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Abstract—Cellular Automata (CAs) is a nature-inspired and
widespread computational model which is based on the col-
lective and emergent parallel computing capability of units
(cells) locally interconnected in an abstract brain-like structure.
Each such unit, referred as CA cell, performs simplistic com-
putations/processes. However, a network of such identical cells
can exhibit nonlinear behavior and be used to model highly
complex physical phenomena and processes and to solve problems
that are highly complicated for conventional computers. Brain
activity has always been considered one of the most complex
physical processes and its modeling is of utter importance. This
work combines the CA parallel computing capability with the
nonlinear dynamics of the memristor, aiming to model brain
activity during the epileptic seizures caused by the spreading of
pathological dynamics from focal to healthy brain regions. A CA-
based confrontation extended to include long-range interactions,
combined with the recent notion of memristive electronics, is
thus proposed as a modern and promising parallel approach to
modeling of such complex physical phenomena. Simulation results
show the efficiency of the proposed design and the appropriate
reproduction of the spreading of an epileptic seizure.

Keywords—Cellular Automata, memristor, modeling, SPICE,
epilepsy.

I. INTRODUCTION

Efficient modeling of biological systems and processes
using conventional computing architectures is a priori im-
possible, which is something well known, since the latter
function in a completely different manner than the hardware
(HW) normally used for this task. For example, the most
widespread computer architecture, namely the von Neumann
architecture, keeps the processing unit separated from memory,
while in nature processing and memory are considered unified
notions. However, there are various unconventional comput-
ing approaches that comply with this unified functioning
requirement. For instance, the Cellular Automata (CAs), a
biologically-inspired parallel computing architecture proposed
a long time ago also by von Neumann [1], is a model capable
of capturing the characteristics of any high-order complex
system by using a network of smaller identical systems, the
CA cells. Owing to their spatial interconnections which permit
parallel local interactions, and besides being simplistic, the CA

cells demonstrate emerging dynamics required to model more
complex systems. As a result, such collective behavior enables
an effective description of a variety of physical phenomena
and provides an alternative solution to rather difficult compu-
tational problems.

Speaking of biological systems, nowadays, the human
brain is a case whose complete understanding and the further
modeling and emulation of its functioning constitutes one of
the utter importance major scientific challenges. As a more
specific example, we refer to the epileptiform brain activity, an
important field of study owing to the impact it has over several
neuronal layers. It is characteristic that even an electroen-
cephalograph (EEG) is not able to completely capture the brain
activity during an epileptic seizure, but only a collective effect
of just some neuronal clusters [2]. Several studies have applied
different computational techniques aiming to model, simulate,
and emulate the epileptiform brain activity, towards the pre-
diction or even the entire prevention of epileptic seizures. For
instance, in [2] the epileptiform brain activity in the neocortex
was simulated by varying the ratio between excitatory and
inhibitatory cell types, while also considering the synchro-
nization effects produced by gap junctions. Moreover, Chiu
et al. in [3] aimed to the prediction of the onsets of a epileptic
seizure by training artificial neural networks (ANN). Likewise,
Tetzlaff et al. in [4] used cellular neural networks (CNN) and
utilized their high parallelism to effectively characterize the
spatio-temporal properties of epileptic seizures, whereas in [5]
a discrete time CNN implementation was presented, able to
predict a potential incoming seizure. Further, the potentiality
of highly scalable CA-based simulations of neural activity
was discussed in [6], where an event-driven framework was
used instead of computationally costly continuous simulation
engines.

In this direction, this paper presents a modern memristive
CA-based confrontation of the modeling of epileptic brain
activity. Memristor (short for memory resistor) is a novel nano-
electronic device, highly promising for the design of innovative
computing architectures. After the recent presentation of the
first ”modern” memristor by Hewlett-Packard (HP) Labs [7],
which connected for the first time the 1971 Chua’s theory
[8] with practice, an ever increasing interest in memristive
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Fig. 1. (a) Two CA grids of neuron-cells with local and long-range
connections, as presented in [16]. One grid corresponds to a healthy region
and the other to the pathological region of the brain. (b) A magnified CA grid
where the black (white) dots correspond to active (quiet) sites [16].

technology and its applications quickly emerged. More specifi-
cally, the memristor is a two-terminal analog device of variable
resistance (also referred to as memristance), affected by the
history of the voltage applied across its terminals. It is a novel
circuit element which enriches the toolcase of circuit designers
and researchers, as it can introduce memory capabilities and
programmability in a vast amount of circuits and systems [9],
as well as lead a whole new era of research on beyond von
Neumann architectures and in-memory computing techniques
[10], [11].

Itoh and Chua [12] introduced for the first time the use
of memristors in CA configurations applied to several com-
putational systems, at a more theoretical level. More practical
implementations of memristive CA were later proposed for
shortest-path computations, pseudorandom number generation
and biomedical applications [13], [14], [15]. The proposed
here novel memristive CA cell structure was envisaged from
previous work in [14] and the presented simulation results
proved its suitability for the simulation of complex grids of
interconnected neurons, where the propagation of epileptiform
brain activity between healthy and focal brain regions was
correctly predicted.

II. MODELING EPILEPSY PROPAGATION WITH CA

Owing to its inherent nature-like functionality, Cellular
Automata (CA) is a tool suitable for the depiction of complex
biological processes and structures by electronic hardware
(HW). Moreover, as previously shown in [16], the electric
activity of healthy and pathological brain regions can be
modeled using CA. In this case, a well-designed CA would
map the interactions of brain neurons to a proper spatial
network of statistically identical cells, each one of which can
be described by a threshold-controlled nonlinear module. From
the theoretical perspective of CA, this kind of system requires
a CA cell state C(i, t) = {0, 1}, which shows the firing state
of a neuron, and a state transition rule expressed as follows:

C(i, t+ 1) = R(C(i, t),C(ni1, t), ...,C(nik, t), Exc) (1)

In (1), the C(nij , t) represents the cell state of the jth

neighbor of the cell i at time t, whereas Exc corresponds
to any excitation signal which originates from a brain region

Fig. 2. Circuit-level representation of the proposed memristor-based CA cell.

outside the simulated system. The number of neighbors (k) can
differ between cells, according to the required connectivity for
this kind of system which does not follow any of the well-
known CA neighborhoods (e.g. Moore’s or von Neumann’s).
Particularly, in this work the simulated system consists of two
CA grids, M×N each, where every cell may receive input
signals from any other cell of the same grid, but only a small
number of cells are connected with cells of the other grid. This
topology is shown in Fig. 1 [16]. According to the rule R, every
cell can be activated (i.e. be in state C(i, t) = 1) in two ways:
(i) when the aggregate input signal received from its neighbors
exceeds a certain threshold, or (ii) if the Exc signal exceeds
a certain threshold (thresholds for case (i) and (ii) may have
different values). When activated, the cell produces a spike-like
output signal, which turns high (logic ′1′) for a short excitation
period and then remains low (logic ′0′) during a refractory
period (here refractory lasts longer than excitation). A more
detailed circuit-level description of CA cell operation is given
in the following Section.

Furthermore, following the original description in [16],
it is important to consider that the maximum number of
incoming synaptic connections to every cell during an epileptic
seizure phase, is different in the two CA grids. For exam-
ple, in a healthy phase, all cells in both grids can have
at most Zhealthy incoming synapses. However, during the
epileptic seizure phase the incoming synaptic connections of
the pathogenic grid’s cells can be reduced to Zepilepsy, where
Zepilepsy < Zhealthy < M × N . Moreover, the external
excitation signal Exc is produced randomly both for the
healthy and the pathogenic grid during the healthy phase.
However, the epileptic seizure causes instead a synchronized
chaotic Exc signal to the pathogenic grid, which then exhibits
a much higher brain activity.

III. MEMRISTIVE CA CELL DESIGN

The proposed here memristive CA cell was inspired by
the previous theoretical background laid by Itoh and Chua
in [12]. However, unlike [12] where the memristor dynamics
vary according to the requirements of every target application,
here the cell was developed at circuit-level having in mind its
universality and resulting to the corresponding novel circuit
design. Therefore, a single behavioral threshold-based and
SPICE-compatible [17] model of a voltage-controlled bipolar
memristor with linear ON and OFF states, was used, thus
paving the way towards potential real system implementations
using available memristor devices [18] in the near future.
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Fig. 3. Input read pulse and cell’s output response for cell state C = 0, (red
line) and C = 1 (yellow line).

The aforementioned device model [17] used in this work
is a general behavioral model, is SPICE-compatible and, most
importantly, easy-enough to configure in order to capture
the basic characteristics of both filamentary and interfacial
switching devices [19]. Hence it was found suitable for the
purposes of our application. In specific, the device dynamics
are described by the following set of equations:

IM (x, t) = G(x) · VM (t) (2)

M(x) =
1

G(x)
= f0 ·

e2x

x
(3)

x = x0 ·
(

1− m

r

)
(4)

ṙ =


aRST · VM+VRST

c+|VM+VRST | ,VM < VRST

β · VM , ,VRST ≤ VM ≤ VS
aS · VM−VS

c+|VM−VS | ,VM > VS

(5)

A detailed description of the physical correspondence of
the above equations and the role of each parameter can
be found in [20]. The set of parameter values used in all
simulations presented next, are: f0 = 310a.u., L0 = 5a.u.,
m = 82a.u., αS = αRST = −3 × (108)a.u., β = −10a.u.,
c = 0.1a.u., |VS | = |VRST | = 1.5V, and [RON , ROFF ] =
[1.8, 211]kΩ.

Fig. 2 presents the memristive CA cell structure. Owing to
the resistive switching property of memristor, one of the key
characteristics of CA, namely the cell state, here it is mapped
to memristance values. Consequently, a read-out mechanism
is necessary to properly convert the current memristance to
an output signal that can be communicated to the neighboring
cells. The discrete time steps of CA evolution here comprise
two phases, the Reading phase and the Writing phase. In the
Reading phase, the Read/Write Ctrl switch connects the
memristor to the output node and drives the reading pulse
to it according to the voltage divider between the memristor
and the RCOUT (see Fig. 2). The RCOUT is a resistor-
capacitor pair which acts as a RC delay module, aiming to
maintain the output voltage during the Writing phase. The
values of RCout elements are properly selected in order
to achieve easily distinguishable output voltage levels for
the cells, corresponding to high resistance (ROFF ) and low
resistance (RON ) memristor states. Furthermore, the applied
Reading pulse amplitude is selected lower than the memristor’s
voltage thresholds (VSorRST ), so that it does not affect the
current memristive state, but also high enough to generate an
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Fig. 4. (a) Output voltage (blue) and memristance (orange) evolution in time
of every cell in a 3× 3 grid such as the one shown in (b).

output response sufficient to affect the neighboring cells. Fig. 3
shows the input Reading pulse and the corresponding response
of a cell when the state memristor is in ROFF (C = 0) and
in RON (C = 1), respectively.

After the Reading phase, the Read/Write Ctrl switch
changes to the Writing phase configuration, in which one
memristor’s terminal is connected directly to the ground. In
this phase, any input signal drops on the memristor’s terminals,
so its state is modified. The duration of the Writing phase is
selected larger than the Reading phase, because of the required
discharge time of RCOUT and the time it takes the memristor
to switch its state. In the Writing phase, the CA state transition
Rule is used and the input signal applied to the memristor
modifies its memristance accordingly. In the proposed cell
in Fig. 2, the state transition Rule was implemented using
a passive analog adder based on Millman’s theorem [21]. In
fact, all the input signals originating from the neighboring
cells are connected to a system of equal series resistances
whose common node controls the SNeigh switch. So, when
the common node voltage exceeds a threshold, then a positive
voltage (Write) is applied to the top terminal of the memristor,
while the bottom terminal is grounded. However, regardless
of the state of the neighbors, a negative signal (Refresh)
is also applied to the top terminal of the memristor in every
Writing phase of a CA step (with exactly the same timing as the
Write signal) which resets the device memristance to ROFF .
Nevertheless, if the SNeigh switch is closed, then Write
overpowers Refresh and memristance is set instead to RON .
Furthermore, an external signal Exc controls the SExc switch,
which is connected in parallel to SNeigh and can active the
cell regardless of the neighbors’ state, depending on external
stimuli, i.e. signals considered to be received from outside the
simulated brain regions. Finally, a diode prevents the Read
signal from being connected to the ground accidentally when
Write signal is zero and switches SNeigh, SExc and SInactive

are closed.

So far, and as shown in Fig. 2, the state transition Rule
depended only on the states of the neighboring cells. Never-
theless, in order to properly model healthy and epileptiform
brain areas using the CA described in Section II, an additional
feature was introduced to keep the cell inactive during a
predefined time period after its activation, corresponding to
the excitation and the refractory times of a real neuron. This
consisted in a second delay module, namely RCInactive (red
dotted area in Fig. 2). After the activation of a cell, the
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Fig. 5. Ten consecutive time-steps of pathogenic and healthy brain region
evolution during (a) healthy and (b) epileptiform phases.

capacitor of this RC module is charged by the source VDC

and opens the SInactive switch so that Write cannot affect
the memristor. The characteristics of this delay module were
properly chosen to keep the cell inactive for two time-steps af-
ter one activation. Moreover, except for the signals IN1,2,...,N

and Output, which are used for the cell interconnection, the
rest of the cell’s external signals shown in Fig. 2 are universal
signals common for every cell of the grid. Particularly, Write,
VDC and Read/WriteCtrl are generated by three different
sources which are connected to every cell of the grid, likewise
it happens for Refresh and Read. Regarding Exc, this can
be universal for all cells or not. The circuit-level development
of the proposed CA cell as well as the performance of the
entire CA model were studied using SPICE simulations, whose
results are presented in the following Section.

IV. MEMRISTIVE CA MODELING OF HEALTHY AND
EPILEPTIFORM BRAIN PHASES

First of all, regarding CA cell interconnections, a full ran-
dom intra-grid and inter-grid connection pattern was applied,
to comply with the unpredictable synaptic connectivity of
biological neurons. The mean value of the inputs received by
every cell (i.e. the outputs of the connected neighbors) controls
the Write switch, whose threshold value is proportional to the
number of inputs. An example of a 3× 3 CA grid is shown in
Fig. 4 for readability reasons. Every subplot of Fig. 4a shows
the output voltage and memristance evolution in time of the
corresponding cell in the topology shown in Fig. 4b. Every cell
has 4-5 neighbors and if at least 3 of them are active, then it
gets activated. In this example, the green cells are permanently
excited via Exc signal, the blue is excited only in the very
first time-step (initialized with C =′ 1′), whereas the state
of the rest depends only on their neighbors. In Fig. 4a, the
effect of RCInactive is notable as all cells after being activated
they remain inactive for two time-steps. The selected time
constants of the delay modules were set as tOut = 2.7ms
and tInactive = 9ms.

During the epileptiform phase, the cells in the pathogenic
grid lose some of their synaptic connections in a random
manner. At circuit level, this is achieved via a switch that is
connected to the inputs of the cell. Additionally, a chaotic
signal is connected to the Exc input of every cell in the
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Fig. 6. Aggregate brain activity evolution in time for the (a) pathogenic and
(b) the healthy brain region.

entire pathogenic region which increases the local activity.
On the contrary, the Exc input in connected to a randomized
amplitude noise source during the healthy phase. Two 25×25
memristive CA grids were designed and simulated in SPICE
complying with the aforementioned requirements. A random
integer between 2 and 7 intra-grid synaptic connections was
used for all cell in both grids, whereas six inter-grid synaptic
connections were added only in the central 12×12 area of each
grid. In this CA configuration, the SNeigh and SExc thresholds
were chosen as 0.5 of the maximum value, meaning that
activation occurs either when half of the neighbors are active
or if Exc exceeds 0.5V (as the external random or chaotic
voltages are normalized in the range [0, 1]). Fig. 5 shows the
cell states of both grids for 10 consecutive time-steps of each
phase (healthy and epileptiform). For readability reasons, the
state of every cell is registered at the end of the read pulse
and the output voltage is mapped to either black (active)
or white (inactive) pixels. Most importantly, through longer
lasting simulations, the epileptic seizure propagation from the
pathogenic to the healthy region was correctly captured. For its
study, the sum of the active cells of every grid was computed
and used as a metric of the amount of local brain activity.
Additionally, a high-pass filter was applied to the brain activity
evolution in time to remove the mean value (DC offset) and
present fluctuations in a clearer manner. In Fig. 6 it can be
observed that, during the epileptiform phase, the increased
brain activity of the pathogenic region is highly affecting the
healthy region, where epilepsy-like phenomena are emerging.

V. CONCLUSIONS

This paper presented a novel memristive Cellular Au-
tomata circuit-level approach for the modeling of healthy
and pathogenic brain regions during epileptic seizures. The
proposed design emulates epilepsy-related phenomena in the
brain, exploiting the parallelism of CA and memristor’s dy-
namics to model a highly scalable network of neurons. Fur-
ther study on the timing capabilities of the system is under
investigation, including optimization of power consumption.
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