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Abstract—This paper studies a dual-level response surface
methodology (DRSM) coupled with Booth’s algorithm using a sim-
ulated annealing (BA-SA) method as a multiobjective technique for
parametric modeling and machine design optimization for the first
time. The aim of the research is for power maximization and cost
of manufacture minimization resulting in a highly optimized wind
generator to improve small power generation performance. The
DRSM is employed to determine the best set of design parameters
for power maximization in a surface-mounted permanent magnet
synchronous generator with an exterior-rotor topology. Addition-
ally, the BA-SA method is investigated to minimize material cost
while keeping the volume constant. DRSM by different design func-
tions including mixed resolution robust design, full factorial design,
central composite design, and box-behnken design are applied to
optimize the power performance resulting in very small errors.
An analysis of the variance via multilevel RSM plots is used to
check the adequacy of fit in the design region and determines the
parameter settings to manufacture a high-quality wind generator.
The analytical and numerical calculations have been experimen-
tally verified and have successfully validated the theoretical and
multiobjective optimization design methods presented.

Index Terms—Dual response surface methodology, Booth’s
algorithm, synchronous machine, finite element analysis, multi-
objective optimization.

I. INTRODUCTION

IN THE process of optimizing electrical machines, the major
objective is to define a set of key design parameters that in-

clude geometry, topology, and material choice. These appease
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specified design specifications and constraints, such as output
power, which is observed as a major concern. In this paper, the
research objectives focus on developing an application-oriented,
design optimization method based on deterministic and optimal
design methods due to their reliability, simplicity, and practical-
ity. The robust design is investigated in different subject domains
such as numerical analysis (FEA) and analytical models for the
evaluation of performance.

Recently, SPMSGs have been employed for power generation
to implement high-power, high-torque, high-efficiency, small-
scale, and low-maintenance systems. The PM generator applied
to conventional small-scale wind power generation has been
designed with an exterior rotor topology because its structure
has the desired advantage to generate power with higher output
power density at low speeds which are often found in urban
applications [1].

The DRSM, as a multi-level empirical modeling method, is
investigated for the modeling and analysis of problems in which
a number of variables (treatments) impact the observed result;
and where the objective is to optimize the quantity of inter-
est. This also avoids the time-consuming drawbacks of direct
simulation which result in significant costs. The methodology
is particularly applicable to the design of yields or processes,
which can be sensitive to uncontrollable variables. A local and
global sensitivity analysis is necessary to consider for the noise
variables in the design. Then, a combination of settings can be
applied to the control variables, which allows the process output
to remain robust and flexible to changes in the noise variables.

In terms of the optimization process and yielded design, there
are many approaches, which fit the robust design requirements.
The mixed resolution robust design (known as MR-RD) has
been observed to decrease the number of experimental runs,
and is compared to the FFD approach. A conceptual study of
this surface methodology was reviewed by D. C. Montgomery
[2]. G. Lei et al. [3] have studied how to apply multidisciplinary
machine design optimization using RSM. A very good mathe-
matical basic modelling of RSM in electrical machines has been
presented in these references.

L. Jolly et al. [4] presented how the process of integrating a
single level RSM with a genetic algorithm can be applied to a
multi-objective optimization. This study dealt with a newer and
common CCD function to estimate the optimum operation point
at a PMSM. This work suffers a comparison among all design
functions used, and also experimentally could be verified.
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TABLE I
INITIAL DESIGN OF THE MACHINE GEOMETRY

Variable Value Unit

Dro/Dri 460/430 mm
Dso/Dsi 419/228 mm
ls 100 mm
Aslot 802.7 mm2

Lm 8 mm
δg 0.6 mm
Sw 15 mm
Parc 100 °e
Sd 50 mm
Qs 36
αp 0.55
2P 40
m 3

X. K. Gao et al. [5] investigatedM optimization using RSM
with a zoom-in windows method and mixed-resolution CCD
(MR-CCD) experiment design. A complex and modern de-
sign function, mixed-resolution CCD has been theoretically
presented. The article lacks comparative results to show the
advantages of the proposed robust optimization method.

In X. Liu and H. W. Fu’s paper [6], a dynamic dual-RSM
was studied to optimize copper losses, torque, and efficiency.
All mentioned references were studies on PM synchronous ma-
chines. This article used also a complex model, where particle
swarm and RSM (using radial basis function) methods are em-
ployed to improve torque and efficiency. Although, the work
suffers an experimental investigation.

In this study, a novel approach is applied, where a modified
Booth’s multiplication algorithm utilizing simulated annealing
(BA-SA) is used to develop design optimization process of elec-
trical machines. Simulated annealing (SA) is a methodology for
solving unconstrained and bound-constrained optimization is-
sues. SA results from statistical thermal physics and simulates
the cooling process of a material from its melting-state at a high
temperature to its crystallization-state at a low temperature. This
physical process can be used to develop a new nonlinear opti-
mization method, the SA algorithm, in which the model param-
eters are observed as state vectors and the objective function is
observed as an energy function of the physical system. The na-
ture of SA can be referred to as a heuristic Monte Carlo method
with a higher efficiency and effectiveness [7], [8].

In this paper, a multi-objective optimization is employed to
improve the output power performance and the SPMSG’s’ cost.
The electromagnetic behavior of a SPMSG is investigated by
various key design parameters through DRSM with different
design optimization approaches and the analysis of variance
(ANOVA) method, where the MR-RD as a modern design func-
tion is proposed. Following this, sorted results are used in the
BA-SA to determine the optimum point, but not necessarily
the perfect point to meet both objectives of maximizing output
power and minimizing materials cost.

II. INITIAL DESIGN AND PROBLEM DEFINITION

The objective of this study relies on a permanent magnet
synchronous AC generator with exterior rotor topology applied
to a wind turbine. The initial design parameters are given in
Table I. The stator contains 36 segmented teeth with closed slot

Fig. 1. Schematic of the SPMSG, a) generated mesh, and b) magnetic-field
distribution using FEA.

TABLE II
DESIGN CONTROLLABLE TREATMENTS

Controllable design treatments Coded design treatments

All variables are normalized −1 0 1
x1 Magnet thickness (mm), lm 5 6.5 8
x2 Air-gap length (mm), lg 0.5 1.17 2
x3 Slot width (mm), Sw 8 12 15.5

Fig. 2. Design parameters of the studied SPMSG.

modulation in order to reduce the amplitude of cogging torque
significantly (Fig. 1). A 2D FE model is studied to examine of
magnetic flux distribution. The mesh is automatically generated
[Fig. 1(a)], and the magnetic field distribution is shown in
Fig. 1(b).

The objective of the design is to maximize the output power
while remaining cost-effective. Table I demonstrates the design
parameters of a 1st-level RSM optimization, in which the current
density fixed as 1.22 A/ mm2. Based on Table II and Fig. 2
define, the three main design treatments (controllable variables).
Also, the three noise variables for the MR-RD approach are
considered, in which the under-cut angle of the stator tooth tip
(δst) changes between 25◦ ≤ z1 ≤ 45 ◦, air-gap between PMs
(La−pm) which varies between 3 mm ≤ z2≤ 5 mm, and the tooth
width between 10 mm ≤ z3≤ 20 mm.

The BBD, CCD, MR-TD and FFD approaches are calculated
with 13, 15, 25, 27 runs, respectively.

Fig. 3 shows how the pre-analysis and post-analysis are
linked to provide the optimum operation point for output power
maximization with an acceptable performance. The FEA uses
LUA scripting to analyze the electromagnetic performance of
the SPMSG. Afterwards, finalized output data from the design
block is integrated with the multi-objective optimization block
(yellow block) to find the best set the treatment combinations
through DRSM using the least squares method (LSM) with
different design functions. Then, Booth’s algorithm using SA
is used to minimize the cost of the materials and maximize the
output power.
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Fig. 3. Flowchart of the proposed multi-objective design optimization.

III. DUAL-LEVEL RESPONSE SURFACE METHODOLOGY

DRSM is a multi-level collection of mathematical and statis-
tical techniques used to detect the “best-fit” using the MR-RD,
BBD, CCD, and FFD approaches. The analysis is performed in
order to observe the effect of a number of chosen variables on
a quantity of interest. The objective is always to optimize the
response in the physical system. Since the model integrates a
curvature in the system to approximate the response, this study
requires the second-order polynomial model as given

y1 = β0 +
k∑

i=1

βi xi +
k∑

i=1

βi i x
2
i +

∑

i< j

∑βi j
xi x j + εi j (1)
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(2)
where x and b represent a (k × 1) vector of the treatments and
first-order regression coefficients, respectively. B is a (k × k)
symmetrical matrix that consists of pure quadratic coefficients
(β̂i i ) in the main diagonal elements, and for off- diagonal el-
ements, one-half the mixed quadratic coefficients β̂i j , i �= j . ε
is the error observed in the response of the first-level y1. εij
integrates any other sources of variability in the experiment
consisting of measurement variability arising from noise and
differences among units [9].

A normalization of treatments is needed in order to eliminate
unit differences and prevent rounding errors by next regression

Fig. 4. The DOE models using, a) FFD, b) CCD, and c) BBD approaches.

analysis. Each treatment (ζi ) can be coded with a variable (xi )
via its maximum and minimum as follows

xi = ζi − ζ i

�ζi
(3)

ζi = ζi max + ζi min

2
and �ζi = ζi max − ζi min

2
(4)

A. Mixed Resolution Robust Design (MR-RD)

The MR-RD approach is used to improve the quality of
yields and processes by 25 runs, and has as the defining relation
I = x1x2x3z1 = z1z2z3 = x1x2x3z2z3. The quality of results are
improved, whilst a higher level of performance is obtained via
three controllable and three uncontrollable variables. The high-
est possible performance is obtained by determining the opti-
mum combination of design treatments [10]. The consistency
of performance can be improved by making the yield/process
insensitive to uncontrollable treatments (known as noise). In
this approach, the optimum design should be determined by us-
ing design of experiment (DOE) principles. Also, performance
consistency is achieved by carrying out the experiment under
the influence of the noise treatments. The DOE using the MR-
RD approach can economically satisfy the needs of problem
solving and yield/process design optimization of electrical ma-
chines as long as the number of runs is significantly reduced.
This results in a large emphasis on size and cost of experiments.
Additionally, the challenge arises in obtaining this response due
to the influence of the uncontrollable noise factors. Sets of noise
factors, by adding variability to the system, effect the target re-
sponse [11], [12]. The function model of this design is validated
in [10].

B. The Full Factorial Design (FFD)

This type of design is known as the most expensive experi-
mental design. It consists of the largest number of experiment
which consider only controllable treatments (33) = 27 runs.
FFD refers to the three levels of treatments as low, intermediate,
and high (x1, x2, x3) as needed to observe the true response
η′, which consists of an experimental error (or noise) known
as εexp. This error is given by the measurement block with a
variance (σ 2). In geometrical terms, the observations should
be simulated on the vertex of a cube, in the middle of its faces
and edges, and at the origin. The cube model of this design is
illustrated in Fig. 4(a) [4].

C. The Central Composite Design (CCD)

A Box-Wilson Central Composite Design, generally referred
to as a central composite design (CCD), is studied by many
statisticians in the RSM. It is perhaps the most popular class of
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TABLE III
ANOVA TABLE OF THE FITTED MODEL

Source of Degree of Sum of Mean
Variation freedom Squares (SS) Square

Regression p − 1 SSR =
n∑

i=1
(̂yi − y)2 SSR/(p − 1)

Residual (Error) N − p SSE =
n∑

i=1
(yi − ŷi )2 SSE/(N − p)

Total N − 1 SST =
n∑

i=1
(yi − y)2

TABLE IV
ADD / SUBTRACT SIGNED-MAGNITUDE GENERATOR

Operation Add Magnitudes Subtract Magnitudes

A > B A < B A = B

(+A) + (+B) + (A+B)
(+A) + (−B) +(A − B) −(B − A) +(A − B)
(−A) + (+B) −(A − B) +(B − A) +(A − B)
(−A) + (−B) −(A + B)
(+A) − (+B) +(A − B) −(B − A) +(A − B)
(+A) − (−B) +(A + B)
(−A) − (+B) −(A + B)
(−A) − (−B) −(A − B) +(B − A) +(A − B)

second order designs. The design involves 15 runs that consist
of the eight vertices of the first cube at (±1, ±1, ±1) as cube
points, and six star points at (±1.682, 0, 0), (0, ±1.682, 0), and
(0, 0, ±1.682) plus the origin of the fist cube (0, 0, 0). After the
first-level optimization by the first cube, the origin of the second
cube (second-level) is provided by the optimum points of the
observation (y1). The cube model of this design is illustrated in
Fig. 4(b) [4].

D. The Box-Behnken Design (BBD)

The BBD is well known as a subset of the FFD, and is the
most economical design due to only requiring 13 runs, which
is less than other conventional designs such as FFD and CCD.
Therefore, it is comparable to the design of MR-RD only if its
error is as small as that of MR-RD. In terms of complexity, it can
be called the simplest type of design in comparison to the others.
This is considered when these experiments cannot be realized
for practical reasons such as issues with physical constraints.
The cube model of the design is illustrated in Fig. 4(c) [13].

Table III presents the analysis-of-variance (ANOVA) results,
which can be used to check the adequacy of fit in the design
region for each level of optimization. The observation of this
table is output power of the generator [14].

IV. BOOTH’S ALGORITHM USING SIMULATED

ANNEALING (SA)

Booth’s Algorithm (BA) is a method particularly applicable
for multiplying signed numbers integrated by SA to solve elec-
trical machine issues in this study. This begins with the addition
and subtraction of the signed-magnitudes in different config-
urations (Table IV), as there are multiple ways to compute a
yield. BA is a well-known multiplication algorithm, which uti-
lizes two complementary notations of signed binary numbers for
multiplication. BA is also called a uniform shift method which
examines multiple portions of the multiplier simultaneously to

Fig. 5. The general flowchart of modified N-Bit bus Booth’s algorithm.

determine multiples of the multiplicand to be added to the par-
tial yield. This algorithm requires no sign correction for the two
complementary notation numbers and the decoding of the mul-
tiplier may initiate from either direction. The main drawback of
the algorithm is that it still relies on a process which needs n
shifts and an average of n/2 additions for an n-bit multiplier. A
boosted multiplication speed can be reached by evaluating more
than two bits of the multiplier at a time as the process can be
simply seen with an n-bit multiplier (Fig. 5). In this figure, B0
to Bn−1 stand for the multiplicand process (MP), C-block is a
1-bit register block, Q0 to Qn−1 represent the multiplier process
and the dashed lines show control signal orders [15], [16].

In this study, a novel method, known as Simulated Annealing
(SA), was integrated with Booth’s algorithm. SA is a method
for solving unconstrained and bound-constrained optimization
issues. The method models the physical process of heating a ma-
terial and afterward slowly lowering the temperature to reduce
defects, thus minimizing the system energy. At each iteration
of the SA method, a new point is randomly generated. The dis-
tance of the new point from the current point, or the extent of
the search, is based on a probability distribution with a scale
proportional to the temperature. The algorithm accepts all new
points which lower the objective, but also, with a certain proba-
bility, points which raise the objective. Through accepting points
that raise the objective, the algorithm avoids being trapped at
local minima, and is able to search globally for more possible
solutions. An Annealing schedule is selected to systematically
reduce the cost of the SPMSG as the algorithm proceeds. As the
temperature decreases, the algorithm reduces the extent of its
search to converge to a minimum cost of the SPMSG.

The objective function, validated in [17], is defined as

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) = C
C0

+ P0
P

g1 (x) = 0.92 − η ≤ 0
g2 (x) = 450 − Pout ≤ 0
g3 (x) = Jc − 4 ≤ 0
g4 (x) = �θTp − 75 ≤ 0
g5 (x) = �θTc − 80 ≤ 0
g6 (x) = Bi − 2.1 ≤ 0
g7 (x) = s f − 0.7 ≤ 0

(5)

where C0, and P0 stand for current cost of design and output
power of the generator, and C and P are the optimum values of
C0 and P0, respectively. Under these conditions, the efficiency
is greater than 92%, the output power > 450 W at a minimum
speed (15 rpm), and the current density (Jc) should not exceed
4 A/mm2 [3]. The probability of acceptance by SA can be given
by Equation (6) where � shows [new objective - previous ob-
jective], and T stands for the current temperature.

Sa = 1/1 + exp (�/max (T )) (6)
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V. OPTIMIZATION AND ANALYSIS

In this section, a discussion is presented on how the multi-
objective optimization, with an aim of maximization of output
power in conjunction with a minimization of the generator’s
cost, will be investigated. This will be approached through a
multi-disciplined study of the generator’s cost where the results
of optimization will be discussed.

A. Optimization Constraints

To consider the local constrained optimization of the d-axis
current at each operating point based on [18], for objective
Popt.(i) in each operating point, the d-axis current id,i should
be evaluated. To complete the description of this optimization
problem, a number of conditions are required to be defined.
Some constraints must be satisfied at each operating point. They
can be qualified as instantaneous constraints:

a) Rated current: ∀i,
√

i2
d,i + i2

q,i ≤ √
3.Ir

b) Rated voltage: ∀i,
√

v2
d,i + v2

q,i ≤ √
3.Vrated

c) EM saturation for each part of the machine as

∀i, Bi (max) ≤ Bsat.

d) The losses evaluation by ∀i, Ploss,i < Ploss
e) Magnet and winding temperature-rise by

max (�θTP M )i ≤ (�θTP M )max

max (�θTc)i ≤ (�θTc)max

where maximum induction level Bi (max) is 1.9 T. Each oper-
ating point of the profile is treated independently, and current
control is optimized at every operating point to not only min-
imize the PMSM’s drive losses but also satisfy the conditions
above. A current control strategy (direct and transverse axis cur-
rent) is used to contribute to the extension of the constant speed
power range, which is validated in [16]. This consideration takes
the form of an (id , iq ) optimization to minimize losses at each
operating point of the profile respecting other instantaneous con-
straints (a, b, c, and d) [19]. Therefore, id,i should be optimized,
otherwise the particular operating point cannot be reached. The
instantaneous constraints c and d are satisfied at each operat-
ing point (Ti ,�i ), where Bsat and also demagnetization, are
subject to being smaller than 2.1 T and 891 × 103 A.m−1, re-
spectively. The thermal constraint requires additional consid-
eration. The temperature-rise of the hottest point relative to
ambient temperature must be calculated accurately by means of
a transient thermal model. The maximum value over the entire
temperature-rise profile must therefore plateau below a thresh-
old value, max(�θTP(t)) ≤ 75 ◦C, and max(�θTc(t)) ≤80 ◦C
[20]. Although, the thermal transient analysis is very time con-
suming, the following two definitions are considered based on
thermal time constants (TCs) to allow the simulation run via
steady-state thermal analysis:

a) While TCs is large:
∑

i �θi di/
∑

i di
b) While TCs is small: Max(�θ (t))

�θ is calculated once in the winding, and another time in the
magnet that corresponds to the temperature-rise between the
hottest point (of the slot or magnet) as well as the ambient
temperature. The copper loss with respect to the armature re-
sistance per phase (Rs) resolves through the set of geometrical
parameters. The copper resistivity is chosen at the maximum
temperature (80 °C) [21], [22]. Hence, total copper losses per

TABLE V
ANOVA USING DIFFERENT APPROACHES WITH 5% LEVEL

Approach Source Sum of DF Mean F R2

Squares square

FFD A 1.661 ∗ 103 − 1.661 ∗ 103 0.672 −
B 162.605 − 162.605 0.066 −

AB 13.249 − 13.249 5.36 ∗ 10-3 −
Error 0.8% 4 2.472 − −
Total 1.173 ∗ 104 7 − − 99.93%

MR-RD A 1.556 ∗ 103 − 1.556 ∗ 103 0.788 −
B 143.605 − 143.605 0.098 −

AB 11.249 − 11.249 6.79 ∗ 10-3 −
Error 0.77% 4 3.130 − −
Total 1.453 ∗ 104 6 − − 99.94%

CCD A 1.597 ∗ 103 − 1.556 ∗ 103 0.799 −
B 168.605 − 143.605 0.1 −

AB 11.997 − 11.249 6.98 ∗ 10-3 −
Error 0.91% 4 3.130 − −
Total 1.503 ∗ 104 8 − − 99.81%

BBD A 1.669 ∗ 103 − 1.556 ∗ 103 0.799 −
B 173.781 − 143.605 0.1 −

AB 12.765 − 11.249 6.98 ∗ 10-3 −
Error 0.88% 5 3.130 − −
Total 1.803 ∗ 104 12 − − 99.89%

phase with slot-filling factor of 0.4 can be calculated using

Pcopper,i = Rs
(
i2
d,i + i2

q,i

)
(7)

Based on [20], [21] the first harmonic hypothesis, the iron
loss can be predicted using (8)

Piron,i =
(

2kH

π

)
|�i | 


B
2
i + (p.�i .




Bi )
2

2
.αp (8)

where



Bi is the maximum local flux density for i th operating
point. kH, and αp are loss coefficients which are 0.045 A.m/V
and 73 A.m/V.s respectively. Thus, the total iron loss consists of
the iron loss from the machine parts (stator yoke, and teeth). Let
us assume that the loss densities are considered to be homoge-
neous in each of these two parts, while through a static analysis,
iron losses at the rotor yoke are nearly zero in the first harmonic.

Table V shows that R2 values using FFD, MR-RD, CCD,
and BBD are 0.9993, 0.9994, 0.9981, and 0.9989, respectively.
As an example, the R2 value using FFD represents 99.93% of
the total variation of output power performance. Furthermore,
the MR-RD approach results in the minimum error (0.77%),
whereas the CCD approach results in the maximum value of the
residual (error). Therefore, ANOVA is performed to examine
how well the fitted-model is able to predict the response at any
observation points. For this reason the SST, F-value, and R2,
which resulted from the variation of the response, are calculated.
The average errors of the fitted-models of the various design
functions are reported as nearly the same across all functions
but slightly larger for the model fitted with the CCD function.
However, this design function explored a larger domain of the
design treatment space than other design models during the
observation-stage; it is notable to say that the accuracy of a
model is not necessarily increased by increasing the number of
experiments involved in the model fit. Fig. 8 indicates the current
behavior, and best function values (of (5)) which is analyzed
using BA-SA to determine the best function value through 3000
sample iterations in which it was assumed that the efficiency,
output power, and current density had to be greater than 92%,
greater than 450 W, and less than 4 A/mm2, respectively.
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Fig. 6. Surface and counter plots of Multi-level RSM results on Po objective at minimum speed (15 rpm) and (150 rpm), a) thickness of magnet versus slot-width
@15 rpm, b) thickness of magnet versus slot-width @150 rpm, c) slot-width versus length of magnet @15 rpm, d) slot-width versus length of magnet @150 rpm.

TABLE VI
LSA AND GSA RESULTS

Par. Amplitude variations of parameter Sen. Combined sen.

−20% −10% 0 10% 20%

lm 3.5 4.1 4.9 5.5 6.1 0.0995 0.1992
δg 1.2 1.4 1.6 1.8 2.0 0.0991 0.2017
ρ 3.8 4.3 4.8 5.4 6.2 0.1489 0.2081
Sw 2.3 2.7 3.2 3.6 4.0 0.0744 0.2055
Dsi 19.6 21.4 23.7 24.5 27.6 0.0221 0.0791
Dro 15.1 17.6 19.2 21.8 23.1 0.0115 0.0685
lP 3.1 4.5 5.5 6.8 7.6 0.0498 0.2031
Nc 0.5 0.6 0.7 0.8 0.9 0.0093 0.0284

The influence of the geometrical design parameters on the
output power is examined by local/global sensitivity analysis in
Table VI. To provide accurate results, each parameter is assumed
to have four variations. The table presents the samples required
for the data analysis of LSA.

In total, 33 samples are needed in this calculation, in which
32 points are for those four-variations of the initial sample (“0”)
and the eight parameters. The sensitivity order can be obtained
from the data as below

|ρ| > |lm | >
∣∣δg

∣∣ > |Sw| >
∣∣l p

∣∣ > |Dsi | > |Dro| > |Nc| (9)

To set the optimization framework, the following four factors,
ρ, lm, δg , and Sw are considered significant factors.

The second-level RSM plots, presented in Fig. 6, are used to
check the variation of the treatments under objective tracking.
Also, the counter plots of each surface plot are reported to sum-
marize the results of the study. The RSM plots indicate the re-
sponse surface based on the defined treatments through two dif-
ferent levels of rotation speed: minimum speed (15 rpm), which
is used in the optimization process, and rated speed (150 rpm).
The maximum output power that could be generated is 5.1 kW
@ 150 rpm, and the minimum generated output power provided
is 500 W @ 15 rpm.

Based on the fitted model for the RSM, the prediction of the
output power can be compared to FEA data in order to check

Fig. 7. Predicted objective (Po) via a) 1st-leve fitted-model and FEA data, b)
the error of the 1st-leve fitted-model, c) 2nd-leve fitted-model and FEA data,
and d) the error of the 1st-leve fitted-model.

the error at 15 rpm as represented in Fig. 7. This demonstrates
that the prediction of the fitted model has a small error and can
be incorporated into the DRSM. In the first and second-levels
of RSM, the calculated second-order regression model can be
reported (Table. VIII) based on (1). Fig. 7 demonstrates how the
fitted model is improved through the following equation

ŷ = 460.235 + 5.878x1 − 3.804x2 − 10.8x3 + 0.14x1.x2

+ 0.76x1.x3 + 0.09x2.x3 − 0.286x2
1 + 0.017x2

2 − 0.247x2
3

(10)

The average error is decreased as can be seen in Fig. 7(d)
which uses (11).

Errorave = 1

27

27∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (11)
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Fig. 8. Cost effective optimization analysis using BA-SA.

TABLE VII
CALCULATED SECOND-ORDER REGRESSION MODEL AT 1ST-LEVEL AND

2ND-LEVEL RSM @15 RPM

Coefficients First-level RSM Second-level RSM

β0 448.484 460.235
β1 7.633 5.878
β2 −37.811 −3.804
β3 28.387 −10.8
β4 6.086 0.14
β5 −1.714 0.76
β6 6.355 0.09
β7 2.235 −0.286
β8 −5.305 0.017
β9 −16.747 −0.247

In Table VII, the error decreases from 1 to less than 0.04 on
average by the 2nd level coefficients. Thus, a finalized fitted
second-order regression model can be given by (10). The fitted
regression model is checked via the F-value to ascertain the
validity under the null hypothesis as

F = SSR(1 − a)−1/ SSE(N − a)−1 (12)

where a stands for the number of terms at the fitted-model. Ad-
ditionally, R2 is a significant statistic to express the proportion
of the variation of the yi by the fitted-model and FEA data for
the mean of ȳ, as given

R2 = SSR × (SST )−1 (13)

The major design outputs such as Ld , Lq , λm, Popt, η%,
CPSR, Tr , and C are calculated over two steps of analysis as
pre-optimization and post-optimization analyzes using different
design functions in which the improvements of multi-objective
optimization using DRSM and BA-SA resulted in a minimum
rotation speed (15 rpm) in Table VIII. Afterward, FEA method
is verified with an insignificant error. In addition, the CPSR is
highly sensitive to the machine key parameters. Furthermore, to
further improve the accuracy of the optimization, the choice of
materials can be studied while taking cost-effective design into
consideration.

The procedure can be repeated on a smaller range of design
treatments centered on the optimal design that was obtained in
this paper.

Fig. 9, demonstrates the multi-objective optimization for de-
termining the optimum design point using Pareto front, in which
the best optimum design point is marked at 15 rpm resulting in
the maximum output power, and minimum cost of manufactur-
ing that is all summarized in Table VIII. Fig. 10 presents the

TABLE VIII
OPTIMIZATION RESULTS AND VERIFICATION

Par. Pre-Opti. Opti-MR-RD Opti-FFD Opti-CCD Opti-BBD Test

Ld (mH) 468.2 470.7 471.6 468.5 469.8 473.2
Lq (mH) 468. 2 471 470.9 469.7 469.2 474.5
Dsi (mm) 228 234 235.6 232 233 234
Dsi (mm) 460 452 451.6 449.8 450.4 452
λm (mVs) 1691.8 1720.4 1714 1710 1713 1799.2
Po (W) 440.7 514.8 507.2 488 498 511.6
η (%) 92.2 96.6 94.8 93.7 94.3 97
CPSR 434.7 497.8 477.3 469 470 505.7
lg 1.0 0.9 0.88 0.8 0.95 0.9
Nc (turn) 120 80 98 111.8 110 80
ρ (g/m3) 7.63 8.5 8.3 7.96 8.1 8.5
lp (mm) 100 92 95 94.3 90 92
Tr 314.6 370.35 367.4 348 356.5 370
Cost ($) 2979.6 2000.6 2480 2880 2690.5 2000.6

Fig. 9. Pareto front of the multi-objective optimization at various frequency.

Fig. 10. Controllable and uncontrollable variables on a) the initial and b)
optimized model.

values of the controllable and uncontrollable design variables on
the initial model (Fig. 10(a)), and the impact of these variables
on the machine’s structure after multi-objective optimization
shown in Fig. 10(b).

VI. EXPERIMENTAL INVESTIGATION

The manufactured prototype is tested for the case of small
power generation (5 kW) via wind energy along the coast of
Barcelona in Spain. Since the primary objective relies on the
maximization of the output power, the measured output power
in comparison to the initial, optimized, and FE models can
be seen in Fig. 11. In this figure, a notable accuracy between
the optimized generator and measured values presents the best
fit of the optimization design. The optimized SPMSG in the
test was fed via a variable speed frequency converter (ABB
ACS600) and loaded by a DC machine. The electrical output
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Fig. 11. A comparison over output power and cost objectives, a) Cost, and b)
output power with simulated and experimental data.

Fig. 12. The manufactured analyzed model with variables definition, a) the
SPMSG with segmented stator and rotor cores, b) installed VAWT on the gen-
erator, c) variables on the stator, and d) variables on the rotor cores.

power is measured by a Yokogawa PZ4000 with an accuracy
of 1%, and the temperature is registered in twenty points by
Pt-100 temperature sensors. The manufactured SPMSG can be
seen in Fig. 12(a) with a segmented stator core for improving
slot fill factor, simpler winding, and closed-slot topology, the
rotor included the magnets. This prototype is used for wind
energy production using a vertical-axis twisted savonius type
wind turbine (VAWT) is installed on the SPMSG, shown in
Fig. 12(b), and the controllable and uncontrollable variables
demonstration on the stator and rotor cores in Fig. 12(c)–(d).

VII. CONCLUSION

In this research, two different optimization methods are em-
ployed to deal with a multi-objective design function, a math-
ematical and statistical technique (DRSM using zoom-in- win-
dow approach), and a multiplication-algorithm-based (BA-SA).
The objective is to maximize the output power and minimize
manufacturing cost under a number of optimization constraints.
This comparative study applied various types of design functions
to find the best-fit parametric model, in which the influence of
chosen design parameters is evaluated by local and global sen-
sitivity analysis along with ANOVA. MR-RD with a minimum

error (0.77%) is proposed, which is used for the very first time
in the machine’s design. The objectives of the research were
achieved, where pre-optimization and post-optimization results
were compared and FEA validation, with an error less than
0.5%, corresponded with analytical and mathematical calcula-
tions. Measured experimental results were additionally reported
that support the improvement of the design optimization.
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