

International Journal of Theoretical and Applied Mathematics
2017; 3(2): 82-87

http://www.sciencepublishinggroup.com/j/ijtam

doi: 10.11648/j.ijtam.20170302.16

Combinatorial Structures to Construct Simple Games and
Molecules

Xavier Molinero

Department of Mathematics, Universitat Politècnica de Catalunya, Manresa, Spain

Email address:

xavier.molinero@upc.edu

To cite this article:
Xavier Molinero. Combinatorial Structures to Construct Simple Games and Molecules. International Journal of Theoretical and Applied

Mathematics. Vol. 3, No. 2, 2017, pp. 82-87. doi: 10.11648/j.ijtam.20170302.16

Received: October 28, 2016; Accepted: January 12, 2017; Published: March 2, 2017

Abstract: We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish

the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using

combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling

simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules

as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It

is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-) heuristics

algorithms and parallel programming, among others.

Keywords: Combinatorial Structures, Generating Simple Games, Generating Influence Games, Generating Molecules

1. Introduction

The goal of this paper is to establish a new connection

among different topics. We consider combinatorial structures

defined from combinatorial classes and admissible operators

[23], [8], [9]. We also dealt with simple games and influence

games based on the spread of influence in graphs [17], [18],

[2], [26]. Next, we consider how to generate molecules from

combinatorial structures [6], [7]. Finally, weestablish new

problems that relate some topics as combinatorics, game

theory or chemistry.

Combinatorial structures let us represent some influence

games (depending on the considered graph) and,

consequently, let us represent simple game (because any

influence game have an associated simple game and

viceversa). In a similar way, combinatorial structures let us

represent combinations of atoms, that is, molecules.

First section describes combinatorial structures, second

section introduces simple and influence games. Afterwards,

we give new results about representing simple (as influence

games) and molecules (as combinations of atoms). Finally,

we make some considerations about future work.

2. Combinatorial Structures

In this section we give the formal definition of admissible

combinatorial classes which define combinatorial structures.

We also consider the corresponding generating functions to

count how many objects there are of each size. Finally, we

introduce the so-called admissible operators to define the

more useful combinatorial structures.

2.1. Combinatorial Classes and Generating Functions

Most of the material can be found in [23], [8], [9].

However, to make this subsection more self-contained and to

fix notation, we will briefly introduce some basic definitions

and concepts. We begin with the formal definition of a

combinatorial class.

Definition 1. A combinatorial class is a pair (A,|·|A) such

that A is a finite denumerable set and |·|A: A→N is a size

function such that, for all n≥0, An={α2A | | α |A=n} is finite.

We use normal letters (A, B, C,...) to denote combinatorial

classes. Also, we use subscripts under a class’ name to denote

the subset of objects of that class A with a given size n, for

example, An. In a similar way, A>n, A<n, A≥n and A≤n denote

the subset of objects of that class A with size larger, smaller,

larger or equal and smaller or equal than n. Moreover, if the

class is implied, we will drop the subscript in |·|A. Shall no

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159237968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

83 Xavier Molinero: Combinatorial Structures to Construct Simple Games and Molecules

confusion arise, we will use the same name for the class and

for the set of objects belonging to that class.

Typically, complex objects in a given class are composed

of smaller units, called atoms and generically denoted by Z.

Atoms are objects of size 1 and the size of an object is the

number of atoms it contains. For instance, a string is

composed by the concatenation of symbols, where each of

these is an atom, and the size of the string is its length or the

number of symbols it is composed of. Similarly, a tree is built

out of nodes —its atoms— and the size of the tree is its

number of nodes. Objects of size 0 are normally denoted by

ϵ
1
.

Two main types of combinatorial classes can be defined

depending on whether the atoms that compose a given object

can be distinguished or not. In the former case, we say that

the class is labelled whereas in the latter we say the class is

unlabelled. Examples of labelled classes include

permutations, Cayley trees, functional graphs and a host of

other important combinatorial classes. A valid standard

labelling of an object of size n is a bijection from the object’s

atoms to [1..n], or equivalently, a permutation of size n.

As it will become apparent, an efficient solution to the

problem of counting, namely, given a specification of a class

and a size, compute the number of objects with the given

size, is fundamental for our approach to the iteration,

unranking and ranking problems. Hence, we turn our

attention to so-called admissible combinatorial classes.

Those are constructed from admissible operators over classes

that yield new classes, and such that the number of objects of

a given size in the new class can be computed from the

number of objects of that size or smaller sizes in the

constituent classes.

We can formalize the notion of admissibility through the

notion of counting generating functions.

Definition 2. The (counting) generating function of an

unlabeled combinatorial class A is the ordinary generating

function for the sequence {an}n≥0, where an=#An is the

number of objects in A of size n. The n-th coefficient of A(z) is

an=[z
n
]A(z). That is,

A(z) = Σ n≥0 an z
n = Σ α2A z|α|.

Definition 3. The (counting) generating function of a

labeled combinatorial class A is the exponential generating

function for the sequence {an}n≥0, where an=#An is the

number of objects in A of size n. The n-th coefficient of A(z) is

an=[z
n
]A(z). That is,

A(z) = Σ n≥0 an z
n
 / n! = Σ α2A z

|α|
 / |α|!.

2.2. Admissible Operators

We now define admissible operators to describe the more

usual combinatorial structures.

1
 Some authors use λ	 to denote an object of size 0, called the empty object. The

same symbol (ϵ,λ) is often used to denote the class which does only contain the

empty object. Likewise, Z	often denotes an atomic class, shall no confusion arise.

Definition 4. An operator (also called constructor) Ψ over

combinatorial classes A1, A2, …, Ak is admissible if and only

if there exists some operator Φ over the corresponding

counting generating functions A1(z), A2(z),…, Ak(z) such that

C=Ψ(A1, A2, …, Ak) ⇒ C(z)=Φ(A1(z), A2(z),…, Ak(z)),

where C(z) is the counting generating function of C.

Examples of admissible labelled operators include disjoint

unions (denoted by ’+’ or Union), partitional (or labelled)

products (’*’ or Prod), sequences (Seq), sets (Set), cycles

(Cycle), substitutions (’◦’ or Subst) and sequences, sets and

cycles with restricted cardinality. Analogous operators are

admissible in the unlabelled case: disjoint unions (’+’ or

Union), Cartesian (or unlabelled) products (’×’ or Prod),

sequences (Seq), powersets (PSet), sets (Set)
2
, cycles (Cycle),

substitutions (’◦’ or Subst) and sequences, powersets, sets and

cycles with restricted cardinality. In Figure 1 we summarize

the relations between these constructions and the

corresponding generating functions (see also [10]).

Figure 1. Combinatorial operators and generating functions (‘EGF’ and

‘OGF’ denote exponential and ordinary generating functions, respectively).

We briefly describe now the combinatorial operators

mentioned above.

� We take the disjoint union (also called sum) of two

classes A and B to represent the union of two disjoint

copies, A° and B°, of A and B. One way to formalize

this notion is to introduce two distinct “markers” ϵA and

ϵB, each of size zero, and define the (disjoint) union A +

B by

A + B = (A × ϵ) ∪ (B × ϵ).

Disjoint union is thus equivalent to a standard union

whenever it is applied to disjoint sets. The size of γ ∈ A + B,

i.e., |γ|A+B, is |γ|A if γ∈ A or |γ|B if γ ϵ B.

� The Cartesian product of A and B is composed by the

pairs (α,β) such that α∈A and β∈ B,

A × B = ∪αϵA ∪βϵB (α,β),

with |(α, β)|A×B= |α|A+ |β|B.

2
 Also called multisets or bags, for they allow repetitions.

3
The substitution A◦B and the composition (A◦B)(z) are also denoted by A[B] and

A(B(z)), respectively [5, 11].

 International Journal of Theoretical and Applied Mathematics 2017; 3(2): 82-87 84

� If A is a class then the sequence
3
 class of A is defined as

the following infinite sum

Seq(A) = ϵ + A + (A × A) + (A × A × A) + …

To guarantee the number of sequences of each size will be

finite it is necessary to impose that Acontains no object of

size 0 (i.e., a0 = 0). From the definition of size for sums and

products, the size of a sequence is the sum of the sizes of its

components. That is, if γ =(α1,...,αk) ∈ Seq(A) then |γ| =

|α1|+···+|αk|.

� The powerset class of A is defined as the class

consisting of all finite subsets of A-objects without

repeated components. The following isomorphism is

often used:

PSet(A) = Π αϵA (ϵ +α).

Powersets do not require that a0	=	 0, but we assume it to be

the use.

� Sets are like powersets except that the repetitions of

components are allowed. Hence

Set(A) = Π αϵA Seq(α).

As in the case of sequences, A must not contain objects of

size 0.

� Cycles are just sequences defined up to cyclic

permutations: Cycle(A) = Seq(A)/~, with ~ the

equivalence relation between sequences defined by

(α1,...,αr) ~ (β1,...,βr) if and only if there exists a cyclic

permutation σ of [1..n] such that βσ(j) = αj, for all j; in

other words, for some d, j = α1+(j+d) mod n.

� The substitution of B into A (or composition of A and

B) is defined by

A ◦ B = ∪k≥0 Ak × Seq(B, card = k),

where Seq(B, card = k) is the class of k-tuples of B objects.

Objects of A◦B may thus be viewed as obtained by selecting

in all possible ways an α object of A and substituting for each

of its atoms by an arbitrary object β of B. Formally,

C = { (α,β1,...,β|α|) | α∈ A, β1, …, β|α|∈ B },

with |(α,β1,...,β|α|)| = |β1| + … + |β|α||.

Note that A◦B is well defined if and only if either b0 = 0 or

|A| <+∞; however, in general, we assume a0 = b0 = 0.

Labelled operators like unions, sequences, sets and cycles

are defined as their unlabelled counterparts. But products and

substitutions have some differences:

� Given two labelled objects α and β of sizes j and n−j,

respectively, their partitional product is a set of (
n

j)

labelled objects of size n which result from the (
n

j)

consistent relabellings of the pair (α,β) so that each

atom of the pair has a distinct label in the range [1..n]

while respecting the order of the original labels of α and

β. For instance, if α = 132 and β = 21 (these two objects

3
 It is analogous to the Kleene star operator A*.

belong to the labelled class Seq(Z), i.e., they are

permutations) then
4
 α * β = {13254, 14253, 14352,...,

35421}. The labelled product of the labelled classes A

and B is defined then

A * B = ∪αϵA ∪βϵB (α*β),

with |α*β|A*B = |α|A+ |β|B.

� Labelled substitution is defined by

A ◦ B = ∪k≥0 Ak × Set(B, card = k).

The component with the smallest label in the object of

Set(B, card = k) (the leader) substitutes the atom with the

smallest label of the A object, and the same procedure is

repeated with the remaining components of the object of

Set(B, card = k) and the remaining atoms of the A object until

all atoms have been replaced by components of the object in

Set(B, card = k).

Besides these classical operators, other operators can also be

considered: boxed product (
�
*), pointing (ϑ), diagonal (∆), etc.

All operators previously considered represent

combinatorial structures that depend on the chosen

isomorphism and the chosen ordering to define them [19],

[20], [15], [14]. On the other hand, it is known [15], [14] that

all these combinatorial structures with size n can be

generated with worst-case time complexity equal to O(n
2
)

arithmetic operations for the so-called lexicographic

ordering, and O(n·log(n)) arithmetic operations for the so-

called boustrophedonic ordering.

3. Simple Games as Influence Games

In this section we consider another topic with respect to

the previous section. Now we introduce simple games and

influence games [17], [18], [2], [26].

Firstly, we introduce simple games.

Definition 5. A simple game Γ is given by a tuple (N, W)

where N is a finite set of players and W is a monotonic family

of subsets of N.

In the context of simple games, the subsets of N are

called coalitions, N is the grand coalition and X ∈ W is a

winning coalition (a successful team). Any subset of N

which is not a winning coalition is called a losing coalition

(an unsuccessful team). A minimal winning coalition is a

winning coalition X that does not properly contain any

winning coalition. That is, removing any player from X

results in a losing coalition. A maximal losing coalition is a

losing coalition X that is not properly contained in any other

losing coalition. That is, adding any player to X results in a

winning coalition. W, L, W
m
 and L

M
 usually denote the sets

of winning, losing, minimal winning and maximal losing

coalitions, respectively. Any of those set families determine

uniquely the game and constitute the usual forms of

representation for simple games [25], although the sizes of

4
 We are making a slight abuse of notation here: we have refrained from writing α

= (Z1,(Z3,(Z2,ϵ))), β = (Z2,(Z1,ϵ)), etc, in favor of the usual and more readable form

α = 132 and β = 21.

85 Xavier Molinero: Combinatorial Structures to Construct Simple Games and Molecules

those representations are not, in general, polynomial in the

number of players.

On the other hand, before introducing formally the family

of influence games we need to define a family of labeled

graphs and a process of spread of influence based on the

linear threshold model [21], [12], [22]. We use standard

graph notation following [3]. As usual, given a finite set U,

P(U) denotes its power set, and |U| its cardinality. For any 0 ≤

k ≤ |U|, Pk(U) denotes the subsets of U with exactly k

elements. For a given graph G = (V,E) we assume that n = |V |

and m = |E|. Also G[S] denotes the subgraph induced by S ⊆

V and, for a vertex u ∈ V, N(u) = {v ∈ V | (u,v) ∈ E}.

Definition 6. An influence graph is a tuple (G,w,f), where

G = (V,E) is a weighted, labeled and directed graph (without

loops). As usual V is the set of vertices or agents, E is the set

of edges and w: E → N is a weight function. Finally, f: V →

N is a labeling function that quantifies how influenceable

each agent is. An agent i ∈ V has influence over another

agent j ∈ V if and only if (i,j) ∈ E. We also consider the

family of unweighted influence graphs (G,f) in which every

edge has weight 1.

Given an influence graph (G,w,f) and an initial activation

set X ⊆ V, the spread of influence of X is the set F(X) ⊆ V

which is formed by the agents activated through an iterative

process. We use Fk(X) to denote the set of nodes activated at

step k. Initially, at step 0, only the vertices in X are activated,

that is F0(X) = X. The set of vertices activated at step i >0

consists of all vertices for which the total weight of the edges

connecting them to nodes in Fi-1(X) meets or exceeds their

labels, i.e.,

Fi(X) = Fi-1(X) ∪{ v∈V | Σ { uϵFi-1(X) | (u,v)ϵE} w((u,v)) ≥ f(v)}.

The process stops when no additional activation occurs

and the final set of activated nodes is denoted by F(X).

As the number of vertices is finite, for any i > n, Fi(X) =

Fi−1(X). Thus, F(X) = Fn(X) and we have the following result.

Theorem 7 ([18]). Given an influence graph (G,w,f) and a

set of vertices X, the set F(X) can be computed in polynomial

time.

Definition 8. An influence game is given by a tuple (G, w, f,

q, N) where (G, w, f) is an influence graph, q is an integer

quota, 0 ≤ q ≤ |V | + 1, and N ⊆ V is the set of players. X ⊆

N is a successful team if and only if |F(X)| ≥ q, otherwise X is

an unsuccessful team.

Note that all results and definitions stated in influence

games can be done for directed or undirected graphs.

3.1. Representing Simple Games

We connect different topics –combinatorial structures,

simple games and graphs with spread of influence (to define

influence games)– in order to introduce a new way to

represent simple games. This fact is based in the following

result.

Theorem 9 ([18]). An influence game has associated a

simple game and, viceversa, a simple game has associated an

influence game.

See the details how to construct an influence game from a

simple game, and how to construct a simple game from an

influence game, in [18]. Note that there exists a construction

such that the influence game which define a simple game just

use unweighted influence graphs. This construction just use

unweighted graphs with unions and products. Thus, a simple

game can be represented by combinatorial structures with

elementary admissible operators (unions and products).

The sketch about how to generate a simple game with just

combinatorial structures is described in the following five

steps:

� First Step: To consider a simple game Γ.

� Second Step: To generate the corresponding influence

game IΓ as it is described in [18].

� Third Step: To characterize the influence graph, with

labeled nodes, associated to the influence game IΓ. Let

“G(IΓ)” be such influence graph.

� Fourth Step: To define a combinatorial structure with

admissible operators which corresponds to “G(IΓ)”. Let

A[G(IΓ)] be such combinatorial structure.

� Fifth Step: To consider the spread of influence over the

combinatorial structure A[G(IΓ)].

Note that each step can be computed in polynomial time

whether the simple game Γ is given by either (N,W) or (W
m
)

(see Theorem 1 in [18]).

Theorem 10. It is possible to construct a simple game Γ as

a combinatorial structure. Furthermore, when Γ is given by

either (N,W) or (W
m
) such construction can be obtained in

polynomial time.

3.2. Representing Molecules

Combinatorial structures can also be applied to other

topics like Chemistry. In this case, combinatorial structures

let us generate molecules [6], [7].

We can define a molecule as a combination of atoms.

Definition 11. A molecule is an union of sets of specific

cardinality of k atoms, being k a positive integer, i.e.,

Molecule:= Union(Set(Atom1, card = c1),..., Set(Atomk, card = ck)).

In the same vein, a Chemical-Compound can be defined as

follows.

Definition 12. A chemical-compund is a set of n molecules,

i.e.,

Chemical-Compound:= Set(Union(Molecule1,...,Moleculen),

where, ∀ i ∈{1,...,n},

Moleculei:=

Union(Set(Atomi(1), card = ci(1)),...,Set(Atomi(ki), card = ci(ki))).

From Definitions 11 and 12 it is clear that combinatorial

structures let us represent molecules. For instance, water are

molecules of H2O, i.e.,

Water: = Set(Wat-Mol),

where

 International Journal of Theoretical and Applied Mathematics 2017; 3(2): 82-87 86

Wat-Mol:= Union(Set(H, card = 2),O)

or

Wat-Mol:= Union(H, H, O).

On the other hand, acyclic alkyne are molecules of

CnH2n−2, i.e.,

Acyclic-Alkyne:= Set(Acy-Alk-Mol),

where

Acy-Alk-Mol:= Union(Set(C,card = n), Set(H,card = 2n − 2)),

being n a positive integer.

4. Conclusions and Future Work

In this work we have represent simple games (game

theory) and molecules (Chemistry) from combinatorial

structures (combinatorics). There is still much work to do

with these topics (simple games and molecules v.s.

combinatorial structures). For instance, from combinatorial

structures we can study how many simple games or

molecules can be generated with a specific structure and size

(number of nodes). Some algorithms related with this

problem are the so-called ranking, unranking, iteration or

random generation of combinatorial structures [19, 20].

We can also study the limitations of these representations.

It is still open how to apply concepts over simple games

and molecules to combinatorial structures: properties of

players or atoms, coalitions or compounds, subclasses, etc.

Reciprocally, it is also interesting to study how to apply

concepts over combinatorial structures (classes) to simple

games or molecules: properties over classes, operators, etc.

We ask whether it is possible to define a new concept:

Labeled and Unlabeled simple game or molecule.

The algorithms to generate combinatorial structures

(simple games or molecules) should be analyzed to use

genetic algorithms [16], [28], (meta-) heuristic algorithms

[1], [27], [24], [13] or parallel programming [4], among some

algorithmic techniques.

Finally, combinatorial structures can also be applied to

another different topics [29], [23].

Acknowledgements

This research project was partially supported by funds

from the Spanish Ministry of Economy and Competitiveness

(MINECO) and from the European Union (FEDER funds)

under grant MTM2015-66818-P (MINECO/FEDER).

References

[1] M. Akhmedov, I. Kwee, and R. Montemanni. A divide and
conquer matheuristic algorithm for the prizecollecting steiner
tree problem. Computers & Operations Research, 70: 18–25,
2016.

[2] E. Altman, T. Boulogne, R. El-Azouzi, T. Jimnez, and L.
Wynter. A survey on networking games in
telecommunications. Computers & Operations Research, 33
(2): 286–311, 2006. Game Theory: Numerical Methods and
ApplicationsGame Theory: Numerical Methods and
Applications.

[3] B. Bollobás. Modern graph theory, volume 184 of Graduate
Texts in Mathematics. Springer-Verlag, New York, NY, 1998.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, The Massachusetts Institute of
Technology, 1990.

[5] P. Flajolet. Mathematical methods in the analysis of
algorithms and data structures. Trends in Theoretical
Computer Science, pages 225–304, 1988.

[6] P. Flajolet and B. Salvy. Computer algebra libraries for
combinatorial structures. J. Symbolic Computation, 20: 653–
671, 1995.

[7] P. Flajolet, B. Salvy, and P. Zimmermann. Lambdaupsilon-
omega: The 1989 cookbook. Technical Report 1073, INRIA,
1989.

[8] P. Flajolet and R. Sedgewick. The average case analysis of
algorithms: Counting and generating functions. Technical
Report 1888, INRIA, 1993.

[9] P. Flajolet and J. S. Vitter. Average-case Analysis of
Algorithms and Data Structures. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 9. North-
Holland, 1990.

[10] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus
for the random generation of combinatorial structures.
Theoretical Computer Science, 132 (1): 1–35, 1994.

[11] L. A. Goldberg and D. M. Jackson. Combinatorial
Enumeration. John Wiley & Sons, 1983.

[12] M. Granovetter. Threshold models of collective behavior.
American Journal of Sociology, 83 (6): 1420–1443, 1978.

[13] M. A. El-Sharkawi and K. Y. Lee. Modern Heuristic
Optimization Techniques: Theory and Applications to Power
Systems. Wiley-IEEE Press.

[14] C. Martínez and X. Molinero. A generic approach for the
unranking of labeled combinatorial classes. Random
Structures & Algorithms, 19 (3-4): 472–497, 2001.

[15] C. Martínez and X. Molinero. Efficient iteration in admissible
combinatorial classes. Theoretical Computer Science, 346 (2–
3): 388–417, November 2005.

[16] M. Mitchell. An Introduction to Genetic Algorithms (Complex
Adaptive Systems). The MIT Press.

[17] X. Molinero, M. Olsen, and M. Serna. On the complexity of
exchanging. Information Processing Letters, 116 (6): 437–
441, 2016.

[18] X. Molinero, F. Riquelme, and M. J. Serna. Cooperation
through social influence. European Journal of Operation
Research, 242 (3): 960–974, May 2015.

[19] X. Molinero and J. Vives. Unranking algorithms for
combinatorial structures. International Journal of Applied
Mathematics and Informatics, 9: 110–115, 2015.

87 Xavier Molinero: Combinatorial Structures to Construct Simple Games and Molecules

[20] X. Molinero and J. Vives. Unranking algorithms for
combinatorial structures. In M. V. Shitikova N. E. Mastorakis,
I. Rudas and Y. S. Shmaliy, editors, Proceedings of the
International Conference on Applied Mathematics and
Computational Methods in Engineering (AMCME 2015),
pages 98–101, 2015.

[21] A. K. Nandi and H. R. Medal. Methods for removing links in
a network to minimize the spread of infections. Computers &
Operations Research, 69: 10–24, 2016.

[22] T. Schelling. Micromotives and macrobehavior. Fels lectures
on public policy analysis. W. W. Norton & Company, New
York, NY, 1978.

[23] R. Sedgewick and P. Flajolet. An Introduction to the Analysis
of Algorithms. Addison-Wesley, Reading, MA, 1996.

[24] E. Talbi. Metaheuristics: From Design to Implementation.
Wiley.

[25] A. Taylor and W. Zwicker. Simple games: Desirability
relations, trading, pseudoweightings. Princeton University
Press, Princeton, NJ, 1999.

[26] A. D. Taylor and W. S. Zwicker. Simple games: desirability
relations, trading, and pseudoweightings. Princeton
University Press, New Jersey, USA, 1999.

[27] P. Vasant. Meta-Heuristics Optimization Algorithms in
Engineering, Business, Economics, and Finance. IGI Global.

[28] R. Keller, W. Banzhaf, P. Nordin, and F. Francone. Genetic
Programming An Introduction. San Francisco, CA: Morgan
Kaufmann, 1998.

[29] S. Yazdanfar and M. Sina. Providing a real-time scheduling
algorithm for multi-processor systems using the modified
colonial competition algorithm. Journal of Current Research
in Science, 3 (5): 8–17, 2015.

