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Abstract: We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish 

the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using 

combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling 

simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules 

as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It 

is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-) heuristics 

algorithms and parallel programming, among others. 
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1. Introduction 

The goal of this paper is to establish a new connection 

among different topics. We consider combinatorial structures 

defined from combinatorial classes and admissible operators 

[23], [8], [9]. We also dealt with simple games and influence 

games based on the spread of influence in graphs [17], [18], 

[2], [26]. Next, we consider how to generate molecules from 

combinatorial structures [6], [7]. Finally, weestablish new 

problems that relate some topics as combinatorics, game 

theory or chemistry. 

Combinatorial structures let us represent some influence 

games (depending on the considered graph) and, 

consequently, let us represent simple game (because any 

influence game have an associated simple game and 

viceversa). In a similar way, combinatorial structures let us 

represent combinations of atoms, that is, molecules. 

First section describes combinatorial structures, second 

section introduces simple and influence games. Afterwards, 

we give new results about representing simple (as influence 

games) and molecules (as combinations of atoms). Finally, 

we make some considerations about future work. 

 

2. Combinatorial Structures 

In this section we give the formal definition of admissible 

combinatorial classes which define combinatorial structures. 

We also consider the corresponding generating functions to 

count how many objects there are of each size. Finally, we 

introduce the so-called admissible operators to define the 

more useful combinatorial structures. 

2.1. Combinatorial Classes and Generating Functions 

Most of the material can be found in [23], [8], [9]. 

However, to make this subsection more self-contained and to 

fix notation, we will briefly introduce some basic definitions 

and concepts. We begin with the formal definition of a 

combinatorial class. 

Definition 1. A combinatorial class is a pair (A,|·|A) such 

that A is a finite denumerable set and |·|A: A→N is a size 

function such that, for all n≥0, An={α2A | | α |A=n} is finite. 

We use normal letters (A, B, C,...) to denote combinatorial 

classes. Also, we use subscripts under a class’ name to denote 

the subset of objects of that class A with a given size n, for 

example, An. In a similar way, A>n, A<n, A≥n and A≤n denote 

the subset of objects of that class A with size larger, smaller, 

larger or equal and smaller or equal than n. Moreover, if the 

class is implied, we will drop the subscript in |·|A. Shall no 
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confusion arise, we will use the same name for the class and 

for the set of objects belonging to that class. 

Typically, complex objects in a given class are composed 

of smaller units, called atoms and generically denoted by Z. 

Atoms are objects of size 1 and the size of an object is the 

number of atoms it contains. For instance, a string is 

composed by the concatenation of symbols, where each of 

these is an atom, and the size of the string is its length or the 

number of symbols it is composed of. Similarly, a tree is built 

out of nodes —its atoms— and the size of the tree is its 

number of nodes. Objects of size 0 are normally denoted by 

ϵ
1
. 

Two main types of combinatorial classes can be defined 

depending on whether the atoms that compose a given object 

can be distinguished or not. In the former case, we say that 

the class is labelled whereas in the latter we say the class is 

unlabelled. Examples of labelled classes include 

permutations, Cayley trees, functional graphs and a host of 

other important combinatorial classes. A valid standard 

labelling of an object of size n is a bijection from the object’s 

atoms to [1..n], or equivalently, a permutation of size n. 

As it will become apparent, an efficient solution to the 

problem of counting, namely, given a specification of a class 

and a size, compute the number of objects with the given 

size, is fundamental for our approach to the iteration, 

unranking and ranking problems. Hence, we turn our 

attention to so-called admissible combinatorial classes. 

Those are constructed from admissible operators over classes 

that yield new classes, and such that the number of objects of 

a given size in the new class can be computed from the 

number of objects of that size or smaller sizes in the 

constituent classes. 

We can formalize the notion of admissibility through the 

notion of counting generating functions. 

Definition 2. The (counting) generating function of an 

unlabeled combinatorial class A is the ordinary generating 

function for the sequence {an}n≥0, where an=#An is the 

number of objects in A of size n. The n-th coefficient of A(z) is 

an=[z
n
]A(z). That is, 

A(z) = Σ n≥0 an z
n = Σ α2A z|α|. 

Definition 3. The (counting) generating function of a 

labeled combinatorial class A is the exponential generating 

function for the sequence {an}n≥0, where an=#An is the 

number of objects in A of size n. The n-th coefficient of A(z) is 

an=[z
n
]A(z). That is, 

A(z) = Σ n≥0 an z
n
 / n! = Σ α2A z

|α|
 / |α|!. 

2.2. Admissible Operators 

We now define admissible operators to describe the more 

usual combinatorial structures. 

                                                             

1
 Some authors use λ	 to denote an object of size 0, called the empty object. The 

same symbol (ϵ,λ) is often used to denote the class which does only contain the 

empty object. Likewise, Z	often denotes an atomic class, shall no confusion arise. 

Definition 4. An operator (also called constructor) Ψ over 

combinatorial classes A1, A2, …, Ak is admissible if and only 

if there exists some operator Φ over the corresponding 

counting generating functions A1(z), A2(z),…, Ak(z) such that 

C=Ψ(A1, A2, …, Ak) ⇒ C(z)=Φ(A1(z), A2(z),…, Ak(z)), 

where C(z) is the counting generating function of C. 

Examples of admissible labelled operators include disjoint 

unions (denoted by ’+’ or Union), partitional (or labelled) 

products (’*’ or Prod), sequences (Seq), sets (Set), cycles 

(Cycle), substitutions (’◦’ or Subst) and sequences, sets and 

cycles with restricted cardinality. Analogous operators are 

admissible in the unlabelled case: disjoint unions (’+’ or 

Union), Cartesian (or unlabelled) products (’×’ or Prod), 

sequences (Seq), powersets (PSet), sets (Set)
2
, cycles (Cycle), 

substitutions (’◦’ or Subst) and sequences, powersets, sets and 

cycles with restricted cardinality. In Figure 1 we summarize 

the relations between these constructions and the 

corresponding generating functions (see also [10]). 

 

Figure 1. Combinatorial operators and generating functions (‘EGF’ and 

‘OGF’ denote exponential and ordinary generating functions, respectively). 

We briefly describe now the combinatorial operators 

mentioned above. 

� We take the disjoint union (also called sum) of two 

classes A and B to represent the union of two disjoint 

copies, A° and B°, of A and B. One way to formalize 

this notion is to introduce two distinct “markers” ϵA and 

ϵB, each of size zero, and define the (disjoint) union A + 

B by 

A + B = (A × ϵ) ∪ (B × ϵ). 

Disjoint union is thus equivalent to a standard union 

whenever it is applied to disjoint sets. The size of γ ∈  A + B, 

i.e., |γ|A+B, is |γ|A if γ∈  A or |γ|B if γ ϵ B. 

� The Cartesian product of A and B is composed by the 

pairs (α,β) such that α∈A and β∈ B, 

A × B = ∪αϵA ∪βϵB (α,β), 

with |(α, β)|A×B= |α|A+ |β|B. 

                                                             

2
 Also called multisets or bags, for they allow repetitions. 

3
The substitution A◦B and the composition (A◦B)(z) are also denoted by A[B] and 

A(B(z)), respectively [5, 11]. 
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� If A is a class then the sequence
3
 class of A is defined as 

the following infinite sum 

Seq(A) = ϵ + A + (A × A) + (A × A × A) + … 

To guarantee the number of sequences of each size will be 

finite it is necessary to impose that Acontains no object of 

size 0 (i.e., a0 = 0). From the definition of size for sums and 

products, the size of a sequence is the sum of the sizes of its 

components. That is, if γ =(α1,...,αk) ∈  Seq(A) then |γ| = 

|α1|+···+|αk|. 

� The powerset class of A is defined as the class 

consisting of all finite subsets of A-objects without 

repeated components. The following isomorphism is 

often used: 

PSet(A) = Π αϵA (ϵ +α). 

Powersets do not require that a0	=	 0, but we assume it to be 

the use. 

� Sets are like powersets except that the repetitions of 

components are allowed. Hence 

Set(A) = Π αϵA Seq(α). 

As in the case of sequences, A must not contain objects of 

size 0. 

� Cycles are just sequences defined up to cyclic 

permutations: Cycle(A) = Seq(A)/~, with ~ the 

equivalence relation between sequences defined by 

(α1,...,αr) ~ (β1,...,βr) if and only if there exists a cyclic 

permutation σ of [1..n] such that βσ(j) = αj, for all j; in 

other words, for some d, j = α1+(j+d) mod n. 

� The substitution of B into A (or composition of A and 

B) is defined by 

A ◦ B = ∪k≥0 Ak  × Seq(B, card = k), 

where Seq(B, card = k) is the class of k-tuples of B objects. 

Objects of A◦B may thus be viewed as obtained by selecting 

in all possible ways an α object of A and substituting for each 

of its atoms by an arbitrary object β of B. Formally, 

C = { (α,β1,...,β|α|) | α∈ A, β1, …, β|α|∈ B }, 

with |(α,β1,...,β|α|)| = |β1| + … + |β|α||. 

Note that A◦B is well defined if and only if either b0 = 0 or 

|A| <+∞; however, in general, we assume a0 = b0 = 0. 

Labelled operators like unions, sequences, sets and cycles 

are defined as their unlabelled counterparts. But products and 

substitutions have some differences: 

� Given two labelled objects α and β of sizes j and n−j, 

respectively, their partitional product is a set of (
n

j) 

labelled objects of size n which result from the (
n

j) 

consistent relabellings of the pair (α,β) so that each 

atom of the pair has a distinct label in the range [1..n] 

while respecting the order of the original labels of α and 

β. For instance, if α = 132 and β = 21 (these two objects 

                                                             

3
 It is analogous to the Kleene star operator A*. 

belong to the labelled class Seq(Z), i.e., they are 

permutations) then
4
 α * β = {13254, 14253, 14352,..., 

35421}. The labelled product of the labelled classes A 

and B is defined then 

A * B = ∪αϵA ∪βϵB (α*β), 

with |α*β|A*B = |α|A+ |β|B. 

� Labelled substitution is defined by 

A ◦ B = ∪k≥0 Ak  × Set(B, card = k). 

The component with the smallest label in the object of 

Set(B, card = k) (the leader) substitutes the atom with the 

smallest label of the A object, and the same procedure is 

repeated with the remaining components of the object of 

Set(B, card = k) and the remaining atoms of the A object until 

all atoms have been replaced by components of the object in 

Set(B, card = k). 

Besides these classical operators, other operators can also be 

considered: boxed product (
�
*), pointing (ϑ), diagonal (∆), etc. 

All operators previously considered represent 

combinatorial structures that depend on the chosen 

isomorphism and the chosen ordering to define them [19], 

[20], [15], [14]. On the other hand, it is known [15], [14] that 

all these combinatorial structures with size n can be 

generated with worst-case time complexity equal to O(n
2
) 

arithmetic operations for the so-called lexicographic 

ordering, and O(n·log(n)) arithmetic operations for the so-

called boustrophedonic ordering. 

3. Simple Games as Influence Games 

In this section we consider another topic with respect to 

the previous section. Now we introduce simple games and 

influence games [17], [18], [2], [26]. 

Firstly, we introduce simple games. 

Definition 5. A simple game Γ is given by a tuple (N, W) 

where N is a finite set of players and W is a monotonic family 

of subsets of N. 

In the context of simple games, the subsets of N are 

called coalitions, N is the grand coalition and X ∈  W is a 

winning coalition (a successful team). Any subset of N 

which is not a winning coalition is called a losing coalition 

(an unsuccessful team). A minimal winning coalition is a 

winning coalition X that does not properly contain any 

winning coalition. That is, removing any player from X 

results in a losing coalition. A maximal losing coalition is a 

losing coalition X that is not properly contained in any other 

losing coalition. That is, adding any player to X results in a 

winning coalition. W, L, W
m
 and L

M
 usually denote the sets 

of winning, losing, minimal winning and maximal losing 

coalitions, respectively. Any of those set families determine 

uniquely the game and constitute the usual forms of 

representation for simple games [25], although the sizes of 

                                                             

4
 We are making a slight abuse of notation here: we have refrained from writing α 

= (Z1,(Z3,(Z2,ϵ))), β = (Z2,(Z1,ϵ)), etc, in favor of the usual and more readable form 

α = 132 and β = 21. 
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those representations are not, in general, polynomial in the 

number of players. 

On the other hand, before introducing formally the family 

of influence games we need to define a family of labeled 

graphs and a process of spread of influence based on the 

linear threshold model [21], [12], [22]. We use standard 

graph notation following [3]. As usual, given a finite set U, 

P(U) denotes its power set, and |U| its cardinality. For any 0 ≤ 

k ≤ |U|, Pk(U) denotes the subsets of U with exactly k 

elements. For a given graph G = (V,E) we assume that n = |V | 

and m = |E|. Also G[S] denotes the subgraph induced by S ⊆  

V and, for a vertex u ∈  V, N(u) = {v ∈  V | (u,v) ∈  E}. 

Definition 6. An influence graph is a tuple (G,w,f), where 

G = (V,E) is a weighted, labeled and directed graph (without 

loops). As usual V is the set of vertices or agents, E is the set 

of edges and w: E → N is a weight function. Finally, f: V → 

N is a labeling function that quantifies how influenceable 

each agent is. An agent i ∈  V has influence over another 

agent j ∈  V if and only if (i,j) ∈  E. We also consider the 

family of unweighted influence graphs (G,f) in which every 

edge has weight 1. 

Given an influence graph (G,w,f) and an initial activation 

set X ⊆ V, the spread of influence of X is the set F(X) ⊆ V 

which is formed by the agents activated through an iterative 

process. We use Fk(X) to denote the set of nodes activated at 

step k. Initially, at step 0, only the vertices in X are activated, 

that is F0(X) = X. The set of vertices activated at step i >0 

consists of all vertices for which the total weight of the edges 

connecting them to nodes in Fi-1(X) meets or exceeds their 

labels, i.e., 

Fi(X) = Fi-1(X) ∪{ v∈V | Σ { uϵFi-1(X) | (u,v)ϵE} w((u,v)) ≥ f(v)}. 

The process stops when no additional activation occurs 

and the final set of activated nodes is denoted by F(X). 

As the number of vertices is finite, for any i > n, Fi(X) = 

Fi−1(X). Thus, F(X) = Fn(X) and we have the following result. 

Theorem 7 ([18]). Given an influence graph (G,w,f) and a 

set of vertices X, the set F(X) can be computed in polynomial 

time. 

Definition 8. An influence game is given by a tuple (G, w, f, 

q, N) where (G, w, f) is an influence graph, q is an integer 

quota, 0 ≤ q ≤ |V | + 1, and N ⊆  V is the set of players. X ⊆  

N is a successful team if and only if |F(X)| ≥ q, otherwise X is 

an unsuccessful team. 

Note that all results and definitions stated in influence 

games can be done for directed or undirected graphs. 

3.1. Representing Simple Games 

We connect different topics –combinatorial structures, 

simple games and graphs with spread of influence (to define 

influence games)– in order to introduce a new way to 

represent simple games. This fact is based in the following 

result. 

Theorem 9 ([18]). An influence game has associated a 

simple game and, viceversa, a simple game has associated an 

influence game. 

See the details how to construct an influence game from a 

simple game, and how to construct a simple game from an 

influence game, in [18]. Note that there exists a construction 

such that the influence game which define a simple game just 

use unweighted influence graphs. This construction just use 

unweighted graphs with unions and products. Thus, a simple 

game can be represented by combinatorial structures with 

elementary admissible operators (unions and products). 

The sketch about how to generate a simple game with just 

combinatorial structures is described in the following five 

steps: 

� First Step: To consider a simple game Γ. 

� Second Step: To generate the corresponding influence 

game IΓ as it is described in [18]. 

� Third Step: To characterize the influence graph, with 

labeled nodes, associated to the influence game IΓ. Let 

“G(IΓ)” be such influence graph. 

� Fourth Step: To define a combinatorial structure with 

admissible operators which corresponds to “G(IΓ)”. Let 

A[G(IΓ)] be such combinatorial structure. 

� Fifth Step: To consider the spread of influence over the 

combinatorial structure A[G(IΓ)]. 

Note that each step can be computed in polynomial time 

whether the simple game Γ is given by either (N,W) or (W
m
) 

(see Theorem 1 in [18]). 

Theorem 10. It is possible to construct a simple game Γ as 

a combinatorial structure. Furthermore, when Γ is given by 

either (N,W) or (W
m
) such construction can be obtained in 

polynomial time. 

3.2. Representing Molecules 

Combinatorial structures can also be applied to other 

topics like Chemistry. In this case, combinatorial structures 

let us generate molecules [6], [7]. 

We can define a molecule as a combination of atoms. 

Definition 11. A molecule is an union of sets of specific 

cardinality of k atoms, being k a positive integer, i.e., 

Molecule:= Union(Set(Atom1, card = c1),..., Set(Atomk, card = ck)). 

In the same vein, a Chemical-Compound can be defined as 

follows. 

Definition 12. A chemical-compund is a set of n molecules, 

i.e., 

Chemical-Compound:= Set(Union(Molecule1,...,Moleculen), 

where, ∀ i ∈{1,...,n},  

Moleculei:= 

Union(Set(Atomi(1), card = ci(1)),...,Set(Atomi(ki), card = ci(ki))). 

From Definitions 11 and 12 it is clear that combinatorial 

structures let us represent molecules. For instance, water are 

molecules of H2O, i.e., 

Water: = Set(Wat-Mol), 

where 
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Wat-Mol:= Union(Set(H, card = 2),O) 

or 

Wat-Mol:= Union(H, H, O). 

On the other hand, acyclic alkyne are molecules of 

CnH2n−2, i.e., 

Acyclic-Alkyne:= Set(Acy-Alk-Mol), 

where 

Acy-Alk-Mol:= Union(Set(C,card = n), Set(H,card = 2n − 2)), 

being n a positive integer. 

4. Conclusions and Future Work 

In this work we have represent simple games (game 

theory) and molecules (Chemistry) from combinatorial 

structures (combinatorics). There is still much work to do 

with these topics (simple games and molecules v.s. 

combinatorial structures). For instance, from combinatorial 

structures we can study how many simple games or 

molecules can be generated with a specific structure and size 

(number of nodes). Some algorithms related with this 

problem are the so-called ranking, unranking, iteration or 

random generation of combinatorial structures [19, 20]. 

We can also study the limitations of these representations. 

It is still open how to apply concepts over simple games 

and molecules to combinatorial structures: properties of 

players or atoms, coalitions or compounds, subclasses, etc. 

Reciprocally, it is also interesting to study how to apply 

concepts over combinatorial structures (classes) to simple 

games or molecules: properties over classes, operators, etc. 

We ask whether it is possible to define a new concept: 

Labeled and Unlabeled simple game or molecule. 

The algorithms to generate combinatorial structures 

(simple games or molecules) should be analyzed to use 

genetic algorithms [16], [28], (meta-) heuristic algorithms 

[1], [27], [24], [13] or parallel programming [4], among some 

algorithmic techniques. 

Finally, combinatorial structures can also be applied to 

another different topics [29], [23]. 
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