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ABSTRACT 
 
Weather ship routing has become a recognized measure to target safe, sustainable and 
economical ship activities. Academic research has focused the ship routing optimization 
through pathfinding algorithms which take into account the meteo-oceanographic forecasts 
(i.e. wind, waves or currents predictions). This contribution shows the results of the  
numerical simulations carried out during the development of a weather ship routing applied 
to a ferry service in the Mediterranean Sea: Barcelona – Palma de Mallorca. From a 
methodological point of view, the pathfinding A* algorithm is applied to optimize the travel 
time considering the wave action. Under severe weather conditions, a reduction of the 6% 
of the travel time is obtained comparing the optimized route and the minimum distance route. 
The results show also a non-significant correlation between the travel time reduction and 
wave height. In consequence the benefit of ship routing depends not only of the wave height 
but also in the spatial sequence of the storm.    
 
1. INTRODUCTION 
 
 A major factor of competitiveness in the maritime industry is the minimization of fuel 

consumption for ship routes. This agrees with an increase of the world tendency to reduce 

air emissions in the framework to mitigate the climate change effects. From the shipping 

industry point of view this may be achieved with an optimum route plan design (Simonsen 

et al., 2015). The ship routing is defined as the development of an optimum sailing course 

and speed for ocean voyages based on nautical charts, forecasted sea conditions, captains’ 

experiences and the individual characteristics of a ship for a particular route. Academic 

research has focused the ship routing optimization through pathfinding algorithms 
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(Takashima et al., 2009; Mannarini et al., 2013; Szłapczyńska and Śmierzchalsk, 2009; 

Larsson and Simonsen, 2014 and Hinnenthal and Günther, 2010) which take into account 

the meteo-oceanographic forecasts (i.e. wind, waves or currents predictions). Some of these 

contributions have been tested through a “proof-of-concept” based in oceanic distances 

(Simonsen et al., 2015). However, at short-distances (for instance in the framework of the 

Short-Sea Shipping or Ferries activities) the weather ship routing implementation and benefit 

is not yet fully investigated (Grifoll et al., 2018). In this case, historically the spatial 

resolution of the meteo-oceanographic predictions (grid resolution of the numerical model) 

is a severe restriction to design feasible ship routing. 

 The benefits expected of the best possible route is associated in terms of criteria like 

estimated time of arrival (ETA), fuel consumption, emission minimization, safety (i.e. 

parametric rolling or surfriding) and comfort (passengers seasickness). The objective of this 

contribution is to show the numerical test carried out during the development of a weather 

ship routing applied to a short distance. From a methodological point of view, the work 

presented in this contribution prove the suitability of the implementation of a pathfinding 

algorithm (i.e. A*) for the optimum ship routing in a relative short maritime distance: 

Barcelona – Palma de Mallorca. The ship route comparison (minimum distance versus 

optimal route) shown in this contribution evidences the benefit in terms of travel time. As a 

consequence, the percentage of services, which the travel reduction is significant, is assessed 

using wave predictions.  

 

2. METHODOLOGHY 
 
The pathfinding algorithm used in this contribution is the A* (Dechter and Pearl, 1985). This 

algorithm is applied at gridded scheme where each gridpoint (node) is connected to a set of 

vicinity points. To each connection (edge) a weight related with the distance is assigned. The 

great circle (orthodromic) track distance is used for the spherical coordinates of grid nodes. 

A* solves routing problems by searching among all possible paths to the solution (goal) for 

the one that incurs the smallest cost (least distance traveled, shortest time, etc.), and among 

these paths it first considers the ones that appear to lead most quickly to the solution. A* is 

formulated in terms of weighted mesh: starting from a specific node of the mesh, it constructs 

a tree of paths starting from that node, expanding paths one step at a time, until one of its 

paths ends at the predetermined goal node. At each iteration of its main loop, A* algorithm 

needs to determine which of its partial paths to expand into one or more longer paths. It does 
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so based on an estimate of the cost (in our case the travel time) to go to the goal node. In 

particular, A* selects the path that minimizes the total cost function F(n): 

 

          F(n)=G(n)+H(n)                                      (1)  

 

where n is the last node on the path, G(n) is the cost of the path from the start node to n, and 

H(n) is a heuristic that estimates the cost of the cheapest path from n to the goal. For the 

algorithm, to find the actual shortest path, the heuristic function must be admissible, meaning 

that it never overestimates the actual cost to get to the nearest goal node. In our case, the 

heuristic function is the minimum distance between origin and destination. The description 

of the operating principle of the code (pseudocode) is shown in Grifoll and Martínez de Osés 

(2016).  

 Wave action is the major factor that affects the ship motions, decreasing the propeller 

thrust and adding a resistance in comparison to absence of waves. A simple formula to 

include ship speed reduction into waves is suggested by Bowditch (2002). The final speed 

is computed in function of the non-wave affected speed plus a reduction in function of the 

wave parameters: 

          v = v0 − f (θ) · HS
2       (2) 

Where HS is the significant wave height and f is parameter in function of the relative ship 

wave direction (θ; see Table 1). The wave predictions used are provided by the operational 

systems distributed by the Puertos del Estado (see more information of the forecasting 

system in Grifoll et al, 2018).  

 

Ship wave relative direction 
(θ) 

Wave direction f(kn/ft2) 

0° ≤ Θ ≤ 45° Following seas 0.0083 

45° < Θ < 135° Beam seas 0.0165 

135° ≤ Θ ≤ 225° Head seas 0.0248 

225° < Θ < 270º Bean seas 0.0165 

270° ≤ Θ ≤ 360° Following seas 0.0083 

Table 1 – Values of the coefficient f in function of the ship wave relative direction (θ). 
 
3. RESULTS 
 
This section presents the numerical results obtained using the previous methodology applied 

at the Barcelona – Palma de Mallorca route (Mediterranean Sea). The horizontal grid 
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resolution has been 1.5 minutes with a connection of 24 edges per each node. An initial 

cruise ship speed of 20 knots has been considered and 25 wave energetic scenarios occurred 

between December 2016 and March 2017 has been selected. In order to characterize the 

typical wave climate, Figure 1 and 2 show the temporal evolution of two energetic episodes 

in terms of significant wave height: Figure 1 shows a Northeastern storm and Figure 2 

Southwestern storm. The color bar represents the value of HS and black arrows the direction 

of propagation of the waves.  During these energetic episodes the ship routing recovered by 

the A* algorithm is shown (in magenta) for each snapshot. Alternatively the minimum 

distance is also shown in black.  In both cases, the optimal route tends to avoid the most 

energetic areas from a wave conditions point of view. For instance, Figure 2 shows how 

during Southwestern storm the optimal route is displaced towards north in comparison to the 

minimum distance route.  In this case the travel time for the optimal route is 8.1 hr, lower 

than the time traveled by the minimum distance route (i.e. 8.4 hr). In order to generalize the 

ship routing pattern, Table 2 summarizes the ship routing results considering the mentioned 

25 energetic scenarios. The departure time has been selected based on the current services 

in the vessel routes between Barcelona and Palma de Mallorca. Differences around tens of 

minutes are obtained in function of the significant wave height. The maximum difference 

(0.55 hr) were obtained during the ship route starting at 17/01/2017 00:00, which 

corresponds a significant wave height of 4.5 m.  

 

Time of 
departure 

(dd/mm/yyyy 
hh:mm) 

max(HS) 
(in m) 

Duration for 
the optimized 
route (in hr) 

Duration for 
the 

minimum 
distance 

route (in hr)

Difference  
(in hr) 

Distance of 
the 

optimized 
Route (in 
nautical 
miles) 

19/12/2016 
00:00 

3.2 

7.0 7.0 0.0 0.000 
19/12/2016 

05:00 
3.7 

7.1 7.1 0.0 0.001 
20/12/2016 

06:00 
5.0 

8.3 8.8 0.5 5.567 
20/12/2016 

10:00 
4.3 

7.8 8.2 0.4 3.033 
21/12/2016 

00:00 
3.4 

7.2 7.3 0.1 0.867 
21/12/2016 3.7 7.3 7.4 0.1 0.870 
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05:00 

09/01/2017 
00:00 

3.0 

6.9 7.1 0.2 0.871 
09/01/2017 

03:00 
3.3 

7.1 7.2 0.1 1.155 
11/01/2017 

00:00 
4.0 

7.2 7.4 0.2 1.438 
11/01/2017 

02:00 
4.3 

7.4 7.7 0.3 2.685 
13/01/2017 

00:00 
1.9 

6.8 6.8 0.0 0.019 
17/01/2017 

00:00 
4.5 

7.6 8.1 0.5 2.402 
18/01/2017 

00:00 
3.9 

7.2 7.4 0.2 0.303 
19/01/2017 

06:00 
4.0 

7.3 7.3 0.0 0.020 
20/01/2017 

00:00 
3.8 

7.3 7.3 0.0 0.001 
21/01/2017 

06:00 
5.6 

7.9 8.0 0.1 0.020 
21/01/2017 

11:00 
6.8 

8.9 9.3 0.4 0.304 
22/01/2017 

00:00 
6.8 

9.1 9.2 0.1 1.353 
22/01/2017 

03:00 
6.0 

8.4 8.5 0.1 0.587 
22/01/2017 

06:00 
5.8 

8.1 8.2 0.1 0.585 
05/02/2017 

00:00 
3.1 

7.0 7.0 0.0 0.013 
06/02/2017 

00:00 
5.4 

8.6 8.7 0.1 1.352 
04/03/2017 

00:00 
6.2 

8.1 8.4 0.3 3.569 
04/03/2017 

02:00 
5.3 

8.2 8.4 0.2 3.610 
04/03/2017 

04:00 
4.9 

8.0 8.3 0.3 3.333 
Table 2– Results of the 25 ship routing simulations obtained for Barcelona – Palma de 
Mallorca in function of the time of departure. The minimum distance route is 133.292 
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nautical miles.ig. 1 – Temporal sequence of the snapshot of the case Barcelona – Palma 
de Mallorca. The optimal route is plotted in magenta and the minimum distance route 
is plotted in black. The color bar represents the HS and the black arrows the 
propagation direction of the waves. This route corresponds to a departure time of 
17/01/2017 00:00 h. 
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Fig. 2 – Temporal sequence of the snapshot of the case Barcelona – Palma de Mallorca. 
The optimal route is plotted in magenta and the minimum distance route is plotted in 
black. The color bar represents the HS and the black arrows the propagation direction 
of the waves. This route corresponds to a departure time of 4/03/2017 00:00 h. 
 
  The snapshot shown in the Figure 3 reveals that similar maximum HS leads differentiated 

optimal ship routing after 4 hours of the departure. In this case, the difference of the wave 

climate relies in the homogeneity of the storm instead of the maximum HS (more spatial 

heterogeneity in the wave conditions shown in the Figure 3.left). In this sense, From a 

practical point of view, it is interesting to analyze the relation between the maximum HS and 
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the increase of travel time in comparison to the time given by the minimum distance route 

(Figure 4.Left). This Figure shows how there is not significant correlation between HS
 and 

the decrease of the travel time (r=0.37; p>0.05). The non-significant correlation of the 

optimal route and the wave climate is also shown in the relation between the maximum HS 

and the increasing of the distance associated to the optimal route in comparison to the 

minimum distance  (Figure 4.Right; r=0.31; p>0.05). In consequence, the determination of 

the optimal route is not only due to the HS and wave direction (as suggested in Equation 2 

and Table 1), but also the spatial evolution of the storm may have a relevant role on the 

determination of the optimal route. 

 

 

 

Fig. 3 – Left:  maximum HS and the increase of travel time versus the time given by the 
minimum distance route in the 25 scenarios investigated. Right: maximum HS versus 
the increasing of the distance associated to the optimal route in comparison to the 
minimum distance in the 25 scenarios investigated. 
  



   .  
 

 

 
 

Fig. 4 – Left:  Snapshot of the case Barcelona – Palma de Mallorca after 9 hours of 
departure for a departure time of 20/12/2016 at 06:00 h. Right: Snapshot of the case 
Barcelona – Palma de Mallorca after 7 hours of departure for a departure time of 
22/01/2017 at 03:00 h.  The optimal route is plotted in magenta and the minimum 
distance route is plotted in black. The color bar represents the HS and the black arrows 
the propagation direction of the waves.   
 

4. FINAL REMARKS 
 
The ship route comparison (minimum distance versus optimal route) evidences the relevance 
of the wave effects on navigation. Even the short distance between Barcelona and Palma the 
reduction in terms on time sailed using ship routing may be substantial (7% of the total time). 
The analysis of the 25 episodes revealed a non-significant correlation between the travel 
time reduction and the maximum wave height occurred during the navigation route. In 
consequence, the benefit of ship routing would depends not only of the maximum wave 
height but also other wave parameters (such as wave direction) and the the spatial sequence 
of the storm.    
 
This sailing time reduction may lead to substantial economic benefit. In this sense, Grifoll 
et al. (2018) quantify the economic benefit of using the ship routing methodology shown in 
this contribution for a Short-Sea Shipping activity (among Spanish and Italian ports). In this 
case, the percentage of economic cost savings may reach 18% of the total costs under severe 
storms considering bunkering, crew costs among other factors. This economic benefit of ship 
routing systems at ferry services distances justifies the use of these systems in the inclusion 
of competitiveness analysis of inter-modal routes in decision-making strategies (for instance 
Martínez-López et al. (2015)) or such a complementary information to other optimization 
techniques such as fleets management (Fagerholt, 2006) or scheduling orientation (Cho and 
Perakis, 2010). In our contribution, the ship weather routing implementation is accompanied 
with the developing of high-resolution meteo-oceanographic products (such as the products 
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provided by Puertos del Estado). In this sense, further works include the consideration of 
water currents and wind effects on navigation. Also, further research in the methodology 
includes the implementation of the method for dynamic wave states, the implementation of 
the multi-criteria algorithm or the methodological inclusion of safety restrictions due to the 
wave conditions (parametric rolling and broaching/surf-riding). 
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