25 °C \pm 0.5 °C at-in the dark
8	for 3 days weeks .
9	Surface sterilized eggs or J2 of the same M. incognita population used to inoculate
10	the soil of the greenhouse in 2007 and maintained in tomato in pots were used to
11	determine the parasitic ability of Pl251. Meloidogyne incognita was identified by
12	morphology of perineal pattern, esterase pattern, and SCAR marker. Eggs from 30 egg
13	masses handpicked from tomato roots were surface sterilized following the protocol of
14	Verdejo <i>et al.</i> ³⁴ with some modifications. Egg masses were placed into a conical sterile
15	tube with 1 mL of a 0.5% NaOCl solution for four min. and were shaken at 30 s
16	intervals for 10 seconds. After that, the solution was diluted 10 times with sterile
17	distilled water and left undisturbed for 30 min. to allow the eggs to settle at the bottom
18	of the tube. Then, eggs were taken and were spread into three Petri dishes at 1 cm of the
19	edge of the colony of the Pl251 using a sterile Pasteur pipette, and incubated at 25 °C \pm
20	0.5 °C at in the dark for one week $\frac{3}{2}$ weeks. The assessment of egg parasitism was
21	carried out as described previously.
22	Second-stage juveniles of <i>M. incognita</i> were obtained by extraction of eggs from
23	tomato roots by the Hussey and Barker method ²⁹ and left to emerge in on Baermann
24	trays. ²⁷ Then, J2 were surface sterilized following the Mountain ³⁴ procedure with some
25	modifications. Briefly, a suspension of 100 J2 in 0.5 mL water was placed in a conical

2	
3	
4	
5	
5	
6	
7	
o	
0	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
17	
17	
18	
19	
20	
2U	
21	
22	
20	
23	
24	
25	
20	
26	
27	
າຊ	
20	
29	
30	
21	
31	
32	
33	
31	
34	
35	
36	
27	
31	
38	
39	
10	
40	
41	
42	
10	
43	
44	
45	
10	
40	
47	
48	
40	
49	
50	
51	
51	
ວZ	
53	
54	
5 -	
25	
56	
57	
50	
ວຽ	
50	

1

sterile tube containing streptomycin 0.1% for 4 hours. The suspension was shaken at 1 2 one hour interval for 10 seconds. The solution was then diluted 20 times with sterile distilled water and left undisturbed for 30 min. for J2 to settle at the bottom of the tube 3 4 deposition. Then, J2 were taken and placed in three Petri dishes at 1 cm of the edge of the Pl251 colony using a sterile Pasteur pipette, and incubated at 25 °C \pm 0.5 °C at-in the 5 6 dark for one week 3 weeks. The assessment of J2 parasitism was carried out as 7 described previously for egg parasitism. 8 Percentage of parasitism was then calculated as the number of unhatched parasitized eggs or juveniles J2 per Petri dish divided by the number of unhatched eggs or juveniles 9 J2 per Petri dish. 10 Experiments were conducted once. 11 2.4 Cardinal temperatures and the effect of temperature and water potential on 12 Pl251 mycelia growth in *in vitro* tests 13 Cardinal temperatures of Pl251 were determined placing individual 9 mm-diameter 14 plugs of Pl251 in at the center of each of 24 Petri dishes containing water agar (WA; 12 15 g L⁻¹). Three out 24 Petri dishes were incubated at 4, 10, 15, 20, 25, 30, 35 and or 40°C 16 17 at in the dark (three dishes per temperature). Minimum and maximum diameters (mm) of fungal growth were measured every 24 h until the fungi colonies occupied reach the 18 80% of the surface of the Petri plate. The mycelia growth rate (mm day $^{-1}$) was 19 20 calculated as the relation between mean colony diameter (mm) and growth time (day). 21 Concurrently, the effect of water potential (Ψ) and temperature on Pl251 growth was assessed. Water agar media with different concentrations of Polyethylene Glycol 8000 22 (PEG8000) was prepared according to the Michel's equation³⁶ to achieve Ψ between 23 1.25, -1, -0.75, -0.5 and -0.25 MPa. Mycelia plugs of 9 mm diameter from the edge of a 24 fungal the colony were placed in at the centre of the Petri plates and then incubated at 25

2	
3	
1	
- -	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
41 40	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
60	

1	15, 20, 25, and 30 °C at in the dark. Each combination of temperature-PEG8000
2	concentration was repeated three times. Minimum and maximum diameters of fungal
3	growth were measured daily until the colonies occupied 80% of the surface of the Petri
4	plate. Per-For each water potential, a linear regressions was calculated between the
5	mean diameter of the colony per each day of assessment and the temperature were
6	constructed, and the slopes were used to construct other the regressions to determine the
7	effect of temperature and water potential on mycelia growth. Experiments were repeated
8	once.
9	2.5 Soil receptivity
10	Soil coming-collected from BioAct WG non-treated plots in-ofwhich-the
11	greenhousefield trial was carried out was assessed for receptivity to the fungal isolate. A
12	part of soil was two times sterilized at 121 °C for 1 h and the procedure was repeated
13	after within 24 h. The other part remained non-sterilized. The experiment was carried
14	out following the procedure described by Monfort et al. ³⁷ procedure. In brief-Briefly, 40
15	g of sterilized or non-sterilized air-dried soil was placed in Petri dishes and saturated
16	with sterile distilled water. Soils included in the experiment were: (i) sterilized plastic
17	greenhouse soil; (ii) non-sterilized plastic-greenhouse soil and (iii) sterilized sand. A
18	polyvinylidene difluoride (PVDF) membrane (0.22-µm-pore-size and 45 mm-diameter)
19	was sterilized at 121 °C for 20 min and placed at the on top of the soils ensuring full
20	contact. A 4 mm-diameter plug of Pl251 was placed in the middle of each membrane.
21	Petri dishes were then sealed and incubated at 25 °C \pm 0.5 °C $\frac{\text{at-in}}{\text{at-in}}$ the dark. After three
22	weeks, the membranes were eleaned washed with sterile distilled water and then dried
23	in a laminar air flow cabinet. Then, the membranes where incubated in a solution of 1%
24	trypan blue in lactic acid for 12 h at room temperature to stain the mycelia in blue. After

2	
3	
4	
5	
6	
7	
, 8	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
<u>4</u> 4	
15	
40 40	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1	that, the excess of the stain was removed with sterile distilled water, and minimum and
2	maximum colony diameters were measured. The experiment was repeated once.
3	2.6 Statistical analysis
4	Statistical analyses were done using SAS v. 9 (SAS Institute Inc.). Data from field
5	experiments were transformed when required to $log10 (x + 1)$ or arcsine square-root
6	(x+0.5) to normalize the data. The greenhouse trial was analyzed by analysis of variance
7	by the general lineal model (PROC GLM) according to a factorial design to compare the
8	effect of i) the tomato cultivar, the application of BioAct WG, and the interaction
9	(except for tomato 2012), on nematode densities in soil, eggs in roots, disease severity,
10	and crop yield per every cropping season. Analysis of variance was also carried out to
11	compare the effect of the temperature and kind of soil on the mycelia growth of Pl251. ;
12	and ii)
13	
14	3 RESULTS
15	3.1 Field Greenhouse trial
16	Minimum, maximum and average soil temperatures during the cultivation of each
17	crop and year are provided in Table 1. Accumulated soil temperatures during the tomato
18	and cucumber crops in 2011 were 1504 DD (degree days; base temperature (Tb) =10
19	°C) and 1473 DD (Tb=11.4 °C), respectively. According to thermal requirements of
20	tomato and cucumber, ^{5,38} <i>M. incognita</i> completed two generations in tomato (thermal
21	constant (S) = 600-700 DD over Tb=10 °C), ³⁸ and in cucumber (S = 500 DD over Tb =
22	11.4 °C). ⁵
23	In 2011, the tomato cultivar was the only factor that explained variability differences
24	(P < 0.05) on-in nematode densities in the soil and roots, galling index and crop yield,
25	both than in tomato as and cucumber erops (Tables 2 and 3). Nematode densities in the

Pest Management Science

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
20
24
25
26
27
20
28
29
30
31
22
32
33
34
35
36
27
31
38
39
40
41
ד ד ⊿ר∧
42
43
44
45
46
47
41
48
49
50
51
50
52
53
54
55
56
50
5/
58
59
60

18

19

20

21

1	soil, roots and the galling index registered at the end of the resistant tomato crop were 8,
2	6 and 18% those registered recorded at the end of the susceptible one cultivar, which in
3	turn-yielded 78% less than the resistant one. The percentage of fungal egg parasitism at
4	the end of the crop was less than 0.1% (Table 2). At cucumber transplanting, higher (P
5	< 0.05) soil nematode densities in soil were registered occurred in plots preceded by a
6	susceptible than a resistant tomato cultivars. Galling indices were lower ($P < 0.05$) after
7	a resistant than a susceptible tomato cultivar. The Eggs from cucumber plants were only
8	recovered from plants preceded by a resistant tomato because high percent of plants
9	cucumber following susceptible tomato died (data not shown). Egg parasitism by the
10	fungus was less than 0.54% (Table 3).
11	In 2012, accumulated temperatures during the tomato and cucumber crops were 1959
12	(Tb = 10 °C) and 1524 DD (Tb = 11.4 °C), respectively. Hence, <i>M. incognita</i> completed
13	three generations in both crops according to its thermal requirements. In this cropping
14	season, the tomato cultivar was also the factor responsible to for the differences ($P <$
15	0.05) on in nematode densities in the soil and roots, disease severity, as well as crop
16	yield in both tomato and cucumber crops (Tables 4 and 5). As in the previous season,
17	cucumber preceded by following susceptible tomato was exposed to had higher ($P <$

3.2 Extracellular enzymes production

cucumber crops was 2.4 and 2.6 %, respectively (Table 5).

Six extracellular enzymes were produced by Pl251. The highest enzyme produced in
highest amounts by the fungus isolate was leucine arylamidase (value of the color scale:
5) followed by esterase and acid phosphatase (value of the color scale: 4), esterase-

0.05) nematode-density levels at transplanting, and all plants diedwere dead at the end

of the experiment. The percentage of fungal egg parasitism at the end of tomato and

1	lipase (value of the color scale: 3) and the lowest were naphtol-AS-BI-
2	phosphohydrolase and N-acetyl- β -glucosaminidase (value of the color scale: 2).
3	3.3 Capability of Pl251 to parasitize RKN eggs and J2 in <i>in vitro</i> test
4	Pl251 parasitized 94.91% \pm 2.88 (mean \pm standard error) of <i>M. incognita</i> unhatched
5	eggs. However, no juveniles J2 were parasitized by the fungal isolate.
6	3.4 Cardinal temperatures and the effect of the relationship temperature and
7	water potential on Pl251 mycelia growth in <i>in vitro</i> tests
8	Mycelia growth of Pl251 occurred between 14.2 °C (minimum) and 35.4 °C
9	(maximum), with being 24-26 °C as the optimal growth temperatures range (Figure 1).
10	No-fungal growth was detected at 4, 10 and 40 °C. The values of water potential
11	assessed (-1.25 to -0.25 MPa) directly influenced the mycelia growth of Pl251. The
12	mycelia growth was higher at optimal temperatures (25 °C) and highest water potential
13	(-0.25 MPa), followed by 30 °C, 20 °C and 15 °C (Figure 2).
14	3.5 Soil receptivity
15	The mycelia growth of Pl251 in sterile sand (2.55cm \pm 0.06; mean \pm standard error)
16	was 91.83% higher ($P < 0.05$) compared with non-sterile (0.18cm ± 0.06; mean ±
17	standard error) or sterile plastic greenhouse soil (0.23 cm \pm 0.07; mean \pm standard error).
18	However, no differences ($P > 0.05$) were found between sterile and non-sterile
19	greenhouse soil.
20	4. DISCUSSION
21	The effectiveness of combining a tomato cultivar carrying the Mi gene of for
22	resistance to <i>M. incognita</i> and BioAct WG based on the nematode antagonist <i>P.</i>
23	<i>lilacinum</i> strain 251 against RKN has been assessed in the a tomato – cucumber rotation
24	sequence cropped in a plastic under greenhouse conditions. The initial hypothesis
25	considered a synergistic effect of between both control methods to suppress nematode

2
Z
3
4
E
Э
6
7
, ,
8
9
10
10
11
12
13
10
14
15
16
17
17
18
19
20
20
21
22
22
23
24
25
26
20
27
28
20
29
30
31
20
32
33
34
25
30
36
37
20
38
39
40
14
41
42
43
11
44
45
46
17
47
48
49
50
50
51
52
52
03
54
55
56
30
57
58
50
59
60

1	densities across the rotation sequence in two ways. The first one, mediated by plant
2	resistance, should act suppressing nematode infection, development and reproduction.
3	The second one, due to Pl251, should act-parasitize eggs produced by nematodes that
4	escaped the action of plant resistance, and then further increase the level of suppression
5	against RKN. In the following cucumber crop, less number of fewer RKN at
6	transplanting after resistant tomato should mean more percentage of egg parasitism,
7	because most egg masses should be outside the root on the root surface favoring egg
8	infection, as well as less reduce yield losses due to less number of fewer J2 at
9	transplanting. However, the hypothesis was not confirmed in our conditions-trial, being
10	with plant resistance being the only control methods factor that consistently suppressed
11	RKNnematode built up in every rotation sequence. The effectiveness of tomato cultivars
12	or rootstocks carrying the <i>Mi</i> gene against RKN eropped in plastic greenhouses in Spain
13	was consistent with previous reports. ^{4,9,14,15} In this study, cropping resistant tomato
14	suppressed disease severity and reproduction in-by 82 - 91% and 87 - 95% than which
15	were registered compared to the susceptible one cultivar, each year, respectively. The
16	effect of intermittent peaks of soil temperatures over 28 °C did not affect the
17	effectiveness of the <i>Mi</i> gene as previously reported. ³⁹ During the tomato crop in 2011,
18	the numbers of days with maximum soil temperatures over 28 °C were 23, after 35 days
19	of transplanting, and 38 days, after 62 days of transplanting in 2012. In addition, the
20	benefit of cropping a resistant tomato cultivar on yield losses of the following
21	susceptible crop was also observed as previously stated. ^{2,15}
22	Conversely Unlike to plant resistance, there are few reports about the effectiveness of
23	Purpureocillium lilacinus strain 251 BioAct WG alone and/or in combination with other
24	control methods against RKN in under Mediterranean conditions. ^{25,26} In studies
25	conducted in Greece and Turkey, BioAct WG did not provided satisfactory RKN

1	management control. However, in several in vitro and pot tests the antagonistic
2	capability of Pl251 against several plant-parasitic nematode species was reported. ^{11,20-}
3	^{24,40-42} The ability of Pl251 to penetrate eggs and cuticles of sedentary stages of RKN by
4	mechanical and chemical mechanisms has been reported. ^{20,21} The results obtained by the
5	API ZYM method showed high protease and lipase activity and low chitinase activity
6	able to degrade the main components of egg shell and nematode cuticle. ⁴³ Therefore, the
7	a high proportion of egg parasitism was expected, as it was in our <i>in vitro</i> experiment
8	(94.9 %). because protease alone or in combination with chitinase are more important
9	for nematode parasitism than chitinase alone. ^{37.} In addition, Kahn <i>et al.</i> ²¹ pointed out the
10	parasitic ability of Pl251 on all stationary developing stages of <i>M. javanica</i> , that is:
11	eggs, juvenile contained in eggs, post-infective juvenile stages: from swollen J2 to J4,
12	and females, but they did not assess the effect on the mobile infective J2. The results of
13	this study showed that Pl251 was not able to parasitize the infective J2 stage of M.
14	incognita neither sedentary stages of RKN because Pl251 is not a root endophyte of
15	tomato or cucumber plants. ^{44,45} Thus, Pl251 could exert its parasitic potential only on
16	eggs and juveniles contained in eggs that remained in soil at the end of the crop, or on
17	those produced on roots and exposed to the soil conditions. Otherwise, the fungus could
18	not be able to parasitize the In fact, in plastic-greenhouse conditions, the percentage of
19	egg parasitism was less than 2.6% in both crops and years. Moreover, microorganisms
20	associated to the gelatinous matrix of the egg masses can inhibit fungal egg parasites as
21	<i>Pochonia chlamydosporia</i> . ⁴⁶ Thus, fungal application did not affect nematode
22	development despite even though four treatments applications per-were applied during
23	each crop and year.
24	Environmental factors can play an important role on-in nematode biocontrol. 47
25	Rumbos et al. ⁴² reported a negative correlation between the persistence of Pl251 in soil

Pest Management Science

and the sand content of soil. Thus, sandy soils, such that as in this study (83.8% sand) could-would not be suitable for the fungus. However, the test of soil receptivity showed more fungal-that mycelia growth was better in sterilized sand than in the sterilized sandy loam soil in which from the field greenhouse experiments were carried out. Then it seems This indicates that other factors than sand content different to microbial communities or thermo-sensitive chemicals in soil could influence limit the effectiveness of Pl251 because similar-mycelia growth was equally poor in sterile and non-sterile sandy loam soil from the plastic greenhouse were recorded in the test of soil receptivity.

Soil temperatures during the cropping period or time of application could also affect Pl251 BioAct WG effectiveness. In this study, cardinal temperatures of mycelia growth were determined. Maximum temperature of Pl251 mycelia growth in water agar was similar to that reported by Kiewnick⁴¹, but not the optimal range, which was less wide (24-26 vs 24-30 °C). Moreover, in this study, minimal minimum temperature was also estimated (14.2 °C) because low soil temperatures at transplanting tomato in the spring $\frac{1}{1}$ (17 – 19 °C) could affect fungal $\frac{1}{1}$ development and thus its effectiveness. Soil temperatures during the cultivation of tomato and cucumber were in the range of the fungus development according to cardinal temperatures, but 37 out of 98 days and 60 out of 90 days during each tomato crop were over the range of optimal temperatures, and 63 out of 135 and 59 out of 98 days during each cucumber crop. At soil temperatures from between the optimal for fungal growth (24-26 °C) to and the optimal for *M* incognita development (30 °C).⁴⁸ the nematode could take advantage over Pl251 that can reduce its effectiveness. In fact, at temperatures of 28 ± 1.5 °C no dose-response relationship was observed but it did at 25 ± 1 °C.²⁴ In addition. Pl251 was

http://mc.manuscriptcentral.com/pm-wiley

1	more effective against Belonolaimus longicaudatus when applied during cooler winter
2	and spring than in hot summer in Florida. ⁶⁷ Conversely, t
3	The soil water potential recorded during the cropping period should not affect the
4	fungal growth because it was near field capacity (-0.033MPa), and according to the
5	results in <i>in vitro</i> test, Pl251 mycelia grow more at higher water potential.
6	Another putative explanation of for the lack of efficacy of Pl251 BioAct WG in the
7	plastic greenhouse trial conditions could be the content of glucose in the formulation,
8	which inhibits the protease activity and consequently the capability to parasitize RKN
9	eggs. ⁴⁹
10	The present work tried to point out study aimed to demonstrate the usefulness of
11	combining plant resistance with biological control BioAct WG to manage RKN.
12	However, Pl251 was not able to parasitize eggs in field greenhouse conditions due to
13	suboptimal soil temperatures during for several days during the cropping periods and/or
14	inhibition of enzymes produced by the fungus by the components of the formulation
15	and/or non-thermo-sensitive chemical factors in soil. DefinitivelyTherefore, no
16	synergistic effect was observed. Resistant tomato suppressed nematode reproduction
17	and yield losses of tomato as well as yield losses of the following cucumber crop, but
18	nematode populations increased at the end of the crop. The use of biological control
19	agents able to suppress the buildup of RKN can be of interest to reduce the pressure on
20	R genes avoiding the selection of virulent populations and contribute to maintain
21	nematode densities above below the economic threshold level. P. lilacinum is found
22	naturally worldwide, ⁴⁷ and it has been isolated from cyst nematodes and RKN in
23	Spain. ³⁰ <i>P. lilacinum</i> strain 251 Pl251 was isolated from Philippines, ⁴⁶ and despite its
24	effectiveness to parasitize eggs in vitro test, well is known that native isolates are can be
25	more suitable and can performance better than the foreign ones in field conditions. ⁵⁰

1	More studies must be done are needed to optimize Pl251 BioAct WG usage and to
2	improve knowledge on optimal environmental conditions to improve its effectiveness.
3	ACKNOWLEDGMENTS
4	This research was founded by INIA project RTA-2010-00017-C02 and FEDER support
5	from European Union. The authors would thank Belchim Crop Protection España for
6	providing BioAct WG. The authors also would acknowledge Miriam Pocurull, Maria
7	Julià, Sheila Alcalá, Christian Gómez and Miquel Massip for field greenhouse and
8	laboratory support and Timothy Michael Barager for revision of the written English.
9	
10	REFERENCES
11	1 Anuario de estadística agraria. ed. by Ministerio de Agricultura, Alimentación y
12	Medio Ambiente, Madrid, España (2013).
13	2 Ornat C, Verdejo-Lucas S and Sorribas FJ, Effect of the previous crop on population
14	densities of <i>Meloidogyne javanica</i> gene and yield of cucumber. <i>Nematropica</i>
15	27:85-90 (1997).
16	3 Sikora R and Fernandez E, Nematode parasites of vegetables, in <i>Plant Parasitic</i>
17	Nematodes in Subtropical and Tropical Agriculture, eds. by Luc M, Sikora RA
18	and Bridge J, CAB International Wallingford, UK, pp. 319–392 (2005).
19	4 Sorribas FJ, Ornat C, Verdejo-Lucas S, Galeano, M and Valero J, Effectiveness and
20	profitability of the Mi-resistant tomatoes to control root-knot nematodes. Eur J
21	<i>Plant Pathol</i> 111 (1):29-38 (2005).
22	5 Giné A, López-Gómez M, Vela MD, Ornat C, Talavera M, Verdejo-Lucas S and
23	Sorribas FJ Thermal requirements and population dynamics of root-knot
24	nematodes on cucumber and yield losses under protected cultivation. Plant
25	Pathol 63(6):1446-1453 (2014).

Pest Management Science

1	6 Talavera M, Sayadi S, Chirosa-Rios M, Salmeron T, Flor-Peregrin E and Verdejo-
2	Lucas S, Perception of the impact of root-knot nematode-induced diseases in
3	horticultural protected crops of south-eastern Spain. Nematology 14(5):517-527
4	(2012).
5	7 Roberts PA, Concepts and consequences of resistance, in Plant Resistance to
6	Parasitic Nematodes, eds. by Starr JL, Cook R and Bridge J, CABI
7	International, Wallingford, pp. 23-41 (2002).
8	8 Dropkin VH, The necrotic reaction of tomatoes and other hosts resistant to
9	Meloidogyne: Reversal by temperature. Phytopathology 59:1632-1637 (1969).
10	9 Cortada L, Sorribas F J, Ornat C, Andrés M F and Verdejo-Lucas S, Response of
11	tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne
12	arenaria, M. incognita and M. javanica. Eur J Plant Pathol 124(2):337-343
13	(2009).
14	10 Brown CR, Mojtahedi H, Santo GS and Willamson VM, Effect of the <i>Mi</i> gene in
15	tomato on reproductive factors of Meloidogyne chitwoodi and M. hapla, J
16	Nematol 29 (3):416-419(1997).
17	11 Kiewnick S, Dessimoz M and Franck L, Effects of the <i>Mi-1</i> and N root-knot
18	nematode-resistance gene on infection and reproduction of Meloidogyne
19	enterolobii on tomato and pepper cultivars. J Nematol 41(2):134-139 (2009).
20	12 Silva RV, Oliviera RDL, Ferreira PS and Castro DB, Efeito do gene Mi na
21	reprodução de populações de Meloidogyne exigua em tomateiro. Nematol Bras
22	32 :150-153 (2008).
23	13 Ornat C, Verdejo-Lucas S and Sorribas FJ, A population of Meloidogyne javanica in
24	Spain virulent to the <i>Mi</i> resistance gene in tomato. <i>Plant Dis</i> 85:271-276 (2001).

1	14 Verdejo-Lucas S, Cortada L, Sorribas FJ and Ornat C, Selection of virulent
2	populations of Meloidogyne javanica by repeated cultivation of Mi resistance
3	gene tomato rootstocks under field conditions. Plant Pathol 58(5):990-998
4	(2009).
5	15 Talavera M, Verdejo-Lucas S, Ornat C, Torres J, Vela MD, Macias FJ, Cortada L,
6	Arias DJ, Valero J and Soriibas FJ, Crop rotations with Mi gene resistant and
7	susceptible tomato cultivars for management of root-knot nematodes in plastic-
8	houses. Crop Prot 28(8):662–667 (2009).
9	16 Seinhorst JW, The relation between nematode density and damage to plants.
10	Nematologica 11(1):137-154 (1965).
11	17 Sikora RA, Management of the antagonistic potential in agricultural ecosystems for
12	the biological control of plant parasitic nematodes. Annu Rev Phytopathol
13	30 (1):245-270 (1992).
14	18 EUROPEAN UNION (2009). Regulation (EC) No 1107/2009 of the European
15	Parliament and of the Council of 21 October 2009 concerning the placing of
16	plant protection products on the market and repealing Council Directives
17	79/117/EEC and 91/414/EEC. Official Journal of the European Union L309, pp.
18	50.
19	19 Holland RJ, Williams KL and Khan A, Infection of Meloidogyne javanica by
20	Paecilomyces lilacinus. Nematology 1(2):131-139 (1999).
21	20 Khan A, Williams KL and Nevalainen HK, Effects of Paecilomyces lilacinus
22	protease and chitinase on the eggshell structures and hatching of Meloidogyne
23	<i>javanica</i> juveniles. <i>Biol Control</i> 31 (3):346-352 (2004).

3
4
5
6
7
8
ğ
10
10
11
12
13
14
15
16
17
18
19
20
21
22
22
20 24
24
25
26
27
28
29
30
31
32
33
34
35
26
30
31
38
39
40
41
42
43
44
45
46
47
48
<u>4</u> 0
50
50
51
ວ2 50
53
54
55
56
57
58
59
60

1	21 Khan A, Williams KL and Nevalainen HK, Infection of plant-parasitic nematodes by
2	Paecilomyces lilacinus and Monacrosporium lysipagum. Biocontrol 51(5):659-
3	678 (2006).
4	22 Kiewnick S and Sikora RA, Biological control of the root-knot nematode
5	Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control
6	38 (2):179-187 (2006).
7	23 Kiewnick S and Sikora RA, Evaluation of Paecilomyces lilacinus strain 251 for the
8	biological control of the northern root-knot nematode Meloidogyne hapla
9	Chitwood. Nematology 8(1):69-78(2006).
10	24 Kiewnick S, Neumann S, Sikora RA, and Frey JE, Effect of Meloidogyne incognita
11	inoculum density and application rate of Paecilomyces lilacinus strain 251 on
12	biocontrol efficacy and colonization of egg masses analyzed by real-time
13	quantitative PCR. <i>Phytopathology</i> 101 (1):105-112 (2011).
14	25 Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA and Gowen SR, The
15	combined effect of the application of a biocontrol agent <i>Paecilomyces lilacinus</i> ,
16	with various practices for the control of root-knot nematodes. Crop Prot
17	27(3):352-361 (2008).
18	26 Kaşkavalci G, Tüzel Y, Dura O and Öztekin GB, Effects of alternative control
19	methods against Meloidogyne incognita in organic tomato production. Ekoloji
20	18 (72):23-31 (2009).
21	27 Whitehead AG and Hemming JR, A comparison of some quantitative methods of
22	extracting small vermiform nematodes from soil. Ann Appl Biol 55(1):25-38
23	(1965).
24	28 Zeck WM, A rating scheme for field evaluation of root-knot nematode infection.
25	Pflanzenschutz-Nachrichten 24:141-144 (1971).

1	29 Hussey RS and Barker KR, A comparison of methods of collecting inocula of
2	Meloidogyne spp. including a new technique. Plant Dis Rep 57:1025-1028
3	(1973).
4	30 Giné A, Bonmatí M, Sarro A, Stchiegel A, Valero J, Ornat C, Fernández C and
5	Sorribas FJ, Natural occurrence of fungal egg parasites of root-knot nematodes,
6	Meloidogyne spp. in organic and integrated vegetable production systems in
7	Spain. BioControl 58(3):407-416 (2013).
8	31 Lopez-Llorca LV and Duncan JM, New media for the estimation of fungal infection
9	in eggs of the cereal cyst nematode, Heterodera avenae Woll. Nematologica
10	32 (4):486-489 (1986).
11	32 Samson RA, Paecilomyces and some allied Hyphomycetes. Studies in Mycology,
12	No. 6. Centraalbureau voor Schimmelcultures, Baarn, The Netherlands. (1974).
13	33 Castellá G, Bragulat MR and Cabañes FJ, Extracellular enzymatic activity of
14	Fusarium section Liseola isolates. <i>Mycopathologia</i> 144 (1):55-60 (1999).
15	34 Verdejo S, Jaffee BA and Mankau R, Reproduction of Meloidogyne javanica in plant
16	roots genetically transformed by Agrobacterium rhizogenes. J Nematol
17	20 (4):599-604 (1988).
18	35 Mountain WB, A method of culturing plant parasitic nematodes under sterile
19	conditions. Proc Helminthol Soc Wash 22(1):49-52 (1955).
20	36 Michel BE, Evaluation of the water potential of solutions of polyethylene glycol
21	8000 both in the absence and presence of other solutes. <i>Plant Physiol</i> 72(1):66-
22	70 (1983).
23	37 Monfort E, Lopez-Llorca LV, Jansson HB and Salinas J, In vitro soil receptivity
24	assays to egg-parasitic nematophagous fungi. Mycological Progress 5(1):18-23
25	(2006).

3
4
5
6
7
, פ
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
48
49
50
51
57
52
03 F4
54
55
56
57
58
59
60

1	38 Ferris H, Roberts PA and Thomason IJ, Nematodes, in Integrated Pest Management
2	for Tomatoes, ed.; Statewide Integrated Pest Management Project; Division of
3	Agriculture and Natural Resources, University of California, pp 60-65. (1985).
4	39 Verdejo-Lucas S, Blanco M, Cortada L and Sorribas F J, Resistance of tomato
5	rootstocks to Meloidogyne arenaria and Meloidogyne javanica under
6	intermittent elevated soil temperatures above 28 °C. Crop Prot 46:57-62 (2013).
7	40 Khan A, Williams KL and Nevalainen HK, Control of plant-parasitic nematodes by
8	Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol
9	51 (5):643-658 (2006).
10	41 Kiewnick S, Effect of temperature on growth, germination, germ-tube extension and
11	survival of Paecilomyces lilacinus strain 251. Biocontrol Sci Techn 16(5):535-
12	546 (2006).
13	42 Rumbos C, Mendoza A, Sikora R and Kiewnick S, Persistence of the
14	nematophagous fungus Paecilomyces lilacinus strain 251 in soil under controlled
15	conditions. <i>Biocontrol Sci Techn</i> 18 (10):1041-1050 (2008).
16	43 Bird AF and Bird J, The structure of nematodes. Academic Press, San Diego. (1991).
17	44 Holland RJ, Williams KL and Nevalainen KH, Paecilomyces lilacinus strain
18	Bioact251 is not a plant endophyte. Australas Plant Path 32(4):473-478 (2003).
19	45 Rumbos CI and Kiewnick S, Effect of plant species on persistence of Paecilomyces
20	lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil
21	283 (1-2):25-31 (2006).
22	46 Kok CH and Papert A, Microflora of Meloidogyne egg masses: species composition,
23	population density and effect on the biocontrol agent Verticillium
24	chlamydosporium (Goddard). Nematology 3(8): 729-734 (2001).

1	47 Stirling GR. Biological control of plant-parasitic nematodes: soil ecosystem
2	management in sustainable agriculture. CAB International, Wallingford, UK
3	(2014).
4	48 Ploeg AT and Maris PC, Effects of temperature on the duration ofe the life cycle of a
5	Meloidogyne incognita population. Nematology 1(4):389-393 (1999).
6	49 Bonants PJM, Flitters PFL, Thijs H, den Belder E, Waalwijk C and Henfling JWDM,
7	A basic serine protease from <i>Paecilomyces lilacinus</i> with biological activity
8	against Meloidogyne hapla eggs. Microbiology 141(4):775-784 (1995).
9	50 Sorribas FJ, Ornat C, Galeano M and Verdejo-Lucas S, Evaluation of a native and
10	introduced isolate of Pochonia chlamydosporia against Meloidogyne
11	<i>javanica. Biocontrol Sci Techn</i> 13 (8): 707-714 (2003).
12	

- 1 Table 1. Cropping dates of the rotation sequence tomato-cucumber and soil
- 2 temperatures in the greenhouse during two consecutive growing seasons.

Veen	Crow	Cronning datas	Average soil	Minimum and maximum temperatures (°C) ^b		
rear	Стор	Cropping dates	temperature (°C) ^a			
2011	Tomato	31 March-6 July	25.4	19.8-34.3		
	Cucumber	29 July-26 October	27.8	20.2-32.9		
2012	Tomato	5 March-17 July	24.4	17.0-31.4		
	Cucumber	31 July-5 November	27.0	17.5-31.2		

3 ^a Average soil temperature at 15cm depth: mean of daily mean temperatures during the

4 cropping period.

^b Absolute minimum or maximum soil temperature at 15cm depth during the cropping

6 period.

 Table 2. Initial (Pi) and final (Pf) population densities of Meloidogyne incognita in soil, galling index, eggs per gram of root, percentage of fungal egg parasitism, and yield of the resistant tomato cv. Monika (TR) and susceptible cv. Durinta (TS) alone or combined with the application of

BioAct WG cultivated from 31st March to 6th July of 2011.

Dia A at W/C ^a	Tomato	Pi	Pf	Galling	Eggs g ⁻¹	Egg	Yield
BIOACI WG	cultivar	(J2 250 cm ⁻³ soil)	(J2 250 cm ⁻³ soil)	index ^b	root	parasitism (%)	(kg plant ⁻¹)
No application	TR	663±241 a	334±113 b	1.2±0.2 b	421±1100 b	0±0	1.5±0.2 a
	TS	612±182 a	2347±331 a	6.8±0.2 a	7499±347 a	0±0	0.3±0.2 b
Application	TR	579±210 a	100±24 b	1.3±0.2 b	482±110 b	0.04±0.02	1.3±0.1 a
	TS	576±161 a	3300±649 a	7.4±0.2 a	6957±441 a	0.02±0.01	0.3±0.1 b
BioAct ^e vs no BioAct		NS	NS	NS	NS		NS
TR vs TS		NS	S	S	\$		S
T x BioAct		NS	NS	NS	NS		NS

Data are mean \pm standard error of 10 replicates.

Data are mean \pm standard error of 10 replicates. ^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width: in seedling before transplanting at 0.1 g L^{-1} rate.

^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

^eS and NS indicate statistically significant or non-significant differences between factors, respectively, according to Tukey's test (*P* < 0.05). Different letters in the same

column indicate differences (P < 0.05) according to Tukey's test.

Table 3. Initial (Pi) and final (Pf) population densities of *Meloidogyne incognita* in soil, galling index, eggs per gram of root, percentage of fungal
 egg parasitism, and yield of the cucumber cv. Dasher II alone or combined with the application of BioAct WG cultivated after resistant tomato
 cv. Monika (TR) or susceptible cv. Durinta (TS) from 29th July to 26th October of 2011.

	Previous	Pi	Pf	Galling	Eggs g ⁻¹	Egg	Yield
BIOACT WG	Crop	(J2 250 cm ⁻³ soil)	(J2 250 cm ⁻³ soil)	index ^b	root	parasitism (%)	(kg plant ⁻¹)
No application	TR	241±99 b	357.85±91 a	6.6 ±0.6 b	1352±561 a	0±0	0
	TS	3202±700 a	234.60±99 b	9.7±0.3 a	179±121 b	0±0	0
Application	TR	193±80 b	684.30±183 a	6.9±0.7 <mark>b</mark>	3094±956 <mark>a</mark>	0.44±0.27	0
	TS	2446±243 a	185.05±64 b	10.0±0 <mark>a</mark>	0±0 b	0.09±0.09	0
BioAct ^e vs no BioAct		NS	NS	NS	NS		
TR vs TS		S	S	S	S		
T x BioAct		NS	NS	NS	NS		

4 Data are mean \pm standard error of 10 replicates.

^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width: ,
 in seedling before transplanting at 0.1 g L⁻¹ rate.

7 ^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

8 *- S and NS indicate statistically significant or non-significant differences between factors, respectively, according to Tukey's test (P < 0.05). Different letters in the same

9 column indicate differences (P < 0.05) according to Tukey's test.

 1 Table 4. Initial (Pi) and final (Pf) population densities of *Meloidogyne incognita* in soil, galling index, eggs per gram of root, percentage of fungal

2 egg parasitism, and yield of the susceptible cv. Durinta (TS) alone or combined with the application of BioAct WG, and the resistant tomato cv.

3 Monika (TR) alone, cultivated from 5th March to 17th July of 2012.

BioAct WG ^a	Tomato cultivar	Pi (J2 250 cm ⁻ ³ soil)	Pf (J2 250 cm ⁻ ³ soil)	Galling index ^b	Eggs g ⁻¹ root	Egg parasitism (%)	Yield (kg plant ⁻¹)
No application	TR	358±91 a	1009±232 b	2.9±0.3 b	811±250 b	0	2.2±0.1 a
	TS	185±80 b	4498±705 a	7.2±0.3 a	6406±1695 a	0	0.9±0.2 b
Application	TS	363±106 a	4010±513 a	7.7±0.3 a	8586±989 a	2.39±1.23	0.8±0.1 b
TR^e vs TS		NS	NS	NS	NS		NS
T x BioAct		NS	5	S	S		S

4 Data are mean \pm standard error of 10 replicates of the combination of "no BioAct application with TR or TS" and 20 replications of the combination of "BioAct application 5 with TS".

6 ^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width:

7 in seedling before transplanting at 0.1 g L^{-1} rate.

8 ^b Galling index based on the Zeck³⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

9 ^e-S and NS indicate statistically significant or non-significant differences between factors, respectively, according to Tukey's test (P < 0.05). Different letters in the same

10 column indicate differences (P < 0.05) according to Tukey's test.

Pest Management Science

Table 5. Initial (Pi) and final (Pf) population densities of *Meloidogyne incognita* in soil, galling index, eggs per gram of root, percentage of fungal
 egg parasitism, and yield of the cucumber cv. Dasher II alone or combined with the application of BioAct WG cultivated after resistant tomato
 cv. Monika (TR) or susceptible cv. Durinta (TS) from 31st July to 5th November of 2012.

	Previous	Pi	Pf	Galling	г -1 и	Egg parasitism	Yield
BloAct wG	Crop	$(J2 250 \text{ cm}^{-3} \text{ soil}) (J2 250 \text{ cm}^{-3} \text{ soil}) \text{index }^{b} E_{4}$	Eggs g root	(%)	(kg plant ⁻¹)		
No application	TR	1187±400 b	1379±253 a	7.6±1.1 b	1083±381	0±0	0.2±0.1 a
	TS	4319±464 a	659±162 ab	10.0±0 a	na	na	0.03±0.002 b
Application	TR	801±199 b	768±184 ab	8.7±0.5 b	3646±1482	2.60±1.01	0.10±0.04 a
	TS	3968±695 a	522±217 b	10.0±0 a	na	na	0.02±0.002 b
BioAct ^e vs no BioAct		NS	NS	NS			NS
TR vs TS		\$	S	5			S
T x BioAct		NS	NS	NS			NS

4 Data are mean \pm standard error of 15 replicates of the combination each combination with TS and 5 replicates of each combination with TR.

^a BioAct WG (1 x 10¹⁰ viable spores g⁻¹) Treatments: At soil, 14 days before transplanting and every six weeks after transplanting at rate of 0.4 g m⁻¹ linear and 10 cm width: ,
 in seedling before transplanting at 0.1g L⁻¹ rate.

7 ^b Galling index based on the Zeck⁴⁵ scale; from 0 (healthy plants) to 10 (dead plants).

8 ^e-S and NS indicate statistically significant or non-significant differences between factors, respectively, according to Tukey's test (*P* < 0.05). Different letters in the same

9 column indicate differences (P < 0.05) according to Tukey's test.

10 Na: no available

Figure 1. Mycelia growth rate (mm day⁻¹) of *Purpureocillium lilacinum* strain 251 in water agar (12 g L⁻¹) at 15, 20, 25, 30 and 35°C. Bars represent the standard error (n=6) Different letters indicate differences at P < 0.05 according to LSD's test. Figure 1

25x16mm (600 x 600 DPI)

Figure 2. Mycelial growth rate (mm dia⁻¹) of *Purpureocillium lilacinum* strain 251 at 15, 20, 25, 30 °C and water potentials from -1,25 to -0,25 MPa.

Figura 2 35x19mm (600 x 600 DPI)