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ABSTRACT
Embedded computers control an increasing number of systems
directly interacting with humans, while also manage more and
more personal or sensitive information. As a result, both safety
and security are becoming ubiquitous requirements in embedded
computers, and automotive is not an exception to that. In this
paper we analyze time-predictability (as an example of safety con-
cern) and side-channel a�acks (as an example of security issue) in
cache memories. While injecting randomization in cache timing-
behavior addresses each of those concerns separately, we show
that randomization solutions for time-predictability do not protect
against side-channel a�acks and vice-versa. We then propose a
randomization solution to achieve both safety and security goals.

CCS CONCEPTS
•Security and privacy→ Embedded systems security; •Com-
puter systems organization→ Real-time system;

KEYWORDS
Cache, randomization, side-channel a�acks, probabilistic analysis

1 INTRODUCTION
Increasingly autonomous and connected Automotive Systems (ATS)
require on-board computing systems with resilient operation under
timing faults and a�acks. On the one hand, increased connectivity
opens the door to security threats, e.g. side-channel a�acks (SCA),
an e�ective security intrusion for obtaining secret keys. In partic-
ular, cache timing SCA ( referred to as SCA) allows a�ackers to
fully or partially recover keys, which can later be used to take con-
trol over the ATS. On the other hand, ATS increasingly deal with
safety (e.g. autonomous driving), which requires a reliable response
time of all critical so�ware services. For instance, compliance with
ISO-26262 requires so�ware units to be assigned time budgets and
supporting evidence of adherence to those budgets.

Until recently, ATS comprised relatively simple Electronic Con-
trol Units (ECU) deploying 8- and 16-bits microcontrollers. �e
execution time of so�ware on such simple devices was mostly
ji�erless (or su�ering very small execution time variability) sim-
plifying the task of deriving worst-case execution time (WCET)
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estimates and mitigating the risk of SCA. However, the advent of
more complex value-added so�ware functionalities, managing in-
creasing amounts of diverse data, has raised the performance needs
for the automotive sector, for which ARM expects a 100x increase
in performance by 2024 w.r.t. 2016 [6].

�e execution time of tasks on complex hardware strongly de-
pends on their input data and processor’s state, thus exposing the
system to SCA. �is is a major concern for ATS to protect sensible
information and prevent safety issues as ATS control critical aspects
with humans in the loop, e.g. autonomous driving.

Interestingly, randomization has been independently proposed
as a solution for WCET estimation and preventing SCA. For WCET
estimation, the most extended industrial practice builds on col-
lecting execution time measurements of the so�ware running on
the target platform. Obtaining evidence about whether those mea-
surements are representative of the WCET during operation is
challenging on complex hardware [1]. �ese di�culties have been
addressed by using probabilistic techniques to WCET analysis, so
called Measurement-Based Probabilistic Timing Analysis (MBPTA)
techniques [10]. MBPTA bene�ts from injecting randomization in
cache timing to simplify modeling and provide evidence for cer-
ti�cation as needed by safety standards. For SCA, randomization
solutions break the dependence between input data (and/or cache
state) and execution time so that for the same input data and pro-
cessor state a su�ciently random execution time is experienced.
However, it remains to be proven whether a single solution can
tackle both, WCET and SCA issues.

In this context we make the following contributions:
À We make an in-depth analysis of the properties required to enable
MBPTA to deal with ji�ery timing behavior of applications running
on complex hardware. We also cover how randomization helps
dealing with SCA . We describe the vulnerability of randomization
support for MBPTA to speci�c SCA. Likewise, we assess the time
predictability of randomization support for SCA solutions showing
that they fail to meet MBPTA principles.
Á We propose Time-Predictable Secure Cache (TSCache) that pro-
vides increased resilience in front of speci�c SCA while keeping
MBPTA compliance. Hence TSCache reconciles security (robust-
ness against certain SCA) and safety (by adhering to MBPTA prin-
ciples to derive reliable timing budgets) in cache design.
Â With a simulator modeling a commercial automotive processor,
we experimentally show the resilience of our solution against the
Bernstein a�ack [7] while keeping MBPTA compliance.

2 MBPTA AND SCA PROTECTION
2.1 Random Caches for MBPTA
MBPTA delivers a probabilistic WCET (pWCET) distribution rep-
resenting the highest probability with which one run of a task
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Figure 1: MBPTA process and example of pWCET curve

exceeds a time bound. Figure 1 (right) shows an illustrative pWCET
distribution for which the probability of the task exceeding 7ms is
below 10−10 per run. MBPTA is well-se�led with industrial case
studies performed in automotive, avionics, and space [14, 17, 29].

O�en, in automotive, system integrators subcontract the devel-
opment of certain so�ware to di�erent so�ware providers. Across
so�ware integrations of the so�ware units contributed by each
provider, the objects of a function (i.e. globals, stack and code) can
change their addresses resulting in di�erent cache layouts, with
arbitrarily di�erent hits/misses and execution time [19]. In general,
it is unfeasible for users creating test scenarios during the analysis
phase (AP) accounting for the worst memory placement (and cache
layouts) that can occur during system’s operation phase (OP) [1].

Cache randomization [15, 24] ensures that a new random cache
layout is exercised on every program run so that the impact of
caches on execution time becomes independent of the actual mem-
ory layout. �is relieves users from controlling memory/cache
layout of objects since (random) cache layouts experienced during
AP and OP are probabilistically identical. MBPTA builds upon col-
lecting a sample of execution times of the task under analysis on
the target platform and verifying that those samples meet certain
statistical properties in order to properly apply statistical tools to
enable timing analysis, see Figure 1 (le�). In particular, MBPTA ap-
plies Extreme Value �eory (EVT) [10] that requires independence
and identical distribution of the execution times [10].

Cache randomization involves three main elements: a pseudo-
random number generator (PRNG), random placement and random
replacement, the la�er of which is optional. Several works show the
existence of low-overhead PRNG that provide enough quality in the
sequences produced to avoid correlations [3]. Regarding random
placement [15, 16, 24], it requires to adhere to certain properties
for MBPTA compliance (referred to as mbpta-px).

mbpta-p1 Time composability across incremental so�ware in-
tegration ensures that early phase WCET estimates (ideally at the
unit testing level) hold upon integration. �is decreases the risk
of costly detection of timing violations during late design phases.
Time composability, relates cache layouts, i.e. how addresses are
mapped to cache sets, during AP and OP. Time composability builds
on one of the following properties on random cache placement.

mbpta-p2 Full Randomness. Let us assume two di�erent ad-
dresses A and B, i.e. they di�er at least in one bit (excluding o�set
bits within the cache line) and a cache with S sets.

(1) A (and B) is randomly placed to di�erent sets for di�erent
seeds: �at is, there exist seeds seedi , seedj and seedk so
that SseediA , S

seedj
A , and SseediA = S

seedk
A .

(2) �e set where A and B are mapped to is not systematically
identical. �at is, for some seeds, seedi , SseediA , SseediB ,
whereas for others, seedj , S

seedj
A = S

seedj
B .

(3) It is required to keep the same cache-line alignment during
AP and OP so that ifA and B belong to di�erent cache lines
at OP, they also do in experiments carried out at AP.

Note that, for any seed, it is not needed that A and B have the
same probability of being mapped to the same set.

mbpta-p3 Partial APOP-�xed Randomness. In this case, random-
ization is carried out at memory page boundary.

(1) If A and B are in the same page boundary, the probability
to map them to the same set is null for any seed.

(2) If A and B belong to di�erent pages, the same principles
than for full-randomization apply.

(3) It is required to keep the same memory-page alignment
during AP and OP so that if A and B belong to di�erent
pages at OP, they also do in experiments carried out at AP.

2.2 Cache Timing Side-Channel Attacks (SCA)
With cache timing-based SCA, or simply SCA, the a�acker infers
information about the keys based on the execution time variability
caused by cache memories [7, 8, 25]. SCA exploit the di�erence
in time that memory access pa�erns expose; in particular, hit and
miss pa�erns that occur in caches. When these pa�erns are related
to the placement of the data in memory, for instance, a�ackers can
exploit the deterministic behavior of high-performance computing
caches to extract cryptographic keys [7]. In particular, SCA are
enabled by i) the time di�erence between accesses: misses on a
cache take longer to resolve than hits, hence leaking which data is
being used and present in cache, and which data is not there; and ii)
the use of table lookups that are input-dependent in cryptographic
algorithms (e.g. AES). In this paper we focus on the particular SCA
a�ack referred to as Contention Based a�acks [18].

Contention a�acks are based on con�icts between cache lines,
and include Prime-Probe and Evict-Time a�acks. Given that ac-
cesses to the lookup tables depend on the input data, an a�acker is
able to extract cryptographic keys by measuring the time it takes
to the victim or to itself to load certain data. Most of this kind
of a�acks assume that the a�acker shares the use of the proces-
sor with the victim [23]. However, it is not necessary to have a
contender in the same processor in order to perform contention
a�acks: Bernstein [7] proved that interference inside the victim’s
own accesses might be enough to reveal full cryptographic keys.

Let Ω be the universe of input states, Γ the universe of execution
times that a task can exhibit, tγω the execution time γ ∈ Γ of a
cryptographic task given the inputω ∈ Ω, and P (tγω ) the probability
of observing such execution time. For protection against SCA, sca-
p1 cache designs must ensure that no correlation exists between
the input data and the observed execution time. In this way, any
single input state can exhibit several execution times with equal
probability, thus preventing any a�acker from identifying the input
state from the execution time: ∀i ∈ Ω,∀д ∈ Γ | P (tдi ) =

1
|Γ | .



3 ASSESSING THE TIME-PREDICTABILITY
OF SECURE CACHE DESIGNS

�e RPCache [27] decouples cache interference of the a�acker
from the victim by randomizing interference whenever a memory
access from a process di�erent from the victim’s one contends for
the same cache line. On the event of a contention event that might
leak information, a random set is selected for replacement. So far
the MBPTA compliance of this design has not been assessed. In
particular we identify two features of this approach that fail to
meet MBPTA requirements: First, the timing behavior of the task
under analysis depends on the actual addresses accessed. �erefore,
WCET estimates do not hold across integration with other so�ware
units, which may change the actual addresses of the task and hence,
change its timing behavior arbitrarily. �is prevents achieving time
composability (requirement mbpta-p1). And second, contender
tasks produce cache evictions in random sets upon contention with
the task under analysis. Hence, since whether contention exists
is fully dependent on task’s contenders behavior, so is the case
for task’s cache evictions. �us, the WCET estimate obtained for
the task strongly depends on the contenders behavior, typically
unknown in early design phases (when WCET estimates need to be
successfully assessed against timing budgets). �is is against time
composability needed in ATS (mbpta-p1), as explained before.

�e Newcache [28] builds on the same concept as RPCache and
introduces several improvements to reconcile high-performance
and security, o�ering low miss rates and faster accesses. However,
the main concept and limitations for MBPTA-compliance behind
the placement policy remains the same as for RPCache.

Aciicmez [2] proposes a placement policy to secure instruction
caches that randomizes the cache set where addresses are placed
by XORing the index bits with a random number. Let’s assume
two addresses A and B and further assume that they have identical
index bits. Hence they are placed in the same set with modulo. By
XORing their (identical) index bits with a random number, the set
obtained is random, but identical for both addresses, hence breaking
mbpta-p2 principles. Furthermore, if A and B have di�erent index
bits they are placed in di�erent sets with modulo. By XORing their
(di�erent) index bits with a random number, the set obtained is also
di�erent, so they are placed in di�erent sets. �is breaks mbpta-
p2 since it is not the case that for di�erent seeds seedi and seedj :
SseediA , SseediB and S

seedj
A = S

seedj
B .

While [2] performs a random permutation of cache sets based
on the random number used, its timing behavior is strictly depen-
dent on the addresses and analogous to that of modulo placement,
breaking mbpta-p1. Also, performance (and so WCET) are strictly
dependent on the actual addresses accessed, so WCET estimates
become invalid upon integration since di�erent memory locations
of objects will lead to arbitrarily di�erent cache con�icts.

4 ASSESSING THE SCA-ROBUSTNESS
OF TIME-PREDICTABLE CACHE DESIGNS

For MBPTA compliance caches implement random placement and
(optionally) random replacement. Random placement, determines
the cache set where an address is mapped by operating the address
(tag and index bits) together with a random number called random
seed or just seed [15, 16, 24]. �e remaining address bits (o�set

Figure 2: (a) HashRP and (b) RM Cache Architectures

bits) are only used to select the particular word accessed within
the cache line. Given an address and a seed , random placement
delivers a �xed cache set. However, di�erently to the proposal by
Aciicmez [2], addresses are placed randomly and independently in
cache. For instance, addresses A and B are placed on the same set
for some seeds only. Hence, cache con�icts across di�erent seeds
are random, making actual addresses irrelevant when determin-
ing the cache sets they are mapped to. �is relieves the end user
from controlling memory mapping. Two di�erent designs imple-
ment random placement: hash-based parametric random placement
(hashRP) [16] and random modulo (RM) [15, 24], see Figure 2.

HashRP [16] operates on tag+index address bits with a seed by
means of rotator blocks and XOR gates so that con�icts in di�erent
sets are made random, see Figure 2 (a). HashRP poses no constraint
on whether cache lines need to belong to the same page. Its perfor-
mance is slightly lower than that of RM and modulo placement, but
it is compatible with second level (L2) and third level (L3) caches
whose way size may be much larger than the page size. HashRP
achieves Full Randomness (mbpta-p2).

RM [15, 24] takes as input the XORed bits of the seed with the
index and tag bits of the address, see Figure 2 (b). �e XORed
index bits are the input to a Benes Network [4] and the XORed
tag bits are used to drive the network. �e output of this Benes
Network is a randomized permutation of the index bits that point
to a particular cache set. RM is compatible with caches whose page
size is equal or a multiplier of the cache way size. O�en �rst level
(L1) caches use a way size equal to the page size. With RM each
address is placed in a random set with uniform probability, but
addresses in the same page are placed in di�erent cache sets. RM is
compatible with MBPTA when contents in each memory page are
preserved across integrations (easily achieved by current RTOS),
while allowing pages move freely in the memory space. Overall,
RM achieves Partial APOP-�xed Randomness (mbpta-p3).

Compliance with SCA protection properties. MBPTA com-
pliance for caches relies on random placement to exhibit random-
ized execution times. To achieve SCA robustness, random place-
ment must also decouple cache interference of the a�acker from
the victim. �at is, memory addresses from victim and a�acker’s
processes must not contend systematically in the same cache set.
Instead, each memory address from each process must be randomly
and independently placed in a set, thus randomizing interference. In
the following section we detail how to achieve time-predictability
and security against SCA in the same design.



Figure 3: Example of AUTOSAR app. and seedmanagement.

5 TIME-SECURE CACHES
In order to a�ain both, MBPTA-compliance and SCA robustness,
either MBPTA-randomization solutions are made SCA-aware or
sca-randomization solutions are made MBPTA-aware. Without loss
of generality, we opt for the former. SCA-aware caches cause varia-
tions in timing behavior for which achieving MBPTA-compliance
require speci�c ad-hoc solutions. Studying those solutions is part
of our future work.

HashRP and RM preserve the same seed during the execution of
a task, so that cache contents can be retrieved and kept consistent.
When cache contents are private to each task (there is no shared
data), then �ushing is not needed across di�erent tasks despite
using di�erent seeds since consistency is not a�ected. Whenever a
given task instance (job) executes, then either cache contents need
to be �ushed or the seed used in the previous job of the task has to
be used again to preserve consistency.

MBPTA-compliance adds light constraints on seed management.
Depending on the scope of the application of the WCET estimate,
which for instance de�nes whether exceedance thresholds apply to
the task as a whole or to each job independently, the granularity
at which the seed has to be changed varies. On one extreme of the
spectrum the seed is (randomly) set once before the execution of
the �rst job of a task. On the other extreme of the spectrum the
seed is changed right before every job release.

Interestingly MBPTA-compliance sets no constraint on the seeds
used for di�erent so�ware units (tasks), which threatens security
since two di�erent tasks could have the same seed and therefore
their behavior can be reproduced.

In the context of SCA, for contention a�acks if the a�acker task
is allowed to use the same seed as the task under analysis, then it
will have the same (random) placement as the victim. Hence, it will
have the ability to learn about the victim as we show later in the
evaluation section, using contention-based a�acks. Instead, if each
task is forced to have a di�erent seed , con�icts between a�acker’s
and victim’s cache lines are random and independent across runs,
thus defeating any contention-based a�ack, since the a�acker loses
the ability to create contention for speci�c victim’s data.

Implementing per-process unique seeds. In order to prevent
contention-based a�acks with hashRP and RM, a di�erent seed has
to be provided to each process which requires some Operating
System (OS) support, see Figure 3. In the context of AUTOSAR,
applications are divided into so�ware components (SWC), and each
SWC is further divided into runnables (the atomic unit of execution).
Each runnable has an associated execution period, see Figure 3,
where an application has 2 SWC (SWC1 and SWC2), and another 1
SWC (SWC3), consisting of 1, 2, and 2 runnables respectively. For
instance, runnable R2 executes every 10ms and it produces some
output read byR3. Also, SWC1 produces some output read by SWC2.

Communication across runnables in the same SWC can be done via
shared memory, whereas across SWP with message passing. Finally,
runnables of di�erent SWC are organized into tasks where each
task has a speci�c execution period. For instance, taskA includes all
runnables with period 10ms (R1 and R2). Runnables are scheduled
within a task preserving application dependencies.

In order to allow the communication between runnables of a
given SWC via shared memory, with the TSCache all runnables of
a given SWC must use the same seed. Preserving the same seed
across runnables of the same SWC also reduces the number of cache
�ushes and hence, overheads. In the case of runnables of di�erent
SWC, they may have been developed by di�erent providers (even
if they belong to the same application). Hence, they must not use
the same seed to prevent contention-based a�acks across SWCs1.
�is implies that, on a context switch across runnables of di�erent
SWC, the OS must store the seed in the task struct of the SWC,
empty the pipeline, and restore the seed of the incoming SWC.
�is way SWCs cannot learn from the cache behavior of the other
SWCs. �is is indicated in Figure 3 with red arrows and the seed
that needs to be set. Note that whenever the OS is invoked (e.g.
during R5), the OS seed needs to be used for memory consistency
and to prevent also contention-based a�acks. Finally, whenever
the whole hyperperiod elapses (20ms in the example), the OS needs
to set new random seeds and �ush cache contents. �is ensures
that execution times across runnables in di�erent hyperperiods are
random and independent. Note, however, that if the instances of
a given runnable within a hyperperiod use the same seed, their
timing is not independent (e.g. the two instances of R1). �e only
practical implication is that their – arbitrarily low – exceedance
probability is not independent and, if one of those instances would
ever overrun its pWCET, all other instances of this runnable in the
hyperperiod could also do it.

Despite seeds are changed o�en, cache is not �ushed, so the
overhead is negligible (emptying the pipeline and updating seed
registers). Instead, cache �ushing occurs only once per hyperperiod,
as already needed for MBPTA compliance.

6 CASE STUDY
6.1 Methodology

6.1.1 Berstein A�ack and Threat Model. Due to the current na-
ture of ATS, Bernstein’s a�ack [7] is a realistic scenario, since
a�acker and victim do not have to share the processor during
the contention a�ack, thus being less restrictive. Additionally the
vector of a�ack for Bernstein’s intrusion matches the processor
architecture currently used in ATS (i.e. the cache hierarchy).

We emulate two independent processors that execute crypto-
graphic operations independently, the victim and the a�acker. Both
processors execute 128-bit AES encryption functions. For the at-
tacker the key is known, for the victim, a randomized 128 bits key
is generated. We collect then timing measurements from the pro-
cesses of encryption, and then we perform a statistical correlation
on the timing pro�les of a�acker and victim to �nd the secret vic-
tim’s key. In the original Bernstein’s experiment, victim’s timing

1Note also that by enforcing di�erent seeds across SWCs the system is also protected
from memory a�acks exploiting so�ware vulnerabilities



Figure 4: Time variations with respect to average across all
di�erent values of input byte number 4.

measurements were taken on the victim’s machine to reduce inter-
ference. Hence, performing the analysis on-line or o�-line gives
exactly the same result. For this experiment victim and a�acker
obtain 107 samples of AES encryption operations each.

We try Bernstein’s a�ack on di�erent setups, basically extract-
ing for each 16-byte input value the average computation time per
byte and value. In particular, we evaluate the robustness of the
di�erent setups by executing the a�ack and observing how much
information (bits from the key) the a�ack is able to disclose. When
computing the correlation between execution times observed and
key values, we use for each byte the most stringent correlation
factor so that (1) the number of combinations preserved is mini-
mized while (2) keeping the correct value amongst those regarded
as feasible. Hence, this is the best case for the a�acker.

6.1.2 Experimental Setup. We use a cycle accurate simulator
based on SocLib [22], modi�ed accordingly to include the RP-
Cache, HashRP and RM caches. �e processor setup resembles
the ARM920T [5] a single-core automotive microcontroller chip.
We model a 5-stage processor; with 16KB, 128 sets, 4-way �rst level
instruction and data caches; and a 256KB, 2048 sets, 4-way L2 cache.
We evaluate four di�erent setups: (a) deterministic: a baseline vul-
nerable processor with time-deterministic caches; (b) RPCache: a
secure processor implementing the RPCache [27]; (c) MBPTACache:
a processor implementing a random cache for MBPTA compliance;
and (d) TSCache: our proposal to simultaneously handle timing and
SCA. For MBPTACache and TSCache, the L1 caches implement RM
while the shared L2 cache HashRP.

6.2 Results
6.2.1 SCA robustness. In Figure 4 we show how certain val-

ues for a given input (byte number 4) take slightly longer to be
processed on the baseline deterministic setup. �ose values with
higher execution time allow the a�acker to retrieve the value of
the particular byte of the key or, at least, reduce the number of
potential combinations drastically so that a brute force exploration
of the (limited) remaining combinations can break the key.

Figure 5 shows for each cache setup the di�erent bytes of the key
in the y-axis and their potential values in the x-axis. White cells
correspond to values e�ectively discarded by the a�ack, whereas
grey cells correspond, to values that could not be discarded. Black
cells correspond to the particular value of the key. Hence, the
whiter, the more e�ective the a�ack. As shown, Bernstein’s a�ack
is e�ective for half of the bytes on the deterministic setup (top le�
plot): the a�ack is able to determine 33 bits out of the 128 bits of
the key and other combinations are also discarded, the number of

Figure 5: E�ectiveness of the Bernstein’s attack.

remaining combinations in decreases down to 280. �is number
of potential key values is below the 2128, decreasing the cost of a
brute force a�ack by a factor of 248.

For the RPCache, the same bytes as for the baseline setup are vul-
nerable to the a�ack. However, the RPCache proves to be stronger
in front of this a�ack by keeping the number of potential keys to
explore at 2108. Still, some information is leaked. When using the
MBPTACache (bo�om le� plot), vulnerability to the a�ack occurs
in di�erent bytes as for the other caches. Overall, the number of
potential key values is 2104, thus close to the case of the RPcache.

Finally, with the proposed TSCache, the best case a�ack is unable
to disregard any value for any byte. Since TSCache makes place-
ment fully random and independent of the actual address accessed
across di�erent seeds, Bernstein’s a�ack fails to reveal any infor-
mation, thus preserving key strength at 2128. In fact, Bernstein’s
a�ack regards some values as more likely to be the key ones for
several bytes, but discarding the key value for some of those bytes.
Hence, TSCache, rather than preventing the a�ack from inferring
any information by transforming it into noise, fools the a�acker by
providing wrong information that would not allow a brute force
a�ack to reveal the key if fewer combinations are explored.

Generalization. Contention-based a�acks, such as Bernstein’s
one, rely on deterministic eviction of controlled cache lines. Hence,
Prime-Probe and Evict-Time A�acks, both contention-based, are
thwarted by using secure time-predictable caches since the cache
layouts of di�erent processes are completely independent and ran-
domized. As explained in section 4, those a�acks rely on the ability
to reproduce and infer from timing pro�les the inputs used by the
victim. By having di�erent seeds for victim and a�acker tasks,
their input state di�ers and so the timing pro�les also di�er. Hence,
contention-based a�acks cannot relate execution time variations
with any other information, thus failing as Bernstein’s one.

6.2.2 MBPTA-compliance. TSCache achieves Partial APOP-�xed
Randomness properties (mbpta-p3), maintaining MBPTA-compliance,
see Section 2. We further validated that the observed execution
time ful�lls the independence and identical distribution proper-
ties as required by EVT as used in MBPTA. We use the Ljung-Box
independence test [9] to test autocorrelation for 20 di�erent lags
simultaneously, a very strong independence test. We have also



applied the Kolmogorov-Smirnov two-sample i.d. test [13]. All our
samples have passed both tests for a α = 0.05 signi�cance level.

6.2.3 Overheads. RM and HashRP area and performance over-
heads are as follows. Area. RM and HashRP caches have already
been implemented on a LEON3-based multicore processor causing
no operating frequency degradation on an FPGA [15]. In terms
of area, while we cannot isolate the cost of cache modi�cations,
making the whole processor MBPTA-compliant (so modifying all
caches, bus arbitration and FP units included) and adding an en-
hanced tracing feature costed less than 1% processor area increase.
Performance. hashRP and RM have been shown to have no e�ect
on the maximum operating frequency of their FPGA implemen-
tation [15]. Also, they have similar cache behaviour to that of
standard modulo placement. Specially RM has shown a miss rate
1% far from modulo [15], hence with negligible impact on average
performance. �e impact in performance due to the seed change
is also negligible. Seed changes are produced for security reasons
for which restoring the seed of the process to be executed next
would only require to wait until all accesses in �ight of the pre-
vious process have been served, which would take tens of cycles.
Also changing the seed for time-predictability reasons this implies
�ushing the cache. However this is required at coarser granularity,
hence the relative cost of �ushing is contained.

7 RELATEDWORK
RM and hashRP caches have been implemented on a commercial de-
sign [26] showing negligible area and operating frequency impact
are negligible. While performance cost of RM and hashRP has been
shows low w.r.t. default deterministic cache designs in industrial
case studies [14, 17, 29], RM and hashRP are only needed for time-
or security-critical tasks. �ey can be disabled at will for e�ciency
reasons for other applications by bypassing RM and hashRP mod-
ules, and forwarding index bits from the address directly to cache
decoders since RM and hashRP implementation is li�le intrusive
and does not a�ect the design of the main cache components.

Several works mitigate di�erent cache SCA [12, 23]. In this con-
text, cache partitioning has been proposed to solve both, contention-
based SCA [11, 27] and to achieve time predictability [20]. �e idea
is to disable interference by isolating cache lines across di�erent
processes. However, cache partitioning severely limits the e�ec-
tiveness of shared caches in multicores a�ecting both, performance
and the ability to share data across threads running in di�erent
cores [21]. �is relates to the di�culties to partition also all cache
bu�ers and queues, as well as to the performance impact of reduced
cache associativity per partition.

Randomization mitigates the amount of information leaked [11,
18, 27]. However, as stated previously, the applicability of these
solutions to timing analysis is inherently compromised. Overall, to
the best of our knowledge this is the �rst work proposing hardware
designs that address both, timing analysis and SCA concerns.

8 CONCLUSIONS
Increasing performance needs in ATS require the adoption of high-
performance hardware features such as caches, that however, chal-
lenge time-predictability and make systems vulnerable to timing-
based SCA. While those concerns have been addressed individually,

existing solutions have not been proven compatible for both con-
cerns. We analyzed the suitability of the solutions devised for each
concern against the requirements of the other, proving that they fail
to achieve both goals simultaneously.We propose TSCache which
e�ectively delivers time-predictability for MBPTA and robustness
against contention cache-timing SCA
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