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Abstract

This paper is concerned with the numerical simulation of fluid-structure in-
teraction problems involving an incompressible viscous flow and an elastic
structure. A semi-implicit coupling technique is presented which strongly
couples the added-mass term of the fluid (pressure stress) to the structure,
while the remaining terms are only loosely coupled. A thorough numerical
analysis is carried out to verify the accuracy of the proposed method by
comparing its results to experimental data and other numerical results from
the literature. The performance and accuracy of the proposed method are
also compared against a fully implicit coupling technique. Numerical tests
show that semi-implicit coupling significantly reduces the computational cost
of the simulations without undermining either the stability or the accuracy
of the results. The question of implicit or explicit coupling of the dynamic
mesh step is addressed by evaluating its effect on the overall accuracy and
performance of the semi-implicit method. The implicit coupling of the dy-
namic mesh step is found to slightly improve the accuracy, while significantly
increasing the computational cost. Moreover a comparison is made on the
performance of the semi-implicit method with different interface solvers.
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1. Introduction

Fluid-structure interaction (FSI) refers to problems that deal with mutual
interaction of fluid flow and a moving or deforming structure. On the one
hand, fluid flow induces surface forces on the structure which make it move or
deform. On the other hand, the movement of the solid boundary affects the
fluid flow. A very wide range of applications is cited for FSI, ranging from
civil engineering to biomechanics. An interesting example of FSI application
in biomedical engineering is simulation of blood flow inside deformable vessels
in human arterial system. The simulations may help improving the quality of
artificial blood vessels and predicting the rupture of aneurysms during specific
medical treatments or surgeries (e.g. [1, 2]). Another interesting application is
predicting the flow-induced vibration on the submerged structures in offshore
engineering (e.g. [3, 4]).

Broadly, two different approaches could be used to solve FSI problems,
called monolithic and partitioned methods. In monolithic approach one uses
a single solver to solve fluid and structural governing equations simultane-
ously. As the equations are solved together, the interaction between the
domains is inherently taken into account. The main advantage of the mono-
lithic approach is the elimination of the need for any further coupling tech-
nique at the fluid-structure interface, which reduces the complexity of the
problem. However, this approach requires using the same numerical meth-
ods to discretize and solve the fluid and structural equations, while they
are different in nature and have their own considerations. This may cause
monolithic methods to be less efficient or reliable in some applications [5].
Another disadvantage of the monolithic approach is its inability to exploit the
already-developed fluid and structural solvers. Therefore, it requires a large
software development effort and usually results in a less modular solver [5, 6].

Partitioned methods, on the other hand, use separate solvers for fluid
and structural equations and adopt a coupling scheme to account for the
interaction of the domains. The coupling scheme determines the order and
frequency in which the fluid and structural equations should be solved. It
also determines the manner of communication and information exchange be-
tween the two solvers which is essentially restricted to the fluid-structure
interface. Partitioned approach alleviates both disadvantages of the mono-
lithic schemes. It allows using the most adapted numerical methods for each
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sub-problem. These methods are previously tested and verified on diverse
cases which greatly increases the reliability of the FSI simulations. It also
enables the use of the previously developed solvers for fluid and structural
equations which saves a large development effort and increases modularity of
the software. However, partitioned approach introduces a new challenge to
the problem, i.e. the coupling between the two solvers [5, 6].

Partitioned methods are further divided into explicit (or loosely coupled)
and implicit (or strongly coupled) schemes. In an explicit coupling method,
the fluid and structural equations are solved in sequence and only once at
every time step. Consequently, explicit methods do not satisfy the exact
coupling condition at the fluid-structure interface. The most basic explicit
scheme is the conventional serial staggered method [7]. Implicit methods,
in contrast, enforce the equilibrium condition at the interface by means of
coupling iterations between the fluid and structural solvers at each time
step. Fixed-point (Gauss-Seidel or Jacobi) iterations [5, 8] and Newton-
based methods [9, 10, 11] are the most commonly used techniques to carry
out the FSI coupling iterations. Vector extrapolation methods have also been
used for this purpose [12].

Explicit methods work well for aeroelastic simulations and problems in-
volving compressible flows [13, 14]. However they are unstable for a wide
range of problems, especially ones with incompressible flow and low solid/fluid
density ratios (values close to one). The instability is regardless of the time
step size or discretization schemes for each domain. It is inherent to the
coupling method and is often called “added-mass effect”. The instability
rises due to the fact that fluid forces in the explicit coupling depend upon
a predicted displacement of the structure, rather than the correct one. As
the structure moves, it has to accelerate the bulk of the fluid around it as
well. Thus, part of the fluid acts as an extra mass in the structural dynamics
system–given rise to the name added-mass effect. This effect is particularly
strong when densities of the fluid and the structure are similar. For any
loosely coupled method there is a density ratio limit that the method would
suffer instability beyond it [15, 16]. While added-mass effect causes instabil-
ity in the loosely coupled schemes, it deteriorates convergence of the strongly
coupled methods. Thus, a FSI problem with strong added-mass effect is also
challenging for implicit methods, as it requires many coupling iterations to
converge at each time step [15, 16].

Implicit methods provide stable solution for FSI problems with strong
added-mass effect, of which explicit methods are incapable. However, per-
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forming several coupling iterations, i.e. solving the complete system of gov-
erning equations several times per time step, requires significantly higher
computational resources. To alleviate this, Fernandez et al. [17] proposed
a semi-implicit coupling technique in which they used a projection method
to solve the fluid equations and only implicitly coupled the projection step
to the structure. Therefore the pressure stress term of the fluid is strongly
coupled to the structure. It is argued that the pressure stress term is the
main contributor to the added-mass effect and coupling this term explicitly
will cause numerical instability [15]. By implicit treatment of the added-mass
term (pressure stress), the semi-implicit method maintains the favorable sta-
bility of the implicit schemes, while explicit treatment of the other terms
helps avoiding excessive computational cost [17]. A very similar method was
also proposed by Breuer et al. [18, 19] to solve FSI problems with turbu-
lent flow. An analogous idea is present in the hybrid monolithic-partitioned
method of Grétarsson et al. [20] for FSI problems with compressible flow. It
strongly couples the fluid pressure and solid velocity by solving them implic-
itly in a monolithic manner, while the remaining terms are loosely coupled
in a partitioned manner. Other semi-implicit methods are also reported in
the literature which share the same basic idea, e.g. [21, 22].

Despite receiving attention from researchers, semi-implicit coupling tech-
nique is far from perfect. Many of the reported methods in the literature
lack modularity and simplicity. Moreover most of the reported methods are
only tested in a specific type of FSI problems and their robustness in deal-
ing with different types of FSI problems is not evaluated. Besides, there are
many unaddressed questions concerning different aspects of the semi-implicit
coupling methods that require more work and attention. Some semi-implicit
methods in the literature implicitly couple the dynamic mesh step of the
fluid [18, 19], while others only explicitly couple it [17, 21, 22]. However,
to the best of our knowledge, there has been no study that evaluates the
effect of this modification on the overall performance and accuracy of the
semi-implicit coupling method.

In this work, we follow a semi-implicit approach to develop an efficient
coupling technique for FSI problems with strong added-mass effect. We also
try to address some of the open questions concerning semi-implicit meth-
ods. The main improvements and advantages of the proposed method are as
following.

• It is simple, modular and matrix-free. The method is developed with
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the least possible mathematical and numerical complications. This re-
sults in a methodology which is easy to follow and simple to implement.

• It is robust. The method remains stable, accurate and efficient for a
wide range of FSI problems, including ones with very large deforma-
tions. It is analyzed in three widely different test cases and has shown
adequate stability and performance.

• It is computationally efficient. The proposed coupling technique along
with the choices for numerical schemes and discretization, result in a
fast and efficient overall methodology.

• It is suitable for simulating FSI problems with turbulent flow. The fluid
solver and the coupling method are developed while special attention
is paid to the particular considerations of turbulent flows.

A thorough analysis is carried out to verify the accuracy of the proposed
method by comparing its results to experimental data as well as other nu-
merical results from the literature. Numerical test cases are chosen to be
very distinct in order to demonstrate the robustness of the method. Three
test cases feature an internal flow contained by a deformable membrane, an
external flow over a blunt body with rigid-body motion, and a cavity flow
with a flexible bottom. Although the proposed method has been tested in
turbulent FSI problems [23, 24], the attention is kept on laminar test cases,
where the characteristics of the FSI method could be better highlighted.

The accuracy and computational cost of the method is compared against
a fully implicit coupling technique. Moreover the effect of implicit or explicit
coupling of the dynamic mesh step on the overall performance and accuracy
of the semi-implicit method is evaluated. A modified version of the proposed
method with implicitly coupled dynamic mesh step is also used for the nu-
merical tests and its accuracy and performance are studied. Besides, both
fixed-point and Newton-Krylov methods are used to solve the coupling in-
terface problem and a comparison is made on their performance. Thus the
main contributions of this paper could be highlighted as:

1. A simple, efficient and robust semi-implicit coupling method is pro-
posed and its accuracy and good performance demonstrated through
numerical tests.
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2. The effect of implicit or explicit coupling of the dynamic mesh step
on overall performance and accuracy of the semi-implicit scheme is
evaluated.

3. Performance of fixed-point and Newton-Krylov interface solvers for
semi-implicit coupling method is studied.

The rest of this paper is organized as follows. In section 2, the governing
equations for each sub-domain as well as the coupling conditions on the
interface are presented. The discretization methods and numerical schemes
are also described in this section. In section 3, the proposed semi-implicit
coupling technique is elaborated. Section 4 deals with the description of
the methods used to solve the resulting interface problem. Results of the
numerical tests and comparisons are provided in section 4, while section 5
summarizes and concludes the article.

2. Governing equations and numerical methods

In this section, the governing equations for each sub-problem domain
and the coupling conditions on the interface are presented. The fluid and
structural domains are referred to as Ωf (t) and Ωs(t) respectively, as they
both vary in time. The interface of the domains is denoted by Γ(t) = Ωf (t)∩
Ωs(t). An Arbitrary Lagrangian-Eulerian (ALE) formulation together with a
conforming mesh technique [25, 26] is used to solve the fluid flow in a moving
domain. A Lagrangian formulation is used for the structural equations.

2.1. Fluid equations

The unsteady flow of an incompressible viscous fluid is governed by the
Navier-Stokes equations. An ALE formulation of these equations in a moving
domain is given by

∇ · u = 0 (1)

∂u

∂t
+ c · ∇u =

1

ρf
∇ · σf (2)

where u is the fluid velocity and ρf the fluid density. Vector c is the ALE
convective velocity c = u−w, which is the fluid velocity relative to a domain
moving with a velocity w.

The stress tensor σf is defined for a Newtonian fluid as
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σf = −pI + 2µfγ (3)

where p is the fluid pressure, I the unit tensor, µf the dynamic viscosity of
the fluid and γ the strain rate tensor given by

γ =
1

2
(∇u +∇uT ) (4)

2.2. Structural equations

The structural domain is governed by the nonlinear elastodynamics equa-
tion

ρs
D2d

Dt2
= ∇ · σs (5)

where d stands for the structural position with respect to the reference con-
figuration, and the structural density is shown by ρs. The Cauchy stress
tensor σs is related to the second Piola-Kirchhoff tensor Ss by

Ss = JF−1σsF
T (6)

where F is the deformation gradient F = ∇d and J is its determinant (J =
det(F)).

The FSI coupling method is presented for a generic structural system at
its full extent, however, simpler structural models are used for the numerical
tests. The structural equations for each test case are explained in section 5.

2.3. Coupling conditions

The coupling conditions apply at the interface Γ and account for the
interaction of the domains. They are derived from the kinematic and dynamic
equilibrium between the domains, which yield to the following conditions on
a non-slip type interface

uΓ =
∂dΓ

∂t
(7)

σs · nΓ = σf · nΓ (8)

for any point x ∈ Γ, where nΓ is the unit normal vector on the interface.
Equation 7 represents equality of the velocity of the fluid and the structure
on the interface to assure the kinematic equilibrium. Equation 8 represents
equality of the traction on the interface for dynamic equilibrium.
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2.4. Discretization and numerical methods

For fluid flow, a fractional-step projection method [27] along with an
explicit time advancement is used to solve the velocity-pressure coupling of
the momentum equation. This leads to a three step solution of the fluid
governing equations from time step n to n+ 1, with a time increment of ∆t

up = un −∆t[(un −wn+1).∇un − µf
ρf

∆un] (9)

∆t

ρf

∆pn+1 = ∇.up (10)

un+1 = up − ∆t

ρf

∇pn+1 (11)

for x ∈ Ωn+1
f . For the sake of having a simple notation, a first-order Euler

explicit time scheme is used for equation 9, but an extension to higher order
schemes is straightforward. The method begins with evaluation of a predicted
velocity, up, without considering the pressure gradient term (equation 9). A
pressure field is then evaluated by solving a Poisson’s equation (equation 10)
that enforces the incompressibility condition at the velocity correction step
(equation 11).

In this work, the fractional-step method is used not only for solving the
fluid equations, but also as a framework for the overall FSI solution algorithm,
making it fundamental to the proposed FSI coupling method.

A finite-volume method is used for the spatial discretization of the fluid
equations on a collocated, unstructured mesh with second-order symmetry-
preserving schemes. Symmetry-preserving schemes conserve the kinetic en-
ergy of the flow in discrete level [28]. Conservation of kinetic energy is
extremely important while dealing with turbulent flows [29]. A conjugate
gradient solver with a diagonal preconditioner is used to solve the Poisson’s
equation. A modern review and comparative study of advanced methods for
solution of the Poisson’s equation can be found in [30]. More details on the
in-house flow solver code and the numerical methods can be found in [29, 31].

Structural equations are discretized in space using a finite-volume method
along with a second-order central difference scheme. A second-order temporal
scheme is used to discretize the second time derivative. More information on
the numerical methods for the structural equations is provided in section 5
for each test case.
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2.5. Mesh movement technique

Before equations 9-11 could be solved, the new fluid mesh in Ωn+1
f and

the surface velocities wn+1 are needed. A parallel moving mesh technique,
based on radial basis function interpolation method [32], is used to move the
fluid grid in accordance to the new location of the interface and update the
discretized fluid domain.

The method uses values of scattered data, i.e. the known displacements
of the nodes on the FSI interface, to evaluate an interpolated value in a
cloud of points, i.e. the interior vertices of the fluid grid. Therefore, it does
not need the connectivity of the mesh elements and can be applied to both
structured and unstructured grids. The interpolated displacement δr at a
point x is evaluated by:

δr(x) =
nv∑
i=1

γiφ(||x− xi||) + h(x) (12)

where nv is the number of nodes on the FSI interface with known displace-
ment and φ indicates the radial basis function. The radial basis function has
been chosen to be the Wendland C2 [33] since it preserves good quality of the
dynamic mesh and allows to ignore the polynomial terms of the equation 12,
h(x). The coefficients γi are determined by imposing the known solution on
the interface

δr(xi) = δd(xi) i = 1, 2, ..., nv (13)

for xi ∈ Γ, thus restricting the size of the system of equations to the number
of known points nv.

Surface velocities are evaluated according to the so-called space conserva-
tion law (SCL). SCL states that the sum of the volumes swept by the surfaces
of a control volume must be equal to the time rate of change of its volume v

∂v

∂t
−
∫
cs

w · dA = 0 (14)

where cs is the boundary of the control volume and A is the area vector
pointing outward. For the discretized equations to be conservative in time,
the surface velocities should satisfy SCL which guarantees no volume is lost
while moving the grid. To satisfy the space conservation law exactly, surface
velocities are evaluated by the volume swept by each surface wface = δv

Aδt
.n
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where A is the surface area, n surface normal vector, δt time step and δv the
volume swept by the face (see Figure 1).

Old face 

New face 

A 

B 

C 

δr (A) 

δr (B) 

Volume swept δv 

δr (C) 

Control 
volume 

Figure 1: Volume swept by each face of an arbitrarily shaped polyhedral.

The process of moving the fluid mesh and evaluating the surface velocities
at a new time step would be concisely denoted by the function M in the
following sections

(Ωn+1
f ,wn+1) = M(dn+1

Γ ) (15)

More details concerning the mesh movement technique can be found
in [32].

3. FSI coupling technique

A Dirichlet-Neumann (DN) decomposition of domains is used to solve the
coupled FSI problem. In DN decomposition, fluid equations are solved for
a known location of the interface and kinematic equilibrium (equation 7) is
used as a Dirichlet boundary condition for fluid flow. Structural equations
are solved for a known traction on the interface and are subject to Neumann
boundary condition derived from dynamic equilibrium (equation 8). Thus
the discrete fluid and structural equations can be represented as interface
functions F and S so that

σΓ = F(dΓ) (16)

dΓ = S(σΓ) (17)
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The discrete fluid function F includes equation 15 (mesh movement step)
and equations 9-11 (Navier-Stokes equations). Given the current location of
the interface, it moves the fluid mesh and solves the governing equations to
obtain the fluid velocity and pressure fields. In particular, the fluid velocity
and pressure on the interface are used to evaluate the fluid traction σΓ =
σf (p,u)Γ · nΓ. The evaluated traction is then transferred to the structural
function S, which solves the governing equations of the structure to obtain
the new location of the interface.

Therefore the discrete FSI equations can be represented as an interface
problem of the form

S ◦ F(dΓ) = dΓ (18)

with vector dΓ and functions F and S, all in the same time step.
In an implicit FSI coupling method, equation 18 is solved iteratively at

each time step. These methods show adequate stability but are computation-
ally expensive because they require solving the fluid and structural equations
several times at every time step. In most of applications, the fluid solver takes
considerably more computational effort than the structural solver.

In this study we follow a semi-implicit approach in which only the pres-
sure stress term of the fluid equations is implicitly coupled to the structure.
Pressure stress term is the main contributor to the added-mass effect and
must be coupled implicitly to avoid numerical instability [15, 17]. Using a
fractional step method for fluid equations allows us to split the pressure stress
term of the fluid (equation 10) and couple it implicitly to the structure. On
the other hand, the rest of the fluid equations (Eqs. 15, 9 and 11) are only
explicitly coupled. The complete algorithm of solving the FSI problem at
time step n+ 1 is as follows.

Semi-implicit FSI coupling method:
step 0: extrapolation of dΓ from previous time steps:

d̃n+1
Γ = 2.5dnΓ − 2dn−1

Γ + 0.5dn−2
Γ (19)

step 1: moving the fluid mesh (explicitly coupled):

(Ωn+1
f ,wn+1) = M(d̃n+1

Γ ) (20)

step 2: ALE convection-diffusion equation (explicitly coupled):

up = un −∆t[(un −wn+1).∇un − µf
ρf

∆un] in Ωn+1
f (21)
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step 3: pressure equation and structural solver (implicitly coupled, solved
iteratively):

upΓ =
dΓ

n+1 − dnΓ
∆t

on Γn+1 (22)

∆t

ρf
∆pn+1 = ∇ · up in Ωn+1

f (23)

σΓ
n+1 = σf (p

n+1,up)Γ · nΓ on Γn+1 (24)

dΓ
n+1 = S(σΓ

n+1) on Γn+1 (25)

step 4: velocity correction (explicitly coupled):

un+1 = up − ∆t

ρf

∇pn+1 in Ωn+1
f (26)

un+1
Γ =

dn+1
Γ − dnΓ

∆t
on Γn+1 (27)

With this semi-implicit coupling approach, the FSI interface problem
(equation 18) is modified into:

S ◦ f(dΓ) = dΓ (28)

or

R(dΓ) = S ◦ f(dΓ)− dΓ = 0 (29)

which stands for the step 3 of the above algorithm. In the new FSI equation,
instead of the complete fluid solver function F, only the pressure equation
(denoted by f) is coupled to the structure implicitly. Again, dΓ and the
functions f and S are in the same time step.

The proposed methodology is similar to the semi-implicit methods at [17,
19, 21, 22] in keeping the ALE convection-diffusion equation (steps 2) out
of the FSI coupling loop. Avoiding to iterate this equation at every time
step significantly reduces the computational cost of the simulations. Unlike
the methods in [17, 19, 21, 22], the velocity correction step in the current
method is outside the FSI coupling loop. FSI boundary condition is applied
to the intermediate predicted velocity (rather than velocity itself) during the
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coupling iterations (equation 22), thus avoiding to calculate the corrected
velocity field at each iteration. When the FSI convergence is reached, the final
velocity field is evaluated using the final pressure field and the final boundary
displacement. Avoiding to iterate the velocity correction step further reduces
the computational cost of the simulations.

Moreover, by applying the boundary condition on the predicted velocity,
the shear stress term on the boundary (in equation 24) is evaluated using
the updated values of velocity. For example, in [17, 21] the shear stress
term is similarly evaluated using the predicted velocity field, however in their
method the predicted velocity on the boundary is evaluated once at each time
step and is not updated during the coupling iterations. It means methods
in [17, 21] use a constant velocity vector on the boundary to evaluate the
shear stress. In the present method we update the predicted velocity on
the interface at every iteration and evaluate the fluid traction using current
values of velocity.

Unlike [17, 21] an explicit temporal discretization scheme is used for the
ALE convection-diffusion equation (equation 21). Explicit time-marching
schemes are mostly preferred for their simplicity and lower computational
cost, especially in the case of a turbulent flow where small time steps are
inevitable. Keeping the convection-diffusion step out of the FSI loop provides
the opportunity to use an explicit time-marching method which ought not
to be missed.

In the semi-implicit coupling method proposed by Breuer [19], the mesh
movement step is implicitly coupled to the structure. Since the ALE convection-
diffusion step is out of the FSI loop, updating the fluid mesh and recalculating
the geometrical derivatives at each coupling iteration only reflects in the Pois-
son’s equation for pressure. On the other hand, moving the computational
grid is an expensive step and including it in the coupling iterations would
increase the computational cost of the method. This leads to the question of
whether it is necessary and worthy to include the dynamic mesh step in the
coupling iterations. No analysis to asses the extent of necessity and effect
of this modification on the accuracy of the results is provided by Breuer et
al. [19] or in other published works, to the best of our knowledge. In this work
we have studied the effect of implicit coupling of the dynamic mesh step on
the accuracy and performance of the semi-implicit method. For this purpose
a modified version of the proposed method (referred to as semi-implicit-M
in the rest of the text) is also used to solve the numerical test cases. The
modified version is similar to the original one, except for the mesh movement
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step (step 1) which is modified into (Ωn+1
f ,wn+1) = M(dn+1

Γ ) and is repeated
at every coupling iteration.

Finally, it should be noted that although the proposed coupling method
requires a specific treatment of the fluid equations (using fractional-step
method), it can be used with an arbitrary structural solver. Thus less at-
tention is paid to the structural solver in this paper. However, the total
performance improvement -with respect to a fully implicit coupling method-
would indeed depend on the efficiency of the structural solver too.

4. Interface solvers

In this section we discuss the iterative methods to solve the nonlinear
interface problem, arisen from the FSI coupling (equation 28 or 29). Fixed-
point (FP) and Newton-Krylov methods are two family of solvers that have
been widely used for FSI problems. In this study we have used both methods
and compared their performance in a semi-implicit coupling.

4.1. Fixed-point solver

This is a class of iterative solvers that are popular mostly for their sim-
plicity. They are very easy to implement and have proved to be efficient and
robust in many problems. Jacobi and Gauss-Seidel iterations are the most
basic and popular methods.

The fixed-point form of the interface problem is equation 28:

S ◦ f(dΓ) = dΓ

A block Gauss-Seidel method is used in this study with the extrapolated
value of dΓ (equation 19) as the initial guess. Each iteration begins with
solving the coupled system of equations

d̂Γk+1 = S ◦ f(dΓk) (30)

where k indicates the coupling iterations. The time step index is dropped for
the sake of simplicity, as all the parameters are at the same time step. The
interface residual is defined as

rΓk+1 = d̂Γk+1 − dΓk (31)

and the line search step to update the solution is
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dΓk+1 = dΓk + ωkrΓk+1 (32)

where ωk is the relaxation factor. Relaxation is necessary for the stability
of the scheme. It has been shown in several studies that unrelaxed Gauss-
Seidel method either converges very slowly or does not converge at all for FSI
problems involving an incompressible flow [5, 8]. Our numerical tests found
the unrelaxed method unstable for the problems in hand. The relaxation
factor is evaluated using Aitken’s ∆2 method. For a vector equation, ωk
could be obtained from:

ωk = −ωk−1
rΓ

T
k (rΓk+1 − rΓk)

(rΓk+1 − rΓk)T (rΓk+1 − rΓk)
(33)

with ω0 = 0.5 used in this work for the first iteration.
FSI convergence is achieved at every time step when the `2 norm of the

interface residual is small enough to meet the convergence criterion:

||rΓk||2
||rΓ0||2

< ε (34)

with a predefined tolerance of ε (ε = 10−5 is used in the numerical tests).

4.2. Newton-Krylov solver

Newton-Krylov method consists of two levels of iterative solvers. The
first level is a Newton’s method to linearize the problem and the second
level is a Krylov subspace method to solve the resulting linear system of
equations (see [34] for a review). Newton-Krylov methods normally show a
better performance than fixed-point methods since the FSI problem is highly
nonlinear.

The interface problem is of the form of equation 29:

R(dΓ) = S ◦ f(dΓ)− dΓ = 0

Applying Newton’s method we have

R′(dΓk)∆dΓk+1 = −R(dΓk) (35)

dΓk+1 = dΓk + ∆dΓk+1 (36)
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where k is the coupling iteration index. The function R′ denotes the interface
Jacobian

R′(dΓ) =
dR(dΓ)

ddΓ

(37)

Since the Jacobian matrix of the coupled system of fluid-structure equa-
tions is not easily accessible, a matrix-free Krylov subspace solver is used
to solve the Newton’s equation (equation 35). The advantage of the Krylov
solvers is that they only need the product of the Jacobian matrix and a
vector, rather than the Jacobian matrix itself. A first order Taylor series
expansion is used to approximate the product of the Jacobian matrix and an
arbitrary vector v

R′(dΓk)v =
R(dΓk + δv)−R(dΓk)

δ
(38)

with δ evaluated as δ = λ(λ + ||dΓk||2
||R(dΓk)||2 ), where λ is a sufficiently small

number (λ = 10−4 in this work), as suggested in [8]. Other approaches to
choose δ could be found in [34].

An unpreconditioned GMRES solver [35] is used in this study as the
Krylov solver. GMRES is chosen for its favorable convergence and robust-
ness, considering that the FSI problem is highly nonlinear. We have also tried
the BiCGSTAB method [36] as the Krylov solver but it showed convergence
problems in some of the numerical tests.

FSI convergence criterion for Newton-Krylov solver is identical to that of
the fixed-point method (equation 34 with a tolerance ε = 10−5). However, its
performance also depends on the tolerance for convergence of its inner Krylov
solver εk. In this work we set a high tolerance for the Krylov solver so that
Newton’s equation is solved with a rough accuracy. Therefore, Krylov solver
takes less iterations to solve each Newton step, but more Newton steps are
required to reach FSI convergence. We have seen that the overall efficiency
of the method is improved in this arrangement, comparing to the case of an
accurate Krylov solver. In order to optimize the performance of the method,
εk is evaluated dynamically at every Newton step by

εk = γ

(
||R(dΓk)||2
||R(dΓk−1)||2

)α
(39)
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with γ = 1 and α = (1 +
√

5)/2 as suggested in [37]. A minimum limit,
εk(min) = 10−3, is set to avoid smaller values.

5. Numerical tests

Three numerical test cases are studied to demonstrate the accuracy, sta-
bility and the computational efficiency of the proposed methodology. The
test cases are widely distinct and are chosen to demonstrate the robustness of
the method in dealing with different types of FSI problems. All test cases are
previously studied in the literature and represent important and practical FSI
problems. The first test case is a bio-inspired FSI problem of incompressible
flow inside a deformable vessel. The problem features a very low solid/fluid
density ratio, which signifies a very strong added-mass effect. This test case
is very challenging in terms of stability and convergence and is used here
to demonstrate the stability of the method and its higher efficiency. The
second test case is the vortex-induced vibration of an elastically mounted
cylinder in low Reynolds number external flow. Unlike the other two test
cases, the structure is not a thin-walled deformable membrane, but a rigid
body moving inside the flow field. The added-mass effect is smaller for this
test case but it features larger displacements. Moreover, there are available
experimental data for this case that serve to validate the method. The third
test case is a driven cavity with a flexible bottom. This test case features
very large deformations and is used to further demonstrate the capability of
the method to deal with large displacements of the solid boundary.

5.1. 3D flow inside a deformable tube

This benchmark problem was proposed by [38] and studied, among oth-
ers, by [8, 10, 17]. The problem is a 3D flow inside a straight tube with a
deformable wall, motivated by the type of problems encountered in hemody-
namics. The tube has a length of l = 0.05m, an inner radius of R0 = 0.005m
and a wall thickness of h = 0.001m. The fluid density and viscosity are
ρf = 1000kg/m3 and µf = 0.003Pa · s, respectively. The structural density
is ρs = 1200kg/m3, the Young modulus E = 3× 105N/m2, the Poisson ratio
ξ = 0.3, and the Timoshenko factor is k = 5/6. The density ratio is very
small (ρs/ρf = 1.2) which means there is a very strong added-mass effect
present.

A simplified form of the Navier equations for vascular walls [39] is used
to model the deformable structure. The model is derived from the theory
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of linear elasticity, considering only the radial deformation of the vessel and
neglecting the shear stress terms in the structure. The governing equation of
the structure reads

ρsh
∂2d

∂t2
− kGh∂

2d

∂z2
+

Eh

1− ξ2

d

R2
0

= σΓ (40)

where d = [d1, 0, 0]T and σΓ = [σ1, 0, 0]T in a cylindrical coordinate (r, θ, z).
A detailed description of the model could be found in [39, 40].

The tube wall is considered a thin structure so a 2D grid in the cylindrical
coordinate is used for the structure. The structural grid nodes match the fluid
mesh on the interface so there is no need for interpolation of parameters
between the domains. Structural equation is discretized in space using a
finite-volume method along with a second-order central difference scheme.
An implicit second-order finite difference scheme is used to discretize the
second time derivative.

The tube is clamped at both ends and the fluid is initially at rest. An
overpressure of 1333.2Pa is applied at the tube inlet during a period of 0.003s
and a constant pressure of 0Pa afterwards. Pressure at the outlet is 0Pa dur-
ing the whole simulation. Neumann boundary condition is used for velocity
at both inlet and outlet boundaries. Simulations are carried out during 0.01s
with a constant time step of ∆t = 10−4s.

Propagation of the pressure wave with a finite velocity is observed inside
the tube. Figure 2 shows the pressure contour plots at three different time
instants: t=0.0025, 0.005 and 0.0075 s. Deformation of the tube wall is
magnified by a factor of 10 to be visible more clearly.

The mesh-independency of the results is assessed by using three different
grids to solve the problem. Two parameters are used to evaluate the accuracy,
namely the inner radius of the mid-point of the tube at t = 0.005s, and the
outlet mass flow rate at t = 0.009s. The two parameters are chosen because
they represent the physics of the problem. The timing is also chosen to
represent the instants of interest, i.e. the instants when the peak of the wave
is in the area of the target parameter. Table 1 contains the information of
the grids and results of the simulation.

As noticeable in Table 1, results obtained by mesh M2 and M3 are very
similar. The M1 mesh gives good results for mid-point radius but the outlet
mass flow is about 4% different. Mesh M2 is used to carry out the rest of
the simulations for the sake of both accuracy and computational cost.
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Figure 2: Pressure wave propagation inside the deformable vessel: (a) t=0.0025s, (b)
t=0.005s and (c) t=0.0075s.

In order to verify the accuracy of the proposed method, the problem was
also solved using a fully implicit coupling technique to generate reference
results. For the implicit coupling, equation 18 is solved iteratively using
the interface solvers described in section 4. It means all fluid terms and
the dynamic mesh step are strongly coupled to the structure via coupling
iterations. Table 2 represents the results obtained by the implicit, semi-
implicit and semi-implicit-M coupling methods. Same parameters are used
to evaluate the accuracy of the methods.

Results in Table 2 demonstrate the adequate accuracy of the proposed
semi-implicit coupling method. The maximum error in mid-point radius is
less than 0.1% while outlet mass flow rate has an error of 1.1% (with respect
to results of the implicit method). The level of the error is very low which
suggests the semi-implicit coupling method does not degrade the accuracy
of the solution, compared to a fully implicit method. Including the mesh
movement step in the coupling iterations (semi-implicit-M method) further
reduces the error to under 0.4%.

Moreover, Figure 3 compares the transient results obtained by the semi-
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Table 1: Mesh-independency of the results for deformable tube test case.

Mesh name Grid size mid-point radius outlet mass flow
Fluid Structure t=0.005s (mm) t=0.009s (g/s)

M1 3742 1267 5.01 24.50
M2 8776 2760 5.05 25.38
M3 19156 4450 5.05 25.49

Table 2: Comparison of the accuracy of the implicit and semi-implicit methods for de-
formable tube test case.

Coupling method mid-point radius outlet mass flow
t=0.005s (mm) t=0.009s (g/s)

Implicit 5.05 25.67
Semi-implicit 5.05 25.38

Semi-implicit-M 5.05 25.57

implicit method against those of the fully implicit scheme. The picture in the
left shows the radius at the mid-point of the tube while the picture in the right
depicts the mass flow rate at the outlet, during the simulation time. Results
of the semi-implicit method agree very well with those of implicit method at
every time step which further verifies the accuracy of the proposed method.

Table 3 compares the performance of the implicit and semi-implicit cou-
pling methods. The performance criteria are the average number of cou-
pling iterations at each time step and the overall CPU time of the simu-
lations. CPU times are presented in non-dimensional form. They are nor-
malized by the smallest value, which is that of the semi-implicit method.
All three coupling methods have been used with the same interface solver
(FP-Aitken). Simulations were carried out on a machine with two Quad-
Core AMD Opteron 2376 CPUs (8 cores in total) and 16GB of RAM. The
machine was used exclusively for the solution of each case with identical
conditions in order to attain comparable CPU times.

Data in Table 3 demonstrate the significantly lower computational cost of
the proposed semi-implicit coupling method with respect to implicit coupling
technique. Comparing the total CPU times of the implicit and semi-implicit
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Figure 3: Comparison of the transient results obtained by implicit and semi-implicit cou-
pling methods, left: inner radius of the mid-point of the tube, right: outlet mass flow
rate.

Table 3: Performance comparison of implicit and semi-implicit coupling methods in de-
formable tube test case.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 39.7 12.9
Semi-implicit 36.3 1.0

Semi-implicit-M 38.5 11.2

methods shows that semi-implicit coupling reduces the computational time
by 92%. This significant reduction in CPU time is because the semi-implicit
method avoids iterating the expensive steps of the solution procedure de-
scribed in section 3.

The required CPU time for the semi-implicit-M method is significantly
higher. It takes 11.2 times more computational time than the semi-implicit
method, and it is only 13% faster than the implicit coupling scheme. Includ-
ing the mesh movement step in the coupling iterations is the reason for such
a high computational cost of the modified semi-implicit method. Clearly the
relative CPU time of this method highly depends on the performance of the
dynamic mesh technique. With a simple and fast mesh movement tool, its
performance would be closer to the semi-implicit method. However, in many
applications the quality of the mesh near the solid surfaces is of utmost im-
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portance. Hence an advanced mesh movement technique which guarantees
the high quality of the mesh elements in vicinity of the moving boundary is
indispensable. Such advanced mesh movement techniques (like the method
used in this work) are normally very costly, which remarkably increases the
computational cost of the simulations.

Based on results in Table 2 and 3, including the mesh movement step
in the coupling iterations only slightly improves the accuracy of the results,
while significantly increasing the computational cost. As discussed in sec-
tion 3, updating the fluid mesh in the semi-implicit method only affects the
coefficients of the Poisson’s equation for pressure. We have seen in the present
numerical test that the change in the pressure field due to updating the mesh,
and the subsequent changes in the location of the interface and other flow
parameters, are marginal. This could be partly due to the relatively small
deformation of the structure and small time step size in the current test case.
In the following subsections we would study this effect in FSI problems with
larger displacement of the interface boundary.

It is worth to note that the semi-implicit method reduces the compu-
tational cost of each coupling iteration but does not particularly affect the
number of coupling iterations required for convergence. The average num-
ber of coupling iterations for implicit and semi-implicit techniques are very
similar (Table 3). The number of iterations to reach convergence at each
time step is mostly affected by the iterative solver that is used to carry out
the coupling iterations. Two basically different interface solvers were used to
solve the coupled interface problem, as explained in section 4. The perfor-
mance of these solvers are reflected in Table 4, using four criteria. The first
criterion is the average number of coupling iterations at each time step. The
second criterion represents the number of times that the coupled equations
(S ◦ f(dΓ)) are solved at each coupling iteration. This number is essentially
equal to 1 for the fixed-point solver but is higher for the Newton-Krylov
method, because it undergoes an inner loop inside every coupling iteration.
The third criterion is the number of times that the coupled equations are
solved at each time step (the product of the first and the second criteria).
The last criterion is the overall CPU time of the simulations, normalized by
the smallest value which is that of the Newton-Krylov method.

It is seen in the data of Table 4 that the nonlinear Newton-Krylov method
outperforms the fixed-point method. It reduces the average number of solving
the coupled equations by almost half with respect to FP-Aitken method
(third criterion in Table 4). Comparing the CPU times, FP-Aitken takes 27%

22



Table 4: Performance comparison of different interface solvers for semi-implicit coupling
method in deformable tube test case.

Average No. of No. of S ◦ f(dΓ) Average No. of Normalized
Interface solver coupling iterations solutions per S ◦ f(dΓ) solutions CPU time

coupling iteration per time step
FP-Aitken 36.3 1 36.3 1.27

Newton-Krylov 4.0 4.6 (average) 18.4 1.00

more computational time than the Newton-Krylov solver. It should be noted
that comparing the number of coupling iterations for these two methods
is not appropriate because Newton-Krylov method takes considerably more
computational time per coupling iteration.

The current test case is a FSI problem with a very strong added-mass
effect that takes many coupling iterations to satisfy the equilibrium condi-
tion on the interface. The reduction in computational time by using the
Newton-Krylov method is tangible. It should be mentioned that although
Newton-Krylov method outperforms the FP-Aitken, it introduces more com-
plexity to the problem due to evaluation of the Jacobian. It is also worth
to mention that an unpreconditioned Krylov solver has been used to solve
the Newton’s equation in this work. Using a preconditioner normally boosts
the performance of a Krylov solver, however, designing a preconditioner in
FSI applications is not straightforward due to the unavailability of the Ja-
cobian matrix. In the next subsection we will compare the performance of
both interface solvers in a FSI problem that is far less demanding in terms
of required number of coupling iterations.

5.2. Vortex-induced vibration of a circular cylinder

In this test case we solve the external flow over an elastically mounted cir-
cular cylinder and study the vibrations induced by the flow vortices. Vortex-
induced vibration (VIV) is an important class of FSI problems with a wide
range of applications in aerodynamics and offshore engineering.

The cylinder is elastically mounted and oscillates due to the fluctuating
fluid forces that are originated from vortex shedding phenomenon. In a
certain range of Reynolds number, the vortex shedding frequency changes to
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match the natural structural frequency of the cylinder motion. This range of
Reynolds number is called lock-in region since the vortex shedding no longer
occurs in the Strouhal frequency, but in the natural structural frequency of
the cylinder.

In order to validate the proposed method, a series of VIV simulations
in low Reynolds numbers was carried out to numerically reproduce the ex-
perimental results of Anagnostopoulos and Bearman [41]. The cylinder was
constrained to oscillate transversely only, as per the experiments. A sketch
of the domain and problem setup is shown in Figure 4. The domain size is
chosen based on previous experience on flow over a fixed cylinder and guid-
ance from other VIV studies in the literature. A uniform flow with a velocity
U∞ enters the domain at the inlet boundary. Pressure is set to zero at the
outlet while a Neumann boundary condition is used for the velocity. For the
sake of computational efficiency, the dynamic mesh and ALE formulation
is restricted to a zone of 5D distance from the center of the cylinder. The
computational grid in the rest of the domain is fixed (not moving) and an
Eulerian formulation is applied.

Figure 4: Schematic view of the domain and problem setup for the VIV test case.

The equation of motion of the cylinder is described by

m
∂2d

∂t2
+ c

∂d

∂t
+ kd = q(t) (41)

where d = [0, y, 0]T , y being the vertical location of the center of the cylinder.
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The oscillation system parameters, m stands for the cylinder mass, c the
damping coefficient and k is the spring stiffness. The vertical component
of the time-variant fluid force (pressure and shear forces) on the cylinder
is shown by L(t) so that q(t) = [0, L(t), 0]T . The cylinder has a natural

frequency of fn = 1
2π

√
k
m

. Table 5 shows the definition of the relevant non-

dimensional numbers and their values. All non-dimensional numbers equal
those of the experiments [41]. The Reynolds number varies between 90 to
140 and the associated reduced velocity between 5.01 to 7.80. The variable
l in the definition of mass ratio is the length of the cylinder.

Table 5: Relevant non-dimensional numbers of the VIV problem.

Name Definition Value
Reynolds (Re) ρfU∞D/µf 90-140
Reduced velocity (Ur) U∞/(fnD) 5.01-7.80
Mass ratio ρfD

2l/2m 0.00427

Damping ratio c/2
√
km 0.0012

To evaluate the mesh-independency of the results, three fluid grids are
used to solve the problem at Re=100. Table 6 contains the information
of the grids and compares their results. Parameters in the table are mesh
size, amplitude of the vibrations A∗ = ymax/D, vortex shedding frequency f
divided by natural frequency of the cylinder fn, and the drag coefficient of
the cylinder Cd.

Table 6: mesh-independency of VIV results at Re=100.

Mesh name No. of control volumes A∗ f/fn Cd
M1 7195 0.394 0.967 1.40
M2 13685 0.418 0.988 1.59
M3 27091 0.423 0.992 1.61

As results in Table 6 demonstrate, the grids M2 and M3 yield very similar
results. Considering both accuracy and computational cost, mesh M2 is
used for the rest of the simulations. Figure 5 shows the mesh M2 at its
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original condition (Figure 5-a) and when the cylinder is at the peak of its
oscillation (displacement of 0.42D for Re=100), in Figure 5-b. A closer zoom
is also provided to better see the mesh elements around the cylinder. It could
be seen in the figure that the mesh movement technique has preserved the
quality of the mesh, particularly in the vicinity of the solid boundary.

Figure 5: Computational grid around the cylinder, a: original mesh when y=0, b: moved
mesh when y=-0.42D.

Figure 6 shows the results of the VIV simulations and compares them
against experimental data [41] and other numerical results [42, 43, 22]. Plot-
ted data are the amplitude of cylinder vibration and vortex shedding fre-
quency for different Reynolds numbers.

As seen in the Figure 6, the method has captured the lock-in phenomenon.
For Reynolds numbers Re < 95 and Re > 115 the vortex shedding occurs
at the Strouhal frequency, the cylinder is unlocked and the amplitude of the
oscillations is small. For 95 < Re < 115 the cylinder is locked-in and the
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Figure 6: Amplitude of the cylinder vibration and vortex shedding frequency for different
Reynolds numbers.

amplitude of the oscillations is significantly larger. The vortex shedding no
longer occurs at the Strouhal frequency but in the natural structural fre-
quency of the cylinder. The present numerical results are seen to agree fairly
well with the experimental and other numerical data. The large vibration
amplitudes in the lock-in region and the change of vortex shedding frequency
to match the natural structural frequency of the cylinder are well captured.
However, the maximum displacements are smaller than the experiments but
in agreement with other numerical results. Moreover there is a slight shift
in the lock-in region, i. e. the beginning and end of the numerical lock-in
region occur at lower Reynolds numbers than their experimental counter-
parts. This shift happens for other numerical results as well [42, 43, 22]. The
discrepancies may originate from the 3-D effects in the experiments that a
2-D simulation like this work can not capture. In the experimental study, the
authors mention that no end plates were used on the cylinder [41]. Moreover
the Reynolds numbers are close to the region of transition to 3-D (around
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Re=180 for fixed cylinder). Thus it is possible that the Reynolds number
locally exceeded the transition range and some 3-D effects were introduced
to the flow.

Table 7 represents the VIV results obtained by the implicit, semi-implicit
and semi-implicit-M coupling methods at Re=100. Results demonstrate that
the accuracy of the proposed semi-implicit method is comparable to a fully
implicit coupling technique. The discrepancies in maximum displacement,
frequency and drag coefficient obtained by the semi-implicit method (with
respect to implicit scheme) are 2.1%, 0.5% and 1.8% respectively. This clearly
shows the capability of the proposed method in producing accurate results.
Results of the modified version of the method, the semi-implicit-M, have
a difference under 1% for all three parameters with respect to the implicit
method. Again we see that implicit coupling of the dynamic mesh step
(semi-implicit-M method) improves the accuracy of the results, however this
improvement is not significant. This observation is similar to the previous
test case where a slight improvement in the accuracy of the results were
observed. This suggests that even in a FSI case with large deformations,
explicit coupling of the dynamic mesh step does not noticeably reduce the
accuracy of the results. This observation is also examined in the next test
case with much larger structural deformations.

Table 7: Comparison of the VIV results obtained by different coupling methods at Re=100.

Coupling method A∗ f/fn Cd
Implicit 0.427 0.993 1.62

Semi-implicit 0.418 0.988 1.59
Semi-implicit-M 0.424 0.990 1.60

Table 8 compares the performance of the implicit and semi-implicit cou-
pling methods for the VIV case at Re=100. The performance criteria are the
average number of coupling iterations and the overall CPU time of the simu-
lations. All three coupling methods have been used with the same interface
solver (FP-Aitken).

First thing to note in Table 8 is the much lower average number of it-
erations, comparing to the previous test case. While the previous test case
required nearly 40 FSI coupling iterations per time step, the current prob-
lem only needs 2 or 3 iterations to converge. Since the density ratio for
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Table 8: Performance comparison of implicit and semi-implicit coupling methods for VIV
simulation at Re=100.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 3.2 2.9
Semi-implicit 2.1 1.0

Semi-implicit-M 3.0 2.6

the current test case is relatively large (ρs/ρf = 149), the added-mass ef-
fect is much smaller than the previous problem. Comparing Table 8 and
Table 3 shows how strong added-mass effect makes a problem challenging in
terms of stability and convergence. Because of the much smaller number of
iterations, the CPU time ratio is also much smaller. The implicit method
takes 2.9 times more CPU time (comparing to 12.9 times in the previous test
case). Nevertheless, the superior performance of the semi-implicit method
is still remarkable. It reduces the computational time by 65% with respect
to the implicit method, while introducing a maximum of 2% error to the re-
sults. Again we see that the semi-implicit-M method noticeably increases the
CPU time and its performance is not significantly better than the implicit
scheme. Based on both test cases, we can conclude that implicit coupling of
the dynamic mesh step only slightly improves the accuracy while significantly
increasing the computational time.

Performance of different interface solvers for semi-implicit coupling method
are compared in Table 9, using four criteria similar to the previous test case.

Table 9: Performance comparison of different interface solvers for semi-implicit coupling
method for VIV case at Re=100.

Average No. of No. of S ◦ f(dΓ) Average No. of Normalized
Interface solver coupling iterations solutions per S ◦ f(dΓ) solutions CPU time

coupling iteration per time step
FP-Aitken 2.1 1 2.1 1.02

Newton-Krylov 1.4 1.1 (average) 1.5 1.00
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As results in Table 9 show, the performance of the interface solvers are
practically identical. The fixed-point method takes 2% more computational
time which is negligible. This could be understood based on the low number
of coupling iterations required for convergence in this test case. For such
low number of iterations, a more advanced nonlinear interface solver (the
Newton-Krylov method) does not have a practical advantage over a simpler
fixed-point solver. Considering the simplicity of the FP-Aitken method, it is
actually a better candidate for this class of FSI problems.

5.3. Driven cavity with a flexible bottom

A third test case is solved to further demonstrate the capability of the
proposed method to stably solve FSI problems with large deformation of
the solid boundary. The test case is a 2-D lid-driven cavity with a flexible
bottom, as studied in [16, 8, 12]. The cavity is of a 1m × 1m dimension.
The top boundary of the cavity is moving with an oscillatory speed of u(t) =
1 − cos(ωt) with ω = 2π/5. There are two openings of 0.1m length on the
sidewalls that allow the fluid to enter to and exit from the domain. The
openings are devised to make sure the incompressibility of the fluid does not
constrain the structural deformation. Figure 7 shows a schematic description
of the problem. The fluid density and viscosity are ρf = 1.0kg/m3 and
µf = 0.01Pa.s, respectively. The flexible structure at the bottom has a
thickness of h = 0.05m and Young modulus E = 250N/m2. The problem is
solved for two different structural densities of ρs = 50 and 5kg/m3.

The flexible bottom is modeled as an Euler-Bernoulli beam, governed by
the following equation:

ρsA
∂2d

∂t2
+ EI

∂4d

∂x4
= q(x, t) (42)

where d = [0, y, 0]T in a Cartesian coordinate (x,y,z), A is the cross section
area of the beam, I the second moment of area, and q is the load per unit
length.

Structural governing equation is discretized in space using a finite-volume
method along with a second-order central difference scheme. An implicit
second-order finite difference scheme is used to discretize the second time
derivative. A classical 31× 31 grid is used to solve the problem. A 100× 100
mesh was also used to solve one case with results changing less than 1%. A
constant time step of ∆t = 0.001s is used for the simulations.
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Figure 7: Schematic view of the problem setup for driven cavity with flexible bottom.

Figure 8 shows the fluid domain with structural deformation at the bot-
tom, at t = 19s (near maximum deflection) for the case with ρs = 50kg/m3.
Figure 9 and 10 compare the transient results obtained by the proposed semi-
implicit method against a fully implicit coupling scheme. The results of the
semi-implicit-M method are not shown in the figures for the sake of clarity
of the pictures. As seen in the figures, the semi-implicit method provides an
excellent accuracy with reference to an implicit method. The discrepancy
for the case with ρs = 50 is very small (0.4% max). The semi-implicit-
M method reduces the discrepancy marginally by 0.1%. For the case with
ρs = 5, the semi-implicit method has a maximum of 2.5% error in the peak
and trough points, with respect to the implicit method. The semi-implicit-M
method reduces this discrepancy to 1.4%. It must be noted that the over-
prediction at the peak points by the semi-implicit method does not indicate
a stability problem. Although the peak values in Fig 10 are bigger for the
semi-implicit method, the trough points are higher as well. It means the
semi-implicit method does not amplify the oscillations artificially. The oscil-
lation amplitude matches very well with that of the implicit method (0.5%
max. discrepancy) and only the center line is slightly shifted upwards.
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Figure 8: Flow field inside the cavity with deformed bottom, t = 19s, ρs = 50kg/m3.
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Figure 9: Displacement of the mid-point of the structure over time, ρS = 50kg/m3.
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Figure 10: Displacement of the mid-point of the structure over time, ρS = 5kg/m3.

Table 10 contains the average number of coupling iterations and the over-
all solution time for each method, normalized by the smaller one. All three
coupling methods have been used with the same interface solver (FP-Aitken).
As results shows, the semi-implicit method is significantly cheaper than the
fully implicit scheme, especially when higher number of coupling iterations
are required. Again the semi-implicit-M method has a significantly higher
CPU time compared to the semi-implicit method.
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Table 10: Performance comparison of implicit and semi-implicit coupling methods for
driven cavity with flexible bottom.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 2.5 2.2
ρs = 50 Semi-implicit 3.1 1.0

Semi-implicit-M 2.6 2.0

Implicit 7.8 5.9
ρs = 5 Semi-implicit 6.3 1.0

Semi-implicit-M 6.1 4.2

The results of the third test case support the conclusions drawn in the
previous sections. It shows that the semi-implicit method is capable of deliv-
ering a very good accuracy, compared to a fully implicit scheme. It also shows
that implicit coupling of the dynamic mesh step (semi-implicit-M method)
does not significantly improve the accuracy of the results, even for a case
with large structural deformations. However, the semi-implicit-M method
considerably increases the computational time.

6. Conclusion

A semi-implicit coupling method is proposed for fluid-structure interac-
tion problems with strong added-mass effect. A fractional-step method is
used to split the pressure stress term of the fluid and implicitly couple it to
the structure. The remaining fluid terms are only explicitly coupled. An
ALE formulation and conforming mesh technique is used to solve the fluid
flow in a moving domain. A parallel radial basis function method is used to
move the computational grid. The main advantages of the proposed method
are:

• It is very simple, modular and completely matrix-free.

• Its robustness is tested in different FSI problems.

• It is computationally efficient.
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Numerical tests are performed on three widely different test cases, which
demonstrate adequate stability, accuracy and efficiency of the proposed method
in different types of FSI problems, including ones with large deformations.
Results of the simulations are validated against experimental data and other
numerical results from the literature. A comparison is made between the
accuracy and performance of the proposed semi-implicit method and a fully
implicit coupling technique. Results show that the semi-implicit method
significantly reduces the computational cost of the simulations without un-
dermining either stability or accuracy of the results.

Moreover the effect of implicit or explicit coupling of the dynamic mesh
step on overall performance and accuracy of the semi-implicit method is
evaluated. Results show that implicit coupling of the dynamic mesh step
remarkably increases the computational cost while only slightly improving
the accuracy. This conclusion stands even for problems with large structural
deformation.

Furthermore, we have used both fixed-point and Newton-Krylov methods
to solve the interface problem. It is shown that the Newton-Krylov solver out-
performs the fixed-point method in a problem that requires many iterations
to converge. However, it also introduces extra complexity to the problem be-
cause of calculating the Jacobian. In a FSI problem which does not require
many coupling iterations, fixed-point method with Aitken’s relaxation is a
better candidate, considering its simplicity and good performance.
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