
Using Bi-clustering Algorithm for Analyzing Online Users Activity in a Virtual
Campus

Fatos Xhafa
Dept. of Languages and Informatics Systems

Technical University of Catalonia, Spain
EMail: fatos@lsi.upc.edu

Santi Caballé
Dept. of Computer Sci., Multimedia & Telecommunication

Open University of Catalonia, Spain
EMail: scaballe@uoc.edu

Leonard Barolli
Dept. of Information and Communication Engineering

Fukuoka Institute of Technology, Fukuoka, Japan
EMail: barolli@fit.ac.jp

Alberto Molina
Dept. of Languages and Informatics Systems

Technical University of Catalonia, Spain
EMail: amolina@lsi.upc.edu

Rozeta Miho
Faculty of Information Technologies

Technical University of Tirana, Albania
EMail: rmiho@fti.upt.al

Abstract—Data mining algorithms have been proved to be
useful for the processing of large data sets in order to extract
relevant information and knowledge. Such algorithms are also
important for analyzing data collected from the users’ activity
users. One family of such data analysis is that of mining of log
files of online applications that register the actions of online
users during long periods of time. A relevant objective in this
case is to study the behavior of online users and feedback
the design processes of online applications to provide better
usability and adaption to users’ preferences. The context of
this work is that of a virtual campus in which thousands of
students and tutors carry out the learning and teaching activity
using online applications. The information stored in log files of
virtual campuses tend to be large, complex and heterogeneous
in nature. Hence, their mining requires both efficient and
intelligent processing and analysis of user interaction data
during long-term learning activities. In this paper, we present a
bi-clustering algorithm for processing large log data sets from
the online daily activity of students in a real virtual campus.
Our approach is useful to extract relevant knowledge about
user activity such as navigation patterns, activities performed
as well as to study time parameters related to such activities.
The extracted information can be useful not only to students
and tutors to stimulate and improve their experience when
interacting with the system but also to the designers and
developers of the virtual campus in order to better support
the online teaching and learning.

Keywords-Virtual Campus, Online Users, User Modelling,
Mining Techniques, Bi-Clustering Algorithm

I. INTRODUCTION AND MOTIVATION

Virtual campuses, virtual organizations and emerging vir-
tual institutions [9] are new ways of organizing community-
based activities by using IT technologies. These new
paradigms of organization are sustained by the common

interest of the members of the community to achieve their
goals. Thus, in the case of virtual campuses, which is one
of the most widely used form of virtual organizations in the
today’s teaching and learning activity, the members of the
campus pursue academic goals. One of most distinguished
characteristics of virtual organizations is sharing; members
of the virtual organization share among them all sorts of
resources, such as information, data, files and computational
resources (computational power, data storages, etc.). Foster
et al. [9] defined virtual organization as “... a set of individ-
uals and/or institutions defined by sharing rules form what
we call a virtual organization (VO).”

Virtual Campuses usually are supported by large or very
large web sites which record not only accesses of their
users but also all and each type of their activity interaction
with the site during online sessions. As a consequence,
there is a need to capture the users’ interaction gathered
in log files thus generating very large web log data files,
which can be of a great variety of type and formats [24].
Therefore, there is a strong need for powerful solutions that
record the large volume of interaction data and can be used
to perform an efficient interaction analysis and knowledge
extraction. To this end, data mining techniques can be used
to find useful information and patterns on users’ activity. For
mining access log files of general purpose Web sites, many
researchers have proposed different mining techniques [7],
[10], [13].

The objective of mining log files of activity in virtual cam-
puses is many-fold, amongst which we could distinguish: (a)
User modelling and behavior; (b) Discovering access and
browsing patterns; and, (c) Classification of user sessions.

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.15

214

2010 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4278-2/10 $26.00 © 2010 IEEE

DOI 10.1109/INCOS.2010.15

214

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/159237793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User modeling [2], [3] is a mature research field mostly in-
volved in the information technology context. User modeling
is mainly utilized in software systems for inferring the users’
goals, skills, knowledge, needs and preferences and thus
achieving more adequate adaptation and personalization on
the basis of the user activity pattern built [4]. This inference
process relies in turn on being able to track the users’ actions
when interacting with the application such as the users’
choice of buttons and menu items [11]. Therefore, on the
one hand, the information captured from tracking is used by
a user modeling algorithm in order to predict future users’
actions, intentions and so on. On the other hand, based on
the knowledge acquired from the user model, an adaptive
system can adjust and personalize the system to individual
user characteristics, preferences and needs. Indeed, adaptive
systems [2] monitor the user model and automatically adjust
the user interface and navigation or content provided by the
system to accommodate such user differences as well as
changes in user skills, knowledge and preferences. Thus,
for instance, constantly maintaining the user model allows
developers to receive continuous and useful feedback about
the system’s usability and adapt the user interface design
to the actual users’ needs whilst they evolve as time goes
by. The ultimate aim of using user modeling and adaptive
methods and techniques is to stimulate and improve the
users’ experience when interacting with the system [11].

The context of this paper are the Web-based applications
that support on-line distance learning. These applications,
due to the high degree of user interaction, take great ad-
vantage of the tracking-based techniques of user modeling,
such as providing broader and better support for the users of
Web-based educational systems [2]. Indeed, the data analysis
of the information captured from the actions performed by
learners is a core function for the modeling of the learner’s
behavior during the learning process and of the learning
process itself as well. In addition, the building of learner
models may help identify navigation patterns and adapt the
system’s usability to the actual learners’ needs and thus
stimulating the learning experience. In order to achieve
the above goals, in this paper we present a bi-clustering
algorithm [18] as a data mining technique for processing
large log data sets from the online daily activity of students
in a real virtual campus.

The rest of the paper is organized as follows. In Sec-
tion II we present some of the related work on data min-
ing techniques for supporting eLearning activity in Virtual
Campuses, whose context as well as the importance and
problems of modeling the students’ behavior in Web-based
environments is shown in Section III through the case of
the Open University of Catalonia. The bi-clustering algo-
rithm, which is used for mining the log data files of the
online learning activity is presented in Section IV and the
application architecture in Section V. We end the paper in
Section VI with some conclusions and outline future work.

II. USE OF DATA MINING TECHNIQUES FOR WEB
MINING AND THEIR APPLICATION TO ELEARNING

The discovery of access patters from Web logs using
mining techniques has been considered since at early stages
of Web computing (e.g., [14]). Considerable research work
has been done in mining various pattern information from
Web logs to support improving the design and structure
of a Web site and enabling organizations to function more
efficiently [15], [17], [23]. Attention has been given to clus-
tering users of Web sites into communities (e.g. [20]). This is
particularly interesting for Virtual Campuses and Academic
Web sites, where user profiling and particularization are
important issues [21].

User navigation patterns are as well an interesting in-
formation to discover. Knowing patters of navigation can
support designing Web sites that better support users to
interact with the Web site [22]. For instance, in a Virtual
Campus an online degree having different online rooms, it
is interesting to know which resources the students access
first and how they navigate during online sessions. This
information would then feed back design processes for
reorganizing Web sites based on user access patterns [10]
or session categorization of users’ activity [13].

Web usage mining attempts to discover useful knowledge
from the secondary data obtained from the interactions of
the users with the Web. Web usage mining has become very
critical for effective Web site management, creating adaptive
Web sites, business and support services, personalization,
network traffic flow analysis and so on. Abraham [1] pre-
sented the important concepts of Web usage mining and its
various practical applications.

Ciesielski and Lalani [6] presented the data mining of
Web access logs from an academic Web site. Their goal was
to use general purpose data mining algorithms to analyze
visitors to the Web site and characterize them. As a result of
their study, four different feature sets from the web logs were
extracted. The authors used algorithms for classification,
clustering, association finding and feature selection.

III. THE CONTEXT OF VIRTUAL CAMPUSES

Virtual Campuses are amongst the most important forms
of virtual organizations, being the common goal the aca-
demic achievements of the members of the organization.
Supporting all types and forms of online users (students,
tutors, academic staff, visitors, etc.) is crucial for the func-
tioning of Virtual Campuses. As a consequence, Virtual
Campuses tend to be medium to large size and thus the
efficient structuring of the Web sites and support to users is
a major issue to achieve the Quality of Service (QoS) goals
of the organization.

A. Our Virtual Campus

Our real web-based learning context is the Open Uni-
versity of Catalonia (UOC) [19], which offers distance

215215

education through the Internet in different languages. As
of this writing, about 54,000 students and 2,500 lecturers
and tutors from everywhere participate in some of the
about 30 official degrees and other PhD and post-graduate
programs, resulting in more than 1,200 official courses.
The campus is completely virtualized. It is made up of
individual and community areas (e.g. personal electronic
mailbox, virtual classrooms, digital library, on-line bars,
virtual administration offices, etc.) through which users are
continuously browsing in order to fully satisfy their learning,
teaching, administrative and social needs.

From our experience at the UOC, the description and
prediction of our students’ behavior and navigation patterns
when interacting with the campus is a first issue. Indeed, a
well-designed system’s usability is a key point to stimulate
and satisfy the students’ learning experience. In addition,
the monitoring and evaluation of real, long-term, complex,
problem-solving situations is a must in our context. Our goal
is to understand and adapt the learning process and objects
to the actual students’ learning needs as well as to validate
the campus’ usability by monitoring the actual usage of the
campus [4].

In order to achieve these goals, the analysis of the campus
activity and specifically the users’ traces captured while
browsing the campus is essential in this context. The col-
lection of this information in log files and the later analysis
and interpretations of this information provide the means to
model the user’s behavior and activity patterns. For instance,
from the log data it is possible to capture the different areas
browsed by a student during his/her user session along with
the timestamp when accessing to these areas. This allows
us to know what the most popular areas are, how long in
average students remain in each area, user session time in
average and in different daily periods, navigation patterns
combining both the most and the least visited areas, and so
on and so forth.

However, in Web-based learning applications in general,
extracting navigation and behavior patterns from the analysis
of user interactions is a difficult task due to both the
amount and the complexity of information generated. This
makes its later treatment very tedious and time-consuming.
Therefore, in order to construct a reliable, effective, useful
learner models, this information has to enter a process to
be effectively collected, processed and analyzed. During the
first stage of this process, the most important issue while
monitoring learning activity is the efficient collection and
storage of the large amount of information generated. Given
that such informational data may need a long time to be
processed, Web-based learning systems have to be designed
in a way that filter and pre-process the resulting information
effectively. The aim is, on the one hand, to correctly collect
and store the learning activity and, on the other hand, to
increase the efficiency during the later data processing and
analysis stages.

B. Difficulties in processing log data information of the
Virtual Campus

The on-line Web-based campus of the UOC is made up
of individual and community virtual areas such as mailbox,
agenda, classrooms, library, secretary’s office, and so on.
Students and other users (lecturers, tutors, administrative
staff, etc.) continuously browse these areas where they
request for services to satisfy their particular needs and
interests. For instance, students make strong use of email
service so as to communicate with other students and lec-
turers as part of their learning process. As a result, the whole
user interaction generates a huge amount of information
in a day which is filtered and collected in large daily log
files. Furthermore, this large information is found in an ill-
structured highly redundant form as described next.

All users’ requests are chiefly processed by a collection
of Apache web servers as well as database servers and other
secondary applications, all of which are providing service to
the whole community and thus satisfying a large number of
users. For load balance purposes, all HTTP traffic is smartly
distributed among the different Apache web servers available
and each web server stores in a log file each user request
received and the information generated from processing it.
Once a day (namely, at 01:00 a.m.), all web servers in a daily
rotation merge their logs producing a single very large log
file containing the whole user interaction with the campus
performed in the last 24 hours.

A typical daily log file size may be up to 10 GB. This
great amount of information is first pre-processed using
filtering techniques in order to remove a lot of futile, non rel-
evant information (e.g. information coming from automatic
control processes, the uploading of graphical and format
elements, etc.). However, after this pre-processing, about
1.8 GB of potentially useful information corresponding to
3,500,000 of log entries in average still remains [4].

Log file entries are structured following a type of format
known as Common Log Format (CLF) [8] which is produced
by most of web servers including Apache and is fairly
configurable. For the purpose of registering the campus
activity, log files entries were set up with the purpose
of capturing the following information: who performed a
request (i.e. user’s IP address along with a session key
that uniquely identifies a user session); when the request
was processed (i.e. timestamp); what type of service was
requested (a URL string format description of the server
application providing the service requested along with the
input values) and where (i.e. an absolute URL containing
the full path to the server application providing the service
requested).

At this point, we point out some problems arisen by
dealing with these log files: (i)each explicit user request
generates at least an entry in the log file and after being
processed by a web server, other log entries are gener-

216216

ated automatically from the response of this user request;
(ii)certain non-trivial requests (e.g. user login) involve in
turn requesting others and hence they may implicitly trigger
new log entries; (iii)the what and where fields contain very
similar information regarding the URL strings that describe
the service requested and the parameters with the input
values; (iv)certain information is found in a very primitive
form and is represented as long text strings (e.g. user session
key is 128-character string long). Therefore, there is a high
degree of redundancy, tedious and ill-formatted information
as well as incomplete as at some cases certain user actions do
not generate any log entry (e.g. user may leave the campus
by either closing or readdressing the browser) and thus these
actions have to be inferred. As a consequence, treating this
information is very costly in time and space, needing a great
processing effort.

These drawbacks require a pre-processing of daily log
data files obtained after merging those generated by the
web servers as input so as to: (a) identify the log entries
boundaries and extract the fields that make up each entry,
(b) capture the specific information contained in the fields
about users, time, sessions, areas, etc., (c) infer the missing
information, (d) map the information obtained to typed data
structures, and (e) store these data structures in a persistent
support for later mining techniques.

IV. THE BI-CLUSTERING ALGORITHM

The log files of users’ activity are used as a source to
define the information of the composite event “Who did
what, when and where and how”, where:
• Who: indicates the user of the action
• What: indicates the type of the action (which could

be for instance, reading, downloading, creating new
contents, modifying exiting contents, etc.)

• When: indicates the timestamp when the action oc-
curred.

• Where: indicates the place in the Web site the action
was performed (which could be a classroom, bulletin
board, discussion forum, a particular space, etc. in the
Web site).

• How: indicates the way the action was done.
This information fully defines the user action during

online activity. It should be noted however that in most cases
such information is not registered straightway in Web log
files of user activities, rather, such information has to be
extracted from information contained in the log file or log
files of the Web site.

As can be seen, using the five parameters (who, what,
when, where, how) the whole set of registers contained in
the log file can be partitioned into different sets, which of
them corresponding to a particular feature of users’ activity.
These feature sets are used as a basis for the bi-clustering
algorithm, presented in this section. Essentially, feature sets

provide the information to study the users’ behavior at both
particular and combined feature levels.

On the other hand, the classification of registers is done
using rules, which use in input the values of the parameters
(who, what, when, where, how) to classify the registers
according to the considered features. In particular, we use
the information of the parameter “how” to further distinguish
registers belonging to the same feature set. For instance, we
could distinguish two registers of the same action type but
accomplished differently in two different parts/environments
of the online system.

The registered modelling the event “who did what, when
and where and how” are persistently stored in databases. It
should as well be noted that different time intervals could be
fixed for the study and thus only the registers belonging to
specific time intervals would be used for mining purposes.

A. Bi-clustering: definition and notations

A matrix can be defined as a subset of elements that
represent similar activity patterns with regard to a subset
of features. Let A be a matrix denoted by A = (X,Y)
having rows X = {X1, X2, . . . Xn} and columns Y =
{Y1, Y2, . . . Ym}. In this notation, we denote AIJ = (I, J)
representing the sub-matrix of A that contains only the
elements aij that belongs to the subsets of rows I and
columns J .

Definition 1: A bi-cluster of elements of matrix A is an
AIJ = (I, J) where I = {i1, . . . , ik} is the subset of rows
(I ⊆ X , k ≤ n) and J = {j1, . . . , js} is the subset of rows
(J ⊆ Y , s ≤ m).

Bi-clusters can thus be seen as sub-matrices of a matrix
representing features of elements. It should be noted that
bi-clusters need not to be exclusive nor exhaustive.

Using the notation above, the bi-clustering problem can
be defined as follows: given a matrix A, compute a family of
bi-clusters Bk = (Ik, Jk) so that each bi-cluster Bk satisfies
certain “homogenous” properties leading to different types
of consistent bi-clustering, including bi-clustering admitting,
α−consistent bi-clustering, β−consistent bi-clustering.

Similarly, as any clustering technique, the objective of
bi-clustering is to compute/identify clusters of data grouped
according to their similarities. In the case of bi-clustering the
data is represented in a matrix in which rows are features of
the elements of the sample under study represented by the
columns of the matrix. For instance, in our case, the features
characterize the actions of the users of the Virtual Campus.
Thus, every element of the matrix represents how much the
sample is expressed in the feature given by the row. More
precisely, an element auf of the matrix represents how many
registers corresponding to a user u satisfy a feature f .

The particularity of the bi-clustering is that partitioning is
done in two dimensions of the matrix yielding to clustering
according to elements and their features (in some sense this

217217

can be seen as two inter-related partitions). We can thus
define bi-clusters as follows.

Definition 2: A bi-cluster is a collection
of pairs of subsets of elements and features
B = {(S1, F1), (S2, F2), . . . , (Sk, Fk)}, where k denotes
the number of bi-clusters. Each bi-cluster (Sr, Fr) consists
of two clusters: the Sr –the cluster of elements (samples)
and Fr –the cluster of features.

B. The complexity of bi-clustering

The complexity of computing bi-clusters depends much
on the way the bi-clustering problem is defined and how its
quality is measured [18]. In most interesting formulations
the bi-clustering problem is NP-hard problem. In fact, the
problem is NP-hard even for the simple case when the matrix
A is a binary matrix. In this case, from the matrix A =
(X,Y) we can construct a bi-partite graph G = (L,R) in
which a node ni ∈ L corresponds to a row of the matrix,
a node nj ∈ R corresponds to a column of the matrix and
aij is the weight of the edge (ni, nj). Any bi-cluster in
the graph G corresponds to a bi-partite sub-graph and thus
finding a bi-cluster of maximum size is equivalent of finding
a sub-graph of maximum size in G, which is known to be
NP-complete.

Besides the NP-hardness, the complexity of computing
bi-clustering increases due to the information type to be
analyzed. The information contains usually much noise due
to the complexity of methods from which the information
is captured. This requires careful pre-processing so that
the resulting bi-clustering algorithm be robust to the noise
contained in the data.

Finally, due to the large amount of data as well as to the
large number of potential bi-clusters (especially when the
number of features is large), the processing time can be a
real issue. In fact, some bi-clusterings can be significantly
overlapped or some others could be irrelevant. An efficient
processing should thus take into account to extract only
relevant bi-clusters and avoid overlapping among them.

C. Bi-clustering techniques

There has been proposed many bi-clustering techniques
in the literature [16], including divide-and-conquer, iterative
greedy, two-way, clustering, etc. Some of them aim to
discover a set of bi-clusters (either of an a priori fixed
cardinality or unknown cardinality). Other methods, such
as the one by Cheng & Church, compute just one bi-cluster
per execution.

The Cheng & Church algorithm: The Cheng & Church
algorithm [5] uses the statistical measure of Mean Squared
Residue (MSR). Let (I, J) be a bi-cluster, and eij an element
of the matrix. We denote by eiJ the mean value of the
elements of row i and j ∈ J . Similarly, eIj denotes the
mean value of the column j and i ∈ I . Finally, eIJ denotes

the mean value of all elements of the matrix with i ∈ I and
j ∈ J .

Definition 3: The residue R of an element eij of bi-
cluster (I, J) is defined as R(eij) = eij − eiJ − eIj + eIJ .
The Mean Squared Residue (MSR) of bi-cluster (I, J) is
defined by:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J
R2(eij).

The MSR can be interpreted as a variance of elements
of the bi-cluster and expresses the “coherence” of values of
the matrix along rows and columns. It is interesting thus
to find bi-clusters having small MSR values, which would
mean larger coherence among the elements of the bi-cluster.

The algorithm (see Alg. 1) aims at finding a bi-cluster
(sub-matrix) of largest possible size whose MSR is less than
a given threshold δ. The algorithm takes in input the matrix
and a threshold for the residue and works in two phases as
follows.

In the first phase, the algorithm eliminates rows and
columns of the matrix using residue values. Thus, for
any row i, the algorithm uses the value of its residue
1
|J|

∑
j∈J R(eij) is computed, and, for any column j, the

value of its residue 1
|I|

∑
i∈I R(eij). Then, the row or col-

umn of largest residue value is selected and eliminated from
the sub-matrix. The computation process of the first phase
ends when the residue of the sub-matrix H(I, J) <= δ.

The second phase of the algorithm consists of adding
rows and columns of the original matrix to the resulting sub-
matrix of the first phase. The criteria for adding new rows
and/or columns is that their residue should have small values.
The second phase is finished when the threshold value for
MSR is not surpassed.

One issue to take into account during the first phase is that
due to the large size of the initial sub-matrix, deleting rows
and columns can be computationally expensive. To alleviate
this, massive deletion of rows and columns of large residue
values can be done with the premise that their deletion will
improve the overall MSR of the sub-matrix.

It should be noted from the above description that there
exists a certain relationship between the size of the cluster
and MSR value. Therefore, the threshold value for MSR
will finally determine the size and quality of the obtained
bi-cluster.

Implementation of Cheng & Church algorithm: In the
implementation of the algorithm we have taken care to
improve its performance as regards (a) no repeating of bi-
clusters many times during the process and (b) efficient
deleting and adding of rows and/or columns. Regarding
the former, once a bi-cluster is computed, the rows and
columns are extracted from the bi-cluster. As for the later,
the operations of adding and deleting are implemented by
marking rows and columns as “active” and “passive”. Thus,

218218

Algorithm 1 Cheng & Church Algorithm.
1: Input: Matrix E=(X,Y), threshold δ;
2: Output: Bi-cluster (I, J);
3: Initialization phase: I = X and J = Y ;
4: Deletion phase:
5: while (MSR > δ) do
6: For any row, compute its MRS value as sum of MSR

values of its elements;
7: For any column, compute its MRS value as sum of

MSR values of its elements;
8: Compute the index of row or column of largest MRS

value.
9: Delete the resulting row from I or column from J .

10: end while
11: Addition phase:
12: while (MSR <= δ) do
13: For any row, compute its MRS value
14: For any column, compute its MRS value
15: Compute the index of row or column of largest MRS

value.
16: Add the resulting row to I or column to J .
17: end while
18: return I and J ;

only active rows are used during the computation process
(at the beginning, all rows and columns are active). Finally,
we have also paid attention to the efficient implementation
of scoring function that computes the mean and MSR values
of all (active) rows and columns.

The Cheng & Church algorithm is the main piece of
the application for processing the log files of the Virtual
Campus. We present in the next section the architecture of
the application and technologies used for its implementation.

V. APPLICATION ARCHITECTURE

The architecture of the application consists of several
building blocks following standard software design patterns.
The main building blocks include: (a) Rules, Conditions and
Attributes Management; (b) Data mining; (c) Log file pro-
cessing; (d) Course management; (e) Statistics management;
(f) Diary user management; (g) Grid processing module;
and, (h) Administration. Next, we briefly describe the most
relevant part of this architecture for the sake of this paper.

A. Rules, conditions and attributes management

This module is devoted to the management of rules,
conditions and attributes for the data mining module (see
Fig. 1).

Rules Management: Rules are used to validate the
registers in the log file against the features (see Fig. 2). By
using the database of rules, validation of hits of feature(s)
by registers of the log files is done.

Figure 1. Rules, conditions and attributes model.

This package supports basic operations with rules such as
listing existing rules, querying the list of rules and adding a
new rule to the list.

For instance, to create a new rule enables to select a
unique associated statistics from the list of statistics as well
as selecting multiple conditions from the existing list of
conditions.

Figure 2. Rules validation request-response.

Conditions Management: Each rule is associated a set
of conditions that define the premise of the rule (the if part
of the rule). The relation between rules and conditions is
multiple; each rule is associated one or more conditions
and each condition can belong to zero or more rules (some
conditions could be unassigned). Conditions are entities that
model filtering on values of attributes in a line of the log
file. Each condition corresponds to a unique attribute over
which filtering is applied.

Attributes Management: The attributes are entities that
model the concept of a token in a line of the log file. As
such they can refer to more than one field of the log file lines
and can have different formats. Each attribute is related to
those conditions that apply over the possible values of the
attribute in different lines of the log file.

B. Data mining

This module defines the functionalities of mining the log
files and computing the bi-clusters of users of the Virtual

219219

campus vs. the defined features (see Fig. 3).

Figure 3. Data mining module.

C. Log files processing

The log files processing contains functionalities for pro-
cessing log files generated by the online users of the Virtual
Campus. Among these functionalities, there are the ones for
formatting the log files (which originally are ill-structured
and contain noise/irrelevant information) as well as the
validation of the registers contained in the log files (see
Fig. 4).

Figure 4. Log file processing module.

D. Grid processing module

One important issue addressed in the application archi-
tecture is the possibility to make a massive processing of
the log files and speed up the processing and analysis of
large and very large log files [24]. It can be easily seen
that log data files of the Virtual Campus follow a Regularly

Sequenced Data (RSD) pattern. In such format, log data is
textual, record/register oriented and the boundaries between
records are easily identifiable. The RSD format of log data is
an important feature for its parallel processing. Indeed, since
the boundaries between events/records are easily identifiable,
processing log data files falls into the family of embarrass-
ingly parallel applications.

Our design (see Fig. 5) enables thus to easily map
log file processing capabilities to nodes of a large scale
system, such as Grid systems, in which worker nodes can
publish their processing capabilities using Grid services. The
implementation is based on a Master-Worker paradigm [12]
using Grid services for massive processing of log files.

Figure 5. Grid processing module.

VI. CONCLUSIONS AND FUTURE WORK

Web-based applications that support on-line distance ed-
ucation have been gaining a lot of attention due to the capa-
bility of offering training, long-life learning and education
in general widely and easily available. In this context, it is
essential to capture and understand the learner’s behavior so
as to predict future intentions, provide appropriate support
and adapt the learning process and environment to learners’
needs, preferences, knowledge, skills, and so on. The aim
is to greatly stimulate the learning experience. To this end,
we have proposed the use of a bi-clustering algorithm to
extract useful information from the online activity of users
of a virtual campus. The extracted information can be useful
for many purposes, including: (a) better support to online
learning and teaching activities in a Virtual Campus; (b)
feed-back to designers and developers about the patterns
of behavior of online users; and, (c) efficient distribution
and use of resources of the Virtual Campuses in order to
better match the need of online users. Our work showed
that log data files can be used as a rich source of data

220220

to accomplish these objectives. For the purposes of both
showing the problem of dealing with log data and testing our
prototype we have described and used the log data generated
from the activity of online users of the Virtual Campus of
the Open University of Catalonia.

At present, a prototype has been developed and tested.
In our future work we will deploy the prototype in a Grid
infrastructure and will fully evaluate both the performance
of the application and the information extracted from log
files as a decision support source.

ACKNOWLEDGMENT

This work has been partially supported by the Eu-
ropean Commission under the Collaborative Project AL-
ICE ”Adaptive Learning via Intuitive/Interactive, Collabo-
rative and Emotional System”, VII Framework Programme,
Theme ICT-2009.4.2 (Technology-Enhanced Learning),
Grant Agreement n. 257639.

REFERENCES

[1] Abraham, A. (2003). Business Intelligence From Web Usage
Mining. Journal of Information and Knowledge Management
(JIKM), Vol. 2, No. 4, 375-390.

[2] Brusilovsky, P. and Peylo, C. (2003) Adaptive and intelligent
Web-based educational systems. International Journal of Arti-
ficial Intelligence in Education, 13(2-4), 159-172.

[3] Bushey, R., Mauney, JM., and Deelman, T. (1999) The De-
velopment of Behaviour-Based User Models for a Computer
System. Proc. of the Seventh International Conference on User
Modeling (UM99), 109-118.

[4] Caballé, S., Xhafa, F., Fernndez, R., Daradoumis, Th. (2007).
Efficient Enabling of Real Time User Modeling in On-line
Campus. In Proc. of the User Modeling 2007, 365-369.

[5] Cheng Y., Church GM. (2000) Biclustering of Expression
Data. Proc. of the 8th International Conference on Intelligent
Systems for Molecular Biology (ISMB), 93-103.

[6] Ciesielski and Anand Lalani. (2003) Data Mining of Web
Access Logs From an Academic Web Site. In Proc. of the
Third International Conference on Hybrid Intelligent Systems
(HIS03), 1034-1043.

[7] Cooley, R., Mobasher, B., and Srivastava, J. (1999) Data
preparation for mining world wide web browsing patterns.
Knowledge and Information Systems, 1(1).

[8] Common Log Format: http://httpd.apache.org/docs/1.3/
logs.html#common (as of August 2010).

[9] Foster, I., Kesselman, C. and Tuecke, S. (2001) The Anatomy
of the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of High-Performance Computing Applications,
15(3), 200-222.

[10] Fu, Y., Creado, M., and Ju, C. (2001) Reorganizing websites
based on user access patterns. Proc. of the ACM CIKM
International Conference on Information and Knowledge Man-
agement, 583585.

[11] Gaudioso, E., Boticario, J.G. (2003) Towards web-based
adaptive learning communities. Proc. of Artificial Intelligence
in Education, 237-244.

[12] Goux, J., Kulkarni, S., Yoder, M., and Linderoth, J. (2000)
An Enabling Framework for Master-Worker Applications on
the Computational Grid. In Proc. of the 9th IEEE international
Symposium on High Performance Distributed Computing, 43.

[13] Heer, J. and Huai, E. and Chi, H. (2002) Separating the
swarm: categorization methods for user sessions on the web.
Proc. of the CHI 2002 Conference on Human Factors in
Computing Systems (CHI-02), 243250.

[14] Joshi, K.P., Joshi, A., Yesha, Y., Krishnapuram, R. (1999)
Warehousing and Mining Web Logs. Proc. of the 2nd ACM
CIKM Workshop on Web Information and Data Management,
pp. 63-68.

[15] Kitsuregawa, M., Toyoda, M., Pramudiono, I. (2002) Web
Community Mining and Web Log Mining: Commodity Cluster
Based Execution. Proc. of the 13th Australasian Database
Conference (ADC02), 3-10.

[16] Kriegel, H.-P., Krger, P., Zimek, A. (2009). Clustering High
Dimensional Data: A Survey on Subspace Clustering, Pattern-
based Clustering, and Correlation Clustering. ACM Transac-
tions on Knowledge Discovery from Data (TKDD) 3(1), 158.

[17] Masseglia, F., Poncelet, P., Cicchetti, R. (1999): An Efficient
Algorithm for Web Usage Mining. Networking and Informa-
tion Systems Journal (NIS), 2(5-6), 571-603.

[18] Mirkin, B. (1996). Mathematical Classification and Cluster-
ing. Kluwer Academic Publishers. ISBN 0792341597.

[19] Open University of Catalonia: http://www.uoc.edu (as of
August 2010).

[20] Paliouras, G., Papatheodorou, C., Karkaletsisi, V., Spy-
ropoulous, C.D., (2000): Clustering the Users of Large Web
Sites into Communities. Proc. of the 17th International Con-
ference on Machine Learning (ICML00), 719-726.

[21] Pazzani, M., Billsus, D. (1997): Learning and Revising User
Profiles: The Identification of Interesting Web Sites. Machine
Learning, 27, 313-331.

[22] Smith K.A. and Ng A. (2003), Web page clustering using
a self-organizing map of user navigation patterns. Decision
Support Systems, 35(2), 245-256.

[23] M. Spiliopoulou, M. and Pohle, C. and Faulstich, L.C. (2000)
Improving the effectiveness of a website with web usage
mining. Proc. of the International Workshop on Web Usage
Analysis and User Profiling, 142-162.

[24] Xhafa, F., Paniagua, C., Barolli, L. and Caballé, S. (2010) A
Parallel Grid-based Implementation for Real Time Processing
of Event Log Data in Collaborative Applications. Int. Journal
of Web and Grid Services (IJWGS), volume 6, issue 2, 124-
140.

221221

