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A Four-Body Convex Central Configuration
with Perpendicular Diagonals Is Necessarily a Kite
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Abstract

We prove that any four-body convex central configuration with perpendicular diagonals
must be a kite configuration. The result extends to general power-law potential functions,
including the planar four-vortex problem.
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1 Introduction

Central configurations are an important class of solutions in n-body problems. They lead directly to
homographic motions, where the initial shape of the configuration is preserved throughout the orbit,
and play an important role in the study of the topology of the integral manifolds. In applied settings,
central configurations have proved useful for designing low-cost low-energy space missions [§] and
have been discerned in numerical simulations of the eyewall in hurricanes [5].

Locating a central configuration involves solving a challenging set of nonlinear algebraic equa-
tions. One approach to making the problem more tractable is to impose a geometric constraint on
the shape of the configuration. In [4], Roberts and Cors investigated four-body co-circular central
configurations, where the bodies are assumed to lie on a common circle. Other constraints employed
involve symmetry, such as assuming the configuration has an axis of symmetry [2], or that it consists
of nested regular n-gons [3].

Recently, Li, Deng and Zhang have shown that the diagonals of an isosceles trapezoid central
configuration are not perpendicular [7]. We extend this result further by proving that the only
four-body convex central configurations with perpendicular diagonals are the kite configurations
(symmetric with respect to a diagonal). Here, “convex” means that no body is contained in the
convex hull of the other three bodies. We prove this result for general power-law potential functions
as well as for the planar four-vortex problem. It is hoped that the techniques described in this
paper will prove fruitful for tackling similar open problems in celestial mechanics [1].
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2 Four-Body Planar Central Configurations

We begin by deriving an important equation for four-body central configurations involving mutual
distances. Good references for this material are Schmidt [12], Hampton, Roberts, and Santoprete [6]
(for the vortex case), and the recent book chapter by Moeckel [10].

Let ¢; € R? and m; denote the position and mass, respectively, of the i-th body. Except for
the case of n point vortices, we will assume that the masses are positive. Denote 7;; = ||¢; — ¢jl|
as the distance between the i-th and j-th bodies. If M = Y"" | m; denotes the sum of the masses,
then the center of mass is given by ¢ = ﬁ >, m;q;. The motion of the bodies is governed by the
potential function
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where a > 0 is a parameter. The classical n-body problem corresponds to a = 1. The moment of

inertia with respect to the center of mass, which measures the relative size of the configuration, is
given by
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There are many equivalent ways of describing a central configuration. We follow the topological
approach. Let Iy be some positive constant.

Definition 2.1. A planar central configuration (qi,...,q,) € R®*" is a critical point of U, subject
to the constraint I = I.

It is important to note that, due to the invariance of U, and I under isometries, any rotation,
translation, or scaling of a central configuration still results in a central configuration.

We now restrict to central configurations in the planar four-body problem. A configuration is
convez if no body lies inside or on the convex hull of the other three bodies (e.g., a rhombus or a
trapezoid); otherwise, it is concave. A kite configuration contains two bodies on an axis of symmetry
and two bodies located symmetrically with respect to this axis (see Figure [[). The diagonals of
a convex kite configuration are perpendicular. The main result of this paper is to prove that kite
configurations are the only central configurations with this property.

Theorem 2.2. [f the diagonals of a four-body convex central configuration are perpendicular, then
the configuration must be a kite.

For four bodies, the six mutual distances 71, 113, 714, 723, 24, 734 are excellent coordinates. These
distances describe an actual configuration in the plane if the Cayley-Menger determinant, defined
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vanishes and the triangle inequality r;; 4 7,5 > 74 holds for any choice of indices with i # j # k.
We must impose the constraint V' = 0 to find planar central configurations; otherwise, the only



Figure 1: Two convex kite configurations with different symmetry axes.

critical points of U, restricted to I = I, are regular tetrahedra. Thus, we seek critical points of the
function
Us + X1 = Io) + pV (2)
satisfying [ = Iy and V' = 0, where A\ and p are Lagrange multipliers.
Let A; be the oriented area of the triangle whose vertices contain all bodies except for the i-th
body. Assuming the bodies in a convex quadrilateral are ordered sequentially, we have A;, A3 > 0
and As, Ay < 0. An important formula involving the Cayley-Menger determinant is
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Formula (3)) is only valid when restricting to planar configurations.
Differentiating function (2]) with respect to r;; and applying formula (3 yields
mimj(sij — )\/) = O'AZ'A]‘, (4)

where s;; = ri;(a”), N =2)\/(aM), and ¢ = —64u/a. Group the six equations defined by (@) as
follows:

m1m2(812 - X) = 0A Ay, m3m4(s34 - X) = 0 A3Ay,
m1m3(813 — )\,) = O'AlAg, m2m4(824 — )\,) = UA2A4, (5)
m1m4(814 — )\/) = O'A1A4, m2m3(823 — )\/) = O'AgAg.

Multiplying the equations together pairwise and cancelling the common terms yields the well-known
Dziobek relation

(812 — )\,)(834 — )\

! ! !

) = (s13— A )(s2a = N) = (514 — A\ )(s23 — \). (6)
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Finally, after eliminating A" from equation (@), we obtain the important relation

(7"54 - 7"154)(7"153 - 7“162)(7"53 - 7"54) = (Tlﬁ2 - 7“164)(7"254 - 7"54)(7"163 - 7’263)7 (7)

where § = a + 2.

Equation () is a necessary condition for a four-body planar central configuration. Assuming
that V = 0, it is also sufficient, although further restrictions are needed to ensure that the masses
are positive. For a convex configuration, the two diagonals must each be strictly longer than any
of the exterior sides. For instance, if the bodies are ordered sequentially, then we have 73,794 >
T12,T14, 23, '34. Moreover, the shortest and longest exterior sides must lie opposite each other (with
equality only in the case of the square). Thus, if r15 is the length of the longest exterior side, then
T19 > 714,723 > T34. These geometric relations can be derived by dividing different pairs of equations
in (Bl) and using the convexity of the configuration (see [12] for details).

3 Proof of Theorem

Without loss of generality, we can assume that the bodies in the convex central configuration are
ordered sequentially in a counterclockwise fashion around the configuration. Thus, the lengths of
the diagonals are 13 and r94, and these are larger than any of the four exterior sides 719, 123, 714, 7'34.
We can also assume that the bodies are labeled so that rq5 is the longest exterior side. Since the
diagonals are perpendicular, we can apply a rotation and translation to place the bodies on the
coordinate axes. Finally, by scaling the configuration, we can assume that ¢; = (1,0). Let the
other positions be given by ¢, = (0,a),q3 = (=b,0) and g4 = (0, —c), where a, b, ¢ are positive real
variables (see Figure 2]). In these coordinates kite configurations occur in two distinct cases: a = ¢
(horizontal axis of symmetry; left plot in Figure[Il), or b = 1 (vertical axis of symmetry; right plot
in Figure[I]). If both a = ¢ and b = 1, the configuration is a rhombus.

Figure 2: Coordinates for the proof of Theorem



The mutual distances for the exterior sides are given by
riy=a"+1, r3=ad"+0, ry =0+, and r}=1+c,

while the lengths of the two diagonals are simply 713 = 1+ b and ro4 = a4+ ¢. Since 15 is the length
of the longest exterior side, we have r15 > 114, which implies a > ¢ and ro3 > r34.
Denote F' as the function

F(a,b,c) = (7“54 - 7’54)(7’53 - 7“f2)(7“253 - T§4) - (7’52 - 7’54)(7“254 - 7“54)(7’53 - 7’53),
where each mutual distance is treated as a function of the variables a,b,c. Let I' be the level
surface F'(a,b,c) = 0 restricted to the octant where a, b, and ¢ are strictly positive and satisfy the
inequalities
713,724 > T12 2 T14,T23 = T34 (8)

By equation (@), I' is equivalent to the set of convex central configurations with perpendicular
diagonals, positive masses, and our choice of labeling.

It is easy to see that the convex kite configurations are contained in I'. For instance, if b = 1,
then rio = 193 and ryy = 73y, from which it follows that F(a,1,¢) = 0 for any choice of a or c.
Likewise, if a = ¢, then ris = 114,793 = 734, and F'(a, b, a) = 0 for any choice of a or b. We will show
that these are the only two solutions to the equation F' =0 on I.

Using equation ([7]) and the partial derivatives Ory3/0b = 1, 0rq3/0b = b/ra3, and Ors,/0b = b/rs4,
we compute that
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Recall that @ > c on I'. Fix a and ¢ such that a > ¢ and look for a value of b that satisfies
F(a,b,c¢) = 0. One such value is b = 1, a kite configuration. But a > ¢ implies that r93 — r34 > 0,
from which it follows that 0F/0b > 0 on I' due to the inequalities in (§). Since F' is a differentiable
function, it follows that there can be only one solution to F' = 0, and this must be b = 1. Note
that if a = ¢, then rj5 = r14 and re3 = r34, which yields 0F/0b = 0, as expected (the plane a = ¢
satisfies F' = 0 for any value of b). Thus, b = 1 or a = ¢ are the only solutions to F' = 0 on I'. This
completes the proof.

Remark 3.1. The surface I" (kite configurations with our particular choice of labeling), consists of
a subset of the union of two orthogonal planes b = 1 and a = ¢. In order to satisfy the inequalities



in (), on the plane b = 1 we have 1/v/3 < a < v/3 and Va2 + 1 — a < ¢ < a, while on the plane
a =c we have 1/v/3 < a < V3 and Va2 +1—1 < b < 1. The two planes intersect in a line that
corresponds to the one-parameter family of rhombii central configurations. It is straight-forward
to check that 0 is a critical value for F'(a,b,c), as the partial derivatives all vanish at points of the
form (a,1,a). This is consistent with the fact that T', defined by the pre-image F~'(0), is not a
manifold.

Remark 3.2. For completeness, we use the equations in (5] to compute the masses for each type
of kite configuration. Without loss of generality, we can scale the masses so that m; = 1. For kite
configurations with b = 1 (symmetric with respect to the y-axis), we have ms = m; = 1,

2c S14—S13 2a  S93 — S13

my = , and my =
a—+c S93 — So4

a—+c S14 — S24

For kite configurations with a = ¢ (symmetric about the z-axis), we have m; = 1,

b+1 — — _
My = my = +1 51 8137 and  ms — (14 — 513)(S14 — So24)

1
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4 The Vortex Problem

Next we consider the case of point vortices with arbitrary circulations I'; € R. Unlike the n-body
problem, it is possible that some of the circulations are negative. Central configurations in the
planar n-vortex problem are critical points of the Hamiltonian H = — %, . I;I'; In(r;;) subject to
the constraint I = Iy, where [ is given by equation (II), but is now called the angular impulse. See
Chapter 2 of [I1] for a good overview of the planar n-vortex problem.

As before, in order to locate planar four-body central configurations, we must impose the addi-
tional constraint V' = 0 using the Cayley-Menger determinant. The argument used earlier to derive
equation ([7l) works equally well in this setting. The mutual distances must satisfy

2 2 V(.2 2 \(,.2 2 2 2 \(,.2 2 \(,.2 2
(roq = i) (ris = 112) (23 — r30) = (17 — r1g) (raq — 73,) (115 — 733), 9)
although there are no inequalities such as (§)) restricting the mutual distances since the circulations
can be of opposite sign.
Suppose that we have a convex central configuration of four vortices with perpendicular diago-
nals. Using the same setup and variables as in the proof of Theorem 2.2 equation (@) becomes

(a® + 2ac — 1)(b* + 2b — a®)(a* — ¢*) — (a* — *)(a® + 2ac — b*)(1 + 2b —a®) = 0,
which factors nicely into
2(a® — *)(b* — 1)(ac+b) = 0.

Since a, b, ¢ are strictly positive, we quickly deduce that a = ¢ or b = 1, and the configuration must
be a kite. We have proven the following theorem, the analog to Theorem for the point vortex
problem.

Theorem 4.1. If the diagonals of a four-vortex convex central configuration are perpendicular, then
the configuration must be a kite.



Remark 4.2. As with the vortex case, choosing o to be an even natural number leads to nice
factorizations of equation (). For example, if & = 2 (the strong force potential), then equation ([7])
factors as

(a® — ) (B> = 1) - py(a,b,c) = 0,

where po is an eighth-degree polynomial with 47 terms whose coefficients are all positive. Similarly,
for the case oo = 4, equation () factors as

(a® — &) (B* — 1) - ps(a,b,c) = 0,

where p, is a fourteenth-degree polynomial with 210 terms whose coefficients are all positive. These
factorizations were quickly obtained using Maple [9]. Since a,b, ¢ are strictly positive, a = ¢ or
b = 1 follows immediately, and the argument used in the proof of Theorem is not needed.
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