In-situ Elucidation of the Active State of Co-CeO_x Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt

Feng Zhang,¹ Zongyuan Liu,² Shuhao Zhang,¹ Nusnin Akter,¹ Robert M. Palomino,² Dimitriy

Vovchok,³ Ivan Orozco,³ David Salazar, ² José A. Rodriguez,^{2,3} Jordi Llorca,⁴ Jaeha Lee,⁵

DoHeui Kim,⁵ Wenqian Xu,⁶ Anatoly I. Frenkel,¹ Yuanyuan Li,¹

TaeJin Kim,^{1*}and Sanjaya D. Senanayake^{2*}

¹Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA

² Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 USA

³ Chemistry Department, Stony Brook University, Stony Brook, NY 11794 USA

⁴ Institute of Energy Technologies, Department of Chemical Engineering and Barcelona

Research Center in Multiscale Science and Engineering, Technical University of Catalonia, 08019 Barcelona, Spain.

⁵School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-744, Republic of Korea.

⁶ X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439

Corresponding Author: * SDS: Bldg. 555A, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, 631-344-4343 <u>ssenanay@bnl.gov</u> * TJK: Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, <u>taejin.kim@stonybrook.edu</u>

ABSTRACT

The dry reforming of methane was systematically studied over a series (2-30 wt%) of Co (\sim 5nm in size) loaded CeO₂ catalysts, with an effort to elucidate the behavior of Co and ceria in the catalytic process using *in-situ* methods. For the systems under study, the reaction activity scaled with increasing Co loading, and a 10 wt% Co-CeO₂ catalyst exhibiting the best catalytic activity and good stability at 500 °C with little evidence for carbon accumulation. The phase transitions and the nature of active components in the catalyst were investigated during pretreatment and under reaction conditions by ex-situ/in-situ techniques including X-ray diffraction (XRD) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). These studies showed a dynamical evolution in the chemical composition of the catalysts under reaction conditions. A clear transition of $Co_3O_4 \rightarrow CoO \rightarrow Co$, and Ce^{4+} to Ce^{3+} , was observed during the temperature programmed reduction under H₂ and CH₄. However, introduction of CO₂, led to partial re-oxidation of all components at low temperatures, followed by reduction at high temperatures. Under optimum CO and H₂ producing conditions both XRD and AP-XPS indicated that the active phase involved a majority of metallic Co with a small amount of CoO both supported on a partially reduced ceria (Ce^{3+}/Ce^{4+}). We identified the importance of dispersing Co, anchoring it onto ceria surface sites, and then utilizing the redox properties of ceria for activating and then oxidatively converting methane while inhibiting coke formation. Furthermore, a synergistic effect between cobalt and ceria and the interfacial site are essential to successfully close the catalytic cycle.

KEYWORDS: cobalt, ceria, in-situ XRD, AP-XPS, methane dry reforming

INTRODUCTION

Natural gas and biogas are both methane enriched and have become cheap, abundant alternatives to traditional fossil fuels such as petroleum and coal.¹⁻³ In addition to being combusted with O_2 as a source in the production of electricity or heat, natural gas and biogas can also be used as chemical feedstock in the manufacture of commodity chemicals, and this is achieved indirectly by reforming CH₄ to syngas (H₂ and CO) and subsequently converting syngas to upgraded chemicals.⁴⁻⁵ There are three oxidative pathways to produce syngas from methane: (1) partial oxidation, (2) steam reforming and (3) dry reforming:

 $2CH_4 + O_2 \rightleftharpoons 4H_2 + 2CO; \Delta H_{298} = -71 \text{ kJ/mol}$ $\tag{1}$

$$CH_4 + H_2O \rightleftharpoons 3H_2 + CO; \Delta H_{298} = 206 \text{ kJ/mol}$$

$$\tag{2}$$

$$CH_4 + CO_2 \rightleftharpoons 2H_2 + 2CO; \Delta H_{298} = 246 \text{ kJ/mol}$$
(3)

The dry reforming of methane (DRM) is the most difficult one of these processes but it is desirable as an initial step for the Fischer Tropsch (F-T) process or methanol synthesis, owing to its 1:1 production ratio of CO and H_2 .⁶⁻⁹ It utilizes CH₄ and CO₂ mixture which simplifies the separation process of both natural and biogas.¹⁰⁻¹² Moreover, both methane and CO₂ are active greenhouse gases, and the exploitation of them in the DRM reaction could potentially mitigate global warming and climate change.¹³⁻¹⁶ From a fundamental perspective, in the DRM process, CO₂ offers a poor source of O to the C-H bond activation process, on account of large activation barriers to extract O from this molecule unlike the case of O₂ and H₂O.¹⁷ As a result, the DRM reaction involves a soft oxidative activation during the conversion of CH₄. Since the interaction with CH₄ and CO₂ can change the chemical state of a catalyst, a detailed study of the DRM process using *in-situ* techniques can lead to a fundamental knowledge on how to activate CH₄ selectively by avoiding pathways to complete oxidation, hence benchmarking catalyst behavior under difficult reaction conditions.

In principle, the DRM process is challenging due to a combination of several factors and places difficult demands on catalyst design. First, because of its highly endothermic nature, elevated reaction temperature is a necessity and a suitable catalyst with high refractory properties is needed to lower the energy barrier and stabilize the reaction, while activating two difficult reactants (CH₄ and CO₂). In addition, at temperatures above 300 °C, the reverse water gas shift (RWGS) can affect the yield of H₂ by producing H₂O as an undesired byproduct. Most critically, a good DRM catalyst must also have high coking tolerance, as carbon deposition from incomplete or partial oxidation of the reactants can alter catalyst performance and affect stability. Noble metals (e.g. Rh, Ru, Pd, Ir, and Pt) possess good activity and coke resistance for this reaction but they are susceptible to rapid deactivation at elevated reaction temperature by particle sintering or poor dispersion, in addition to their high cost and low abundance.¹⁸⁻²¹ The cheaper and more earth abundant alternatives (e.g. Ni, Co, and Fe) present comparable activity as the noble metals but suffer from their own ubiquitous catalytic properties that can either enhance or hinder DRM performance. Ni and Co based catalysts in particular have shown significant activity for this reaction and the addition of Co to Ni based catalysts leads to enhanced stability and resistance for coke formation owing to the Cooxophilicity.^{6,22-29} It was proposed that the presence of O on Co leads to a more feasible pathway for CO₂ mediated activation of CH₄, and the mechanism is highly dependent on the enhanced oxophilicity that is unique to Co.²⁵ This aspect is particularly complex to follow when Co is coupled to ceria, a reducible oxide well known for ability to transfer oxygen readily.

Oxides itself have typically yielded poor chemistry for CH₄ activation, yet some new results reveal that low temperature activation is indeed possible.³⁰ Used as supports for metal catalysts, the nature of the oxide support could alter the catalytic activity through metal-support interactions.^{20,31-32} This is in particular true, when reducible supports are involved, which can offer oxygen to the admetal (or directly to the reaction) and thus tune the chemistry exhibited by the metal.³³ Meanwhile, the support can also induce electronic effects on a metal that manifest in a distinct chemical activation.^{32,34} The oxide support capacity to store and transfer oxygen can be a major influence in catalytic behavior. For instance, the oxygen mobility in CeO₂-ZrO₂ supported Ni-Co bimetallic catalysts could lead to stable and coke free catalysts.³⁵ The ability for oxygen release and uptake of ceria could be behind the activity and stability of ceria-supported cobalt catalysts for the methane dry reforming reaction.^{23,31,33,36}

In this work, we synthesized a series of ceria-supported cobalt catalysts varying in a systematic way the cobalt loading. The structural, morphological and chemical properties of the prepared catalysts were examined by BET surface area analysis, high-resolution transmission electron microscopy (HRTEM) and *ex-situ* X-ray characterization. We focused our study particularly on structure-activity relationship as exhibited under reaction conditions by coupling *in-situ* X-ray diffraction (XRD) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) measurements. Our studies show a dynamical evolution in the chemical composition of the catalysts under reaction conditions.

EXPERIMENTAL SECTION

Synthesis of Co-CeO₂ catalysts. Incipient wetness impregnation method was used to prepare a series of Co-CeO₂ catalysts with different Co loadings (2, 4, 6, 8, 10 and 30 wt%). The intended amount of cobalt (II) nitrate hexahydrate (Co(NO₃)₂·6H₂O, ACS grade, 98.0~102.0%, manufactured by Alfa Aesar) was first dissolved in de-ionized water at room temperature, and the solution was dropwise added to cerium oxide (CeO₂, HAS 5, manufactured by Rhodia) for impregnation. The mixed slurries were then aged at room temperature for 12 hr and dried overnight at 120 °C. The resulting products were finally calcined at 400 °C (5 °C/min) for 6 hr with 100 ml/min compress airflow in a tubular furnace (Lindberg/Blue Mini-Mite Tube Furnace, Model TF55030A-1). The synthesized catalysts were crushed and sieved to 425 um size before further test.

Catalyst Characterization. N₂ adsorption/desorption isotherms were measured on a Micromeritics ASAP 2010 apparatus at liquid N₂ temperature of -196 °C. Before analysis, 0.1 g of catalyst was pretreated at 300 °C for 4 hr under evacuation condition. The specific surface area was calculated by using the Brunauer-Emmett-Teller (BET) method.

Scanning transmission electron microscope (STEM) and high-resolution transmission electron microscope (HRTEM) images were taken for 2, 8, 10 and 30 wt% Co-CeO₂ as-prepared catalysts, and for 8 and 30 wt% Co-CeO₂ post-experiment catalysts. Samples were dispersed in an alcohol suspension and a drop of the suspension was placed over a grid with

holey-carbon film. The microscope used for STEM and HRTEM was a FEI Tecnai F20 equipped with a field emission electron gun operating at 200 kV.

The *ex-situ* synchrotron X-ray diffraction (XRD) data of the as-prepared samples were collected at 17BM of the Advanced Photon Source with monochromatic Cu K α radiation (λ = 0.452602 Å).

The *in-situ* H₂-TPR (temperature-programmed reduction), CH₄-TPR and DRM XRD tests were also performed on a 10% Co-CeO₂ catalyst at beamline 17BM ($\lambda = 0.452602$ Å). 10 cc/min H₂ and 10 cc/min CH₄ were used for H₂-TPR and CH₄-TPR, respectively, and the samples were heated from room temperature to 700 °C with a 2 °C/min ramping rate. For the methane dry reforming reaction, a 10 cc/min flow rate of pure H₂was first used to pretreat the catalyst at 550 °C for 1hr. The gas line was subsequently purged by He at room temperature before introducing a 10 cc/min flow of a gas mixture containing 20% CO₂, 20% CH₄, and 60% He for a 1:1 CO₂/CH₄ molar ratio. The reactor temperature was programmed by a Eurotherm controller, and the samples were stepwise heated up to 500 °C with a 10 °C/min ramping rate.

Ex-situ X-ray absorption near edge structure (XANES) measurements of 10 wt% Co-CeO₂ catalyst was performed at beamline 2-2 at Stanford Synchrotron Radiation Light source (SSRL), SLAC National Accelerator Laboratory. The Co K edge data were collected in fluorescence yield mode using a 13-channels Ge detector.

Catalytic activity test. A series activity tests were carried out on various cobalt loading samples for the DRM reaction. The powder catalysts were loaded into a silica capillary (0.9mmID, 1.1mmOD) and mounted on a flow system. The reaction condition was described above as in-situ XRD DRM test, and the catalytic activity of different cobalt loading samples was captured and calculated through mass-spectrometer and gas chromatography devices. In addition, CH₄ TPR was also performed on 4, 10 and 30 wt% Co-CeO₂ catalysts, bulk CeO₂ and bulk Co₃O₄ to compare the methane activation of these samples and investigate possible metal-support interactions. The catalysts were heated to 700 °C with a 10 °C/min ramping under pure CH₄, and the effluent gas was monitored by a mass-spectrometer.

AP-XPS. A commercial SPECS AP-XPS chamber equipped with a PHOIBOS 150 EP MCD-9 analyzer at the Chemistry Division of Brookhaven National Laboratory (BNL) was

used for XPS analysis(resolution: ~0.4 eV). The Ce 3d photoemission line with the strongest Ce⁴⁺ feature (916.9 eV) was used for the energy calibration. The powder sample (10 wt% Co-CeO₂ catalyst) was pressed on an aluminum plate, and then loaded into the AP-XPS chamber. 10 mTorr of H₂ was used to pretreat the sample at 550 °C for 1hr, before a reaction mixture of 75 mTorr of CH₄ and 75 mTorr of CO₂ was introduced into the reaction chamber through a high precision leak valve. O 1s, Ce 4d, Co 2p and Ce 3d XPS regions were collected at room temperature, 400 ° C and 500 ° C under the reaction gas environment.

RESULTS

Characterization of the as-prepared catalysts. The XRD patterns of the synthesized Co-ceria samples with different Co loadings are shown in Figure 1a. There are only two phases detected in the calcined catalysts. The majority of the diffraction comes from fluorite structure of ceria. The spinel Co₃O₄with characteristic peaks at 5.58° (111), 10.70° (311), and 18.31° (440)³⁷ started to appear in the 4 wt% Co-CeO₂ catalyst with a gain in the intensity of the peaks with increasing metal loadings to 30 wt%. The absence of these characteristic peaks of Co₃O₄ in 2 wt% catalysts is due to the poor crystallinity of cobalt at such small loading, which is hard to be captured by XRD (Figure 1 and Table 1), while the sharp Co₃O₄ peaks in 30 wt% catalyst indicates a large concentration of Co₃O₄ crystallites present in the sample. BET data (Table 1) shows that the surface areas of the samples continually decrease with increasing metal loading, primarily due to the closing of pores of ceria by increased amount of Co.

XANES measurements for the 10 wt% catalyst were performed for the as-prepared and H_2 pretreated catalysts (Figure 1b). The as-prepared catalyst was mainly identified as Co₃O₄, as evident by the similar line shape to the Co₃O₄ reference. After H_2 treatment, the significant decrease of Co₃O₄ white line associated with the appearance of metallic Co pre-edge feature indicate the transformation of Co₃O₄ to Co⁰, while a small amount of Co²⁺ still remained after the pretreatment.

Figure 1. (a) *Ex-situ* XRD patterns of fresh catalysts, including 2, 4, 6, 8, 10 and 30 wt% Co on CeO₂. (b) *Ex-situ* XANES of 10 wt% Co on CeO₂, as-prepared and after H₂ pretreatment in comparison to Co metal, CoO and Co₃O₄ standards.

Co (wt%)	Co (wt%) refinement result	Surface Area (m²/g)
0	0	232
2	0.5	191
4	3.8	180
6	5.9	175
8	7.6	158
10	9.8	153
30	25.0	108

Table 1. XRD refinement result of sample cobalt loadings and BET surface area of the prepared catalysts (low weight fraction refinement value of 2 wt% sample can be attributed to poor crystallinity from small metal loading)

HRTEM images show well distributed and homogeneous nano-particles for the prepared Co-CeO₂ samples, except for the sample with an admetal loading of 30 wt%, in which Co agglomeration takes place (Figure S1a). Two particles a and b can be distinguished from the Fourier Transform (FT) images inset in Figure 2a, with particle "a" showing spots at 2.86 Å, which are characteristic of the (220) planes of aCo_3O_4 spinel, and particle "b" showing spots at 3.12Å corresponding to the (111) planes of ceria. The two separated particles mean that cobalt is not forming a solid solution with ceria, but they are in intimate contact at a sharp interface, as shown in Figure 2b. The morphology of the Co₃O₄ is hemispherical and appears anchored to CeO₂. The selected-area electron diffraction (SAED) pattern displayed in Figure 2a shows rings coming from CeO₂ as well as spots corresponding to Co₃O₄ (the spot at 2.44 Å indicates (311) plane of the cobalt spinel), while no spots for CoO or metallic Co were found. The HRTEM image of a spent 8 wt% sample is provided in FigureS1b; it shows signs of slight

sintering, but two separated CeO_2 and Co_3O_4 phases can still be identified and no existence of coke is evident.

Figure 2. HRTEM images of (a) fresh 8 wt% Co-CeO₂, and (b) fresh 10 wt% Co-CeO₂.

Interaction of Co-CeO₂ with pure H₂ and CH₄. *In-situ* XRD patterns for H₂-TPR are displayed in Figure 3. These data clearly show the evolution of the cobalt chemical state during the reduction. The diffraction pattern was quantified by Rietveld refinement as a function of temperature in Figure 4. It can be seen that a first phase transition of Co₃O₄ to CoO took place around 200 °C, and CoO was further reduced to Co⁰ near 280 °C. The lower panel of Figure 4 depicts the ceria lattice parameter and particle size variations during the H₂-TPR process. In addition to the thermal expansion, when ceria is reduced, the increased ionic radius of reduced Ce³⁺, together with the electrostatic repulsion between oxygen vacancies and the surrounding cations could expand the ceria lattice abruptly.³⁸ Thus the sharp increase of CeO₂ lattice parameter between 200 and 230 °C can be regarded as the partial reduction of Ce³⁺ to Ce³⁺ on the ceria surface, and this partial reduction is shown to be right after the completion of Co₃O₄ reduction to CoO. The second steep increase of the CeO₂ lattice parameter starting at 450 °C can be attributed to the further bulk reduction of CeO₂at higher temperatures.³⁹⁻⁴¹

Figure 3. Sequential *in-situ* XRD patterns acquired while performing H₂-TPR on a 10 wt% Co-CeO₂ catalyst.

Figure 4. Cobalt-containing phases weight fractions (top panel), CeO₂ particle size (bottom panel), and ceria lattice parameter (bottom panel) as a function of temperature during H₂-TPR on a 10 wt% Co-CeO₂ catalyst.

In-situ XRD results for CH₄-TPR (Figure 5) reveal a similar Co₃O₄ reduction to metallic cobalt as that detected during the H₂-TPR. However, the temperatures for Co₃O₄ \rightarrow CoO \rightarrow Co⁰ transitions in a CH₄atmosphere, around 270 and 350 °C respectively, are both higher than that in a H₂ environment (200 and 280 °C, see Figure 3). Rietveld refinement of the CH₄-TPR diffraction peaks in Figure 6 points to a two-stage reduction of CeO₂. The first one initiates around 280 °C, right after the CoO formation, which corresponds to the surface reduction of Ce⁴⁺, and the second one around 600 °C could be attributed to bulk reduction of the CeO₂ lattice. The reduction of both cobalt oxides and ceria implies the viability for pretreating the catalyst in CH₄atmosphere. Furthermore, CH₄ as a pretreatment agent could also mitigate

sintering at higher temperatures as CeO_2 particle grew up dramatically to 40 nm at 700 °C under H₂ condition, while it was 16 nm under CH₄.

Figure 5.Sequential *in-situ* XRD patterns collected during CH₄-TPR on a 10 wt% Co-CeO₂ catalyst.

Figure 6. Co-containing phases weight fraction (top panel), CeO₂ particle size (bottom panel), and ceria lattice parameter (bottom panel) changes during CH₄-TPR.

Methane activation and catalytic performance of Co-CeO₂ for the DRM reaction. Figure 7a depicts gases evolutions during CH₄-TPR over a 10 wt% Co-CeO₂ sample. The production of CO₂, CO, and H₂O were identified at lower temperatures, implying a reduction process of the sample by CH₄. The first release of CO₂/H₂Oat around 140 °C (region ①) can be attributed to desorption of surface adsorbed CO₂/H₂O from air on ceria defects, which can also be observed in a plain CeO₂ CH₄-TPR experiment (Figure 7b). The second (region ②) and fourth (region ④) carbon dioxide emissions at around 280 and 370 °C come from the two-step reduction of Co₃O₄ to CoO and then to metallic Co; meanwhile, the small bump of carbon dioxide (region ③), which overlaps with CO₂ peak in region ② and ④ is due to surface reduction of ceria (see also second CO₂ release in Figure 7b), and these results are in accordance with the CH₄-TPR *in-situ* XRD results (Figure 6) . Figure 7a shows the decomposition of methane took place near 520 °C after the formation of Co, as evidenced by the sharp methane consumption peak along with a continuous methane reaction tail and H_2 emission until 700 °C. The simultaneous production of CO and H_2O indicates the participation of O from ceria into CH₄ decomposition which sustains the continuous reaction without significant surface deactivation by carbon deposition.⁴²⁻⁴⁵

Methane consumption over different samples in Figure 7d manifests the importance of metal-support interactions. Neither the plain CeO₂ sample nor the Co₃O₄ sample shows significant and continuous CH₄ consumption during TPR reaction as sample with a 10 wt% Co loading on ceria. Plain CeO₂, without existence of cobalt, only displays a slightly decrease of CH₄ above 600 °C which is also in consistent with literature reported results,⁴³⁻⁴⁵ while Co₃O₄ exhibits a sharp consumption of CH₄ but the onset temperature is much higher than seen for Co-CeO₂ catalysts and the methane level soon resumes after the initial uptake(also see Figure 7c),which probably results from the rapid deactivation of the sample from carbon deposition owing to the absence of an oxidative support. This result demonstrates that only cobalt in combination with ceria performs the most effective activation of methane, which highlights the critical role of metal-support interactions. In the meanwhile, 10 wt% Co-CeO₂ sample also shows a slightly lower methane consumption temperature than other samples, with much more CO and H₂ production at 700 °C (Figure S2), and this can be attributed to a better metal dispersion of 10 wt% Co-CeO₂ catalyst.⁴²

Figure 7. Gas profiles of CH₄-TPR over (a) 10 wt% CoCeO₂, (b) bulk CeO₂, (c) bulk Co₃O₄, and (d) CH₄ consumption for different catalysts.

The catalytic activities for different Co loadings were compared through normalized H₂ and CO production at 500 °C. After normalization (done by weight of the catalyst and cobalt loadings), a clear trend can be seen in Figure 8 that the catalytic activity initially increases gradually with the increase of the metal loading. The highest activity is achieved when the Co loading reaches 10 wt%, which agrees with the CH₄ TPR results (Figure 7d), and a further increase of the amount of Co to 30 wt% significantly decreases the catalytic activity. For 10 wt% Co-CeO₂ sample at 500 °C, the conversion rate of CH₄ is around 8% and CO₂ is around 11%; the turnover frequency is approximately 23 s⁻¹ for CH₄ and 32 s⁻¹ for CO₂, and the H₂ selectivity is 25%, with carbon ratio at around 96%. (See supporting information for calculations)

Figure 8. Normalized CO and H_2 production at 500 °C (taking into the account of the weight of the catalyst and the cobalt loading) during the methane dry reforming reaction.

In-situ structure change under reaction conditions. *In-situ* XRD measurements were carried out for the 10 wt% Co-CeO₂ sample under the DRM conditions. The sample was first pre-reduced in H₂ at 550 °C and the DRM reaction was carried out after switching the gas to a CO₂, CH₄ and He mixture at room temperature. The *in-situ* XRD profile recorded in Figure 9 reveals that Co₃O₄ was reduced to metallic Co through a CoO transition phase during the H₂ pretreatment, which is consistent with the H₂ TPR experiment. After switching to DRM reactant gases, the CoO reemerged at 200 °C, and once stabilized, this CoO phase remained intact until the temperature raised up to 500 °C, as evident in the middle panel of Figure 10. Starting from 500 °C, a significant amount of CoO was gradually reduced to metallic Co. One can correlate this phase development to the gas evolution monitored by the mass-spectrometer shown in Figure 10 top panel, where apparent consumption of CO₂ and CH₄ as well as the production of CO and H₂ was observed when the temperature reached 500 °C, and this clearly demonstrates the importance of metallic Co for the production of syngas. Moreover, the rapid

expansion of the CeO₂ lattice in the temperature range from 200 to 300 °C and from 400 to 500 °C in Figure 10 bottom panel, suggests a reduction of Ce⁴⁺ into Ce³⁺. However, when comparing the CeO₂ lattice in H₂ pretreatment and DRM reaction atmosphere, as shown in Figure 11, a decreased CeO₂ lattice can be observed during DRM reaction. This can be explained by the presence of CO₂ which, when activated, heals a fraction of oxygen vacancies in the pre-reduced CeO_{2-x}, implying the partial re-oxidation of Ce³⁺ to Ce⁴⁺during the DRM reaction.

Figure 9. Sequential *in-situ* XRD patterns collected during the DRM reaction on a 10 wt% Co-CeO₂ catalyst.

Figure 10. Top panel: Gas composition measured with a mass spectrometer at the outlet of the reactor during the DRM reaction at different temperatures. In the reactor, 4mg of the 10 wt% Co-CeO₂ catalyst were exposed to a reaction mixture of 2 ml/min CH₄, 2 ml/min CO₂ and 6 ml/min He. Middle and bottom: Results from *in situ* XRD for the corresponding phase

evolution of CoO and Co, and the CeO₂ lattice parameter at different temperatures under the DRM reaction.

Figure 11. Comparison of CeO₂ lattice parameter changes during H₂ pretreatment and during the DRM reaction as a function of temperature.

Methane dry reforming reaction characterized by AP-XPS. As the information retrieved from the *in-situ* XRD is primarily bulk sensitive and identifies the crystalline phase of the catalysts, an AP-XPS experiment was conducted for the 10 wt% Co-CeO₂ sample to provide further information regarding the surface chemical state of the catalysts under reaction conditions. Results in Figure 12 confirm the partial reduction of Ce^{4+} to a mixture of Ce^{3+} and Ce^{4+} , as well as the reduction of Co_3O_4 to metallic Co during H₂ pretreatment. After switching gas to CH₄ and CO₂, partial re-oxidation of pre-reduced Ce^{3+} to Ce^{4+} is evident even at room temperature, seen from the attenuated intensity of Ce^{3+} peak as well as the growing intensity of characteristic Ce^{4+} feature at 25 °C under the DRM conditions. However, as the sample is heated to 400 and 500 °C, Ce^{4+} was further reduced. Meanwhile, the H₂ reduced metallic Co phase remains predominantly as Co^0 during the DRM reaction, with a slight enhancement of

the metallic Co peak intensity being observed from room temperature to 500 °C. The O1s data also supports the aforementioned information but in addition shows some CO_x species that present on the catalyst surface, implying CO_x (eg. carbonate, carboxyl, bicarbonate) as possible reaction intermediates.

Figure 12. AP-XPS profiles in the Ce 3d, Co 2p and O1s of 10 wt% Co-CeO₂ catalyst as prepared (a), after H₂ pretreatment (b) and during the DRM reaction (CO₂ and CH₄ pressure) at room temperature (c), 400 °C (d) and 500 °C (e).

DISCUSSION

The structural and chemical state of Co and ceria under reaction conditions. As mentioned in the Introduction, several models or hypothesis have been proposed to explain the performance of Co-ceria catalysts during the DRM reaction.^{23,35} Our *in-situ* studies with XRD and XPS point to dynamic changes of catalysts that undergo structural and chemical transformations upon reaction with CH₄ and CO₂ at elevated temperatures. From the results of both H₂- and CH₄-TPR, the Co₃O₄ in the as-prepared Co-ceria sample experienced two-step

phase transformations from Co_3O_4 to CoO and then to metallic Co (Figure 4 and 6), whereas CeO_2 was partially reduced to CeO_{2-x} (Figure 12). These chemical changes can be expressed as:

$$Co_3O_4-CeO_2 + H_2/CH_4 \rightarrow Co-CeO_{2-x} + H_2O(g) / H_2(g) + CO_2(g)/CO(g)$$
 (4)

After switching the gas to a mixture of CO_2 and CH_4 , CeO_{2-x} was first re-oxidized via the activation of CO_2 even at room temperature, as evidenced by Figure 12, and significant fraction of oxygen vacancies in CeO_{2-x} were healed by CO_2 as described below:

$$Vac + CO_2(g) \rightarrow O-Vac + CO(g)$$
 (5)

On the other hand, the reemergence of CoO at 200 °C (Figure 9 and 10), implies the strong oxophilic nature of cobalt that leads to the formation of CoO through an oxygen transfer from either CO₂ or the lattice O of ceria, which can be interpreted by following possible reactions:

$$\operatorname{Co} + \operatorname{CO}_2(g) \to \operatorname{CoO} + \operatorname{CO}(g) \text{ and/or}$$
 (6)

$$Co + O-Vac \rightarrow CoO + Vac$$
 (7)

At temperature above 200 °C, the reduction of the catalyst evolves as a result of the CH_4 activation. It reduces ceria first (Figure 10 bottom panel, rapid increase of ceria lattice from 200 to 300 °C), and then reacts with CoO when the temperature reaches to 300 °C:

$$CeO_2 + CH_4(g) \rightarrow CeO_{2-x} + CO(g) + H_2O(g) / H_2(g)$$
(8)

$$CoO + CH_4(g) \rightarrow Co + CO(g) + H_2O(g) / H_2(g)$$
(9)

In general, the catalytic oxidation cycle led by the activation of CO₂, reactions (5), (6) and (7), and the reduction cycle led by the activation of CH₄, reactions (8) and (9),compete with each other during the DRM process, with the catalyst evolving towards a stable chemical state between 300 and 500 °C (Figure 10). At temperatures below 500 °C, the oxidative effect by CO₂ activation dominates and most of the cobalt phase remains as Co²⁺. At temperatures above 500 °C, the reduction cycle imposed by methane conversion becomes significant and metallic Co starts to exceed Co²⁺. The formation of a substantial amount of metallic Co simultaneously leads to the largely increased catalytic activity (Figure 10 top panel) through the reactions:

$$Co-CH_4 \rightarrow Co-C(a) + 2H_2(g) \tag{10}$$

$$C(a) + O-Vac \rightarrow CO(g) + Vac$$
 (11)

Our *in-situ* studies indicate that a balance between reduction by CH_4 and oxidation by CO_2 must be taken into consideration when optimizing or designing new metal/oxide catalysts for the DRM process.

Effect of metal dispersion and pretreatment temperature. The metal-support interface could play an important role in the catalytic performance of the DRM reaction and metal dispersion on the support is one essential aspect to be considered for the improvement of catalytic performance.^{20,46-50} The high activity for methane activation (Figure 7d and S2) and methane dry reforming (Figure 8) seen for the 10 wt% cobalt on ceria catalyst could be attributed to an increase of interface sites upon raising metal loading, whereas the 30 wt% loading of Co on ceria causes substantial agglomeration of Co particles (Figure S1a) leads to a loss of Co-CeO₂ active sites at the metal-support interface and consequently impairs their interaction with the CeO₂ substrate, which deteriorates the catalytic performance during the DRM reaction.⁵¹

In addition, a Reitveld refinement of the *in-situ* XRD results for H₂-TPR in Figure 4 explains the appropriate H₂ pretreatment temperature to be 550 °C. From Figure 4, one sees that at around 450 °C, a metallic Co phase starts to develop significantly, but when the temperature reached up to 550 °C, CeO₂ particle size also increases rapidly from 10 nm to 40 nm. This substantial increases the ceria particle size and significantly lowers the metal dispersion which in turn decreases the amount of active sites present at a Co-CeO₂ interface, and this accounts for the poor activity of the sample pretreated at 600 and 700 °C (Figure S3).⁵²

Formation of carbonaceous species and comparison with Ni based catalyst. Owing to the existence of Co^{2+} until the end of the experiment at 500 °C, neither deposited carbon (Figure S1b) nor cobalt carbide (Figure 9) is found during the DRM reaction, which is different from the Ni behavior observed in Ni/CeO₂ catalyst.^{33,53-54} Metastable cobalt carbides (Co₂C and Co₃C) form and maintain at relatively low temperature, both between 450 and 500 °C.⁵⁵⁻⁵⁷ However, small amount of cobalt still remains as Co²⁺ in our reaction even at 500 °C. These oxygen atoms in the metal phase combine with the surface carbon resulting from CH₄ dissociation or CO disproportionation, and suppress the formation of cobalt carbides and coke.

$$Co-O + C(a) \rightarrow Co + CO(g)$$
(12)

Additionally, it has been reported that Ni based catalysts shows a higher C-H bond activation rate than that of Co catalysts at a lower temperature range while Co exhibits better performance at higher temperatures.²⁵ Our previous results on a model catalytic system also show that metallic Co in close contact with ceria has lower methane activation barrier than the case of Ni.⁵⁸ In this study, we also compared the activity of 10 wt% Co-CeO₂ and 10 wt% Ni-CeO₂ prepared by the same wetness impregnation method and found that Ni exhibited better activity than Co below 500 °C but deactivated rapidly as temperature went high. However, the activity and stability of Co-ceria catalysts at 500 °C is much better than that of Ni catalysts (Figure S4 and S5). At lower temperature range, part of cobalt exists as cobalt (II) oxide and the amount of the metallic active phase decreases, but as temperature increases to 500 °C, more metallic Co is produced and readily participates into the reaction (Figure 10). The interaction between ceria and Co as well as the better oxophilicity of Co play the essential roles here to achieve the better activity and stability.

In several of the catalytic measurements the appearance of H_2O as a byproduct of the RWGS is prevalent for this process, hindering the ability to produce H_2 selectively. In addition the presence of H_2O , its dissociated -OH form may be a critical component on the surface. It is very likely that both Co metal and Ce³⁺ are very efficient at dissociation of H_2O and the resulting hydroxylation of surface sites may occur. This aspect though not studied systematically here may influence possible pathways to produce CO and H_2 through steam reforming like processes.

Metal-support interactions and the important role of ceria. The H₂-TPR study of plain CeO₂ revealed that the reduction of surface ceria (calcined at 400 °C) began at 200 °C and stabilized after 400 °C; further bulk reduction of ceria requires the temperature above 650 °C.³⁹⁻⁴¹ In contrast, the *in-situ* H₂-TPR experiment of our 10 wt% Co-CeO₂ sample shows that the surface reduction of ceria takes place between 200 to 230 °C and the bulk reduction occurs around 450 °C (Figure 4). At the same time, the reduction of Co₃O₄ in our sample experiences two steps, from Co₃O₄ to CoO at 200 °C and from CoO to metallic Co at 280 °C (Figure 4), whereas in the literature, it has been reported that the reduction of pure Co₃O₄ initiated at around 200 °C, with the majority of metallic Co phase stabilized above 330 °C.⁵⁹⁻⁶²

Comparing with other supports like alumina, which forms a weakly reducible CoAl₂O₄ phase and hinders the reduction process; or titania, which requires high reduction temperature to obtain an active phase, the ceria support interacts with cobalt phases and promotes the reduction process of both ceria and cobalt.^{61,63-66} The ease of reduction by ceria supported catalyst and its better performance in the CH₄-TPR reaction (Figure 7 and S2) are attributed to the capacity of ceria to store and release oxygen atoms, which enhances the oxygen mobility between the support and metal phases; these mobile oxygen atoms also facilitate the re-oxidation of surface deposited carbon and further help to avoid catalyst deactivation. Additionally, the oxygen vacancies created in the ceria lattice will stabilize the supported metals, herein making ceria an advantageous support for the catalyst.^{51,67}

CONCLUSION

We have carefully examined the behavior of Co and ceria in catalysts for the dry reforming of methane using several *in-situ* experimental methods and as a function of Co metal loading. The role of each component under reaction conditions is complex and dynamic. Clear transitions of $Co_3O_4 \rightarrow CoO \rightarrow Co$ and $Ce^{4+}\rightarrow Ce^{3+}$ occur upon exposure to hydrogen or methane. CO_2 dissociates on the reduced surfaces and acts as an oxidant agent. The interaction between the Co and ceria, and the role of the reducible oxide are essential for a complex series of pathways that lead to the production of CO and H₂. Our results indicate that under reaction conditions, when product formation is optimum, the active state of the catalyst is predominantly metallic Co, with a small presence of CoO, supported on a partially reduced ceria (Ce^{3+}/Ce^{4+}). The Co component is responsible for the activation of CH₄, mediated through CO₂ donating O through the ceria support.

ASSOCIATE CONTENT

Supporting Information

STEM image of 30 wt% Co-CeO₂ catalyst, and HRTEM image of 8 wt% post-experiment sample; CO and H₂ production of different samples during CH₄-TPR at 700 °C; CO production

of 10 wt% Co-CeO₂ after pretreatment at different temperatures; comparison of catalytic activities of the 10 wt% Ni-CeO₂ and 10 wt% Co-CeO₂ during the DRM reaction; 10 wt% Co-CeO₂ stability test; equations used for the calculations of the TOF and conversions.

ACKNOWLEDGMENT

The research carried out at Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences under contract No. DE-SC0012704. This work used resources of the Advanced Photon Source (17B-M, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. J. L. is a Serra Húnter Fellow and is grateful to the ICREA Academia Program and MINECO/FEDER grant ENE2015-63969-R.

REFERENCES

- (1) Babarao, R.; Jiang, J. *Energy Environ Sci* **2009**, 2 (10), 1088-1093.
- (2) Tippayawong, N.; Thanompongchart, P. Energy 2010, 35 (12), 4531-4535.
- (3) Kismurtono, M. Int J Eng Technol **2011**, 11, 83-86.
- (4) Ghorbanzadeh, A.; Norouzi, S.; Mohammadi, T. J. Phys. D: Appl. Phys. 2005, 38 (20), 3804.
- (5) Dry, M.; Steynberg, A. Stud. Surf. Sci. Catal. 2004, 152, 406-481.

(6) Budiman, A. W.; Song, S.-H.; Chang, T.-S.; Shin, C.-H.; Choi, M.-J. *Catal. Surv. Asia* **2012**, 16 (4), 183-197.

- (7) Wang, S.; Lu, G.; Millar, G. J. Energy Fuels **1996**, 10 (4), 896-904.
- (8) Bradford, M.; Vannice, M. Cat. Rev. Sci. Eng. 1999, 41 (1), 1-42.
- (9) Bradford, M. C.; Vannice, M. A. Appl. Catal., A 1996, 142 (1), 73-96.
- (10) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. Chem. Eng. Sci. 2006, 61 (12), 3893-3906.
- (11) Belmabkhout, Y.; De Weireld, G.; Sayari, A. Langmuir **2009**, 25 (23), 13275-13278.
- (12) Fan, M. S.; Abdullah, A. Z.; Bhatia, S. ChemCatChem 2009, 1 (2), 192-208.
- (13) Peters, R. L. Bioscience 1985, 35 (11), 707-717.
- (14) Rodhe, H. Science 1990, 248 (4960), 1217.

(15) Huang, A.; Xia, G.; Wang, J.; Suib, S. L.; Hayashi, Y.; Matsumoto, H. *J. Catal.* **2000**, 189 (2), 349-359.

- (16) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. Energy Fuels 2005, 19 (6), 2545-2555.
- (17) Lavoie, J.-M. Frontiers in chemistry **2014**, 2.
- (18) Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Int. J. Hydrogen Energy 2006, 31 (5), 555-561.
- (19) Nematollahi, B.; Rezaei, M.; Khajenoori, M. Int. J. Hydrogen Energy **2011**, 36 (4), 2969-2978.

(20) Liu, Z.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T.-D.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; Carrasco, J.; Busnengo, H. F.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. *Angew. Chem. Int. Ed.* **2016**, 128 (26), 7581-7585.

(21) Rostrupnielsen, J.; Hansen, J. B. J. Catal. 1993, 144 (1), 38-49.

(22) Ayodele, B. V.; Khan, M. R.; Lam, S. S.; Cheng, C. K. Int. J. Hydrogen Energy **2016**, 41 (8), 4603-4615.

(23) Ayodele, B. V.; Khan, M. R.; Cheng, C. K. *International Journal of Hydrogen Energy* **2016**, 41 (1), 198-207.

(24) AlSabban, B.; Falivene, L.; Kozlov, S. M.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.-L.; Cavallo, L.; Basset, J.-M.; Takanabe, K. *Appl. Catal., B* **2017,** 213, 177-189.

(25) Tu, W.; Ghoussoub, M.; Singh, C. V.; Chin, Y.-H. C. J. Am. Chem. Soc. 2017, 139 (20), 6928-6945.

(26) San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.; Román-Martínez, M. *Appl. Catal., A* **2009,** 371 (1), 54-59.

(27) Ay, H.; Üner, D. Appl. Catal., B **2015**, 179, 128-138.

- (28) Zhang, J.; Wang, H.; Dalai, A. K. J. Catal. 2007, 249 (2), 300-310.
- (29) Takanabe, K.; Nagaoka, K.; Nariai, K.; Aika, K.-i. J. Catal. 2005, 232 (2), 268-275.

(30) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356 (6335), 299-303.

- (31) Lustemberg, P. G.; Ramírez, P. J.; Liu, Z.; Gutierrez, R. A.; Grinter, D. G.; Carrasco, J.;
- Senanayake, S. D.; Rodriguez, J. A.; Ganduglia-Pirovano, M. V. ACS. Catal. **2016**, 6 (12), 8184-8191.
- (32) Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. ACS. Catal. 2017, 6493-6513.

(33) Xu, W.; Liu, Z.; Johnston-Peck, A. C.; Senanayake, S. D.; Zhou, G.; Stacchiola, D.; Stach, E. A.; Rodriguez, J. A. *ACS.Catal.* **2013**, 3 (5), 975-984.

(34) Senanayake, S. D.; Evans, J.; Agnoli, S.; Barrio, L.; Chen, T.-L.; Hrbek, J.; Rodriguez, J. A. *Top. Catal.* **2011**, 54 (1), 34-41.

(35) Djinović, P.; Osojnik Črnivec, I. G.; Erjavec, B.; Pintar, A. Appl. Catal., B 2012, 125, 259-270.

(36) Mayernick, A. D.; Janik, M. J. J. Phys. Chem. C 2008, 112 (38), 14955-14964.

(37) Edla, R.; Gupta, S.; Patel, N.; Bazzanella, N.; Fernandes, R.; Kothari, D.; Miotello, A. *Appl. Catal.,* A **2016**, 515, 1-9.

(38) Marrocchelli, D.; Bishop, S. R.; Tuller, H. L.; Yildiz, B. *Adv. Funct. Mater.* **2012**, 22 (9), 1958-1965.

(39) López, J. M.; Gilbank, A. L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. *Appl. Catal., B* **2015,** 174, 403-412.

(40) Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J. C.; El Fallah, J.; Hilaire,

L.; Le Normand, F.; Quemere, E.; Sauvion, G. N.; Touret, O. *J. Chem. Soc., Faraday Trans.* **1991,** 87 (10), 1601-1609.

- (41) Giordano, F.; Trovarelli, A.; de Leitenburg, C.; Giona, M. J. Catal. 2000, 193 (2), 273-282.
- (42) Zhu, T.; Flytzani-Stephanopoulos, M. Appl. Catal., A 2001, 208 (1), 403-417.
- (43) Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. J. Catal. 1998, 175 (2), 152-160.
- (44) Otsuka, K.; Sunada, E.; Ushiyama, T.; Yamanaka, I. Stud. Surf. Sci. Catal. 1997, 107, 531-536.
- (45) Kiyoshi, O.; Tetsuya, U.; Ichiro, Y. Chem. Lett. 1993, 22 (9), 1517-1520.
- (46) Lv, X.; Chen, J.-F.; Tan, Y.; Zhang, Y. Catal. Commun. 2012, 20, 6-11.

(47) Iglesia, E.; Soled, S. L.; Fiato, R. A. J. Catal. 1992, 137 (1), 212-224.

(48) Senanayake, S. D.; Ramírez, P. J.; Waluyo, I.; Kundu, S.; Mudiyanselage, K.; Liu, Z.; Liu, Z.; Axnanda, S.; Stacchiola, D. J.; Evans, J. *J. Phys. Chem. C* **2016**, 120 (3), 1778-1784.

(49) Gonzalez-Delacruz, V. M.; Pereñiguez, R.; Ternero, F.; Holgado, J. P.; Caballero, A. *ACS.Catal.* **2011,** 1 (2), 82-88.

(50) Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R.; Axnanda, S.; Liu, Z.; Sanz, J. F.; Liu, P.; Rodriguez, J. A.; Stacchiola, D. J. *Angew. Chem. Int. Ed.* **2013**, 52 (19), 5101-5.

(51) Özkara-Aydınoğlu, Ş.; Özensoy, E.; Aksoylu, A. E. *Int. J. Hydrogen Energy* **2009**, 34 (24), 9711-9722.

- (52) Soykal, I. I.; Sohn, H.; Ozkan, U. S. ACS. Catal. 2012, 2 (11), 2335-2348.
- (53) Djaidja, A.; Libs, S.; Kiennemann, A.; Barama, A. Catal. Today 2006, 113 (3), 194-200.

(54) Guczi, L.; Stefler, G.; Geszti, O.; Sajó, I.; Pászti, Z.; Tompos, A.; Schay, Z. *Appl. Catal., A* **2010**, 375 (2), 236-246.

- (55) Nagakura, S. J. Phys. Soc. Jpn. **1961**, 16 (6), 1213-1219.
- (56) Ishida, K.; Nishizawa, T. J. Phase Equilib. **1991**, 12 (4), 417-424.
- (57) Meschel, S. V.; Kleppa, O. J. J. Alloys Compd. 1997, 257 (1), 227-233.
- (58) Liu, Z.; Lustemberg, P.; Gutiérrez, R. A.; Carey, J. J.; Palomino, R. M.; Vorokhta, M.; Grinter, D.

C.; Ramírez, P. J.; Matolín, V.; Nolan, M.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. *Angew. Chem. Int. Ed.*, n/a-n/a.

(59) Castner, D. G.; Watson, P. R.; Chan, I. Y. J. Phys. Chem. 1990, 94 (2), 819-828.

- (60) Bulavchenko, O. A.; Cherepanova, S. V.; Malakhov, V. V.; Dovlitova, L. S.; Ishchenko, A. V.; Tsybulya, S. V. *Kinet. Catal.* **2009**, 50 (2), 192-198.
- (61) Jacobs, G.; Ji, Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall, C. L. *Appl. Catal., A* **2007,** 333 (2), 177-191.
- (62) Ward, M.; Boyes, E.; Gai, P. J. Phys. Conf. Ser. 2014, p 012009.
- (63) Lin, H.-Y.; Chen, Y.-W. Mater. Chem. Phys. 2004, 85 (1), 171-175.
- (64) Arnoldy, P.; Moulijn, J. A. J. Catal. 1985, 93 (1), 38-54.
- (65) Paryjczak, T.; Rynkowski, J.; Karski, S. J. Chromatogr. A 1980, 188 (1), 254-256.
- (66) Nagaoka, K.; Takanabe, K.; Aika, K.-i. Appl. Catal., A 2003, 255 (1), 13-21.
- (67) Wolfbeisser, A.; Sophiphun, O.; Bernardi, J.; Wittayakun, J.; Föttinger, K.; Rupprechter, G. *Catal. Today* **2016**, 277, 234-245.