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Abstract

We consider the Rydberg electron in a circularly polarized microwave field, whose dynamics is described by a Hamiltonian
depending on one parameter,K > 0. The corresponding Hamiltonian system of ODE has two equilibrium pointsL1 (unstable
for all K and energy value h(L1)) and L2 (a center for K < Kcrit and a complex saddle for K > Kcrit, with energy value
h(L2)). We study the Hamiltonian-Hopf bifurcation phenomena that take place for K close to Kcrit around L2. First, a
local analysis based on the computation of the integrable normal form up to a finite order is carried out and the steps for
the computation of this (resonant) normal form are explained in a constructive manner. The analysis of the normal form
obtained allows: to claim the type of the Hopf bifurcation –supercritical–; to study the local behavior of the electron in
a neighborhood of the equilibrium L2 for the original non integrable Hamiltonian (as a perturbative approach from the
integrable normal form); to obtain (approximations for) the parametrizations of the relevant invariant objects that take place
due to the bifurcation (periodic orbits and invariant manifolds of L2). We compute numerically such objects and analyse not
only the local picture of the dynamics close to L2, but also a global description of the dynamics and the effect of the Hopf
bifurcation as well as other objects that organize the dynamics are discussed. We conclude that, for K close to Kcrit and the
energy level h(L2), the Hopf bifurcation has essentially no effect on the dynamics from a physical point of view. However,
for bigger values of K > Kcrit, the Hopf bifurcation has a dramatic effect: different kind of orbits coexist, mostly chaotic.
Such orbits provide a ionization mechanism with several passages far from and close to L2 before ionizing. Surprisingly
enough, also robust confinement regions (where the electron remains confined for ever), exist in the middle of chaotic areas.
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1. Introduction

Within the classical mechanics context, we consider the hydrogen atom interaction with a circularly polarized microwave
field, which we will refer to, from now on, as the CP problem. In suitable rotating variables, the CP problem is modeled by a
Hamiltonian system with two degrees of freedom (assuming planar motion for the electron) that depends only on a parameter
K > 0.

The CP field is a quite well known problem in classical mechanics. Actually, the Hamiltonian of the CP problem may
also be regarded as the Hamiltonian of an orbiting dust particle under radiation pressure, which is a restricted three-body-like
problem, where a Coriolis term appears. This problem was already studied by Deprit [15] (he derived and analyzed a first
order normal form for the Hamiltonian), and, later on, Cushman and Van der Meer [14] derived and studied a second order
normal form. Not only is the CP problem relevant in this macroscale astronomy problem, but also in the microscale situation,
where the expression of the Hamiltonian is formally the same, and which is the context of this paper. More specifically,
there has been consistent interest in the interaction of a Rydberg atom with a circularly polarized (CP) microwave field in
atomic physics. Actually Fu et al. [19] made the first experimental observations of the ionization of sodium Rydberg atoms
by circularly (CP) and linearly (LP) polarized microwave fields and their experiments revealed a substantial higher threshold
field for ionization in the case of CP rather than for a LP field.

In this paper we will focus on the particular case of the hydrogen atom submitted to a circularly polarized microwave
field (shortly the CP problem). Many papers have been devoted to this problem and focused in particular, on the ionization
mechanism for the electron. Concerning ionization, some controversy about the role of collisions, or paths close to collisions
with the core, to explain a ionization mechanism for the electron has been present. We mention those authors that argue that
collisions play a minor (irrelevant) role for ionization (see Zakrzewski and coworkers, [20] and [60]) and those that, on the
contrary, argue that collisions are needed and play major (relevant) role for ionization (see Brunello et al. [10]). Other authors,
by means of numerical and analytical techniques, also claim the existence of a new ionization process in which the electron
picks up energy while it is far from the nucleus and then ionizes directly (see [6], [16], [37], [38], [44], [49]).
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On the analytical side, we also point out the perturbative approach dealing with integrable Hamiltonian systems which are
good approximations for the description of the hydrogen atom in a circularly polarized microwave field –for low frequencies–
(see [22], [45] and [46]), or in crossed magnetic and electric fields –for low magnetic field– (see [30]).

So far we have mentioned papers published in the eighties and nineties. The interest for recollision (i.e., the electron can
collide under intense laser force with the core) is at the heart of strong-field physics and continues in the twenties. Actually
recollisions result from a subtle compromise between the action of the strong laser field (which leads the electron away in
a swirling motion) and the Coulomb attraction (which tends to recall it). Moreover, the mechanisms for ionization as well
as some dynamical aspects of the Hamiltonian system of ODE modelling the CP problem, remain still far from being well
understood. In this sense, the application of techniques of the dynamical systems theory turn out to be quite useful, and
the specific role of some invariant objects of the system of ODE is very revealing. First we highlight the paper by Kamor
et al. [28] where the authors show how a family of key periodic orbits drives the recollision process in a strong circularly
polarized laser field. Second, we mention the paper [5] where the authors consider weak amplitudes of the microwave field
and study the relevant invariant objects in phase space that organize the dynamics, paying special attention to the role of
the invariant stable and unstable manifolds of the hyperbolic Liapunov periodic orbit around the equilibrium point L1. Such
manifolds are the keystone to explain a mechanism for ionization. At this point, we mention a related paper –concerning the
usefulness of invariant manifolds of periodic orbits–by Jaffé et al. [24], where they present the first application of transition
state theory to the chaotic ionization of a hydrogen atom in crossed electric and magnetic fields. Finally, very recently, in
[39], the author carries out a systematic numerical analysis of the orbits that eject from the core considering the CP problem.
Many different types of orbits are obtained: regular/chaotic orbits that have several far excursions and close passages to the
core, and finally either collide with it or ionize.

We finally remark that the references above are related to the hydrogen atom, so a single electron is considered. Of course,
not only single electron ionization in the CP problem is of interest, but also double (and multiple) ionization –involving two
or more electrons respectively–. We mention the papers [18] and [33] where experimental observations for the Magnesium
and Helium cases to study double ionization are analysed.

From now on, we will focus our attention on the CP problem.
We first remark that the CP problem can be regarded as a perturbed Kepler problem (the CP problem becomes the Kepler

problem in rotating coordinates for K = 0) and, in fact, some features of the dynamics can be understood from the dynamics
of the two body problem, when K is small.

Concerning the Hamiltonian system of ODE for the CP problem, it is well known (see [5]) that it has two equilibrium
points for any value ofK: L1 which is of type center×saddle, for all K > 0, and L2 which is a center×center forK < Kcrit,
being Kcrit = 3−4/3/2 ≈ 0.11556021 a critical value, and a complex saddle for K > Kcrit. The studies devoted to
small values ofK andK < Kcrit reveal the existence of different kinds of solutions: confined, periodic, homoclinic, chaotic,
escaping/ionizing among others. For the latter, it is known that there are fast escaping orbits and slowly erratic escaping orbits,
in the sense that they make several excursions reaching small and big distances from the nucleus in an apparent random way
such that it is difficult to predict when the electron will actually ionize. Barrabés et al. [5] were able to explain the mechanism
for these kinds of orbits, based upon the invariant manifolds of some suitable periodic orbits. This was a main goal of that
paper for K < Kcrit and the present paper is a natural continuation of it.

In this paper we study the dynamics of the CP problem also for the K > Kcrit case, and the fact that L2 experiences the
so called supercritical Hopf bifurcation when K increases and crosses the critical value Kcrit. In [17] the Hopf bifurcation
for this problem was already mentioned and some preliminary numerical simulations concerning both cases K < Kcrit and
K > Kcrit were carried out; see also [29] for an analytical approach. Our purpose is to describe the dynamics, not only
from a local point of view, but from a global one and the consequences that this Hopf bifurcation has on the behavior of
the solutions. This will require, for numerical simulations, that we will have to compute periodic orbits, their 2D associated
invariant manifolds as well as the 2D invariant manifolds associated with the complex saddle equilibrium point L2. Also
suitable Poincaré sections will become very useful to describe the dynamics as well as to find confinement regions where the
electron remains trapped for ever in the middle of apparent chaotic regions.

So our contribution in this paper is threefold:

(i) To apply an analytical procedure to transform the original and non-integrable Hamiltonian to a fourth order Hamiltonian
normal form plus a remainder. The explicit steps are given and an algorithm that might be implemented for any order
is explained (see remarks at the end of Appendix AppendixD, after the proof of Proposition 1). We point out that the
papers dealing with the Hopf bifurcation typically consider an academic theoretical Hamiltonian, depending on generic
parameters, with a suitable expression useful to carry out the normal form process, whereas here, we take the given
Hamiltonian of the CP problem.

(ii) The analytical description of the dynamics of the integrable fourth order normal form for K close to Kcrit. Of course,
this is a local approach due to the validity of the normal form in a small neighborhood of the equilibrium point L2.
In particular, the two families of periodic orbits (and their stability) around the stable L2, for K < Kcrit, as well
as their merging to become one bifurcated detached family, when L2 becomes a complex saddle for K > Kcrit

is explained. Also the parametrizations of the manifolds of the unstable L2 are derived. The CP problem is also
considered in [29] to illustrate the Hamiltonian Hopf bifurcation. However, the treatment found there is perturbative,
in the sense that the authors consider the Hamiltonian system in a neighborhood of L2 and check that this equilibrium
point changes its stability from center to complex saddle when the polarization parameter crosses a critical threshold;
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they unfold the normalized quadratic part of the Hamiltonian with two different terms that yields to the supercritical and
subcritical bifurcation (see [8]), respectively. Here, we consider always the Hamiltonian of the CP problem, without
any assumptions on the form of the higher order terms and carry out the computation of the normal form, in an explicit
way, up to any given order.

Once the heavy mathematical analysis is carried out to obtain the normal form, the natural question that arises is: How
do we use it? On the one hand, we can confirm that the type of bifurcation is supercritical (as the preliminary numerical
simulations done in [17] seemed to indicate). On the other hand, from the analysis of the normal form itself we can
predict how the dynamics will look like. Results are stated in Proposition 3. Of course, this prediction is true for K
very close to Kcrit, but by means of numerical simulations, we are able to analyse the dynamics for bigger values of
K .

(iii) So far the analytical part, next we focus on numerical simulations. On the one hand, we describe the Hopf bifurcation
that takes places in the CP problem computing numerically all the invariant objects involved and showing the role they
have in the dynamics. Although the analysis of the integrable normal form is valid only for a tiny neighborhood of
L2 and a small interval containing Kcrit, the analytical computation of the normal form provides good (approximate)
initial conditions of the main invariant objects appearing (periodic orbits and stable and unstable manifolds ofL2) in the
Hopf bifurcation. These initial conditions are good seeds to be refined taking the original non-integrable Hamiltonian.
For bigger values of K and larger regions in the configuration plane (position coordinates for the electron), we take
the original non-integrable Hamiltonian and make numerical simulations from it. More precisely, for the energy level
of L2, we describe how the 2D invariant manifolds of the equilibrium point L2, for K > Kcrit, provide a mechanism
to explain a rich variety of orbits, including homoclinic orbits, multi-bump ones (with several close passages to the
L2), chaotic ones and even slow and fast ionization for the electron if K is big enough. This is a first consequence of
the Hopf bifurcation. Another effect is that the elliptic bifurcated periodic orbits (for K close to Kcrit) determine a
region of confinement for ever in the middle of a chaotic area. It is worth mentioning that, for bigger values of K , the
bifurcated obits become unstable, and, therefore such confinement vanishes. On the other hand, for values of the energy
close to that of L2 and varying K > 0, we describe the dynamics, from a global point of view, for the original non
integrable Hamiltonian. We explain how some periodic orbits, that exist regardless the Hopf bifurcation phenomena,
the 2D invariant manifolds of the equilibrium point L2, the 2D invariant manifolds of the Liapunov orbits around L1,
the bifurcated periodic orbits and 2D invariant tori organize the dynamics.

Remark 1. The CP problem is addressed here as classical Hamiltonian system. Quantum considerations are beyond the
scope of this study. Nevertheless, it could be interesting to apply, somehow, quantization rules to the normal form. How-
ever, according to the observations in [29], though there exist methods to quantisize the Birkhoff-Gustavson normal form
in the semi-classical approximation, the quantisation problem involving non semisimple resonances (as that taking in the
Hopf bifurcation) is not yet completely understood. Even so, in the quoted paper, the authors manage to give, under some
assumptions, the spectrum for the supercritical bifurcation. Readers interested in these aspects are referred to there. ⋄

The paper is organized as follows: first, in Section 2 we give the equations of motion of the Rydberg electron in the CP
hydrogen atom, seen as a Hamiltonian system written in a rotating reference frame, as well as some general features of the
model. Next, in Section 3 we describe the transformation from that initial Hamiltonian to a (resonant, integrable) normal form
plus a (non integrable) remainder. Thus, after expanding the Hamiltonian locally around the equilibrium point L2, normalize
the quadratic terms by means of a symplectic linear change, and introduce complex coordinates, we revisit the nonlinear
reduction process (the normal form computations). The results –for this case of the equilibrium L2 with K close to Kcrit–
are set in Proposition 1, which tackles the solvability of the homological equations and gives the structure of the normal
form. On its turn, in the same section, Proposition 2 states the real normal form that one obtains after changing back to real
coordinates. In Section 4 we use this normal form to discuss the stability of the Rydberg electron at the equilibrium L2 for
values of the polarization parameter,K , nearKcrit. In Section 5 the dynamics of the normal form is explored, as a way to get
an (approximate and local) description of the phase space in a neighborhood of the equilibrium point. Section 6 is devoted to
explain the numerical tools used in Section 7, where we present a detailed description of the dynamics from a global point of
view, when K < Kcrit and when K > Kcrit, for values of the energy h close to the value at the equilibrium point h(L2),
focusing our attention on the effects of the Hopf bifurcation. Conclusions are in Section 8.

In order to ease the reading of the paper, the more technical aspects have been deferred to the appendices. They re-
quire some more notation and extra definitions that can be found in Appendix AppendixA. Then, in Appendix AppendixB
the details concerning the expansion of the Hamiltonian are given; the reduction to normalized complex coordinates is in
Appendix AppendixC, and Appendix AppendixD is devoted to the proof of Proposition 1.

We remark that the numerical computations in Section 6 have been done with double precision and the integrations of the
ODE carried out along the paper have used a Taylor method, through the software package provided by Jorba and Zou [27].
This is a robust method, both in speed and accuracy, and suitable for long time span integrations.

2. The CP problem

In this Section we present the equations of the problem and some basic properties related to equilibrium points, their stability,
and some families of periodic orbits (PO) that play an important role in the dynamics of the problem.
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Let us consider the relative motion of the electron in a hydrogen atom subjected to a circularly polarized (CP) microwave,
where the pulse of the microwave field is taken with a flat-top shape, i.e., the field amplitude is ramped up in time until it
achieves a final, constant amplitude. Here we ignore the ramping and only consider the dynamics after the flat-top has been
reached (see [10] for a discussion of the implications of the initial ramp).

The system of ordinary differential equations (ODE) of motion for the electron of the hydrogen atom (in the limit of an
infinitely massive nucleus and in atomic units me = h̄ = e = 1) subjected to a CP microwave field, and assumed to move in
the plane (X,Y ) (position coordinates), is the following:

Ẍ = − X
R3
− F cos (ω̃s) ,

Ÿ = − Y

R3
− F sin (ω̃s) ,

(1)

where R2 = X2 + Y 2, s is the time, ˙= d
ds , ω̃ is the angular frequency of the microwave field and F > 0 is the field strength

(see [10]). This system can be derived from the Hamiltonian

H̃(X,Y, Ẋ, Ẏ ) =
1

2

(
Ẋ2 + Ẏ 2

)
− 1

R
+ F (X cos (ω̃s) + Y sin (ω̃s)) . (2)

We take a rotating frame with the CP field, that is, (x, y) coordinates such that
(
X

Y

)
=

(
cos (ω̃s) − sin (ω̃s)

sin (ω̃s) cos (ω̃s)

)(
x

y

)

and the Eq. (1) become

ẍ− 2ω̃ẏ = ω̃2x− x

r3
− F,

ÿ + 2ω̃ẋ = ω̃2y − y

r3
,

(3)

where r2 = x2 + y2. This system can be written in Hamiltonian form using

H(x, y, px, py) =
1

2
(p2x + p2y)− ω̃(xpy − ypx)−

1

r
+ Fx, (4)

where (px, py) are the momenta defined by px = ẋ− ω̃y and py = ẏ + ω̃x.
Now, we simplify this Hamiltonian re-scaling time and distances. We define a new time t = ω̃s and consider the

symplectic change of coordinates with multiplier ω̃−1/3, more precisely,

(x, y) = ω̃−2/3(x̄, ȳ), (px, py) = ω̃1/3(p̄x, p̄y).

The transformed Hamiltonian becomes in the new variables (for simplicity, we drop the bar and we keep the same names for
the position and momentum coordinates),

H =
1

2
(p2x + p2y)− xpy + ypx −

1

r
+Kx, (5)

where K = F/ω̃4/3 > 0 is the unique parameter, r2 = x2 + y2 and now px = ẋ− y and py = ẏ + x, being ˙= d
dt , t the new

time. This is the Hamiltonian that will be considered from now on. We remark that it is autonomous and the constant value
of the HamiltonianH = h over each solution is called the energy.

The associated Hamiltonian equations of the motion are

ẋ = px + y,

ẏ = py − x,

ṗx = py −
x

r3
−K,

ṗy = −px −
y

r3
,

(6)

which satisfy the symmetry

(t, x, y, px, py) −→ (−t, x,−y,−px, py). (7)

This implies that, for each solution of the equations of motion, there also exists another one which is symmetric with respect
to y = 0 in configuration space (x, y). In particular, periodic symmetric solutions with respect to y = 0 intersect this axis
perpendicularly twice. We use this property,in particular, to find families of periodic symmetric solutions.
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The CP problem in rotating coordinates has two equilibrium points, denoted by L1 and L2 and located in the x-axis at
x(L1) < 0 and x(L2) > 0 respectively (x(Li), i = 1, 2 varying with K). Regarding their linear stability, the first one is of
type saddle × center for all values of K , whereas the second one is of type center × center for

K < Kcrit =
3−4/3

2
≈ 0.115560212391772 (8)

and a complex saddle for K > Kcrit.
It is worth noticing that, when the electron is not far away from the nucleus, the problem given by (5) may be regarded as

a perturbed Kepler problem when the parameter K is small, which is the case considered in [5]. Actually, from the rotating
two-body problem, K = 0, it is known that, for h < −3/2, there exists one family of retrograde periodic ones (denoted by
or), family that persists when K > 0 and we denote it in the same way.

Also for K > 0 and small, since L1 is of type saddle×center, and L2 of type center×center (for K < Kcrit), applying
the Liapunov center theorem (see, for example [51], Chap. 2, or [34], Chap. 9), we obtain three families of periodic orbits
(parameterized by the energy and known as Liapunov periodic orbits), one around L1 (ol1) and two around L2 (one family
existing for increasing values of the energy h, and the other family for decreasing values of h, both starting at h(L2)).

One of the main goals of this paper is precisely to describe the Hopf bifurcation phenomenon that experiences the equi-
librium point L2 when K increases and crosses the critical value Kcrit.

For this purpose, a very useful theoretical approach will be to consider a lower (fourth) order normal form associated with
the Hamiltonian. This is done in the next Section.

3. Reduction to normal form around L2

This section is devoted to the reduction of the Hamiltonian (5), locally, around the equilibrium point L2 to its normal form,
for values of the polarization parameter K close to the critical value Kcrit in (8).

As linearization shows, the stability type of this point changes from center to complex saddle asK moves fromK < Kcrit

to K > Kcrit passing through a double (degenerate) center at K = Kcrit. For this value of K the characteristic exponents
collide pairwise on the imaginary axis and the matrix of the linearized system has two pure imaginary eigenvalues, ± i̟,
̟ > 0; of algebraic multiplicity two, but geometric multiplicity one. This (parametric) resonance is known in the literature
as 1:1 non semisimple resonance or, more briefly, as 1:−1 resonance and has drawn attention of many researchers (see [34],
[50], [56], and references therein). The relevant features of the local dynamics can be gleaned from the resonant normal form
around L2 of the involved Hamiltonian (5).

Normal form reduction process embraces first, the expansion of the Hamiltonian at L2. This is carried out in Subsec-
tion 3.2 (and in Appendix AppendixB); secondly, the linear reduction and complexification. This is discussed in Subsec-
tion 3.3 (and in Appendix AppendixC), where the quadratic part of the Hamiltonian is put in Williamson’s normal form and
then complex coordinates are introduced. Finally, the nonlinear reduction is described in Subsection 3.4. From a computa-
tional point of view, this process consists in setting and solving the so called homological equations to obtain both, the terms
of the generating function of the transformation and the terms of the normal form. The solvability of the homological equa-
tions (for the current system with an equilibrium point near 1:−1 resonance) is stated in Proposition 1. Its proof, however, is
a bit technical and has been moved to Appendix AppendixD. In the same Subsection 3.4, Proposition 2 gives the real normal
form that will be analyzed in Section 4.

Before proceeding, we need to set the notation and give a few definitions. This is done below, in Subsection 3.1.

3.1. Notation and definitions

Given R > 0, DR will denote the polydisk,

DR =
{
(ν, α, β) ∈ C× C

2 × C
2 : |ν|≤ R2, |(α, β)|∞≤ R

}
,

where |·|, |·|∞ denote the modulus of a complex number and the supremum norm, respectively.
In expansions, it is often used multi-index notation for the monomials involved so, if ν ∈ C, α = (α1, α2), β = (β1, β2) ∈

C2; fℓ r1r2s1s2 ∈ C; ℓ ∈ N0 = N ∪ {0}; r, s ∈ N2
0, we write

fℓ rsν
ℓαrβs = fℓ r1r2s1s2ν

ℓαr1
1 α

r2
2 β

s1
1 β

s2
2 . (9)

Hence, let C[[ν, α, β]] := C[[ν, α1, α2, β1, β2]] be the ring of complex formal power series in ν ∈ C, α = (α1, α2) ∈ C2,
β = (β1, β2) ∈ C

2. Therefore, F ∈ C[[ν, α, β]] if, and only if, it is a formal power series of type

F =
∑

fℓ rsν
ℓαrβs,

where the summation is performed over ℓ ∈ N0 and r, s ∈ N2
0.

For any two F,G ∈ C[[ν, α, β]],

{F,G} =
∑

i=1,2

(
∂F

∂αi

∂G

∂βi
− ∂F

∂βi

∂G

∂αi

)

5



is their standard Poisson bracket with respect to (α, β). Now, given G ∈ C[[ν, α, β]] fixed, we define LG := {·, G}, so
LGF = {F,G} for every F ∈ C[[ν, α, β]] and, recursively

L0
GF := F, Lk

GF := LG

(
Lk−1
G F

)
,

k = 1, 2, 3, . . . For the monomials (9), we define their adapted or weighted degree by

deg{νlαrβs} := 2ℓ+ |r|1+|s|1, (10)

being |·|1 the usual 1-norm in Cn. The approach to the reduction to normal form we present here involves the following
spaces of homogeneous polynomials: Eσ[ν, α, β] will stand for the space of the homogeneous polynomials of (adapted)
degree σ = 2, 3, . . . made up of monomials of type (9). Furthermore, for ℓ,M,N ∈ N0 fixed, EℓMN [ℓ, α, β] will denote the
subspace of E2ℓ+M+N [ν, α, β] spanned also by monomials of type (9) with M = r1 + r2, N = s1 + s2. Clearly,

Eσ[ν, α, β] =
⊕

2ℓ+M+N=σ

EℓMN [ν, α, β].

Let G(ν, α, β) be a real analytic function, and

α̇j =
∂G

∂βj
(ν, α, β), β̇j = −

∂G

∂αj
(ν, α, β), (11)

j = 1, 2; its associated Hamiltonian system (where ν ∈ C is taken as a parameter), then

αj(t) = ϕG
j (t; ν, α

0, β0), βj(t) = ψG
j (t; ν, α

0, β0) (12)

will denote its solution with initial conditions αj(0) = α0
j , βj(0) = β0

j ; j = 1, 2, and

ΦG
t

(
ν, α0, β0

)
= (α(t), β(t)) =

(
ϕG(t; ν, α0, β0), ψG(t; ν, α0, β0)

)

its time-t flow. To simplify, for t = 1, we shall write ΦG instead of ΦG
1 . Finally, given a function f depending on a parameter

ν ∈ C: z ∈ Cm 7→ f(ν, z) ∈ Cn, we define its ν-extension, fν , as

(ν, z) ∈ C× C
m → fν(ν, z) = (ν, f(ν, z)) ∈ C× C

n. (13)

3.2. Local coordinates at L2

The first step is to expand Hamiltonian (5) around the equilibrium pointL2, which is placed on the x axis in the configuration
space. Let δ denote the distance from the origin to the equilibrium point L2. Therefore, from Eq. (6) we see on the one hand,
that the position of L2 –in the phase space coordinates of the Hamiltonian (5)– is given by (x, y, px, py) = (δ, 0, 0, δ) and, on
the other hand, that δ is the only positive solution of the equation

x3 −Kx2 − sign(x) = 0, (14)

for x > 0. Notice that δ depends on K and let δ0 denote the value of δ corresponding to the critical value of the parameter
K , Kcrit. An straightforward computation yields,

δ0 =
32/3

2
. (15)

Moreover, we shall define the parameter µ as the difference:

µ :=
1

δ0
− 1

δ
. (16)

From (14) - (16) one can correlateK as a function of µ (see also equations (B.7)). Then it can be seen that Kcrit corresponds
to µ = 0 and that K crosses the value Kcrit from K < Kcrit to K > Kcrit as µ increases from µ < 0 to 0 < µ < 1/δ0.
Therefore, the equilibrium point L2 changes from a center to a complex saddle as µ crosses the zero from negative to positive
values. The symplectic change,

x = δ(1 + x1), y = δx2, px =
y1
δ
, py = δ +

y2
δ
, (17)

moves the equilibrium point to the origin. In vector notation, we shall write x = (x1, x2), y = (y1, y2) for the new position
and momentum, so (x, y) = (x1, x2, y1, y2) stands for the new coordinates. Then, applying the shift (17) we define the new
HamiltonianH(µ, x, y) as,

H(µ, x, y) := H
(
δ(1 + x1), δx2,

y1
δ
, δ +

y2
δ

)
−H(δ0, 0, 0, δ0). (18)
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Note that, in addition, we subtract H(δ0, 0, 0, δ0), which is the energy of the equilibrium point L2 at resonance (i.e., for
µ = 0). Of course this will not affect the dynamics of the associated Hamiltonian system. The next step is to expand
Hamiltonian (18) as a sum of the form,

H(µ, x, y) = H2(µ, x, y) +H3(µ, x, y) + · · ·+Hσ(µ, x, y) + . . . (19)

with Hσ ∈ Eσ[µ, x, y] for σ = 2, 3, . . . In Appendix AppendixB, it is shown that, starting fromH2,

H2(µ, x, y) = (2 + δ30)µ+
1

2δ20
(y21 + y22) + x2y1 − x1y2 −

1

δ0

(
x21 −

x22
2

)
,

the computation of the higher degree terms,Hσ(µ, x, y), σ = 3, 4, . . . , can be carried out, recursively, using the properties of
Legendre polynomials (see equations (B.8) and (B.9) therein).

Remark 2. We point out that the parameterµ in Hamiltonian (18) can be thought of –rather than a parameter– as the action of a
3-degree of freedom Hamiltonian that does not depend explicitly on the conjugate angle, θ (which is then a cyclic coordinate).
Hence, one can adapt the reduction in [41], that led to a suspension of the Sokolskiı̆ normal form around a 1:−1 resonant
periodic orbit (see [53], and also Chap. 10 in [34] and references therein). That justifies the double weight of the “action”
coordinate –the parameter µ in the problem at hand– in the definition (10) of adapted degree. ⋄

3.3. Linear reduction and complexification of the Hamiltonian system

The second step is to reduce the quadratic part of the Hamiltonian. This issue goes back to the three seminal papers of
J. Williamson ([57], [58], [59]). A constructive approach to the subject, giving a method for finding canonical forms for both,
Hamiltonian (infinitesimally symplectic) and symplectic matrices, can be found in [31] (see references therein for an account
of other relevant contributions). Lemma 1 in Appendix AppendixC gives a linear canonical change

z = U(ζ) := Sζ,

S ∈ Sp(4,R); ζ = (ξ, η), z = (x, y), with ξ = (ξ1, ξ2), η = (η1, η2), x = (x1, x2), y = (y1, y2) ∈ R2; that reduces
the quadratic part H2(µ, x, y) of Hamiltonian (19) to its Williamson’s normal form. Moreover, to ease the resolution of the
homological equations, we consider complex coordinates of the type

ξ1 =
q1 − p2√

2
, ξ2 = −q1 + p2

i
√
2
, η1 =

q2 + p1√
2

, η2 = −q2 − p1
i
√
2
. (20)

One can check that (20) is a symplectic change. Let us denote it by ζ = V(w); now with w = (q, p); q = (q1, q2),
p = (p1, p2) ∈ C2. Therefore, if we define the composition of both changes as Ξ := U ◦ V and substitute z by Ξ(w) in (19),
the expansion in (µ, q, p) of the transformed Hamiltonian, H , casts

H (µ, q, p) := H(µ,Ξ(w)) = H2(µ, q, p) + H3(µ, q, p) + · · ·+ Hσ(µ, q, p) + . . . , (21)

with
H2(µ, q, p) := α̃µ+ i̟ (q1p1 + q2p2) + q2p1. (22)

(see Section 4 for the current value of the coefficients α̃ and ̟).

3.4. Nonlinear reduction. Homological equations

The third step in the computation of the the normal form of the Hamiltonian (5) at the equilibriumL2 consists in reducing the
terms of degree higher than 2 in the expansion of H ; or, alternatively, if we consider (21) as though it were the expansion
of our starting Hamiltonian, to compute its normal form at (q, p) = (0, 0) with respect to H2. Here we sketch how effective
computations can be performed up to any arbitrary degree s ≥ 3. Actually, the outcome depends on which terms can and
cannot be removed form the Hamiltonian –and so, remain in the normal form –or, in other words, on the solvability of the
homological Eq. (25), for σ ≥ 3. This point is stated in Proposition 1. Moreover, the real normal form, used later on to
investigate the local dynamics, comes up in Proposition 2.

So, starting from Hamiltonian (21) and naming (q(0), p(0)) = (q, p) to the original (complex) coordinates, the normaliza-
tion is carried out degreewise by successive composition of the symplectic changes (q(σ−3), p(σ−3)) = ΦGσ(µ, q(σ−2), p(σ−2)),
for σ = 3, 4, . . . , where ΦGσ is the time-1 flow of Gσ (see notation in Subsection 3.1 above).

Thus, the first step consists in finding a pair G3, Z3 ∈ E3[µ, q
(1), p(1)] that fulfills the equation,

LZ2
G3 + Z3 = H

(0)
3 , (23)

with Z2 = H2, H
(0)
3 = H3; then, the change generated by G3, (q(0), p(0)) = ΦG3(µ, q(1), p(1)), transforms the Hamilto-

nian (21) to its 3rd order (degree) reduced form, that reads

H
(1)(µ, q(1), p(1)) = H

(0)(µ,ΦG3(µ, q(1), p(1))) = Z2(µ, q
(1), p(1)) + Z3(µ, q

(1), p(1)) + H
(1)
4 (µ, q(1), p(1)) + . . .

· · ·+ H
(1)
σ (µ, q(1), p(1)) + . . .
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From here, proceeding inductively for σ = 4, 5, . . . , up to σ = s,

H
(σ−2)(µ, q(σ−2), p(σ−2)) = H

(σ−3)(µ,ΦGσ(µ, q(σ−2), p(σ−2))) = Z2(µ, q
(σ−2), p(σ−2))+Z3(µ, q

(σ−2), p(σ−2))+. . .

· · ·+ Zσ(µ, q
(σ−2), p(σ−2)) + H

(σ−2)
σ+1 (µ, q(σ−2), p(σ−2)) + H

(σ−2)
σ+2 (µ, q(σ−2), p(σ−2)) + . . . (24)

providedGσ , Zσ ∈ Eσ[µ, q
(σ−2), p(σ−2)] satisfy

LZ2
Gσ + Zσ = H

(σ−3)
σ . (25)

Eqs. (23) and (25) are the homological equations corresponding to the order (degree) 3 and σ = 4, . . . , s, respectively;
hence, at each fixed (adapted) degree σ = 3, 4, . . . , s, to solve (25) one tries to find a generating function, Gσ , such that
LZ2

Gσ = H
(σ−3)
σ . If this can be done, then on can set Zσ = 0; otherwise it must be added a complementary (or resonant)

term Zσ to make the equation be valid.
Now, assume that at the (σ − 2)th step, Gσ and Zσ have been determined from (25). To go on with the next iteration, one

needs to transform the current Hamiltonian, H (σ−3), by the time-1 flow of the Hamiltonian system associated to Gσ . This
transformation is carried out through the successive application of Poisson brackets,

H
(σ−2) = H

(σ−3) +
1

1!
LGσ

H
(σ−3) + · · ·+ 1

k!
Lk
Gσ

H
(σ−3) + . . . (26)

We note that, as the successive changes applied are near-identity transformations (see Remark AppendixD.8 in Appendix Ap-
pendixD), the first σ − 2 terms, Z2, Z3, . . . , Zσ−1 of H (σ−3), remain the same in H (σ−2) (as can be noted in (24)).

Thus, proceeding in this way up to order s ≥ 4, the final Hamiltonian, H (s−2), is the sum H (s−2) = Z(s) + H>s,
where

Z(s) = Z2 + Z3 + Z4 + · · ·+ Zs

is the normal form (up to degree s), made up of resonant terms; whilst

H>s = H
(s−2)
s+1 + H

(s−2)
s+2 + . . .

is the remainder, that holds higher order terms.

Remark 3. In Proposition 1 we shall denote the subspaces

Eσ[µ, q
(σ−2), p(σ−2)], E

S
σ [µ, q

(σ−2), p(σ−2)], EℓMN [µ, q(σ−2), p(σ−2)], and E
S
ℓMN [µ, q(σ−2), p(σ−2)]

(see Section 3.1 and Appendix AppendixA for their definitions) just by Eσ , ES
σ , EℓMN and ES

ℓMN respectively, without
specifying the coordinates µ, q(σ−2), p(σ−2). On the other hand, we shall also stop using the super-indices (σ−2) (or the
corresponding ones) on the positions q = (q1, q2) and momenta p = (p1, p2). In both cases, it should be clear which
coordinates are being used at each step. ⋄

Proposition 1. Let us consider H2 in (22), the decomposition of Eσ into Eσ = E0
σ ⊕ E+

σ , with

E
0
σ =

⊕

2ℓ+2M=σ

EℓMM , E
+
σ =

⊕

2ℓ+M+N=σ
(M 6=N)

EℓMN ,

so that E0
σ = {0} if σ is odd. Given H

(σ−3)
σ , σ ≥ 3, we split it as

H
(σ−3)
σ = H̊

(σ−3)
σ + Ĥ

(σ−3)
σ , H̊

(σ−3)
σ ∈ E

0
σ, Ĥ

(σ−3)
σ ∈ E

+
σ .

Then, we have:

(a) There exists a unique G+
σ ∈ E

+
σ ; such that LZ2

G+
σ = Ĥ

(σ−3)
σ . Moreover, G+

σ ∈ E
S
σ .

(b) If σ is even, there is a real coefficients homogeneous polynomialZσ(u, v, w) of standard degree σ/2, which is uniquely

defined in terms of H̊
(σ−3)
σ , such that if we set

Zσ(µ, q, p) := Zσ(µ, q1p2, i(q1p1 + q2p2)/2), (27)

then Zσ ∈ E0
σ ∩ ES

σ and there is G0
σ ∈ E0

σ verifying LZ2
G0

σ + Zσ = H̊
(σ−3)
σ . Moreover, G0

σ can be chosen so that

G0
σ ∈ ES

σ .

Therefore, if the degree σ is oddGσ := G+
σ andZσ := 0 solve Eq. (25) in ES

σ ; otherwise, if σ is even so doesGσ := G+
σ +G0

σ

and Zσ given by (27).

PROOF. For a proof of Proposition 1 see Appendix AppendixD.
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The normal form transformation. Now, let V be the complexification (20) and let χ(µ, z̃) be given byχ(µ, z̃) := (µ,V−1(z̃));
z̃ = (x̃, ỹ), with x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2) ∈ C2. Proceeding as in [41] (see Proposition 7.1 there), it can be shown that, for
any integer s ≥ 3 fixed, and any κ∗ > 1 given, there exists Rs > 0 such that the µ-extension (see (13)), Φ̃µ, of

Φ̃ := U ◦ ΦG3 ◦χ ◦ ΦG4 ◦χ
µ ◦ · · · ◦ ΦGs ◦χ

µ (28)

(hereΦGσ ◦χ
µ are the µ-extensions of ΦGσ ◦χ for σ = 4, . . . , s), is a real analytic function in the polydisk DR, with Φ̃µ (DR) ⊆

Dκ∗R, 0 < R < Rs. Thus, Proposition 2 below follows then these last considerations and from Proposition 1.

Proposition 2 (Sokolskiı̆’s normal form). Consider the 2D of freedom real analytic Hamiltonian H in (19), depending on

a parameter µ ∈ R, which has no linear terms in (x, y), so the origin O: (x, y) = (0, 0) is an equilibrium point for every

µ. Assume that, for some µ∗ < 0, µ∗ > 0, its quadratic part, H2, is a center for µ∗ < µ < 0, has a non semi-simple

1:−1 resonance for µ = 0 (i.e., its characteristic exponents are pure imaginary with algebraic multiplicity two and geometric

multiplicity one), and a complex-saddle for 0 < µ < µ∗. Then, given s ∈ N, s ≥ 4 even, there exists µ0, 0 < µ0 ≤
min{|µ∗|, µ∗}, such that: (i) for every µ, |µ|< µ0, the symplectic transformation (28), (x̃, ỹ) 7→ (x, y) = Φ̃ (µ, x̃, ỹ), is a

real analytic diffeomorphism defined in a neighborhood of Õ: (x̃, ỹ) = (0, 0), and (ii) the transformed Hamiltonian

H̃(s−2)(µ, x̃, ỹ) = H
(
µ, Φ̃ (µ, x̃, ỹ)

)

= α̃µ+
ǫ

2

(
ỹ21 + ỹ22

)
+̟(ỹ1x̃2 − ỹ2x̃1) +

s/2∑

κ=2

∑

ℓ+i+j=κ

Z̃
(2κ)
ℓ ij µℓ (ỹ1x̃2 − ỹ2x̃1)i

(
x̃21 + x̃22

)j
+ H̃>s(µ, x̃, ỹ), (29)

is also real analytic in that neighborhood. The Hamiltonian (29) is the sum, H̃(s−2) = Z̃2 + Z̃4 + · · ·+ Z̃s + H̃>s, of

(1) an integrable part, the normal form, Z̃(s) = Z̃2 + Z̃4 + Z̃6 + · · ·+ Z̃s, with a quadratic (with respect to the adapted

degree) term given by

Z̃2(µ, x, y) = α̃µ+
ǫ

2

(
ỹ21 + ỹ22

)
+̟(ỹ1x̃2 − ỹ2x̃1),

being ǫ = sign(∆) (with ∆ defined in Lemma 1), and higher order terms Z̃4, Z̃6, . . . , Z̃s, that are polynomials in µ,

ỹ1x̃2 − ỹ2x̃1, x̃21 + x̃22 of (ordinary) degree k = 2, 3, . . . , s/2 –so homogeneous polynomials of even (adapted) degree

σ = 4, 6, . . . , s in µ, x̃, ỹ–. We write,

Z̃σ (µ, x̃, ỹ) =
∑

ℓ+i+j=σ/2

Z̃
(σ)
ℓ ij µ

ℓ (ỹ1x̃2 − ỹ2x̃1)i
(
x̃21 + x̃22

)j
,

(2) and the non normalized part, the remainder, H̃>s, that begins with terms of degree > s.

Remark 4. We note that the normal form in the above proposition is slightly different from the one that appears in [53],
[54], but coincides with that in [34], [50] and [56]. More remarks concerning the normal form are given at the end of
Appendix AppendixD. ⋄

4. Stability of the Rydberg’s electron at the Hamiltonian Hopf bifurcation

Here we discuss the stability of the equilibriumO: (x, y) = (0, 0) of the Hamiltonian (19) and hence, of the equilibrium L2:
(x, y, px, py) = (δ, 0, 0, δ) –with δ = δ(µ) given in (B.7)–, of the Hamiltonian (5) corresponding to the CP problem. Next
we claim, in Theorem 1, that at the equilibrium Õ of Hamiltonian (29) (correspondingly, at L2 of Hamiltonian (5)), it takes
place a supercritical Hamiltonian Hopf bifurcation as µ (K) moves from µ < 0 (K < Kcrit) to µ > 0 (K > Kcrit), crossing
the critical value µ = 0 (K = Kcrit). Finally, we describe the quasiperiodic bifurcation phenomena that take place around
both, the Liapunov elliptic periodic orbits (for µ < 0) and the bifurcated elliptic periodic orbits (for µ ≥ 0). These items are
summarized in Proposition 3.

The computations carried out in Examples 3 and 4 in Appendix AppendixD yield, after changing back to real coordinates
using the inverse of the complexification (20), that is,

q1 =
x̃1 − i x̃2√

2
, q2 =

ỹ1 − i ỹ2√
2

, p1 =
ỹ1 + i ỹ2√

2
, p2 = − x̃1 + i x̃2√

2
, (30)

to the reduced real analytic Hamiltonian H̃(2) (µ, x̃, ỹ) = Z̃(4) (µ, x̃, ỹ) + H̃>4 (µ, x̃, ỹ), where the fourth-degree normal
form, Z̃(4), looks as

Z̃(4) (µ, x̃, ỹ) = α̃µ+ β̃µ2 +
1

2

(
ỹ21 + ỹ22

)
+ ω(µ) (ỹ1x̃2 − ỹ2x̃1)−

ε(µ)

2

(
x̃21 + x̃22

)

+A
(
x̃21 + x̃22

)2
+B

(
x̃21 + x̃22

)
(ỹ1x̃2 − ỹ2x̃1) + C (ỹ1x̃2 − ỹ2x̃1)2 , (31)
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with coefficients,

α̃ =
25

8
, β̃ =

27

32
32/3, γ̃ =

14

25
32/3
√
5,

̟ =

√
5

3
, ω(µ) = ̟ + γ̃µ, ε(µ) =

6

5
32/3µ, (32)

A =
7

1250
32/3, B = − 6

625
32/3
√
5, C = − 88

28125
32/3.

and the corresponding Hamiltonian system is

˙̃x = ∂ỹZ̃
(4)(µ, x̃, ỹ), ˙̃y = −∂x̃Z̃(4)(µ, x̃, ỹ). (33)

Regarding the linear stability of the origin, it is checked at once that the characteristic exponents (the eigenvalues of the
Jacobian matrix of system (33)) are

α± = ±
(
i̟ +

√
ε(µ)

)
+O(µ), β± = ±

(
i̟ −

√
ε(µ)

)
+O(µ). (34)

Hence, as it was already mentioned in Section 3.2, for µ < 0 the equilibrium Õ: (x̃, ỹ) = (0, 0) of the Hamiltonian (29)
is a center, so its characteristic exponents are pure imaginary; for µ = 0 the characteristic exponents collide on the imaginary
axis and leave off, pairwise, the imaginary axis to the complex plane for µ > 0. Therefore, the stability of the point Õ changes
from a center to a complex saddle through a degenerate (in fact, a non semisimple) center.

(Nonlinear) Stability of the equilibrium. The stability of the equilibrium Õ is determined by the signs of the parameter µ,
the coefficientA and the fourth-degree normal form (31) –we recall, see (32), that in the current case,A = 7×32/3/1250 > 0–
. The discussion of all possible cases can be found, for example, in [32]. Thus, as pointed out there, for A > 0 and µ < 0
the characteristic exponents of Õ are pure imaginary, no low order resonances are present, and the conditions of of Arnold
theorem (see [2], Chap. 5) are met, so the equilibrium Õ is stable. For A > 0 and µ > 0, Õ is a complex saddle and,
clearly, it is unstable. For µ = 0, Õ is still elliptic but a 1:−1 non semisimple resonance shows up, and its stability cannot be
determined so straightforward. This issue has had a historically relevant motivation in the field of Celestial Mechanics: the
concern about the Liapunov stability of Lagrange triangular points L4, L5 of the Restricted Circular Three Body Problem for
the Routh critical mass ratio.

The first results in this direction were achieved in [53], proving formal stability of the equilibrium Õ for A > 0 (and its
instability for A < 0). Later, the same author tackled the Liapunov stability for A > 0 in [54] (see the comments in [32]
plus the observations and references at the end of Sec. 6 of Chap. 13 in [34]). More recent proofs are found in [3] –where
the author uses the Arnold-Neishtadt KAM theorem, suitable for systems with proper degeneracy, when the unperturbed
Hamiltonian depends on some, but not on all the actions and the perturbation removes the degeneracy (see [2], Chap. 5)–,
[32], and [35].

Bifurcation of periodic orbits. The presence of two families of elliptic periodic orbits, around the origin, for µ < 0
follows from the Liapunov center theorem. Moreover, for µ = 0, the two families still persist and hold the equilibrium
point Õ while, for µ > 0 the two families become one unique family of elliptic periodic orbits that detaches from the origin
when A > 0 (when A < 0 the family no longer exists for µ > 0). This last assertion follows from the Theorem 1 below
(versioned from [36] and [34]). Fig. 1 (see [34], Chap. 11) shows the evolution of the families of periodic orbits with respect
to the parameter µ in (Q, T ) variables, being Q =

√
x̃21 + x̃22 the amplitude of the periodic orbit, which is constant in these

variables, and T the period.

Theorem 1. If A > 0 then there exists a neighborhoodN of Õ, a µ0 > 0, an h0 > 0, and a two parameter family of periodic

solutions of the Hamiltonian (29), denoted by φ(t, µ, h), which lie in N for all |µ|< µ0, |h|< h0, h 6= 0 when µ ≤ 0. The

parameter h may be taken as the value of the Hamiltonian. The function φ(t, µ, h) is real analytic in all its arguments in

its domain of definition. For all values of µ under consideration the periodic solution φ(t, µ, h) is elliptic. For µ̃ fixed and

−µ0 ≤ µ̃ ≤ 0, φ (t, µ̃, h)→ 0 as h→ 0± and the frequency tends to ̟ ±
√
ε(µ̃) +O (µ̃). For µ̃ fixed and 0 < µ̃ ≤ µ0, the

one parameter family of periodic solutions φ (t, µ̃, h) does not contain the equilibrium Õ.

The case A < 0 is also discussed in the quoted references. For a thorough study of the Hamiltonian Hopf Bifurcation the
reader is pointed to [56].

(Quasi) periodic bifurcation. In the literature (see [8]), the bifurcating phenomena described in Theorem 1 are referred
to as the supercritical Hopf bifurcation. Thus, the system defined by Hamiltonian (29) undergoes this bifurcation at the
equilibrium Õ, and, consequently, so does the system defined by the initial Hamiltonian (5) at L2. Thus, all the families
of periodic orbits that evolve and detach are elliptic and it is known that, when the elliptic directions are present in the
monodromy of a periodic orbit then, generically, a Cantor family of quasi-periodic solutions appear “wrapping” that periodic
orbit. One way to see this is singling out an elliptic periodic orbit and take normal form around it (see [11], [12]), then the
unfolding of 2D Lagrangian invariant tori follows as a particular case from the results exposed in [8], [26] and [29].

As more than two degrees of freedom are considered, families of elliptic lower dimensional reducible tori (typically KAM
tori) can undergo collisions of characteristic multipliers on the unit circle. Under suitable conditions of non resonance and

10



Figure 1: The bifurcated families of periodic orbits. In the horizontal axis is represented the amplitude Q of the orbit and in the vertical axis the period T .
Continuous line corresponds to the Liapunov families for µ < 0. The dashed line represent the two families for µ = 0, and the detached family for µ > 0
is plotted in thicker line.

non degeneracy, it gives rise to the unfolding of families of tori of higher dimension. For an account of these phenomena,
known globally as quasiperiodic Hopf bifurcation, see [8].

The next proposition follows from the normal form (31), that is gleaned from the computations made at Examples 3
and 4 in Appendix AppendixD, the fact that the computed value of the coefficient A is positive (see (32)), and then from
the application of the inverse change (30), the Theorem 1, and the results in [11], [12], [26], [32], [54]. It describes the
local behavior of the trajectories traced by the Rydberg’s electron in a neighborhood in the phase space (x, y, px, py) of the
equilibrium point L2, for values of the polarization parameter,K , close to Kcrit.

Proposition 3. The equilibrium point L2 of Hamiltonian (5) is stable for K ≤ Kcrit and unstable for K > Kcrit. For

K < Kcrit there exist two Liapunov families of elliptic periodic orbits that contain the equilibrium point. Both families still

persist for K = Kcrit. For K > Kcrit the two families become one unique family of elliptic periodic orbits that no longer

holds the equilibrium. Moreover, if for some K close to Kcrit one singles out an elliptic periodic orbit, then the excitations

in the elliptic directions yield the unfolding of a Cantor family of Lagrangian 2D-tori having that periodic orbit as its fiber.

This justifies that the normal form Z̃(s) can be used to approximate the dynamics of the Hamiltonian (29) close to the
equilibrium Õ, and so, to explore the local dynamics of Hamiltonian (5) in a neighborhood of L2.

5. Dynamics of the Hamiltonian normal form

In this section we describe in detail the dynamics close to the Hopf bifurcation and the bifurcated invariant objects involved
when µ is close to 0 in Hamiltonian (29), that is, when K is near Kcrit in the original Hamiltonian (5). For this purpose it is
useful to consider the polar coordinates Q, θ and their canonically-conjugated momentum and action P and J (see [23]),

x̃1 = Q cos θ, ỹ1 = P cos θ − J

Q
sin θ,

x̃2 = −Q sin θ, ỹ2 = −P sin θ − J

Q
cos θ.

In the new symplectic coordinates (θ,Q, J, P ), the normal form (31) becomes an (integrable) Hamiltonian, Γ, with real

coefficients

Γ(µ,Q, J, P ) = Γ0(µ) + ω(µ)J + CJ2 +
P 2

2
+

J2

2Q2
+

(
BJ − ε(µ)

2

)
Q2 +AQ4, (35)

with
Γ0(µ) = α̃µ+ β̃µ2,

and the coefficients α̃, β̃, ω(µ), ε(µ), A,B, andC those in (32). As Γ(µ,Q, J, P ) does not depend explicitly on the angle θ, J
is a first integral of (35), so Γ(µ,Q, J, P ) can be regarded as a 1-degree of freedom Hamiltonian depending on the coordinates
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Figure 2: µ = −0.001 < 0. (a) Potential curves (Q,V (µ,Q, J)), J = 0 (black thick line), J > 0 (red line), J < 0 (blue). (b) (Q,P ) variables and
E = 0.003. From outer to inner curves, J = 0.001, 0.0015, 0.0017, 0.0018.

(Q,P ), whereas J (and µ) will be thought of as parameters. Thus, the difference Γ− Γ0(µ) is a natural Hamiltonian, made
up of the sum of kinetic plus potential energy, i.e., Γ− Γ0(µ) = P 2/2 + V (µ,Q, J)/2, being

V (µ,Q, J) := 2ω(µ)J + 2CJ2 +
J2

Q2
+ (2BJ − ε(µ))Q2 + 2AQ4.

To obtain the phase portraits for different sets of parameters, an easy way to proceed is to obtain the relation

P = ±
√
E − V (µ,Q, J), (36)

with E = 2(Γ − Γ0(µ)) and we simply consider the potential curves (Q, V (µ,Q, J)) for a given value of µ. We plot, in
Figs. 2(a) and 3(a), the potential curves for µ = −0.001 < 0 (similar for µ = 0) and µ = 0.001 > 0 and taking different
values of J .

We recall that, for any value of µ fixed, we have an equilibrium point which is the origin –L2 in original variables– for
J = 0 and E = 0, i.e. Γ = Γ0(µ). Now, let us focus on each of the three cases µ < 0, µ = 0 and µ > 0 and describe the
dynamics in (Q,P ) variables, when varying E.

• If µ < 0 is fixed and small, the origin is a center×center equilibrium point with characteristic exponents ± iω1 and
± iω2 (depending on µ).

– For E = 0, we have just the equilibrium point and 2D invariant tori –varying J < 0–.

– For a fixed E > 0 (E < 0), we have a stable periodic orbit –associated with the minimum point of the potential
V (µ,Q, J) for a suitable value of J –surrounded by 2D invariant tori (corresponding to different values of J). In
the phase portrait in (Q,P ) variables, they can bee seen respectively as a fixed point (on the Q axis) surrounded
by closed curves. See Fig. 2.

– VaryingE > 0 (similarlyE < 0), we obtain a family of periodic orbits –the minimum points of V (µ,Q, J) when
varying J > 0 (J < 0)– which are stable. So we obtain two families of periodic orbits, parameterized by the
energy, that are born at the equilibrium point. This is in accordance with the Liapunov center Theorem.

• If µ = 0, the origin is a degenerated center×center equilibrium point with characteristic exponents± iω1 = ± iω2 =
± iω. Then the two families of periodic orbits, parametrized by the energy E, become one family in the sense that
when the energyE tends to 0, the characteristic multipliers of the periodic orbit tend to the same value 2π/ω. As in the
previous case, for a fixed E > 0 (E < 0), we have a periodic stable orbit surrounded by 2D invariant tori. See Fig. 2
(the qualitative plot for (Q, V (µ,Q, J)) is the same for both µ < 0 and µ = 0).

• If µ > 0, the origin is a complex saddle equilibrium point with characteristic exponents±a1±i b1. The typical behavior
for a direct Hopf bifurcation can be shown here.

– A main difference with respect to the two previous cases µ ≥ 0, is that, for E = 0, there exist 2D invariant
unstable and stable manifolds associated with the equilibrium point, Wu(0) and W s(0), which are coincident
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(they will not be so in original coordinates, of course). Their parametrization is obtained from the level sets
E = 0 and J = 0 and (36),

Wu,s(Õ) =
{
(θ,Q, J, P ) =

(
θ,Q, 0,±

√
−V (µ,Q, 0)

)
, θ ∈ T

1, 0 < Q ≤
√
ε(µ)/(2A)

}
,

where the plus sign describes the unstable (outgoing) manifold whereas the minus sign describes the stable (in-
coming) one (see Fig. 3(b)). Of course, more precise parametrizations can be derived taking normal form up to a
convenient high degree. See [40] for a more detailed account on parametrizations of invariant objects in a similar
context.

– As expected in a supercritical Hopf bifurcation the family of periodic orbits that bifurcates is detached from the
origin (the equilibrium point). This can be easily seen from the potential curves (Q, V (µ,Q, J)) forE = 0, where
the periodic orbit (a minimum of the potential curve for a suitable J value) has a Q > 0 value (see Fig. 3(a)). We
can follow this family of periodic orbits varying the energy E.

– These bifurcated periodic orbits that appear on the complex unstable side are stable, so they are surrounded by
2D invariant tori.

– For E = 0, we can distinguish between two kinds of 2D invariant tori: the internal ones that are born around the
bifurcated periodic orbit and the external KAM tori that already existed for µ < 0 (see Fig. 3(b)).

A final important comment is that we have described the dynamics for a fixed value of µ > 0 and µ < 0 of Γ in (35) which is
an integrable Hamiltonian. Of course this normal form Hamiltonian is just an approximation of the original one, which is non
integrable. So the “integrable” part of the dynamics described so far is valid only as an approximation of the real dynamics
of the original Hamiltonian for a local neighborhood both of the equilibrium point (the origin in (Q,P ) variables and L2 in
original ones) and values of µ close to 0 (for Hamiltonian (35)), that is, values of K near Kcrit.

The next step is to describe the dynamics of the original Hamiltonian and the consequences of the Hopf bifurcation. Our
approach is to consider not only a neighborhood of the equilibrium point but a large region of the phase space configuration.
We will take values of K in an interval (not necessarily small) containing Kcrit. We will also show that the periodic stable
orbits and the invariant manifolds (of L2 and of the Liapunov periodic orbits) are invariant objects that become relevant for
the dynamics.

Before focusing on the original Hamiltonian, and in order to have a self contained paper, we include a short Section
devoted to the numerical methodology used to compute such relevant invariant objects.

6. Numerical computation of the invariant objects involved

We will be focused on Poincaré section plots (PSP), equilibrium points, periodic orbits and their manifolds.

6.1. Poincaré section plots (PSP)

For a givenK andH = h, beingH the original Hamiltonian (5), we consider the original system of ODE (6) and the Poincaré
section Σ : x′ = px + y = 0. We will call the Poincaré section plot (PSP) the plot obtained with the intersection of a given
solution –or many solutions– (in this level of energy h and integrated for a range of time) with Σ such that y′ = py − x < 0.
Actually the PSP will be the plot with the (x, y) projection of such intersection points.

6.2. Equilibrium points and 2D associated manifolds

Once K is given, in order to find the equilibrium points, we simply solve the polynomial equation of third degree (14). So Li

is obtained with coordinates (xLi
, 0, 0, xLi

), for i = 1, 2.
Next, for K > Kcrit, in order to compute the 2D unstable/stable manifold of L2, Wu/s(L2), we will take a set of initial

conditions on it. For each initial condition we will compute the corresponding orbit integrating the system of ODE –forward
in time for Wu(L2) and backwards in time for W s(L2)– and checking that the Hamiltonian value h(L2) remains constant
along the integration for all the range of time considered.

To find such a set of initial conditions we can proceed following two different approaches:

(i) Either we take the set of initial conditions from the fourth order normal form, that is, for µ > 0 small given, we
consider (Q,P, θ, J) with (Q,P ) in a neighborhood of the origin and satisfying (36), θ ∈ [0, 2π], µ > 0 small and
J = 0 (see Fig. 3), we apply the normalizing change of variables that reduces the Hamiltonian (5) to the form (29) –see
Remark AppendixD.8–, we obtain a value of K and an approximation of the initial conditions in the original variables
(x, y, px, py) of Hamiltonian (5).

(ii) Or we take a set of initial conditions, using directly the original variables, on the linear approximation of the manifold,
that is on its tangent plane. More precisely: we consider the Jacobian matrix of system of ODE (6), its eigenvalues
λ1,2 = a1 ± i b1, λ3,4 = −a1± i b1 with a > 0. Let us denote u1 ± iu2 and u3 ± iu4 the associated eigenvectors. To
compute the unstable manifold Wu(L2), we take the orthonormal basis v1, v2 (obtained from u1, u2 and generating
the same plane throughL2) and a circle (centered atL2 and radius ξ > 0 small, typically ξ = 10−6) of initial conditions
given by

L2 + ξ(cos sv1 + sin sv2), s ∈ [0, 2π]. (37)

For the computation of the stable manifold W s(L2), we proceed similarly taking into account u3 and u4.
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Figure 3: µ = 0.001 > 0. (a) (Q,V (µ,Q, J)) for three values of J : J = 0.0001 (red), J = 0 (thick black line), J = −0.0001 (blue). (b) (Q, P )
coordinates at the level set E = 0. The 2D Lagrangian tori with J < 0 are drawn in blue. For J = 0, the thick black line represents the pinched torus, i.e.,
the union of the equilibrium point with its stable and unstable manifolds (note that these manifold coincide, for the normal form is integrable) and, in red,
the 2D Lagrangian tori around the detached bifurcated elliptic periodic orbit with J > 0). (c) Same line color code for E = −0.00005.

We have implemented both methods achieving the same results. Of course, the first approach can be applied only for values
of K very close to Kcrit (i.e. µ > 0 small), whereas the second one works for any K .

6.3. Periodic orbits, stability and 2D associated manifolds

To compute families of periodic orbits (PO), a standard methodology consists in solving the nonlinear system of equations
(using a predictor-corrector method)

H(z)− h = 0,

g(z) = 0,

ΦH
T (z)− z = 0,

(38)

where ΦH
t (z) is the time-t flow of the ODE system (6), z is an initial condition of the PO, T is its period (ΦH

T (z) = z) and
g(z) = 0 is a suitable Poincaré section (a hypersurface in R4).

To do so we need a seed for the (approximation of the) initial condition of a PO. Once we have one PO we proceed with
the continuation of a family.

Since we will focus mainly on the bifurcated periodic orbits with H = h(L2) (it is the value of h where the manifolds
Wu,s(L2) exist), varying K > Kcrit, to get a seed for an initial condition of a PO, we can proceed again in two different
ways:
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Figure 4: (x, y) projection of the PSP for Wu(L2), W s(L2). (a) K = 0.1157. (b) K = 0.12, just Wu(L2). (c) A zoom close to L2. (d) A zoom with
both Wu(L2) and W s(L2).

(i) Either we take the initial conditions from the fourth order normal form, that is, for µ > 0 small given, we consider
(Q,P, θ2, J) with P = 0, E = 0 in (36), θ = 0, and (Q, J) is a minimum of V (µ, θ, J) i.e., a solution of the system

V (µ,Q, J) = 0,
∂V

∂Q
(µ,Q, J) = 0

(see Fig. 3), we apply the composition of the successive changes of coordinates that lead to the normal form (as
above), we obtain a value ofK and the corresponding (approximation of the) initial conditions on the original variables
(x, y, px, py) of the PO.

(ii) Or, we fix K > Kcrit and H = h(L2). We consider a set of different initial conditions of type (x, 0, 0, py), with
y′ = py − x < 0, varying x (y′ is obtained from the Hamiltonian) in a suitable interval; for each initial condition we
integrate the original system (6) and obtain the corresponding solution for a big enough range of time, and we save just
the points belonging to the Poincaré section plot (PSP). In the PSP obtained (see for example Fig. 6(b)), we zoom the
area around the bifurcated stable PO (surrounded by invariant curves) and we have an approximation of x (and py) of
the initial condition of the required PO.

We have implemented both strategies to get a seed and both have become satisfactory –again the first one only valid for K
very close (and bigger than) to Kcrit–. We have implemented Newton’s method for the correction to solve system (38) to
refine the seed and obtain the bifurcated PO for H = h(L2) when varying K > Kcrit (see next Section). The absolute
tolerance to stop Newton iterates in the solution has been typically 10−11.

Given a PO, in order to determine its (linear) stability, we have integrated both the system of ODE (6) together with
its first variational equations to obtain the monodromy matrix M after a period. We recall that the value of the stability
parameter k = TrM − 2 decides the stability character of a PO: it is stable (elliptic) if |k|< 2, and unstable (hyperbolic) if
k ∈ R \ [−2, 2] (see for example [9] for details).
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As will be shown in the next Section, the 2D invariant manifolds of the Liapunov orbits aroundL1, ol1, will also play a role
on the description of the global dynamics. Such orbits (for the values of K and h considered) are unstable (the monodromy
matrix has as eigenvalues 1,1,λ > 1 and 1/λ < 1, i. e. k ∈ R \ [−2, 2]). In order to generate the unstable manifold Wu(ol1)
such that z0 is an initial condition of the ol1 and v0 is a unitary eigenvector associated with λ > 1, we consider a set of initial
conditions on the linear approximation of the manifold given by

ϕ(θ) + ξv(θ), θ ∈ [0, 2π],

where ξ > 0 or < 0 to obtain the two branches that compose the manifold, small (typically |ξ|= 10−6) and

ϕ(θ) = ΦH
θ

2π
T
(z0), v(θ) = λθ/2πDΦH

θ

2π
T
(z0)v0

are a parametrization of the PO and the eigenvector of the associated monodromy matrix corresponding to the point ϕ(θ)
respectively (see [4]). For each initial condition, we obtain the corresponding solution integrating forward in time system (6)
and checking that the Hamiltonian remains constant along the integration. We proceed similarly to obtain the stable manifold
W s(ol1) taking into account λ < 1 and integrating backwards in time.

7. Description of the dynamics of the original system

The purpose of this Section is to describe the Hopf bifurcation effect on the dynamics of the original non-integrable Hamilto-
nian system for which the fourth order integrable normal form taken into account is just an approximation (and of course valid
just in a tiny neighborhood of the equilibrium point L2 and a small interval around Kcrit). So, in the previous Sections, we
considered the dynamics of the electron from a very local point of view. Now, numerical simulations applied to the original
system allow to describe the dynamics in large regions in the (x, y) plane and any value of K . We will distinguish two cases:
K > Kcrit and K < Kcrit (recall that Kcrit = 3−4/3/2 ≈ 0.11556021).

Case 1. K > Kcrit. We fix the energy value h = h(L2) and we discuss different aspects of the dynamics when varying K ,
that can be graphically illustrated through the Poincaré section plots (PSP).

• Invariant manifolds of L2. When K is very close to Kcrit, the stable and unstable 2D manifolds, Wu(L2) and
W s(L2), are almost coincident (they do coincide for the integrable normal form, but they do not for the original
non integrable Hamiltonian giving rise to the splitting of separatrices). See Fig. 4(a), where the PSP of the
manifolds are plotted for K = 0.1157 very close to Kcrit. As far as K increases, the typical homoclinic tangle
is more visible, see Fig. 4, and for bigger K , the manifolds become very intricate, see Fig. 6(a). We also remark
that for K near Kcrit, the size of the manifolds is small, i.e. the orbits on the manifolds visit a small region in
the (x, y) plane. See the PSP of the manifolds in Fig. 5(c) where the manifolds are confined by external 2D tori
(invariant curves on the PSP). Whereas when K increases, the size of the manifolds becomes larger and there are
some orbits on the manifolds that go tremendously far away from L2 or even escape. See Fig. 6(c).

• Existence of bifurcated periodic orbits and tori. As foreseen by the normal form description, for a givenK bigger
and close to Kcrit, there exists a detached family of periodic orbits when varying h, in a neighborhood of h(L2),
which are stable (for h near h(L2)). For the particular fixed value of h(L2), the corresponding bifurcated periodic
orbit will be surrounded by invariant 2D tori, which will be located inside the region enclosed by the invariant
manifolds of L2, if K is very close to Kcrit, see Fig. 5(c) for K = 0.1157 where the detached periodic orbit (a
fixed point on the PSP) and the surrounding 2D tori (invariant curves) are shown. We remark, on the one hand,
that the continuous family of tori inside the coinciding manifolds (Fig. 3) obtained from the normal form now
becomes a Cantor family of tori (for the original Hamiltonian system) as far as K is very close to Kcrit. On the
other hand, the destruction of many such tori is also visible when K increases and the existence of chaos is much
more apparent, although the stable periodic orbit persists, see Fig. 6 top for K = 0.13.

• Confinement due to the invariant manifolds. Although the appearance of the splitting phenomenon (not present
for the normal form Hamiltonian) for any K > Kcrit, the manifolds somewhat enclose a confinement region,
more visible as far as K is close to Kcrit. See Fig. 5(c). Therefore there exist points inside this region giving
rise to confined solutions, the confinement size determined by the size of the manifolds. It is worth noting the
different sizes of confinement regions comparing those (smaller) delimited by the invariant manifolds of L2 and
those (bigger) delimited by the 2D KAM external tori. See Fig. 5(c) for K = 0.1157. When K increases, the
external tori disappear and there is a dramatic change in the intricate shape of the manifolds of L2, see Fig. 6 top
and middle for K = 0.13.

• Confinement due to the bifurcated elliptic periodic orbits. As already mentioned, whenK increases, the manifolds
of L2 are very complicated and the visited region (in (x, y)) is very big. However, as far as the bifurcated periodic
orbit is stable, there will be still a small region of confinement for all time, due to the existence of surrounding
2D tori. So an important effect of the Hopf bifurcated orbit is to delimit, among a chaotic sea, a region where the
electron will remain confined for ever. We show this behavior on the PSP of Fig. 6(b) for K = 0.13.
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Figure 5: K = 0.1157. (x, y) projection of the PSP. Top and middle correspond to h = h(L2). (a) Global plot. (b) Zoom. The red points correspond to
Wu(ol1); two confined regions (in blue) are clearly distinguished: the one close to the origin and the one due to the bifurcated stable periodic orbit. (c) We
show the KAM invariant curves (in blue) enclosing Wu(L2) and W s(L2) (in black), and also the bifurcated stable periodic orbit and the corresponding
invariant curves surrounding it (in blue). (d) Fast escape orbit ((x, y) projection,in black) and the corresponding points on the PSP overlapped (in red).
Bottom: 2D KAM tori around the bifurcated stable periodic orbit for h > h(L2) (e) and h < h(L2) (f).
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• Stability of the bifurcated periodic orbits. We have computed the family of bifurcated periodic orbits when varying
K . In Fig. 7 we plot two curves on the (K,x) plane: for each K , the x value of the equilibrium point L2 and
the x value of the initial condition (such that y = x′ = 0, y′ < 0) of the bifurcated periodic orbit for that K
(and h = h(L2)). We can see how the family of periodic orbits is detached from the equilibrium point as far as
K increases from Kcrit. The amplitude of the periodic orbits grows with K and we have followed the family
until the orbit passes, for some time, very close to the origin, so a regularization of the system of ODE should be
required, see Fig. 7(b). Concerning their linear stability, there is also a change of stability: the elliptic orbits for
K close toKcrit become unstable for bigger values of K . We plot in blue the stable periodic orbits and in red the
unstable ones in Fig. 7(a).

• Homoclinic orbits. Erratic orbits. Due to the transversal intersections between Wu(L2) and W s(L2), see for
example Fig. 4(d), there exist infinitely many homoclinic orbits to L2 and, as a consequence, it is well known
that the variety of behaviors for the dynamics is very rich (symbolic dynamics may be applied). Nevertheless,
for values of K near Kcrit, since the external KAM tori confine the invariant manifolds, the latter do not play
any role in escape (ionization of the electron). See Fig. 5(c). But, for bigger values of K , the KAM tori are
destroyed and there is a second effect which is the growth of the manifolds, see Fig. 6(c). Therefore, from the
behavior of Wu(L2) and W s(L2), there will coexist confined motion, some escaping orbits and some erratic “to
and fro” orbits, that is, orbits that make several excursions, close to and far from L2 (reaching different large
distances), in an erratic way. Such orbits –also called multi-bump orbits– provide a mechanism of ionization;
actually the electron experiences a slow ionization. In Fig. 8, some orbits on Wu(L2) are plotted to show such
different behaviors; we plot (t, r), r being the distance to the origin. We notice that, since for this value of K , the
manifolds of L2, Wu,s(L2) and those of the Liapunov periodic orbit ol1, Wu,s(ol1), are mixed up (see Fig. 6(e)),
the orbits plotted in Fig. 8, which belong to Wu(L2), have close passages to L2 (as expected) and to ol1 (due
to the mixing), as time goes by. Some of these orbits will lead the electron to ionization. So, we see that both
Wu,s(L2) and Wu,s(ol1) play a role. At this point it is worth mentioning, on the one hand, the simulations done
in [10]; some plots in that paper look similar to those of Fig. 8. However, in that paper the values ofK considered
were K < Kcrit, and the role of states with medium eccentricity was discussed. On the other hand, in [5],
a specific goal was to show how the periodic orbit ol1 and its manifolds provided a mechanism for ionization
(where, typically, the electron had several close passages to the periodic orbit), so, roughly speaking, only the
periodic orbit (and manifolds) was taken into account. Very recently, a different mechanism of ionization, where
the electron is ejected from the core and has successive excursions with passages far from and close to the nucleus
is carried out (see [39]).

• Global picture. As a summary and taking into account the different invariant objects involved, we describe the
dynamics of the PSP from a global point of view. We should distinguish four different regions:

– A region near the origin. A first global property to point out, and independent of the Hopf bifurcation
phenomenon, is the existence of the retrograde periodic stable orbit close to the origin; this orbit together
with the invariant surrounding 2D tori confine a clear region for the electron. See Figs. 5(b) and 6(e). This
was already observed in [5] for very small values of K < Kcrit.

– The invariant manifolds of ol1. Regardless the value of K , for h = h(L2), there is the unstable periodic
orbit around L1, ol1, and their invariant manifolds which play a clear role on the dynamics. As exhibited
in [5] these manifolds visit a small (x, y) region for 0 < K < Kcrit small, but we have just shown that they
become more complex (and their homoclinic tangles as well) as K grows visiting large regions in the (x, y)
plane, see Figs. 5 top and 6(d) and (e).

– The region influenced by the Hopf bifurcation. When K is bigger and close to Kcrit, and for h = h(L2),
the dynamics of the Hopf bifurcation is very local in the sense that Wu(L2), W s(L2), the bifurcated stable
periodic orbit and the surrounding invariant 2D tori are confined by the external KAM tori, so they do not
play a significant role in the dynamics. See Fig. 5(c) for K = 0.1157. Nevertheless, as far as K increases,
these KAM tori disappear and both manifolds –those of ol1 and those of L2– are mixed, giving rise to many
different kinds of orbits and chaos. Relevant to say (and as mentioned above) is that, among this chaos, the
stable bifurcated periodic orbit and associated 2D tori, confine a clear region among this chaotic sea. See
Fig. 6(b) for K = 0.13. However, for bigger values of K such that the periodic bifurcated orbit is unstable,
we obtain the same kind of PSP but there is no confinement around the periodic orbit at all.

– Fast escaping orbits. Finally and concerning the white region of the PSP (roughly speaking), if we take
initial conditions in such regions we obtain fast escaping orbits, with a typical spiral behavior. See Figs. 5(d)
and 6(f), where we consider K = 0.1157 and K = 0.13 and plot two escaping spiraling orbits and the
corresponding PSP overlapped.

Let us finally remark that for h close to and different from h(L2), the PSP are similar to the PSP for h = h(L2) except
that the neither the equilibrium point nor the invariant manifolds exist. We show in Fig. 5(e), (f) a neighborhood of the
bifurcated stable periodic orbit and the 2D tori that persist for K = 0.1157.

Case 2. K < Kcrit. This case was already studied in [5] but, for completeness, we just consider K = 0.115 very close to
Kcrit and h near h(L2). As in Case 1, there is the big stable region close to the origin due to the retrograde or orbit and
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the intricate invariant manifolds associated with the periodic orbit ol1 that cover a big chaotic region in the (x, y) plane.
For h = h(L2), we have the equilibrium point L2 which is stable, whereas for increasing/decreasing h we obtain the
corresponding family of stable Liapunov periodic orbits surrounded by 2D tori. This is clearly shown in Fig. 7. Of
course, this dynamics is in accordance with the theoretical results obtained in Sections 4 and 5.

8. Conclusions

In the current work we have explored the CP problem for values of the energy close to h(L2) and varying K in an interval
containing Kcrit. We have distinguished two different parts: the analytical study and the numerical one.

Concerning the analytical part, since a main goal was to analyze the Hopf bifurcation appearing close to the equilibrium
point L2, a first step done was the computation of the normal form starting from the given Hamiltonian of the CP problem
(not an academic theoretical Hamiltonian with a suitable expression useful to carry out the normal form, as is typically done
in papers that study the Hamiltonian Hopf bifurcation). Moreover, the steps for the computation of the resonant normal form,
up to any given order, have been explained in a constructive manner.

The mathematical analysis of the normal form obtained has the following consequences: (i) it allows to claim that the
type of Hopf bifurcation is supercritical; (ii) the main results summarized in Proposition 3 enable us to describe the Hopf
bifurcation and the local behavior of the dynamics in a neighborhood of the equilibrium L2 for the original Hamiltonian in
an interval for K containing Kcrit; (iii) parametrizations of the invariant objects appearing in the Hopf bifurcation (periodic
orbits and stable and unstable manifolds of L2) are obtained.

From the numerical point of view, such parametrizations provide good (approximate) initial conditions (refined a pos-
teriori) of the relevant invariant objects that have been computed to analyse the Hopf bifurcation and their effect on the
global dynamics. Focusing on the energy level h = h(L2), our conclusions, drawn from the obtained Poincaré section plots
(PSP), are the following: For values of K very close to Kcrit, the unstable/stable manifolds of the complex saddle point L2,
Wu,s(L2), do not essentially play any role, since they cover a very tiny region in the plane (x, y) and are surrounded by
existing KAM 2D invariant tori that act as a barrier of motion. Roughly speaking, the electron, wherever it is, does not realize
that the Hopf bifurcation has taken place. However for bigger values of K , the tiny and local effect becomes dramatic: the
2D surrounding tori disappear and now Wu,s(L2) are very intricate and fill a very big region of the plane (x, y). Therefore,
from a physical point of view, there is a rich variety of different kind of orbits for the electron to be described assuming
that at some time the electron is located close to such invariant manifolds: to and fro, erratic, fast and slow ionizing orbits,
are observed. Therefore a mechanism for the ionization of the electron with close passages to L2 is obtained. Nevertheless,
another conclusive effect of the Hopf bifurcation is that, due to the bifurcating stable orbits, for moderate values of K bigger
and close to Kcrit, there is a small region of 2D tori around those periodic orbits that persist and the electron would remain
for ever confined there, in the middle of a huge chaotic area.

Finally, in order to describe global behaviors of the electron for h close to h(L2), PSP have been obtained for large
regions in the configuration plane; we can conclude that, for any value of K ranging from (bigger than) 0 to K > Kcrit, the
dynamics is mainly organized by: (i) the stable retrograde periodic orbit (around the proton) surrounded by 2D tori which
compose a robust region of confinement; and (ii) the unstable/stable manifolds of the Liapunov periodic orbit ol1, Wu,s(ol1),
that exist for h > h(L1), and whose intricate homoclinic tangle, gives rise to all kind of orbits, including multi-bump, erratic
and escaping orbits. These manifolds also provide a mechanism for ionization, but with several close passages to the periodic
orbit, instead of L2). It is worth mentioning that, for K very close to Kcrit, these manifolds are, by far, the responsible for
ionization. However, for bigger values of K > Kcrit, and h = h(L2), the manifolds of L2, Wu,s(L2), also play a role and
the both intricate Wu,s(L2), andWu,s(ol1) get mixed altogether filling a bigger chaotic region in the (x, y) plane. Therefore
the mechanism of ionization –ionizing orbits with several passages to the periodic orbit and L2– is unquestionably present.
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Appendix AppendixA. More notation and definitions

Here we introduce the notation and definitions used in the appendices below. Thus, we shall denote by Mn,m(F) the vector
space of matrices with n rows and m columns with coefficients in F = C, R, Z, or N0 = N ∪ {0}. For square n × n
matrices, we shall write Mn(F) instead of Mn,n(F). Thus, if A ∈ Mn,m(F), A⊤ ∈ Mm,n(F) will stand for its transpose.
If u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn, then w = (u, v) ∈ Fn × Fn. Furthermore, given u = (u1, . . . , un) ∈ Fn,
In = diag[1, . . . , 1] ∈Mn(F) is the unit matrix and Jn is the block matrix of the standard symplectic 2-form in R2n, i.e.,

Jn =

(
0 In

−In 0

)
.
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Figure 6: K = 0.13, h = h(L2). (x, y) projection of the PSP. (a) For Wu(L2). (b) Zoom, where the bifurcated stable fixed point and invariant curves are
shown. (c) A larger window, orbits on Wu(L2) can go rather far away and even escape. (d) For Wu(ol1). (e) PSP taking into account the motion around
the origin, Wu(L2) and Wu(ol1). (f) Fast escape orbit ((x, y) projection, in black) and the corresponding points on the PSP overlapped (in red).
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Figure 7: h = h(L2). (a) Two curves on the (K, x) plane: for each K , the (lower) x value of the equilibrium point L2 and the (bigger) x value of the initial
condition of the bifurcated periodic orbit. The blue (red) points correspond to stable (unstable) periodic orbits. (b) Plane (x, y). Bifurcated periodic orbits
for K = 0.13 and K = 0.23
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Figure 8: K = 0.13. (t, r) plots of some orbits in Wu(L2). (a) Confined orbit. (b) Slow ionizing orbit. Bottom: two different erratic orbits with several
passages, (c) close to and (d) far from L2.
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Figure 9: K = 0.115 < Kcrit. PSP: the big stable region close to the origin is clearly seen. Notice: (a) the stable equilibrium point for h = h(L2), (b)
the Liapunov stable periodic orbit for h < h(L2), and (c) the one for h > h(L2).

For a set of m vectors η1, η2, . . . , ηm ∈ Fn,

M = (η1|η2| · · · |ηm) ∈Mn,m(F)

is the matrix having these vectors as columns.
As usual, the upper bar will denote complex conjugation, i.e., if z ∈ C, then z̄ = Re z − i Im z, whereas for matrices

and vectors this convention extends componentwise, so if A = (ai,j) ∈ Mn,m(C), then Ā = (āi,j) ∈ Mn,m(C), i =
1, . . . , n, j = 1, . . . ,m; and we say that Ā is the complex conjugate (or simply, the conjugate) of A.

Let S : C[[ν, α, β]] −→ C[[ν, α, β]] be the linear operator defined by

F =
∑

ℓ,r,s

fℓr1r2s1s2ν
ℓαr1

1 α
r2
2 β

s1
1 β

s2
2 7→ S(F ) :=

∑

ℓ,r,s

(−1)r1+s2 f̄ℓs2s1r2r1ν
ℓαr1

1 α
r2
2 β

s1
1 β

s2
2 . (A.1)

We shall use the symbols CS [[ν, α, β]], ES
σ [ν, α, β], and E

S
ℓMN [ν, α, β] to refer the subspaces of C[[ν, α, β]], Eσ[ν, α, β], and

EℓMN [ν, α, β] respectively, that are invariant under S, i. e., F ∈ CS [[ν, α, β]] (F ∈ ES
σ [ν, α, β], F ∈ ES

ℓMN [ν, α, β]) if
and only if F ∈ C[[ν, α, β]] (F ∈ Eσ[ν, α, β], F ∈ EℓMN [ν, α, β]) and S(F ) = F . Then it is said that F satisfies the
S-invariance or the S-symmetries.

Appendix AppendixB. Expansion of the Hamiltonian

The goal of this appendix is to give the explicit expression of termsHj(µ, x, y), j = 3, 4, . . . that appear in the expansion (19).
Following [21], [47], [48]), first we expand the term 1/r in Hamiltonian (5). Applying the change (17), we substitute x by
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δ(1 + x1) and y by δx2 in 1/r. This yields

1

r
=

1√
x2 + y2

=
1/δ√

1 + 2
x− δ
δ

+

(
x− δ
δ

)2

+
(y
δ

)2
=

1/δ√
1− 2

(
−x1
ρ

)
ρ+ ρ2

=
1

δ

∞∑

σ=0

ρσPσ (−x1/ρ) ,

where ρ2 := x21 + x22 and Pσ(t), σ = 0, 1, 2, . . . are the Legendre polynomials as generated by the recurrence relation

P0(t) = 1, P1(t) = t,

Pσ+1(t) = 2tPσ(t)− Pσ−1(t)−
1

σ + 1
(tPσ(t)− Pσ−1(t)) ,

(B.1)

with σ = 0, 1, 2, . . . (see, for example [1], Chap. 12). If we define

Rσ(x1, x2) := ρσPσ(−x1/ρ)

then, clearly,
1

r
=

1

δ

∞∑

σ=3

Rσ(x1, x2). (B.2)

Furthermore, the recurrence relation,

R0(x1, x2) = 1, R1(x1, x2) = −x1,
Rσ+1(x1, x2) = −2x1Rσ(x1, x2)− ρ2Rσ−1(x1, x2)

+
1

σ + 1

(
x1Rσ(x1, x2) + ρ2Rσ−1(x1, x2)

)
, σ = 1, 2, . . .

(B.3)

follows straightforward from (B.1). For example, for σ = 1, 2, 3,

R2(x1, x2) = x21 −
x22
2
, R3(x1, x2) = −x31 +

3

2
x1x

2
2,

R4(x1, x2) = x41 − 3x21x
2
2 +

3

8
x42, R5(x1, x2) = −x51 + 5x31x

2
2 −

15

8
x1x

4
2, . . .

and induction shows that, for every σ = 0, 1, 2, . . . , Rσ is a homogeneous polynomial of degree σ in x1 and x2.
Now, if one substitutes the change (17) in the starting Hamiltonian (5), and replace 1/r by the sum (B.2) obtains

H
(
δ(1 + x1), δx2,

y1
δ
, δ +

y2
δ

)
= −δ

2

2
− 1

δ
+Kδ − 1

δ

(
δ3 −Kδ2 − 1

)
x1 +

1

2δ2
(
y21 + y22

)

+ y1x2 − y2x1 −
1

δ

(
x21 −

x22
2

)
− 1

δ

∞∑

σ=3

Rσ(x1, x2).

At this point, we recall that δ is a positive solution of Eq. (14) for x > 0, so

δ3 −Kδ2 − 1 = 0. (B.4)

Therefore,

H
(
δ(1 + x1), δx2,

y1
δ
, δ +

y2
δ

)
= H(δ, 0, 0, δ) +

1

2δ2
(
y21 + y22

)

+ y1x2 − y2x1 −
1

δ

(
x21 −

x22
2

)
− 1

δ

∞∑

σ=3

Rσ(x1, x2) (B.5)

(recall the definition (18)). On its turn, H(δ, 0, 0, δ) can be expanded in powers of µ, with coefficients given by functions of
δ0. Indeed,

H(δ, 0, 0, δ) = −δ
2

2
− 1

δ
+Kδ =

δ2

2
− 2

δ
=

δ20/2

(1 − δ0µ)2
− 2

δ0
+ 2µ

= H(δ0, 0, 0, δ0) + (2 + δ30)µ+

∞∑

σ=2

σ + 1

2
δσ+2
0 µσ, (B.6)

where we have used that

Kδ = δ2 − 1

δ
, δ =

δ0
1− δ0µ

, (B.7)
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(see Eqs. (B.4) and (16)). Replacing H(δ, 0, 0, δ) on the right hand side of (B.5) by the right hand side of (B.6), taking into
account that 1/δ = (1 − δ0µ)/δ0 (see Eq. (B.7) above), and identifying the terms of the same (adapted, see (10)) degree in
the resulting expansion, it is seen that the termsHσ in the sum (18) are,

H2(µ, x, y) = (2 + δ30)µ+
1

2δ20
(y21 + y22) + x2y1 − x1y2 −

1

δ0

(
x21 −

x22
2

)
,

H3(µ, x, y) = −
1

δ0
R3(x),

H4(µ, x, y) =
3

2
δ40µ

2 + µ

(
x21 −

x22
2
− y21
δ0
− y22
δ0

)
− 1

δ0
R4(x),

H5(µ, x, y) = µR3(x) −
1

δ0
R5(x),

H6(µ, x, y) = 2δ50µ
3 +

µ2

2
(y21 + y22) + µR4(x) −

1

δ0
R6(x)

(B.8)

and, for σ = 7, 8, . . .

Hσ(µ, x, y) =
1− (−1)σ+1

8
(σ + 2)δ

2+σ/2
0 µσ/2 + µRσ−2(x)−

1

δ0
Rσ(x). (B.9)

Appendix AppendixC. Linear reduction of the Hamiltonian system

In this appendix, Lemma 1 below gives the form of transformation z = U(ζ) that casts the quadratic part H2 in (19) to
Williamson’s normal form (see references in Section 3.3). Next, the change to complex coordinates (20) is applied and,
actually, is with respect to the quadratic part, H2, of the complexified Hamiltonian that we carry out the normal form
computations (in Subsection 3.4 and in Appendix AppendixD). Notation and definitions used in this appendix were introduced
in Subsection 3.1 and in Appendix AppendixA.

Lemma 1. Let A ∈ sp(4,R) with

Spec(A) = {λ± = ± i̟}, dimker(A− λ±I4) = 1,

̟ ∈ R, ̟ > 0; z+, w+ ∈ C4 be the geometric and the generalized eigenvectors respectively of λ+ = i̟, i.e.,

Az = λ+z+, (A − λ+I4)w+ = λ+z+.

Let ∆, ǫ and α be the quantities defined by,

∆ := z⊤+J2w+, ǫ := sign(∆), α :=
i

2∆
w⊤

+J2w+;

and u1, u2, v1, v2 ∈ R
4 the vectors

u1 =

√
2

|∆| Re z+, u2 =

√
2

|∆| Im z+,

v1 = ǫ

√
2

|∆| (−α Im z+ +Rew+), v2 = ǫ

√
2

|∆| (αRe z+ + Imw+).

Then,

(i) ∆ ∈ R, α ∈ R.

(ii) u1, u2, v1, v2 form a symplectic basis, so S = (u1|u2|v1|v2) ∈ Sp(4,R).

(iii) The linear symplectic change z = U(ζ) := Sζ; ζ = (ξ, η), z = (x, y) with ξ, η, x, y ∈ R
2; transforms:

(iii.1) The linear Hamiltonian system

ż = Az,

to its normal form

ζ̇ = Λζ

with

Λ = S−1AS =

(
Ω ǫI2

0 Ω

)
∈ sp(4,R), Ω =

(
0 ω

−ω 0

)
.
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(iii.2) The quadratic Hamiltonian,

H2(x, y) = −
1

2
z⊤J2Az;

to its normal form

K2(ξ, η) = −
1

2
ζ⊤J2Λζ =

ǫ

2

(
η21 + η22

)
+̟(η1ξ2 − η2ξ1). (C.1)

PROOF. The results of this Lemma correspond, for Hamiltonian matrices, to the results stated for the symplectic ones in
Appendix D of [7]. All the statements of Lemma 1 can be checked out straightforward from the very basic definitions of
symplectic and Hamiltonian matrices and their properties.

Complexification of the Hamiltonian. Let ζ = V(w) := Lw; ζ = (ξ, η), w = (q, p), with ξ = (ξ1, ξ2), η = (η1, η2),
q = (q1, q2), p = (p1, p2) ∈ C2, and L ∈ M4(C); be the change to complex coordinates (20) written in matrix notation.
Clearly,

L =




1/
√
2 0 0 −1/

√
2

i/
√
2 0 0 i/

√
2

0 1/
√
2 1/

√
2 0

0 i/
√
2 − i/

√
2 0


 ∈ Sp(C, 4),

so, the composition of both changes is z = Ξ(w) := U ◦ V(w) =Mw, with

M := SL =




− i Ã
√
10 −Ã

√
2 −Ã

√
2 − i Ã

√
10

5Ã
√
2 i Ã

√
10 − i Ã

√
10 −5Ã

√
2

−10B̃
√
2 −7 i B̃

√
10 7 i B̃

√
10 10B̃

√
2

2 i B̃
√
10 7B̃

√
2 7B̃

√
2 2 i B̃

√
10



∈ Sp(C, 4), Ã =

35/6

15
, B̃ =

31/6

20
. (C.2)

Let H (µ,w) := H(µ,Ξ(w)) be the complexified Hamiltonian. Thus, (21) is the expansion of H , with Hσ ∈ Eσ[µ, q, p].
Particularly, one checks immediately that the quadratic term, H2 is given by (22).

Remark AppendixC.1. Here we stress that,

(i) η21 + η22 = 2q2p1 and η1ξ2 − η2ξ1 = i(q1p1 + q2p2) and, when the change (C.2) is applied to the particular Hamilto-
nian (19) then, α̃ = 25/8, ̟ =

√
5/3, and ǫ = 1.

(ii) Substitution of (C.2) in the recurrence relations (B.3) gives the expansion (21). Thus, if Rσ := Rσ ◦ Ξ; then

R0(q, p) = 1,

R1(q, p) = i
35/6

15

√
10 q1 +

35/6

15

√
2 q2 +

35/6

15

√
2 p1 + i

35/6

15

√
10 p2,

Rσ+1(q, p) = 2R1(q, p)Rσ(q, p)− ̺2(q, p)Rσ−1(q, p) +
1

σ + 1

(
−R1(q, p)Rσ(q, p) + ̺2(q, p)Rσ−1(q, p)

)
,

σ = 1, 2, . . . ; with ̺ = ρ ◦ Ξ , that is

̺(q, p) =
8

15
32/3q21 +

8

25
i 32/3

√
5 p1p2 −

16

75
i 32/3

√
5 q2p2 −

8

5
32/3q1p2 −

16

75
i 32/3

√
5 q1p1

− 8

75
32/3q22 +

8

25
32/3q2p1 +

8

25
i 32/3

√
5 q1q2 −

8

75
32/3p21 +

8

15
32/3p22.

(iii) If the power series K(µ, z) ∈ C[[µ, x, y]] has real coefficients, its complexification F (µ,w) = K (µ,Ξ(w)) satisfies
the reality condition, i.e., F (µ,w) ∈ C

S [[µ, q, p]]. Conversely, if F ∈ C
S [[µ, q, p]], then F

(
µ,Ξ−1(z)

)
∈ C[[µ, x, y]]

is a power series with real coefficients. Furthermore, it is worth noting that the Poisson bracket preserves the S-
invariance. More precisely, if F , G ∈ CS [[µ, q, p]], then {F,G} ∈ CS [[µ, q, p]] (see for example [21], [41], Remark
3.4; or [52]).

⋄

Appendix AppendixD. Proof of Proposition 1

Here we develop the proof of Proposition 1. In addition, some remarks are given at the end. The notation and definitions
used throughout this appendix were introduced in subsection 3.1 and in Appendix AppendixA. Moreover, the conventions
established at Remark 3 will apply along the proof.

So, let us consider a monomial α = µℓqmpn, with 2ℓ+ |m|1+|n|1= σ, i.e., of adapted degree σ ≥ 3. The action of the
operator LZ2

on α gives,

LZ2
α =

(
Ω+m1

q2
q1
− n2

p1
p2

)
α, (D.1)

being Ω = Ω|m|1|n|1 := iω(|m|1−|n|1), and where it assumed that the quotient q2/q1 is not present when m1 = 0 (the same
convention applies for the quotient p1/p2 when n2 = 0).
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Remark AppendixD.1 (on the values of ℓ). We note here that no linear terms in the coordinates (q, p) can appear in any of
the new transformed Hamiltonians, since for any µ, the origin (q, p) = (0, 0) is an equilibrium point and, in the reduction
process to normal form all the changes that we made are close to the identity. Therefore, |m|1+|n|1 cannot be one at any of
the successive transformed Hamiltonians along the reduction process, so the equilibrium point remains at the origin at each
step. Thus, at the homogeneous polynomials

H
(σ−2)
κ =

∑

2ℓ+|m|1+|n|1=κ

H
(σ−2)
ℓmn µℓqmpn

of (adapted) degree κ = σ, σ + 1, . . . , s (see (D.31)), the index ℓ can vary only in the range ℓ = 0, . . . , 3⌊κ/2⌋ − κ
(σ = 3, 4, . . . ), where ⌊·⌋ stands for the integer part. ⋄

If follows from (D.1) thatLZ2
leaves each subspace EℓMN ⊆ Eσ invariant. Therefore, we can fix ℓ,M,N ∈ N0 and focus

on solving the projections of equations (25) onto the subspace EℓMN ; we mean, given F ∈ EℓMN , we look forG,Z ∈ EℓMN

such that the homological equation
LZ2

G+ Z = F (D.2)

holds. It turns out that, when Ω 6= 0 (i.e., when M 6= N ) then F ∈ Range LZ2
|
EℓMN

and we can set Z = 0 in equation
above. Otherwise, when Ω = 0 (i.e., when M = N ), then resonant monomials appear generically. We analyze both cases
below.

Remark AppendixD.2. Prior to continuing with our analysis, let us point out that, actually, when one writes the Eq. (D.2)
explicitly, the term µℓ appears as a product at both sides, and can be simplified. Hence, abusing notation, this factor has been
omitted in the expansions of the polynomials in EℓMN . ⋄

The case Ω 6= 0 (M 6= N ). Let U ∈ EℓMN , with ℓ, M , N fixed, then

U =
∑

|m|1=M
|n|1=N

uℓm1m2n1n2
qm1

1 qm2

2 pn1

1 pn2

2 =
∑

0≤m≤M
0≤n≤N

uℓ,m,M−m,N−n,nq
m
1 q

M−m
2 pN−n

1 pn2 ,

(the factor µℓ is omitted, as Remark AppendixD.2 warns). Thus, we can set umn := uℓ,m,M−m,N−n,n for 0 ≤ m ≤ M ,
0 ≤ n ≤ N ; so, for every ℓ fixed, any monomial in U is specified by just a pair of indices. Now, let u ∈M(M+1)×(N+1),1(C)
be the array holding the coefficients umn ordered as follows: umn ≺ um′n′ (umn precedes um′n′ ) if m > m′ or, when
m = m′, if n > n′.

Example 1. For instance, if M = 3 and N = 2; then

u3,2 ≺ u3,1 ≺ u3,0 ≺ u2,2 ≺ u2,1 ≺ u2,0 ≺ u1,2 ≺ u1,1 ≺ u1,0 ≺ u0,2 ≺ u0,1 ≺ u0,0. ⊲

Yet we can define the block-array u⊤ = (uM uM−1 · · ·u0) ∈ CN+1 × CN+1 × · · · × CN+1, with

u⊤j = (uj,N , uj,N−1, . . . , uj,0) ∈ C
N+1

for j = M,M − 1, . . . , 0. Therefore, to find the solution of (D.2) we set ZℓMN = 0 and solve a linear system Ag = f ;
with A ∈M(M+1)×(N+1)(C); f, g ∈ C(M+1)×(N+1); which, using the notation just described, can be written blockwise and
looks 



DN

EM DN

EM−1 DN

. . .
. . .

. . .
. . .

E2 DN

E1 DN







gM
gM−1

gM−2

...

...
g1
g0




=




fM
fM−1

fM−2

...

...
f1
f0




, (D.3)

where Ej = jIN+1 ∈ MN+1(C), i, j = M,M − 1, . . . , 1; DN = ΩIN+1 − PN ∈ MN+1(C) with (PN )i,j = N − i + 2
if i = j + 1 for j = 1, . . . , N , or (PN )i,j = 0 otherwise. From the band structure of A, we see that it is a lower triangular
matrix with all the elements on its diagonal equal to Ω 6= 0, so the linear system (D.3) has exactly one solution.

Remark AppendixD.3 (Reality conditions). It is straightforward to show that ḡℓ,m,M−m,N−n,n = (−1)m+ngℓ,n,N−n,M−m,m,
for 0 ≤ m ≤M , 0 ≤ n ≤ N , 2ℓ+M +N = σ. Hence G+

σ ∈ ES
σ . ⋄

Example 2. If, as in Example 1, we take M = 3, N = 2; then Ω = iω(3− 2) = iω and

P2 =



0 0 0
2 0 0
0 1 0


 , D2 =



iω
−2 iω

−1 iω


 , Ej =



j

j
j


 , j = 1, 2, 3; A =




D2

E3 D2

E2 D2

E1 D2


 .
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Therefore, for this case in point, the system (D.3) is written as




iω
−2 iω

−1 iω
3 0 0
0 3 0
0 0 3

iω
−2 iω

−1 iω
2 0 0
0 2 0
0 0 2

iω
−2 iω

−1 iω
1 0 0
0 1 0
0 0 1

iω
−2 iω

−1 iω







g3,2
g3,1
g3,0
g2,2
g2,1
g2,0
g1,2
g1,1
g1,0
g0,2
g0,1
g0,0




=




f3,2
f3,1
f3,0
f2,2
f2,1
f2,0
f1,2
f1,1
f1,0
f0,2
f0,1
f0,0




,

and it is seen at once –as we stated before for the general case– that detA 6= 0, so the coefficients of the generating function
are uniquely determined. ⊲

Hence, we can write the componentG+
σ ∈ E+

σ of the generating functionGσ in the form,

G+
σ (µ, q, p) =

∑

2ℓ+M+N=σ
M 6=N

GℓMN =
∑

2ℓ+M+N=σ
M 6=N




∑

0≤m≤M
0≤n≤N

gℓ,m,M−m,N−n,nq
m
1 q

M−m
2 pN−n

1 pn2


µℓ.

This completes the proof of the part (a) of Proposition 1.

Example 3 (Computation of G3, H
(1)
4 and G+

4 ). For s = 3, the right hand side of (23) is given by

H
(0)
3 (µ, q, p) = i

34

225
35/6
√
10 q31 −

2

25
35/6
√
2 q21q2 + i

2

125
35/6
√
10 q1q

2
2 −

34

1125
35/6
√
2 q32 − i

2

25
35/6
√
10 q21p2

+
34

75
35/6
√
2 q21p1−

4

25
35/6
√
2 q1q2p2+i

4

125
35/6
√
10 q1q2p1− i

34

375
35/6
√
10 q22p2+

2

125
35/6
√
2 q22p1

−i 2

25
35/6
√
10 q1p

2
2−

4

25
35/6
√
2 q1p1p2−i

34

375
35/6
√
10 q1p

2
1+

34

75
35/6
√
2 q2p

2
2+i

4

125
35/6
√
10 q2p1p2

+
2

125
35/6
√
2 q2p

2
1 + i

34

225
35/6
√
10 p32 −

2

25
35/6
√
2 p1p

2
2 + i

2

125
35/6
√
10 p21p2 −

34

1125
35/6
√
2 p31.

Then, setting up the homological equations (D.2) –for ℓ = 0, taking M = 3, N = 0; M = 2, N = 1; M = 1, N = 2;
M = 0, N = 3–, and solving the corresponding linear systems of type (D.3) one gets Z3 = 0 and G3 = G+

3 +G0
3, with

G+
3 (µ, q, p) =

34

225
35/6
√
2 q31 + i

8

75
35/6
√
10 q21q2 −

74

375
35/6
√
2 q1q

2
2 − i

188

5625
35/6
√
10 q32

− 6

25
35/6
√
2 q21p2 − i

16

125
35/6
√
10 q21p1 − i

24

125
35/6
√
10 q1q2p2 +

36

125
35/6
√
2 q1q2p1

+
38

125
35/6
√
2 q22p2 − i

12

625
35/6
√
10 q22p1 +

6

25
35/6
√
2 q1p

2
2 + i

24

125
35/6
√
10 q1p1p2

− 38

125
35/6
√
2 q1p

2
1 + i

16

125
35/6
√
10 q2p

2
2 −

36

125
35/6
√
2 q2p1p2 + i

12

625
35/6
√
10 q2p

2
1

− 34

225
35/6
√
2 p32 − i

8

75
35/6
√
10 p1p

2
2 +

74

375
35/6
√
2 p21p2 + i

188

5625
35/6
√
10p31,
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and G0
3 = 0. Furthermore, as

H
(0)
4 (µ, q, p) =

27

32
32/3 µ2 − 11

15
32/3 µq21 − i

16

25
32/3
√
5µq1q2 +

56

75
32/3 µq22 +

6

5
32/3 µq1p2 + i

14

25
32/3
√
5µq1p1

+ i
14

25
32/3
√
5µq2p2 −

51

25
32/3 µq2p1 −

11

15
32/3 µp22 − i

16

25
32/3
√
5µp1p2 +

56

75
32/3 µp21

− 203

225
32/3 q41 − i

268

1125
32/3
√
5 q31q2 +

86

375
32/3 q21q

2
2 + i

268

5625
32/3
√
5 q1q

3
2 −

203

5625
32/3 q42

+
268

225
32/3 q31p2 + i

812

1125
32/3
√
5 q31p1 + i

172

375
32/3
√
5 q21q2p2 −

268

375
32/3 q21q2p1 −

268

375
32/3 q1q

2
2p2

− i
172

1875
32/3
√
5 q1q

2
2p1 − i

812

5625
32/3
√
5 q32p2 +

268

5625
32/3 q32p1 −

86

75
32/3 q21p

2
2 − i

268

375
32/3
√
5 q21p1p2

+
406

375
32/3 q21p

2
1 − i

268

375
32/3
√
5 q1q2p

2
2 +

344

375
32/3 q1q2p1p2 + i

268

1875
32/3
√
5 q1q2p

2
1 +

406

375
32/3 q22p

2
2

+ i
268

1875
32/3
√
5 q22p1p2 −

86

1875
32/3 q22p

2
1 +

268

225
32/3 q1p

3
2 + i

172

375
32/3
√
5 q1p1p

2
2 −

268

375
32/3 q1p

2
1p2

− i
812

5625
32/3
√
5 q1p

3
1+i

812

1125
32/3
√
5 q2p

3
2−

268

375
32/3 q2p1p

2
2− i

172

1875
32/3
√
5 q2p

2
1p2+

268

5625
32/3 q2p

3
1

− 203

225
32/3 p42 − i

268

1125
32/3
√
5 p1p

3
2 +

86

375
32/3 p21p

2
2 + i

268

5625
32/3
√
5 p31p2 −

203

5625
32/3 p41,

application of Algorithm AppendixD.1 yields,

H
(1)
4 = H

(0)
4 +

1

1!
{H (0)

3 , G3}+
1

2!
{{Z2, G3} , G3}

= H
(1)
2,0,0 + H

(1)
1,2,0 + H

(1)
1,1,1 + H

(1)
1,0,2 + H

(1)
0,4,0 + H

(1)
0,3,1 + H

(1)
0,2,2 + H

(1)
0,1,3 + H

(1)
0,0,4

with H
(1)
ℓMN ∈ EℓMN . Explicitly,

(D.4)H
(1)
2,0,0(µ, q, p) =

27

32
32/3 µ2,

H
(1)
1,2,0(µ, q, p) = −

11

15
32/3 µq21 − i

16

25
32/3
√
5µq1q2 +

56

75
32/3 µq22 ,

(D.5)H
(1)
1,1,1(µ, q, p) =

6

5
32/3 µq1p2 + i

14

25
32/3
√
5µq1p1 + i

14

25
32/3
√
5µq2p2 −

51

25
32/3 µq2p1,

H
(1)
1,0,2(µ, q, p) = −

11

15
32/3 µp22 − i

16

25
32/3
√
5µp1p2 +

56

75
32/3 µp21,

H
(1)
0,4,0(µ, q, p) = −

4043

5625
32/3 q41 − i

3916

28125
32/3
√
5 q31q2 +

1474

3125
32/3 q21q

2
2 + i

748

140625
32/3
√
5 q1q

3
2 +

4453

140625
32/3 q42 ,

H
(1)
0,3,1(µ, q, p) =

476

1125
32/3 q31p2 + i

1084

5625
32/3
√
5 q31p1 + i

428

9375
32/3
√
5 q21q2p2 −

332

375
32/3 q21q2p1

+
724

9375
32/3 q1q

2
2p2 − i

15308

46875
32/3
√
5 q1q

2
2p1 + i

11572

140625
32/3
√
5 q32p2 +

23116

14062
32/3 q32p1,

H
(1)
0,2,2(µ, q, p) =

14

625
32/3 q21p

2
2 + i

12

625
32/3
√
5 q21p1p2 −

638

3125
32/3 q21p

2
1 + i

12

625
32/3
√
5 q1q2p

2
2 +

7832

9375
32/3 q1q2p1p2

(D.6)+ i
196

625
32/3
√
5 q1q2p

2
1 −

638

3125
32/3 q22p

2
2 + i

196

625
32/3
√
5 q22p1p2 −

4946

15625
32/3 q22p

2
1,

H
(1)
0,1,3(µ, q, p) =

476

1125
32/3 q1p

3
2 + i

428

9375
32/3
√
5 q1p1p

2
2 +

724

9375
32/3 q1p

2
1p2 + i

11572

140625
32/3
√
5 q1p

3
1

+ i
1084

5625
32/3
√
5 q2p

3
2 −

332

375
32/3 q2p1p

2
2 − i

15308

46875
32/3
√
5 q2p

2
1p2 +

23116

140625
32/3 q2p

3
1,

H
(1)
0,0,4(µ, q, p) = −

4043

5625
32/3 p42 − i

3916

28125
32/3
√
5 p1p

3
2 +

1474

3125
32/3 p21p

2
2 + i

748

140625
32/3
√
5 p31p2 +

4453

140625
32/3 p41.

Thus, as for s = 3, we can state the homological equations, now for ℓ = 1, taking M = 2, N = 0; M = 0, N = 2; and for
ℓ = 0, taking M = 4, N = 0; M = 3, N = 1; M = 1, N = 3; M = 0, N = 4. As before, form the linear systems of
type (D.3) that follow from those equations, the componentG+

4 of the generating functions are derived at once. Actually,

G+
4 = G+

1,2,0 +G+
1,0,2 +G+

0,4,0 +G+
0,3,1 +G+

0,1,3 +G+
0,0,4,
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with,

G+
1,2,0 = i

11

50
32/3
√
5µq21 −

81

50
32/3 µq1q2 − i

71

100
32/3
√
5µq22 ,

G+
1,0,2 = − i

11

50
32/3
√
5µp22 +

81

50
32/3µp1p2 + i

71

100
32/3
√
5µp21,

G+
0,4,0 = i

4043

37500
32/3
√
5 q41 −

3209

7500
32/3 q31q2 − i

65823

250000
32/3
√
5 q21q

2
2 +

598391

1500000
32/3 q1q

3
2 + i

1652677

30000000
32/3
√
5 q42 ,

G+
0,3,1 = − i

238

1875
32/3
√
5 q31p2 +

37

375
32/3 q31p1 +

1999

3125
32/3 q21q2p2 + i

2539

15625
32/3
√
5 q21q2p1

+ i
1127

3125
32/3
√
5 q1q

2
2p2 −

13637

31250
32/3 q1q

2
2p1 −

39143

93750
32/3 q32p2 − i

12884

234375
32/3
√
5 q32p1,

G+
0,1,3 = i

238

1875
32/3
√
5 q1p

3
2 −

1999

3125
32/3 q1p1p

2
2 − i

1127

3125
32/3
√
5 q1p

2
1p2 +

39143

93750
32/3 q1p

3
1

− 37

375
32/3 q2p

3
2 − i

2539

15625
32/3
√
5 q2p1p

2
2 +

13637

31250
32/3 q2p

2
1p2 + i

12884

234375
32/3
√
5 q2p

3
1,

G+
0,0,4 = − i

4043

37500
32/3
√
5 p42 +

3209

7500
32/3 p1p

3
2 + i

65823

250000
32/3
√
5 p21p

2
2 −

598391

1500000
32/3 p31p2 − i

1652677

30000000
32/3
√
5 p41.⊲

Analysis of the case Ω = 0 (M = N ). Let F ∈ EℓMM ; it is readily seen that its expansion can be re-arranged in the
following way

F =

M∑

i=0

M∑

j=0

fij q
i
1q

M−i
2 pM−j

1 pj2 =

M∑

i=0

(q1p2)
i
M−i∑

j=0

fM−j,i+j(q1p1)
M−i−j(q2p2)

j

+

M∑

i=1

(q2p1)
i
M−i∑

j=0

fM−i−j,j(q1p1)
M−i−j(q2p2)

j , (D.7)

(the same Remark AppendixD.2 applies here). The polynomials,

ξ̃1 = q1p2, ξ̃2 = q2p1, ξ̃3 =
i

2
(q1p1 + q2p2) , ξ̃4 =

1

2
(q1p1 − q2p2) . (D.8)

form a Hilbert basis of CS [[ν, q, p]]S
1

, the formal power series in CS [[ν, α, β]] that are invariant under the S1 action generated
by the flow of the Hamiltonian vector field Xξ̃3

(see [13], chap. I and IV). It turns out that,

q1p2 = ξ̃1, q2p1 = ξ̃2, q1p1 = − i ξ̃3 + ξ̃4, q2p2 = − i ξ̃3 − ξ̃4,

so substitution of these products into (D.7) leads to

F =

M∑

i=0

M∑

j=0

fij q
i
1q

M−i
2 pM−j

1 pj2 =

M∑

m=0

ξ̃m1

M−m∑

n=0

f̂mn ξ̃
M−m−n
3 ξ̃n4 +

M∑

m=1

ξ̃m2

M−m∑

n=0

f̃mn ξ̃
M−m−n
3 ξ̃n4 (D.9)

with,

f̂mn = (− i)M−m−n
M−m∑

k=0

C(M −m− k, k, n)fM−k,m+k, for 0 ≤ n ≤M −m, 0 ≤ m ≤M, (D.10)

f̃mn = (− i)M−m−n
M−m∑

k=0

C(M −m− k, k, n)fM−m−k,k, for 0 ≤ n ≤M −m, 1 ≤ m ≤M, (D.11)

being the coefficients

C(r, k, n) :=

min(n,k)∑

j=max(0,n−r)

(−1)j
(

r

n− j

)(
k

j

)
, for 0 ≤ r, k, n ≤M −m, 0 ≤ m ≤M, (D.12)

where we use the notation introduced in the analysis of the previous case, now with N = M ; i.e., as ℓ and M are assumed
fixed, then fij = fℓ,i,M−i,M−j,j , for 0 ≤ i ≤M , 0 ≤ j ≤M ; f̂mn = f̂ℓ,m,M−m,M−n,n, for 0 ≤ n ≤M −m, 0 ≤ m ≤M ;
and f̃mn = f̃ℓ,m,M−m,M−n,n, for 0 ≤ n ≤M −m, 1 ≤ m ≤M .
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{
ξ̃i, ξ̃j

}
ξ̃1 ξ̃2 ξ̃3 ξ̃4 ξ̃j

ξ̃1 0 −2ξ̃4 0 ξ̃1

ξ̃2 2ξ̃4 0 0 −2ξ̃2
ξ̃3 0 0 0 0

ξ̃4 −ξ̃1 ξ̃2 0 0

ξ̃i

Table D.1: Structure matrix for the Poisson bracket
{

ξ̃i, ξ̃j

}

, i, j = 1, 2, 3, 4.

Remark AppendixD.4. If we hold m fixed, 0 ≤ m ≤M , and define

f̂
(m)
n := f̂mn, f

(m)
k := fM−k,m+k, f̃

(m)
n := f̃mn, f̊

(m)
k := fM−.m−k,k, A

(m)
n,k := C(M −m− k, k, n),

for 0 ≤ n, k ≤M −m, then equations (D.10), (D.11) can be written in matrix form as,

f̂
(m)
n = A

(m)
nk f

(m)
k , f̃

(m)
n = A

(m)
nk f̊

(m)
k ,

respectively; and it is clear that they correspond to the change of components of F as the basis changes from the canonical
basis of EℓMM to the basis generated by ξ̃1, ξ̃2, ξ̃3 and ξ̃4 in (D.8). ⋄

Lemma 2. If F ∈ ES
ℓMM , the components f̂mn (0 ≤ n ≤M −m, 0 ≤ m ≤M ) and f̃mn (0 ≤ n ≤M −m, 1 ≤ m ≤M )

in (D.10) and (D.11) are real.

PROOF. It is enough to check that S(ξ̃i) = ξ̃i, i = 1, 2, 3, 4, i.e., that the basis (D.8) satisfies the S-symmetries.

To solve the homological equations (D.2) in the basis generated by (D.8), we first see that the quadratic part of the Hamiltonian,
Z2, is given by

Z2(µ, ξ̃1, ξ̃2, ξ̃3, ξ̃4) =
25

8
µ+

2
√
5

3
ξ̃3 + ξ̃2;

next, taking into account that, for any u = u(ξ̃1, ξ̃2, ξ̃3, ξ̃4), v = v(ξ̃1, ξ̃2, ξ̃3, ξ̃4), their Poisson bracket is computed using the
formula

{u, v}(ξ̃1, ξ̃2, ξ̃3, ξ̃4) =
4∑

i,j=1

∂u

∂ξ̃i
(ξ̃1, ξ̃2, ξ̃3, ξ̃4)

{
ξ̃i, ξ̃j

} ∂v

∂ξ̃j
(ξ̃1, ξ̃2, ξ̃3, ξ̃4)

= ∇u(ξ̃1, ξ̃2, ξ̃3, ξ̃4)⊤S∇v(ξ̃1, ξ̃2, ξ̃3, ξ̃4),

where the brackets
{
ξ̃i, ξ̃j

}
are given in Table D.1. Therefore S is the matrix with components Sij =

{
ξ̃i, ξ̃j

}
, for i, j =

1, 2, 3, 4. Now the relations

LZ2
ξ̃1 =

{
ξ̃1, Z2

}
= −2ξ̃4, LZ2

ξ̃2 =
{
ξ̃2, Z2

}
= 0, LZ2

ξ̃3 =
{
ξ̃3, Z2

}
= 0, LZ2

ξ̃4 =
{
ξ̃4, Z2

}
= ξ̃2,

follow at once. Moreover,

LZ2

(
ξ̃m1 ξ̃

M−m−n
3 ξ̃n4

)
= −2mξ̃m−1

1 ξ̃M−m−n
3 ξ̃n+1

4 + nξ̃m−1
1 ξ̃M−m−n

3 ξ̃n−1
4 ξ̃1ξ̃2

= −2mξ̃m−1
1 ξ̃M−m−n

3 ξ̃n+1
4 − nξ̃m−1

1 ξ̃M−m−n
3 ξ̃n−1

4

(
ξ̃23 + ξ̃24

)

= −(2m+ n)ξ̃m−1
1 ξ̃M−m−n

3 ξ̃n+1
4 − nξ̃m−1

1 ξ̃M−m−n+2
3 ξ̃n−1

4 , (D.13)

for m ≥ 1, and where we have used that
ξ̃23 + ξ̃24 = −ξ̃1ξ̃2. (D.14)

Analogously, for n ≥ 1,

LZ2

(
ξ̃m2 ξ̃

M−m−n
3 ξ̃n4

)
= nξ̃m+1

2 ξ̃M−m−n
3 ξ̃n−1

4 . (D.15)

So we seek for polynomials G,Z ∈ EℓMM , that fulfill the homological Eq. (D.2); with

G =

M∑

m=1

ξ̃m1

M−m∑

n=0

ĝmnξ̃
M−m−n
3 ξ̃n4 +

M∑

m=0

ξ̃m2

M−m∑

n=0

g̃mnξ̃
M−m−n
3 ξ̃n4 (D.16)

and Z holding the resonant terms that belong to a complementary space of RangeLZ2
.
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Remark AppendixD.5. We note that the sums in (D.16) are arranged differently that those in (D.9); this is suggested by the
action of LZ2

on the monomials ξ̃m1 ξ̃
M−m−n
3 ξ̃n4 and ξ̃m2 ξ̃

M−m−n
3 ξ̃n4 shown in (D.13) and in (D.15) respectively. ⋄ Hence,

assuming M ≥ 3, the homological Eq. (D.2) in the current polynomial basis, ξ̃1, ξ̃2, ξ̃3, ξ̃4, looks as

−2MĝM,0 ξ̃
M−1
1 ξ̃4 − (2M − 2) ĝM−1,0 ξ̃

M−2
1 ξ̃3ξ̃4 − (2M − 1) ĝM−1,1 ξ̃

M−2
1 ξ̃24 − ĝM−1,1 ξ̃

M−2
1 ξ̃23

−
M−3∑

m=0

[
ĝm+1,1 ξ̃

M−m
3 +

M−m−2∑

n=1

{(2m+ n+ 1)ĝm+1,n−1 + (n+ 1)ĝm+1,n+1} × ξ̃M−m−n
3 ξ̃n4

+ (M +m) ĝm+1,M−m−2 ξ̃3ξ̃
M−m−1
4 + (M +m+ 1) ĝm+1,M−m−1 ξ̃

M−m
4

]
× ξ̃m1

+

M∑

m=1

ξ̃m2

M−m∑

n=0

(n+ 1) g̃m−1,n+1 ξ̃
M−m−n
3 ξ̃n4 + Z

= f̂M,0 ξ̃
M
1 + f̂M−1,0 ξ̃

M−1
1 ξ̃3 + f̂M−1,1 ξ̃

M−1
1 ξ̃4 + f̂M−2,0 ξ̃

M−2
1 ξ̃23 + f̂M−2,1 ξ̃

M−2
1 ξ̃3ξ̃4

+ f̂M−2,2 ξ̃
M−2
1 ξ̃24 +

M−3∑

m=0

[
f̂m,0 ξ̃

M−m
3 +

M−m−2∑

n=1

f̂mn ξ̃
M−m−n
3 ξ̃n4

+ f̂m,M−m−1 ξ̃3 ξ̃
M−m−1
4 + f̂m,M−m ξ̃M−m

4

]
× ξ̃m1

+

M∑

m=1

ξ̃m2

M−m∑

n=0

f̃mn ξ̃
M−m−n
3 ξ̃n4 , (D.17)

so comparison of coefficients leads, on the one hand, to the linear system,

− 2M ĝM,0 = f̂M−1,1, (D.18)

−(2M − 2) ĝM−1,0 = f̂M−2,1, (D.19)

−(2M − 1) ĝM−1,1 = f̂M−2,2, (D.20)

−(2m+ n+ 1) ĝm+1,n−1 − (n+ 1) ĝm+1,n+1 = f̂mn, 1 ≤ n ≤M −m− 2,

−(M +m) ĝm+1,M−m−2 = f̂m,M−m−1,

−(M +m+ 1) ĝm+1,M−m−1 = f̂m,M−m,




, 0 ≤ m ≤M − 3 (D.21)

(n+ 1) g̃m−1,n+1 = f̃mn, 0 ≤ n ≤M −m, 1 ≤ m ≤M (D.22)

(in fact, the last Eq. (D.22), holds also for M = 1 and M = 2). For 0 ≤ m ≤M ≥ 3, M ≥ 3 fixed, the linear system (D.21)
is determinate compatible (it is a lower triangular system with no zeros at the diagonal).

Therefore, for M ≥ 3, the components ĝmn, g̃mn, 0 ≤ n ≤ M −m, 0 ≤ m ≤M , of the generating function (D.16) are
obtained solving the Eqs. (D.18)-(D.22), except the terms g̃m,0 (for 0 ≤ m ≤M ) that, due to the action of LZ2

(see (D.15)),
do not appear in LZ2

G. Consequently, they are not determined by the homological equations (they are “responsible for the
non-uniqueness of G”), and can be set arbitrarily. As in [41], we fix them to 0. Furthermore, if F ∈ ES

ℓMM , the right hand
side of the system (D.18)-(D.22) is real (Lemma 2). Besides, as the choice g̃m,0 = 0 (for 0 ≤ m ≤ M ) preserves the
S-symmetries, it follows that G ∈ ES

ℓMM .
Resonant terms. For every M fixed, we see that the component ĝM−1,1 is determined by the Eq. (D.20) and ĝm+1,1

(0 ≤ m ≤M − 3) appear on left hand side of the first equation of (D.21) for n = 2, so these components are also determined
once the system is solved. Therefore, the terms −ĝM−1,1ξ̃

M−2
1 ξ̃23 and −ĝm+1,1 ξ̃

m
1 ξ̃

M−m
3 (for 0 ≤ m ≤ M − 3) cannot be

used to remove the corresponding terms f̂M−2,0 ξ̃
M−2
1 ξ̃23 and f̂m,0 ξ̃

m
1 ξ̃

M−m
3 that are present at the right hand side of (D.17).

Thus, all these terms –together with f̂M,0 ξ̃
M
1 , f̂M−1,1 ξ̃

M−1
1 ξ̃13– must be included (the former ones, with opposite sign and

their corresponding values substituted) in Z , at the left hand side of (D.17), so

Z =

M∑

m=0

f̂m,0 ξ̃
m
1 ξ̃

M−m
3 +

M−2∑

m=0

ĝm+1,1 ξ̃
m
1 ξ̃

M−m
3 =

M∑

m=0

Ẑmξ̃
m
1 ξ̃

M−m
3 , (D.23)

where the components ĝm+1,1 are given by the solution of Eqs. (D.18)-(D.21). Since all the coefficients in Z are real, and
S(ξ̃i) = ξ̃i, i = 1, 2, 3, 4, we see that Z ∈ ES

ℓMM .
On the other hand, for M = 1, the working space of S-symmetric homogeneous polynomials is E

S
ℓ,1,1, with ℓ =

1, . . . 3⌊σ/2⌋ − σ, for σ = 4, 5, . . . Then, according to (D.9) and (D.16),

F = f̂1,0 ξ̃1 + f̃1,0 ξ̃2 + f̂0,0 ξ̃3 + f̂0,1 ξ̃4, G = ĝ1,0 ξ̃1 + g̃1,0 ξ̃2 + g̃0,0 ξ̃3 + g̃0,1 ξ̃4,
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and LZ2
G = g̃0,1 ξ̃2 − 2ĝ1,0 ξ̃4, so the homological Eq. (D.2) is solved taking

g̃0,1 = f̃1,0, ĝ1,0 = −
f̂0,1
2
.

The coefficient g̃0,0 is not determined but, as we pointed out before, it can be set to 0, so we take g̃0,0 = 0 and then

G = − f̂0,1
2

ξ̃1 + f̃1,0 ξ̃4, Z = f̂1,0 ξ̃1 + f̂0,0 ξ̃3 (D.24)

and clearly, F,G ∈ ES
ℓ,1,1. Finally, for M = 2,

F = f̂1,1 ξ̃1ξ̃4 + f̃2,0 ξ̃
2
2 + f̃1,0 ξ̃2ξ̃3 + f̃1,1 ξ̃2ξ̃4 + f̂0,1 ξ̃3ξ̃4 + f̂0,2 ξ̃

2
4 + f̂2,0 ξ̃

2
1 + f̂1,0 ξ̃1ξ̃3 + f̂0,0 ξ̃

2
3 ,

and,
G = ĝ1,0 ξ̃1ξ̃3 + ĝ1,1 ξ̃1ξ̃4 + ĝ2,0 ξ̃

2
1 + g̃0,0 ξ̃

2
3 + g̃0,1 ξ̃3ξ̃4 + g̃0,2 ξ̃

2
4 + g̃1,0 ξ̃2ξ̃3 + g̃1,1 ξ̃2ξ̃4 + g̃2,0 ξ̃

2
2 ,

so the homological Eq. (D.2) takes the form,

− 4ĝ2,0 ξ̃1ξ̃4 + g̃1,1 ξ̃
2
2 + g̃0,1 ξ̃2ξ̃3 + 2g̃0,2 ξ̃2ξ̃4 − 2ĝ1,0 ξ̃3ξ̃4 − ĝ1,1 ξ̃23 − 3ĝ1,1 ξ̃

2
4 + Z

= f̂1,1 ξ̃1ξ̃4 + f̃2,0 ξ̃
2
2 + f̃1,0 ξ̃2ξ̃3 + f̃1,1 ξ̃2ξ̃4 + f̂0,1 ξ̃3ξ̃4 + f̂0,2 ξ̃

2
4 + f̂2,0 ξ̃

2
1 + f̂1,0 ξ̃1ξ̃3 + f̂0,0 ξ̃

2
3 (D.25)

and fixes the coefficients

ĝ2,0 = − f̂1,1
4
, ĝ1,0 = − f̂0,1

2
, ĝ1,1 = −

f̂0,2
3
, g̃1,1 = f̃2,0, g̃0,1 = f̃1,0, g̃0,2 =

f̃1,1
2

(D.26)

of G. Again there the undetermined coefficients, and yet again they are set to 0, i.e., g̃0,0 = g̃1,0 = g̃2,0 = 0. This gives rise
to

G = − f̂0,1
2

ξ̃1ξ̃3 −
f̂0,2
3

ξ̃1ξ̃4 −
f̂1,1
4

ξ̃21 + f̃1,0 ξ̃3ξ̃4 +
f̃1,1
2

ξ̃24 + f̃2,0 ξ̃2ξ̃4 (D.27)

whereas the components f̂1,0, f̂2,0 cannot be removed. Neither does f̂0,0, since in this last case ĝ1,1 is first exacted by
the homological Eq. (D.25) to ĝ1,1 = −f̂0,2/3 (see (D.26)), so −ĝ1,1 ξ̃23 cannot be used to remove the term f̂0,0 ξ̃

2
3 on the

right hand side of (D.25), and both them (the former with its opposite sign and its value substituted) must be present in Z .
Consequently,

Z = f̂0,0 ξ̃
2
3 + f̂1,0 ξ̃1ξ̃3 + f̂2,0 ξ̃

2
1 + ĝ1,1 ξ̃

2
3 =

(
f̂0,0 −

f̂0,2
3

)
ξ̃23 + f̂1,0 ξ̃1ξ̃3 + f̂2,0 ξ̃

2
1 . (D.28)

Thus, we have shown that the normal form, Zσ , depends only on µ, ξ̃1 = q1p2 and ξ̃3 = i
2 (q1p1 + q2p2). More precisely

that, when σ is even (and σ ≥ 4) then Zσ(µ, q, p) = Zσ

(
µ, ξ̃1, ξ̃3

)
, being Zσ(u, v, w) a polynomial of standard degree

σ/2 with real coefficients. Furthermore, it is clear that the normal is given by (27). This closes the proof of statement (b) of
Proposition 1. �

Example 4 (Computation of G0
4 and Z4 ). We use (D.10) and (D.11) to express the components of Z , G in (D.24), and Z ,

G in (D.27) and (D.28) as linear combinations of the components of H
(1)
1,1,1 and H

(1)
0,2,2 with respect to the standard basis of

EℓMM . These components are shown in Table D.2, so

H
(1)
ℓMM =

M∑

m,n=0

H
(1)
ℓ,m,M−m,M−n,n q

m
1 q

M−m
2 pM−n

1 pn2 (D.29)

corresponds to H
(1)
1,1,1 in (D.5) for ℓ = 1 and M = 1, whereas it matches H

(1)
022 in (D.6) when ℓ = 0 and M = 2. Therefore,

(i) for M = 1 (ℓ = 1),

f̂0,0 = − i (f1,0 + f0,1) = − i
(
H

(1)
1,1,0,1,0 + H

(1)
1,0,1,0,1

)
=

28

25
32/3
√
5,

(S-symmetries)f̂0,1 = f1,0 − f0,1 = H
(1)
1,1,0,1,0 −H

(1)
1,0,1,0,1 = 0,

f̂1,0 = f1,1 = H
(1)
1,1,0,0,1 =

6

5
32/3,

f̃1,0 = f0,0 = H
(1)
1,0,1,1,0 = −51

25
32/3,
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ℓ m1 m2 n1 n2 H
(1)
ℓm1m2n1n2

1 1 0 0 1 6
5 3

2/3

1 1 0 1 0 i 14
25 3

2/3
√
5

1 0 1 0 1 i 14
25 3

2/3
√
5

1 0 1 1 0 − 51
25 3

2/3

0 2 0 0 2 14
625 3

2/3

0 2 0 1 1 i 12
625 3

2/3
√
5

0 2 0 2 0 − 638
3125 3

2/3

0 1 1 0 2 i 12
625 3

2/3
√
5

0 1 1 1 1 7832
9375 3

2/3

0 1 1 2 0 i 196
625 3

2/3
√
5

0 0 2 0 2 − 638
3125 3

2/3

0 0 2 1 1 i 196
625 3

2/3
√
5

0 0 2 2 0 − 4946
15625 3

2/3

Table D.2: Coefficients of homogeneous polynomials (of adapted degree 2ℓ + 2M = 4) H
(1)
1,1,1 in (D.5) and H

(1)
0,2,2 in (D.6), where H

(1)
ℓMM

is given by
the sum (D.29).

(ii) for M = 2 (ℓ = 0),

f̂0,0 = − (f2,0 + f1,1 + f0,2) = −
(
H

(1)
0,2,0,2,0 + H

(1)
0,1,1,1,1 + H

(1)
0,0,2,0,2

)
= −4004

9375
32/3,

f̂1,0 = − i (f2,1 + f1,2) = − i
(
H

(1)
0,2,0,1,1 + H

(1)
0,1,1,0,2

)
=

24

625
32/3
√
5,

(S-symmetries)f̂0,1 = −2 i (f2,0 − f0,2) = −2 i
(
H

(1)
0,2,0,2,0 −H

(1)
0,0,2,0,2

)
= 0,

f̂2,0 = f2,2 = H
(1)
0,2,0,0,2 =

14

625
32/3,

(S-symmetries)f̂1,1 = f1,2 − f2,1 = H
(1)
0,2,0,1,1 −H

(1)
0,1,1,0,2 = 0,

f̂0,2 = f2,0 − f1,1 + f0,2 = H
(1)
0,2,0,2,0 −H

(1)
0,1,1,1,1 + H

(1)
0,0,2,0,2 = −2332

1875
32/3,

f̃1,0 = − i (f1,0 + f0,1) = − i
(
H

(1)
0,1,1,2,0 + H

(1)
0,0,2,1,1

)
=

392

625
32/3
√
5,

(S-symmetries)f̃1,1 = f1,0 − f0,1 = H
(1)
0,1,1,2,0 −H

(1)
0,0,2,1,1 = 0,

f̃2,0 = f0,0 = H
(1)
0,0,2,2,0 = − 4946

15625
32/3,

(we have tagged the terms that cancel due to the reality conditions). Substitution of these coefficients in (D.24), (D.27)
and (D.28) yields,

G0
1,1,1 = H

(1)
1,0,1,1,0µ ξ̃4 = −51

25
32/3µ ξ̃4,

Z1,1,1 = H
(1)
1,1,0,0,1µ ξ̃1 − i

(
H

(1)
1,1,0,1,0 + H

(1)
1,0,1,0,1

)
µ ξ̃3 =

6

5
32/3µ ξ̃1 +

28

25
32/3
√
5µ ξ̃3,

G0
0,2,2 = −1

3

(
H

(1)
0,2,0,2,0 −H

(1)
0,1,1,1,1 + H

(1)
0,0,2,0,2

)
ξ̃1ξ̃4 − i

(
H

(1)
0,1,1,2,0 + H

(1)
0,0,2,1,1

)
ξ̃3ξ̃4 + H

(1)
0,0,2,2,0ξ̃2ξ̃4

=
2332

5625
32/3ξ̃1ξ̃4 +

392

625
32/3
√
5 ξ̃3ξ̃4 −

4946

15625
32/3ξ̃2ξ̃4,
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Algorithm AppendixD.1: Computation of H
(σ−2)
σ = Zσ,H

(σ−2)
σ+1 , . . . ,H

(σ−2)
s (in [25]).

1: for i← s, σ,−1 do ⊲ i from s to σ by −1
2: k ← 0
3: l ← 1
4: U ← H(i− σ + 2)
5: for j ← i, s, σ − 2 do ⊲ j from i to s by σ − 2
6: k ← k + 1
7: l← l ∗ k
8: U ← {U,G(σ)}
9: H(j)← H(j) + U/l

10: end for

11: end for

Z0,2,2 = −
(
4

3
H

(1)
0,2,0,2,0 +

2

3
H

(1)
0,1,1,1,1 +

4

3
H

(1)
0,0,2,0,2

)
ξ̃23 − i

(
H

(1)
0,2,0,1,1 + H

(1)
0,1,1,0,2

)
ξ̃1ξ̃3 + H

(1)
0,2,0,0,2 ξ̃

2
1

= − 352

28125
32/3 ξ̃23 +

24

625
32/3
√
5 ξ̃1ξ̃3 +

14

625
32/3 ξ̃21

where ξ̃i, i = 1, 2, 3, 4 must be replaced by their definition in terms of (q, p) in (D.8). Hence, G0
4 = G0

1,1,1 + G0
0,2,2 ∈ E0

4

and the complete generating function at degree 4, G4, is the sum G4 = G+
4 + G0

4 (we recall that G+
4 ∈ E

+
4 was found in

Example 3). Besides, the (complex) normal form up to (adapted) degree 4 results to be

Z(4) = Z2 + Z2,0,0 + Z1,1,1 + Z0,2,2 =
25

8
µ+

27

32
32/3µ2 +

2

3

√
5 ξ̃3 + ξ̃2 +

6

5
32/3µ ξ̃1 +

28

25
32/3
√
5µ ξ̃3

− 352

28125
32/3 ξ̃23 +

24

625
32/3
√
5 ξ̃1ξ̃3 +

14

625
32/3 ξ̃21 , (D.30)

being Z2,0,0 = H
(1)
2,0,0 = 27

323
2/3µ2. This corresponds to the trivial case M = 0, see (D.4). ⊲

Some remarks on the normal form

Remark AppendixD.6 (On the complexification). We note that, since the Poisson brackets preserve the S-symmetries (see
Remark AppendixC.1 (iii)), and we have seen that the generating functions Gσ , σ = 3, 4, . . . , are S-invariants as long as
the each of the corresponding H

(σ−3)
σ in the right hand side of (25) is; then it follows by induction that the successive

transformed Hamiltonians, H (σ−2), given by (26) will also be S-invariants. ⋄
Remark AppendixD.7. In practice, there are several useful algorithms to perform the computations in an effective way. For
example, once the homological Eq. (25) are solved andGσ is found, one can use Algorithm AppendixD.1 above (see [25] for
the corresponding software implementation) to compute the terms of the transformed Hamiltonian, H (σ−2), from the current
(adapted) degree σ, up to the given degree s to which the normal form is computed; more precisely, it outputs,

H
(σ−2)
σ = Zσ,H

(σ−2)
σ+1 , . . . ,H (σ−2)

s . (D.31)

⋄
Remark AppendixD.8. The transformation generated by G3 are given by,

q
(0)
i = q

(1)
i +

{
q
(1)
i , G3

}
+

1

2!

{{
q
(1)
i , G3

}
, G3

}
+

1

3!

{{{
q
(1)
i , G3

}
, G3

}
, G3

}
+ . . . ,

p
(0)
i = p

(1)
i +

{
p
(1)
i , G3

}
+

1

2!

{{
p
(1)
i , G3

}
, G3

}
+

1

3!

{{{
p
(1)
i , G3

}
, G3

}
, G3

}
+ . . . ,

i = 1, 2; where
(
q(0), p(0)

)
are the original coordinates and

(
q(1), p(1)

)
are the new ones. This can be repeated to get explicitly

the symplectic changes generated by G4, G5, . . . and so on, up to the required degree. Of course, a similar algorithm to
Algorithm AppendixD.1 can be applied coordinatewise to mechanize the computations (again, see [25] for details). ⋄
Remark AppendixD.9. The normal form at 1:−1 non semisimple resonant equilibrium point in a family of Hamiltonian
systems has been investigated in many papers, here we quote: [50], [55], [56]. The same resonance can take place in a family
of periodic orbits (see [23], [40], [41], [42], [43]), and in a family of lower dimensional invariant tori (see [8]). Whatever
the algorithm to perform the transformations is, the key point of the reduction to normal form lies in the solvability of the
homological Eq. (25) (see the quoted references for an outlook of the different approaches). In the context of the periodic
Hopf bifurcation, this is tackled in [41], Proposition 4.1, which we adapt here to the special case of a 3-degree of freedom
(complexified) Hamiltonian (21), depending on the normal coordinates q, p ∈ C2, an “action” µ ∈ C (originally, the real
parameter of the family of Hamiltonians), but not explicitly on its conjugate angle.
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Of course, one might expand the Hamiltonian (21) with respect to the (q, p) coordinates only, letting the coefficients
depend on µ. Proceeding in that way, the coefficients of the normal form terms and of the generating functions –given, at
each step, by the solutions of (25)– would now be rational functions of the parameter µ. Thus, the higher the degree, the
more intricate the expressions. This results to be a very expensive way to compute the normal form. Hence, the approach we
present here of expanding in the parameter (we recall that it is assumed to be a small quantity), seems fairly more suitable. ⋄
Remark AppendixD.10. In some situations, such as when we approximate the solutions of the original Hamiltonian system
using the solutions of its normal form or when we look for the “optimal” degree s up to what the normal form has to be
computed to minimize the size of the remainder, we have to find explicitly the generating functions G3, G4, . . . At this
regard, we stress that the above proof of Proposition 1 given in this appendix shows, not only the structure of the reduced
Hamiltonian in this case in point, but also provides the formulas for its coefficients and the coefficients of the generating
functions, up to any required degree. ⋄
Remark AppendixD.11. The Examples 1–4 that came up along the proof of Proposition 1, illustrate the practical implement-
ation of the normalization process for the given Hamiltonian of the CP problem. In particular, the fourth order normal form,
Z(4), of the Hamiltonian (21) (and the generating functions G3 and G4) follow from the Examples 3, and 4. We remark that
the proof of Proposition 1 we give here is more complete and detailed than the one given in [41]. ⋄
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