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Abstract

The main objective of this thesis is to analyse peptidomics data and evaluate
their use in the prediction of risk of death of patients in septic shock. The World
Health Organisation reports [1] that there are up to 24 million cases of septic shock
globally, each year, and incidence is rising. Further, it has mortality rates of 40%,
but yet is still little understood. The early detection and treatment of sepsis and
septic shock represent big medical challenges and as yet there are no known biomark-
ers for its prediction. This thesis hopes to determine if there exists any correlation
between patient peptidome and their mortality. The plasma peptide levels data
used in this thesis was collected by mass spectrometry-based peptidomics as part
of the ShockOmics European research project, the first of its kind to try and eval-
uate causes of shock. This is the first time this peptidome data has been analysed
in this depth. Machine learning techniques were implemented for feature selection
and classification. The resulting classification of patient outcome, from patient pep-
tidome taken 48 hours after shock diagnosis, was largely successful, with one model
obtaining 100% mean accuracy. Using this model, we were able to identify 8 relevant
peptides that may provide some clinical insight into the pathophysiology of septic
shock. These results are discussed and suggestions made for future research.

Keywords sepsis, septic shock, peptidomics, machine learning
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1 | Introduction

Sepsis is a major public health concern, making up about 21% of all patients admit-
ted to ICU [2] and one of the main causes of death for patients in ICU. Furthermore,
the number of cases are steadily rising due to ageing populations and increases in
comorbidities e.g. diabetes, cancer. This trend is set to continue in the foreseeable
future.

Sepsis is described as life-threatening organ dysfunction caused by the body
injuring its own tissues and organs in response to infection [3]. It is the number
one cause of death from infection, with mortality rates of 10%. The most severe
cases of sepsis lead to septic shock, which entails mortality rates of over 40%. The
heterogeneity with which symptoms are exhibited by septic patients make it difficult
to diagnose. According to the latest definitions [3] it can be clinically identified by
an increase in SOFA (Sequential [Sepsis-related] Organ Failure Assessment) score of
2 or more, but this cannot be ascertained at bedside and therefore a quick (bedside)
SOFA score has also been developed.

Although sepsis and septic shock cases comprise such a large proportion of ICU
admissions, there is still no simple, unambiguous criterion to uniquely identify a
patient with sepsis [3]. Further, little progress has been made in improving mortality
rates and outcome is still difficult to predict [4]. Whilst the SOFA scores are able to
give guidance on patient outcome a definitive prediction, diagnosis and personalised
treatment is needed to improve patient outcome. The top management technique
for patients in septic shock is “early recognition”. Therefore, rather than a reactive
treatment to attempt to reduce shock symptoms, it is important to be able to
identify the causes, biomarkers and indications of developing shock.

Due to rapid technological advancements and high-throughput techniques, we are
now able to analyse large amounts of high-dimensional data, like omics data. Omics
data has huge potential and applications. It has the ability to explain normal physi-
ological processes, to describe the aetiology of diseases and identify disease biomark-
ers. In this thesis, machine learning techniques will be applied to peptidomics data
from patients with septic shock, to attempt to identify patterns within it and learn
and rank important features of the data that can be included in a model predicting
patient outcome. In doing this, we aim to deduce what are the most important
features of patient peptidomics data, relative to their risk of death, and use this
information to guide patient therapies. Further, this acquired knowledge can inform
future research into the aetiology and early, unambiguous diagnosis of septic shock.

The next chapter, Chapter 2: Background, of this thesis provides vital back-
ground information into the understanding of the machine learning task. Firstly
with scientific knowledge on shock, sepsis and septic shock; followed by a summary
of the state of the art of the research into these, specifically using proteomics, pep-
tidomics and machine learning techniques. Chapter 3: Methods continues with a
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detailed description of the data used in this project; its collection, preprocessing,
and analysis. Chapter 4: Experiments gives a comprehensive account of the experi-
ments undertaken in this study, it summarises the experimental settings, significant
results accompanied by a discussion of these results for feature selection of peptides
and classification of patient outcome. Finally, Chapter 5: Conclusions discusses the
highlights and meaning of the results of this project and what further study they
lead on to.
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2 | Background

2.1 Shock

Shock is a serious condition in which there is insufficient blood flow throughout the
body, which deprives the organs and tissues of oxygen. Initially, shock is reversible,
but if it is not recognised and treated immediately, it can progress to irreversible
organ dysfunction. [5] There are four main subtypes of shock, all of which result in
hypoperfusion to organs, but have different causes: cardiogenic, hypovolemic, ob-
structive and distributive. These subtypes of shock are not exclusive, and patients
can experience a combination of more than one type of shock.

Cardiogenic shock is caused by heart damage. The heart is no longer able to
pump sufficient blood around the body. The most common cause is from a
severe heart attack. [5]

Hypovolemic shock is caused by severe blood or fluid loss, which means the
heart can no longer pump enough blood around the body. Or severe anaemia,
in which the blood cannot carry enough oxygen around the body. [5]

Obstructive shock is caused by an obstruction in the bloodflow outside of the
heart. There are several conditions that can result in obstructive shock, in-
cluding aortic dissection: in which the aorta tears and can no longer transport
blood to and from the heart, and vena cava syndrome: in which the vena cava
vein is blocked and can no longer carry blood back to the heart. [5]

Distributive shock is caused by blood vessels dilating too much, so that they are
unable to continue circulating blood sufficiently around the body. The most
common cause is from sepsis, caused by an overwhelming infection, which
leads to septic shock. Another cause is a severe allergic reaction, leading to
anaphylactic shock. Distributive shock can be viewed as different from the
other 3 types because it is the only kind that occurs even though the heart is
still working at a normal output level. [5]

The most common type overall is hypovolemic shock [6]. However, septic shock
is the most common form of shock seen in patients admitted to ICUs, and the
biggest cause of death of patients in ICUs. Whilst hypovolemic and anaphylactic
shock can usually be readily treated, septic shock is a much greater concern with
mortality rates of over 40%. Cardiogenic shock has the worst patient outcome and
is associated with 70%-80% in-hospital mortality [7].
All types of shock have the common symptoms of low blood pressure and accelerated
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heartbeat. Other symptoms show in varying degrees and depend on the cause and
severity. Additionally, the best treatment is dependent on the cause and severity of
shock. Usually, the treatment is to identify and negate the cause of shock as quickly
as possible.
Shock is a physiologic continuum [5], which begins with an event, e.g. an infection.
It progresses through pre-shock and shock, which are reversible, treatable stages.
The final and irreversible stage, end-stage shock, leads to multiple organ failure
and death. It is clearly of utmost importance that the cause of shock is identified as
quickly as possible, so that it can be treated before a patient reaches end-stage shock.
Better still, a means of early identification and preventative treatment is needed,
particularly for shock types with high mortality rates, like septic and cardiogenic
shock.

2.2 Sepsis

Sepsis is the body’s overwhelming response to infection. In most cases of infection
the body is able to respond adequately to target the infection and, in the case of
bacterial infections, a course of antibiotics can even more efficiently kill the infection.
However, in some severe cases, the body attempts to fight the infection, but causes
extensive inflammation, blood clots and leaking blood vessels [8]. The body can no
longer receive sufficient blood, and the organs and tissues are deprived of oxygen.

Sepsis has been defined in the latest definitions [3] as “life-threatening organ
dysfunction caused by a dysregulated host response to infection”. It is the condition
that costs the most for U.S. hospitals each year, costing $24 billion in 2013 [9]
and one report estimates that it affects 18 million people worldwide, each year, of
which 5 million die [10]. Furthermore, the incidence of sepsis has increased 13.7%
in the past 30 years. This is probably because of an ageing population, with more
comorbidities, but could also reflect a push for better understanding and diagnosis
of sepsis.

The source of sepsis can be many different types of microbes, and often it is
difficult for doctors to identify the original source of infection. Common sources
of infection are in the lungs e.g. pneumonuia; urinary tract; and abdomen e.g.
peritonitis. Sepsis mostly affects old and very young people, but also those with a
weakened immune system, maybe due to another condition such as AIDS or cancer.

Sepsis can be clinically characterised using the SOFA score, which evaluates
organ dysfunction. “Organ dysfunction can be identified as an acute change in total
SOFA score ≥ 2 points consequent to the infection [3].” This increase in score
correlates with an overall mortality risk of approximately 10%.

Some components of the SOFA score cannot be immediately measured, but re-
quire laboratory testing. Therefore, the Quick SOFA (qSOFA) criterion is defined
additionally, to be used as a prompt bedside diagnostic, which can be followed-up
with full SOFA scoring by laboratory testing. qSOFA criteria [3] is identified as:

Respiratory rate ≥ 22/min

Altered mentation

Systolic blood pressure ≤ 100 mm Hg
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One of the biggest challenges of sepsis is the heterogeneity with which it affects
patients. Different patients with sepsis have different aetiology, susceptibility, re-
sponses and require different treatment [11]. This means that patients often exhibit
symptoms at different times and with different levels of severity, and therefore they
are not diagnosed in the earliest stage of sepsis, which is directly linked to an in-
creased mortality risk. Given that sepsis occurs so frequently and with such poor
prognosis, it is vital to identify improved prediction of patient prognosis and person-
alised treatment. At the moment it transpires quite unpredictably and progresses
quickly. An improvement in prevention, prediction and treatment would lead to a
huge improvement in overall hospital mortality rates.

2.2.1 Septic Shock

The most severe cases of sepsis develop into septic shock, with increased mortality
rates of 40%. Septic shock is described in the latest definitions in [3] as “a subset of
sepsis in which particularly profound circulatory, cellular, and metabolic abnormal-
ities are associated with a greater risk of mortality than with sepsis alone.” It can
be clinically diagnosed by:
(i) A vasopressor requirement to maintain a mean arterial pressure (MAP) of ≥ 65
mm Hg, and
(ii) Serum lactate level > 2 mmol/L (>18 mg/dL) in the absence of hypovolemia (a
decrease in blood volume). [3]

This means that a patient in septic shock experiences hypotension (low blood
pressure) and vasopressor therapy is needed in order to maintain this pressure at
sufficient levels (i.e. MAP ≥ 65 mm Hg). Additionally, septic shock patients have
elevated lactate levels in their blood.

This newly-defined clinical diagnosis of septic shock requires a blood sample to
be analysed in order to measure for elevated lactate levels. The definitions’ taskforce
[3] acknowledged that these measurements are not universally available, especially
in developing countries. Furthermore, even where lactate measurements are possi-
ble, diagnosis is not possible in real-time in ICU, due to the time taken to obtain
these measurements. It is known that doctors must act quickly to treat patients
in septic shock, and so there is not enough time to obtain these measurements and
to diagnose the patients according to these definitions. In fact, most patients are
clinically diagnosed later, after treatment for septic shock has started. Furthermore,
although elevated lactate levels are certainly reflective of cellular dysfunction in sep-
sis, leading to septic shock, there are many other factors that similarly contribute
to and result in these increased levels. Increased blood lactate levels reflect a "com-
plex metabolic disturbance", but not necessarily as a direct result of sepsis/septic
shock [12]. Sepsis and septic shock, therefore, are often a challenge for doctors to
diagnose. Their clinical symptoms are also symptoms for other disorders, which
are seen in higher percentages of patients, and so they are misdiagnosed. [13] lists
84 disorders that have similar symptoms and are often diagnosed instead of sepsis.
Due to this challenge and the rapid rate at which septic shock develops to a fatal
outcome, diagnosis can often occur too late to save the patient.

It would clearly be a major breakthrough, and improvement for patients in both
developed and developing countries, if another means of identifying the onset of
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septic shock is identified, which can either be measured in real-time or used for
prediction of septic shock. This thesis hopes to help in this line of research, by
identifying predictors of septic shock patient outcome from peptidome analysis.

2.3 State of the art

Encouragingly, there appears to be much ongoing research into discovering solutions
to the problems already discussed and more. The US National Institute of Health
(NIH) keeps track in its online RePORT [14] of ongoing and published NIH-funded
projects and clinical trials. In this database, 180 active projects are found with titles
including “sepsis” or “septic shock”. These projects include research into pathology,
treatment, body response and recovery from sepsis and septic shock. Others include
research with specific populations, for instance “pediatric sepsis”, “neonatal sepsis”
and “sepsis in the elderly”.

2.3.1 Proteomics

In recent years, with the massive improvements in computational power and genetic
understanding, there has been a big increase in research using omics techniques,
such as proteomics. Proteomics refers to the study of proteomes and also the tech-
niques used to identify the proteome of an organism, like mass spectrometry (MS).
MS enables the analysis of proteomes; first the proteome is separated, then the
proteins are characterized by MS by comparing the masses of the proteins or pep-
tides to calculated masses from genome data [15]. MS-based proteomics has been a
powerful tool, driving invaluable insights into sepsis. A 2014 review [16] into “pro-
teomics studies of sepsis” details some of the most important studies from recent
years. These include the discovery of many biomarker candidates of septic infection,
which could remarkably improve diagnosis and treatment of sepsis and septic shock.
Paiva’s study [17] from 2010, used proteome techniques to analyse serum protein
expressions at each stage of sepsis. From these, 14 differentially expressed proteins
were identified, as well as a potential biomarker. Furthermore, the study concluded
the involvement of genetic information in sepsis.

More recently, in [18], using proteomics, a parasite-protein is found to be able to
combat disorders that cause mitochondrial dysfunction, such as sepsis. Additionally,
[19] uses quantitative targeted proteomics to investigate the processes that manage
the composition of plasma proteome, in doing so, changes of plasma proteome from
mouse animal models with sepsis are determined. In general, the results of pro-
teomics are a list of proteins or further, the ways in which these proteins are seen to
be interacting. This knowledge can lead to better understanding of molecular pro-
cesses during sepsis, leading to development of targeted treatments. It is clearly an
area of sepsis research likely to continue growing and developing, hopefully leading
to important discoveries in the near future.

2.3.2 Peptidomics

One subdiscipline of proteomics is peptidomics. Peptidomics is the comprehensive
qualitative and quantitative analysis of all endogenous (originating within the organ-
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ism) peptides in a biological sample. The term first appeared in a paper in 2001 [20],
and is now included in over 1200 publications. Endogenous peptides have a wide
range of functions; as hormones, neurotransmitters and antimicrobial agents [21].
These important and diverse roles played by peptides mean that they offer great
potential for medicine research. Targeting peptide hormone pathways has been a
successful strategy in the development of novel therapeutics [21].

Peptidome analysis is a challenging technique (more so than proteome analysis),
due to several factors. These include protease digestion during sample preparation,
computational challenges in data analysis, and relying on a single identification be-
cause each peptide is present in the peptidome only once [22]. Despite this, research
utilising peptidomics has proved its worth, spanning the design of immunotherapies
for the treatment of hematologic (blood) cancer [23] and identification and predic-
tion of HLA (Human leukocyte antigen)-associated peptides [24], offering potential
for design of more effective vaccines for infections and cancer.

As a fairly recent area of study, it will undoubtedly contribute to a lot more in
the future, including studies in and related to sepsis and septic shock. As yet, little
research has been done utilising the power of peptidomics in sepsis research. To the
best of our knowledge, just a few studies exist so far. This could be because, until
now, not enough peptidome data of septic patients had been collected to warrant
its use in research. The state of the art in this domain is comprised of a couple of
studies into proteolytic activity during shock. In [25], the peptidome of healthy and
hemorrhagic shock (HS) rats was compared and an increase in peptides after hem-
orrhagic shock was found, confirming proteolytic activity is part of the pathologic
phenomena occurring in hemorrhagic shock. Additionally, in [26], this hypothesis is
tested using patient data for the first time and the results suggest that autodiges-
tion is a fundamental mechanism for organ dysfunction and outcome in septic shock.
Presently, these are the only studies that we are aware of, investigating peptidomics
and sepsis/shock.

2.3.3 Patient prognosis

Patient prognosis is important as it plays a central role in medical decision-making,
guiding patient treatment. Prognosis helps doctors move from general diagnosis
to personalised treatment for a given patient. Unfortunately, regarding sepsis and
septic shock, prognosis is little understood and the molecular mechanisms that lead
from sepsis to septic shock to patient outcome have not yet been determined. The
current best prognostic tools used by doctors are generic clinical severity scores
such as Acute Physiology and Chronic Health Evaluation (APACHE)II. This score
is used for all critically ill patients, to give a general idea of their illness severity,
and includes no specificity for sepsis. Therefore, unsurprisingly, it is a suboptimal
prognostic tool for septic patients and something more specific to the disorder needs
to be identified. Research to this end has been attempted for many years. In
1978, a study [27] analysed the blood plasma of septic patients and identified an
increase in total amino acid content, additionally it was found that patients that
did not survive had “higher levels of aromatic and sulfur-containing amino acids
as compared to those patients surviving sepsis.” The study concluded from these
results, an idea for therapy to positively affect patient outcome. In recent years,
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there has been a number of studies into patient prognosis. In [28], metabolites are
identified that could discriminate between septic shock and control patients, thus
serving as potential biomarkers for septic shock. In [29], the prognostic value of
presepsin was investigated. It was found to be related to patient outcome but its
effectiveness as a biomarker to guide treatment has yet to be demonstrated.

It is hoped that with new omics techniques, we will be able to shine a light on
the molecular mechanisms that are occurring through the different stages of sepsis.
In [30], an omics approach similar to this project was taken, but with metabolomics.
The study identified changes in plasma levels of lipid species and kynurenine showed
links to patient mortality, requiring followup investigation to determine potential
implications for new targeted therapy. Furthermore, a 30-day mortality prognostic
model was designed [31] using transcriptomic data which shows significant improve-
ment on clinical severity scores. The next test is to translate these models into usable
bedside tests that can provide fast and accurate guidance for medical professionals
in the treatment of sepsis.

2.4 Machine learning

The use of machine learning techniques in medical research is a promising combina-
tion. With increased computational strength, we are now in a position to perform
analytics on huge datasets, that previously were not possible. Machine learning by
definition requires vast amounts of data, which lends itself naturally to the (data de-
pendent and data generating) critical care department (CCD), where patients with
sepsis are treated. These large quantities of collected data are being combined with a
broad selection of machine learning methods to solve diverse problems like defining
medicine dosing, creating patient-specific alarm algorithms in real-time, assessing
patient prognosis in sepsis and predicting mortality of patients [32]. In addition to
new data collected specifically for research today, large datasets collected previously
can be accessed and utilised. This is, for instance, seen in the Sepsis definitions
of [3], in which the electronic health records of 1.3 million encounters from 12 hos-
pitals in southwestern Pennsylvania along with 700,000 patients from external US
and non-US datasets were studied in order to conclude a means to clinically char-
acterize a septic patient. Additionally, the Medical Information Mart for Intensive
Care (MIMIC) database is one that has been used by several studies into sepsis,
utilising machine learning. It comprises the records of 40,000 critical care patients,
and includes demographics, vital signs, laboratory tests and more. An “Artificial
Intelligence Sepsis Expert” was developed [33] to assist in the prediction of the on-
set of sepsis, using the MIMIC database information of 65 features per hour of vital
signs and electronic medical record data. Another predictor of sepsis, the InSight
algorithm, is described and evaluated using the MIMIC dataset in [34]. In [35] and
[36], it is evaluated with additional data and in a randomised controlled trial and
found to lead to reductions in patient mortality and length of stay. The identifica-
tion of biomarkers of disease is another important area of research, that could help
in understanding causes, diagnosis, progression and outcome of sepsis and septic
shock. [37] has applied feature selection and 5 machine learning algorithms (logistic
regression, support vector machines (SVM), random forests, adaboost, and naive
Bayes) and found that novel biomarkers that are not currently measured clinically
are the best indicators of early-stage sepsis. In addition to the prediction of sepsis
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and its prognosis; machine learning is being used to guide its treatment. [38] has
deduced treatment policies for septic patients, using a deep reinforcement learning
(RL) model. Instead of using supervised learning of treatments from medical lit-
erature, RL uses patient SOFA score and lactate levels (from the MIMIC dataset)
to define its reward function, and learns clinically interpretable treatment policies.
Furthermore, it is worth noting that the power of machine learning methods should
not be constrained to solving directly-medical problems but can also help to drive
improvements for hospitals and patient care, for example, by predicting patient flow,
hospital bed requirements and staffing issues.
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3 | Methods

This chapter reviews and describes the data used in the experiments reported in the
thesis as well as the methods employed for analysis.

3.1 Data

The dataset used in this study is from the multicenter prospective observational trial
ShockOmics (ClinicalTrials.gov Identifier NCT02141607). It was collected between
October 2014 and March 2016 from adult patients admitted to ICUs with septic
shock that met the inclusion criteria of the study. These include Sequential Organ
Failure Assessment (SOFA) score greater than 5, with death not expected within 24
hours of ICU admission. Full details of these criteria can be found in [39].
The data was collected and processed in the following way:
(This description is taken directly from the complete sample collection account found
in [26])

1. Sample collection Blood samples were drawn at two times:

T1 : <16 hours after T0 (shock diagnosis).

T2 : 48 hours after T0.

Samples were collected in K2-EDTA treated tubes (BD Biosciences), and cen-
trifuged twice at 1200 g for 10 minutes (min) to pellet cellular elements, within
30 min of sample collection. Complete Protease Inhibitor Cocktail (Roche) was
immediately added and samples were stored at −80◦C until in-batch analyses.

2. Peptide extraction 50 µL of raw plasma or pool samples (which include 10
µL of all plasma samples) were filtered in 0.5 mL Amicon 10 KDa (Millipore)
by centrifugation at 14000 g, RT for 45 min. The filter was cleaned with 50
µL of acetic acid (AcOH) 32% and centrifuged at 14000 g, RT for 30 min. The
filtrate was charged drop-by-drop in Oasis HLB PRiME (Waters) µelution
plate and washed twice with acetonitrile (ACN) 2%. Peptides were eluted in
ACN 100% and dried. Samples were resuspended in ACN 40%/formic acid
(FA) 0.1% and charged in strong cationic exchange tip columns (PolyLC) by
centrifugation (500 g, 1 min). Columns were washed twice with ACN 40%/FA
0.1% (500 g, 30 sec) and peptides were eluted in methanol 30%/NH4OH 5%.
Dried samples were stored at −20◦C until LC-MS analysis.

3. LC-MS/MS analysis Peptides were reconstituted in 25 µL FA 1%. 3 µL
of the sample were injected and separated in a C18 reverse phase column (75
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µm Øi, 25 cm, nano Acquity, 1.7µm BEH column, Waters) in a gradient of
1 to 30% ACN in FA 0.1% for 160 min and 250 nL/min flow rate. Eluted
peptides were ionized in an emitter needle (PicoTip™, New Objective) at 2000
V. Peptide masses were measured in the Orbitrap (Thermo) at a resolution of
60,000 at m/z=400. The acquisition mass range was m/z: 300-1700. Up to 10
most abundant signals were selected to be fragmented in the linear ion trap at
38% CID normalized collision energy and helium as collision gas. Raw data
were acquired with Xcalibur (v_2.2, Thermo).

4. Peptide quantification: label-free approach Raw data was processed
with Progenesis QI for Proteomics software (Non-Linear Dynamics, Waters).
Pool samples were used as alignment reference. A total of 219,825 MS spec-
tra (z>1 and Rank<5) were considered for database search. Mascot search
engine (v_2.3.01, Matrix Science) was used to perform protein identification
against SwissProt Human (SPH) database (v_160127) under the following
parameters: Enzyme: none; Variable modifications: Acetyl (Protein N-term),
Gln-> pyro-Glu (N-term Q), Oxidation (M); Mass error tolerance: 10 ppm
(parent ion) and 0.6 Da (fragment ion). Search results were filtered by Pep-
tide ion score≥40 and contaminants were removed. Label-free quantification
was done using non-conflicting unique peptides. Abundances were calculated
as the area under the MS peak for every matched ion. The MS signal intensity
is proportional to the concentration of a particular molecule; the increment in
the intensity of a peptide signal is related to the increment in the amount of
this peptide in the sample.

The main analysis of this study is of the peptidome of the patients in relation
to their outcome; the peptidome samples (and other clinical data) were collected at
times T1 and T2 described in sample collection 1.

The peptidome dataset comprises 29 patients in total, and abundances of 939
peptides at times T1 and T2. For this cohort of patients the mortality rate was
21%.

Figure 3.1: Outcome of patients (NS=NonSurvivor, S=Survivor)

It is interesting to take a closer look at the demographics of the patients, shown
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in Table 3.1. We are able to identify immediate potential causes of outcome bias,
for consideration. Whilst the mean age of all patients was 64.4 years, the mean age
of NS patients was about 13 years older (77.3 years), and there certainly exists a
correlation between age and risk of death.

All S NS

Male 20 16 4
Female 9 7 2

Age 64.4(±21.5) 61(±22.2) 77.3(±12.8)
BMI 26.9(±5.6) 27.3(±6.2) 25.5(±0.9)

SOFA T1 11.9(±2.7) 11.6(±2.8) 13.2(±1.9)
SOFA T2 8.2(±3.0) 7.7(±2.6) 10.5(±3.5)

APACHE II T1 24.2(±6.9) 23.4(±7.1) 27.2(±5.8)
APACHE II T2 16.0(±6.7) 15.0(±6.6) 19.8(±6.4)

Table 3.1: Patient demographics & SOFA, APACHE II scores
Format: Mean(± s.d.)

The SOFA (Sequential Organ Failure Assessment) score for each patient is a
simple evaluation to describe organ dysfunction and allows patient conditions to
be characterized [3] and monitored [40]. It is a summation of scores (levels of dys-
function), from 0-4, of the 6 primary organ systems: Respiration, coagulation, liver,
cardiovascular, central nervous system, renal. In this way, the higher the score, the
higher the level of dysfunction and the higher rate of mortality. Furthermore, it has
been shown that high SOFA scores for an individual organ system are associated
with increased mortality [40]. We do not have individual organ system scores avail-
able to us in this study, so we cannot comment on whether this is shown for our
cohort. As described in [39], patients were accepted into this study with a SOFA
score > 5, combined with other factors. We see in our cohort that the mean SOFA
score for NS patients at T1 was 14% higher than for S patients. And further, at
T2, the mean SOFA score for NS patients was 36% higher than for S patients. This
is to be expected as a higher SOFA score is linked to a higher mortality rate. As
T2 is later in the timeline of the patient’s condition it seems intuitive that it may
correspond more greatly to the outcome of the patient. Finally, for S patients, we
see a reduction of 33% in mean SOFA score from T1 to T2, showing an improvement
in severity of their condition. For NS patients, there is a lesser reduction of 20% in
mean SOFA score.

The APACHE II (Acute Physiology And Chronic Health Evaluation) score in-
cluded in 3.1 is a further indicator of severity of patient condition. Similarly, its
score follows a summation of values of 12 routine physiological measurements, and
includes age and previous health status [41]. A higher score correlates with increased
risk of death. Predictably, we see a higher mean APACHE II score for NS patients
than for S patients.

This demographic and clinical information 3.1 is included for completeness and
domain knowledge. In order to analyse and find any patterns or structure in the
peptidome and any relevance to risk of death, we will remove this data from the
analysis but can consider it when examining results and identifying conclusions.
This is because we know there is a dependent relationship between age, SOFA and
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APACHE II scores and mortality, so these are removed from our analysis to ensure
that we are able to learn from the peptidome data.

3.1.1 Data preprocessing

The raw data used in this study is made up of a total of 3,540 mass spectrometry
(MS) measures (rows) of peptides for 9 healthy patients, 6 sepsis patients and 29
septic shock patients at T1 and T2. This makes a total of 73 (T1 and T2) patient
peptide abundance measurements. Additionally, the raw data includes redundant
information for each peptide measure, including Neutral mass. Before we begin our
analysis we apply the following:

Initial data preprocessing steps

1. Sum the measures of equivalent peptides (many of the rows are of the same
peptides). This reduces the dataset size to include 939 measures of unique
peptides.

2. Remove columns of redundant information. These include: Retention time
(min), Neutral mass, Score, Accession, Description, Median H, Median SS,
Ratio SS/H.

3. For this thesis project, we will be looking at patient outcome in septic shock
patients and so we choose to only include the septic shock patient MS measures
and remove the healthy and sepsis patients for this analysis. We are left with
29 T1 and 29 T2 patient peptidome measurements.

4. Transpose the data so that each sample (patient) is a row of our data and the
features (peptides) are the columns.

5. We add patient outcome information (i.e Hospital Result = Dead/Alive) to
include in our analysis, taken from separate patient demographic data.

Figure 3.2: Pictorial representation of septic shock patient peptidome data after
initial data preprocessing steps

Machine learning techniques will be used to analyse the dataset. From a ma-
chine learning perspective the number of features of the data hugely outnumbers the
number of samples (1878 vs 29). Furthermore, the dataset is typically imbalanced,
with 23 survivors and 6 non-survivors.

The peptidome data is split for analysis into:
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1. T1 peptide abundances (939 peptide abundances) These peptides are labelled
0-938 in the following testing.

2. T2 peptide abundances (939 peptide abundances) These peptides are labelled
939-1877 in the following testing.

3. T1,T2 (T1_T2) peptide abundances (1878 peptide abundances) These are la-
belled 0-1877, corresponding to the T1,T2 labelling.

NOTE: Peptide X observed in T1 is the same as peptide X+939 observed
at T2. The difference is whether it was found in T1 and T2. This is so that
peptide abundances can be analysed independently in T1 and T2 and also
considered together i.e. in T1_T2 data analysis, the same peptide observed
at T1 and T2 is represented as two different features in the dataset.

(i) SMOTE

In general, learning models perform better with balanced classes to learn from. To
combat the large class imbalance (Survivors:Non-survivors ≈ 4:1), the data has been
over-sampled using Synthetic Minority Over-sampling Technique (SMOTE) [42].
The SciKit Learn implementation of imblearn.over_sampling.SMOTE was applied
to the original datasets for T1, T2 and T1_T2, creating datasets with balanced
classes; 1:1.

The SMOTE algorithm generates new samples by looping through:

1. Consider an existing minority sample xi and identify its k nearest minority
class neighbours.

2. Choose one of its k neighbours at random, xj.

3. Synthesise a new sample on the line between the minority sample, xi, and the
chosen neighbour, xj, as follows:

x_new = xi + λ(xj − xi) (3.1)

where λ is a random number in the range [0, 1].

SMOTE-upsampled data was used for selecting features important for discriminating
between classes. By oversampling in this way, models can sometimes better learn the
patterns that separate classes. The SMOTE-upsampled data was not used by the
classification algorithms, so the classifiers are being evaluated on original samples
only.

(ii) Data transformations

The peptidome data is positively-skewed, with generally, a high frequency of low-
values, this can be seen easily in Fig.3.3.

Of the 1,878 peptide abundance measures in T1 and T2, only 12 are normally dis-
tributed. These are identified using SciPy.stats.normaltest for each peptide, which
tests whether a sample differs from the normal distribution, based on the skew and
kurtosis.

15



Figure 3.3: Sample distributions of 3 T1 peptides chosen at random;
(l-r) peptides 831, 238, 241

A number of different data transformations were tested to find the most appro-
priate for the data. The data was log2, Box-Cox transformed and also discretised
into 10 bins. The log2 and Box-Cox transformations help by modelling proportional
differences in abundance rather than additive, which is likely more relevant with this
dataset. Of the 1,878 peptide abundances in T1 and T2, 12 of these are normally
distributed. After log2 and Box-Cox transformations, 1,200 and 1,193 are normally
distributed, respectively. Similarly, discretising the data into 10 bins results in 1,254
normally distributed peptides. This transformation reduces the impact of noise and
outliers in the data. All data transformations were used in the following testing,
in order to identify if a certain transformation best suited the data. Ultimately, all
transformations achieved very similar results and log2 transformation was chosen as
the most interpretable and easily understood in this domain.

3.2 Data Analysis

Initial statistics were calculated to better understand the data. The largest dif-
ferences in T1 mean peptide abundance between S and NS patients were found in
peptides shown in Fig.3.4, with their distributions. In every case we observe that
the mean abundance is higher for NS than for S patients. Similarly, we see the same
for T2; in the peptides with the 5 largest differences in mean abundance between S
and NS patients, we observe that they occur in higher abundance in NS patients.
This is observed in Fig.3.5.

Figure 3.4: Boxplots showing distribution of T1 (log2 transformed) peptides with
biggest differences in mean abundance between survivors and non-survivors
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Figure 3.5: Boxplots showing distribution of T2 (log2 transformed) peptides with
biggest differences in mean abundance between survivors and non-survivors
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4 | Experiments

This chapter describes in detail the specific experiments that were undertaken as part
of this thesis project, using the data described in Chapter 3. First, the experimental
settings for feature selection, using feature importance of two ensemble algorithms,
are included. The experimental settings for classification experiments follow, using
the features selected by the ensemble algorithms. Three classification algorithms are
described, including their parameters to be tuned. This is followed by a discussion
of the metrics used to measure classifier success. The second half of the chapter
comprises the results of these experiments and includes an in-depth discussion of
them.

4.1 Experimental settings

4.1.1 Feature Importance

Two ensemble algorithms were used to identify feature importance in the data. En-
semble methods are made up of a number of predictors which are combined (finding
the average or most popular) to give the final prediction. This average of many pre-
dictions is a better predictor than using just a single model. Ensemble methods can
be described as bagging or boosting. In bagging, we construct independent models
built using random subsamples of the data for each of the models. Each sample
in the data has an equal chance of being used in each model. In boosting, each
model is built independently, but sequentially, and the next model “learns” from the
models before it. The samples that have the greatest errors are used most in order
for the model to minimise its errors. Random Forest [43], an example of bagging,
and XGBoost [44], an example of boosting were used to identify the most important
(useful) peptides (features) in the classification of survivors/non-survivors.

Random Forest: The RF algorithm is an ensemble method made up of a num-
ber of decision trees. In our implementation, the number of trees was chosen
to be 100 in order to achieve greater confidence and stability in the results
without insurmountable execution times. For each tree, a random subset of
samples is chosen, the sub-sample size is always the same as the original input
i.e. 29 samples for original data and 46 for SMOTE data, but the samples
are drawn with replacement. At each node, of each tree, a random subset of
the features (in our implementation of size

√
n_features, where n_features

= 939 for T1/T2 or 1,878 for T1_T2) is used to decide the best split. Each
tree is grown to the largest extent possible (max_depth = None). Finally, for
each observation, each tree ends with a probabilistic prediction of whether the
patient will be a survivor or non-survivor. These values are averaged to choose
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the predicted class. The relative importance of a feature with respect to pre-
diction of the target variable is identified by its reduction in “Gini” impurity
in the tree, and this is used to rank the features’ predictive power. The SciK-
itLearn ensemble module was used for random forest implementation with the
parameters fixed as:

n_estimators (trees) = 100
criterion = ’gini’
max_depth = None
min_samples_leaf = 1
max_features =

√
n_features

random_state = 0-99

The features are randomly permuted at every node and therefore the best
splits may vary. To ensure confidence and stability in our chosen features,
the algorithm is run 100 times and the most important features over these 100
iterations are identified. To obtain deterministic behaviour, the random_state
was set from 0 to 99 for each of the iterations. This ensures that the results
can be reproduced.

RF analysis was carried out on the original datasets (for T1, T2, T1_T2), and
also on the SMOTE up-sampled sets.

XGBoost: XGBoost (eXtreme Gradient Boosting) is an implementation of gra-
dient boosted decision trees. It is currently acknowledged to be the favourite
algorithm choice for Kaggle competition winners [45]. The boosting algorithm
(like AdaBoost) is an ensemble technique where new models are sequentially
added to predict and improve on existing errors, until no more improvements
can be made. In XGBoost, a gradient descent algorithm is used to minimize
the errors each time a new model is added; hence the name. The resulting en-
semble of models is used for making the final prediction. The XGBoost library
[46] was used to implement the gradient boosting decision tree algorithm. It
includes many parameters which were fixed as the following:

num_round = 5 (This is the number of rounds (trees). It was found that 5 was
enough to ensure no further improvement in score).
eval_metric = ‘AUC’ (Area Under [the ROC] Curve; this was chosen to
evaluate the performance of the algorithm, as a good metric to use with im-
balanced classes).
max_depth = 3 (Max depth of trees. This controls overfitting, as higher depth
allows model to learn samples very specifically).
eta = 1 (This is the learning rate).
max_delta_step = 1 (This controls the update of the weights and helps keep
them conservative).
scale_pos_weight= 3.8 (This controls the imbalance of the classes. #S/#NS
= 23/6 = 3.8)

The following parameters set to 1 remove the randomness from the algorithm,
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and as our sample size is small, ensure all samples are used:
subsample: 1 (All samples are used in each tree).
colsample_bytree = 1: (All features are used in each tree).

Finally, the feature importances are measured by:
importance_type = ‘weight’
This means that features are ranked by the number of times they are used to
split the data across all trees.

4.1.2 Classification

The following is implemented for all classification algorithms:

1) 5-fold Cross Validation (5-CV): The data is split into 5 stratified folds using SciKit
Learn’s model_selection.StratifiedKFold implementation. 5-folds is chosen as
there are 6 NS samples and therefore not enough NS samples to have one in each
of 10-folds. The random seed is set for these stratified folds (seed = 1, 2, 100). This
ensures that the same splits of data are tested with each classification algorithm
and the results for each can be directly compared. We ensure that we can compare
“like-for-like” with each machine learning algorithm, they are trained and tested on
exactly the same data.
2) Leave-One-Out Cross Validaton (LOOCV): Additionally, the data is split using
SciKit Learn’s model_selection.LeaveOneOut() implementation. This implemen-
tation is useful with small sample size as the algorithm maximises the size of the
training dataset, with which it learns with. Each training set is size n-1 (n=29 sam-
ples), and each of the samples is tested once, with all other samples used to train
the algorithm.

Logistic Regression

The first model used for classification was a traditional logistic regression
model.
Algorithm: The SciKit Learn LogisticRegression class was implemented.
The model takes the sample inputs and predicts the probability that the sam-
ple belongs to the default class, using the logistic function. If the probability
is greater than 0.5 then the default class is chosen, otherwise the other class is
chosen. The learning algorithm learns the best coefficients for the model using
the training data, by a coordinate descent (CD) algorithm.
Advantage: Logistic regression functions well in the context of an unbalanced
outcome.
Parameters: C (Regularization penalty) was tuned to achieve optimal results
from C = {0.1, 1, 10, 100}. Smaller C values specify stronger regularization.
See Appendix for parameters used for each model.

Support Vector Machine (SVM)
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Algorithm: The SciKit Learn svm.SVC class was implemented. The model
uses a kernel function to transform the data and then a hyperplane is se-
lected to best separate the points into their two classes. The coefficients of
the hyperplane are found using an optimisation procedure (sequential minimal
optimization).
Advantage: SVM are effective with high-dimensional data, including when the
number of features is larger than number of samples.
Parameters: kernel defines the kernel type. kernel = {‘linear’, ‘rbf’} were
tested to achieve optimal results. The ‘linear’ kernel is defined by the dot
product between new samples and the support vectors 〈x, x′〉. The ‘rbf’
kernel transforms the input space to a higher dimension. It is found by
exp(−γ‖x− x′‖2).
gamma is the ‘rbf’ kernel coefficient. It defines the influence of a single training
sample. Larger gamma means the model tries to fit the training data more,
which can lead to overfitting. gamma was tuned to achieve optimal results from
gamma = {0.0001, 0.0005, 0.001, 0.005, 0.01}.
C controls the trade off between misclassifying training examples and smooth-
ness (simplicity) of decision boundary. Higher C aims to classify training ex-
amples correctly, with more complex (less smooth) decision boundary. C was
tuned to achieve optimal results from C = {1, 10, 100}.
See Appendix for optimal parameters used for each model.

Multilayer Perceptron (MLP)

Algorithm: The SciKit Learn neural_network.MLPClassifier class was im-
plemented. MLP differs from logistic regression because between the input
and output layers there can be one or more non-linear hidden layers. The
MLP learns to represent the training data and how to best relate it to the
output. It is made up of an input layer which passes the input to the hidden
layer of (50 or 100) neurons. The summed weighted inputs to each neuron
are passed through the (activation) rectified linear unit function (ReLu). In
turn this passes to the output layer, made up of 1 neuron which uses a logistic
activation function to output a value to represent the probability of predicting
the default class. Starting from initial random weights, the MLP minimizes
the cross-entropy loss function by repeatedly updating these weights. Our
model was trained using Adam gradient descent optimizer. After calculating
the loss, a backward pass propagates it from the output layer to the previous
layers, updating each weight to decrease the loss. The algorithm stops when
it reaches 1000 iterations; or when the improvement in loss is below 0.0001.
Advantage: Capability to learn non-linear models.
Disadvantage: Complex model which requires tuning of a number of hyperpa-
rameters.
Parameters: hidden_layer_sizes denotes the number of hidden layers and
number of neurons in each hidden layer. Increasing the number of layers
and number of neurons increases the complexity of the model and the exe-
cution time. In our model we tested only with 1 hidden layer, testing with
hidden_layer_sizes = {(50,), (100,)} to achieve optimal results.

21



alpha is the L2 regularization term which helps avoid overfitting by penalizing
weights with large magnitudes. alpha was tuned to achieve optimal results
from alpha = {0.1, 1, 10}.
See Appendix for optimal parameters used for each model.

Metrics for measuring classifier performance

For each model, several metrics were evaluated to provide a more holistic mea-
sure of overall performance. Due to the high proportion of S samples in the dataset
(≈ 4:1), the accuracy of the model, alone, does not provide a clear indication of the
model performance. The following statistics were calculated:

1. ROC AUC
Area Under the Receiver Operating Characteristic Curve: The ROC curve is a
useful technique to visualize the compromise between sensitivity and specificity
for a classifier and the AUC summarizes ROC into a single value. This metric
is useful because ROC curves are insensitive to class imbalance. The ROC
AUC varies between 0 and 1, with an uninformed classifier returning 0.5.

2. Recall
Also the True Positive Rate (TPR) or sensitivity. This metric is particularly
useful as correctly identifying the NS class is of high importance. It is calcu-
lated by the following:

recall = tp/(tp+ fn) (4.1)

where tp is the number of true positives and fn the number of false negatives.
Intuitively this is the ability of the classifier to identify all NS samples. A
limitation of this metric is seen if no actual positives exist, and the metric is
undefined. However, due to stratified sampling of the folds for testing, this
will not be an issue.

3. Precision
Precision is a measure of exactness of the classifer. It is evaluated as the
number of correct positive predictions, out of all positive predictions, using
the following formula:

precision = tp/(tp+ fp) (4.2)

where tp is the number of true positives and fp the number of false positives.
A limitation of this metric is seen if no positive predictions are made, then the
equation is undefined and returns as 0 in our implementation.

4. F1

The F1 score is defined as the harmonic mean of precision and recall, it is a
measure of the balance between the two metrics.

f1 = 2 ∗ (precision ∗ recall)/(precision+ recall) (4.3)

Similarly, this metric is undefined if no positive predictions are made, and our
implementation returns a score of 0.
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5. Specificity

Specificity is included to be able to see how well the classifier identifies Sur-
vivors. It is found by:

Specificity = tn/(tn+ fp) (4.4)

where tn is the number of true negatives and fp is the number of false positives.
The natural imbalance of the dataset indicates that more people are survivors
than not, and this is the case in real-world scenarios. Therefore given the
number of S patients, a small percentage of false alarms (false positives) would
lead to a lower accuracy overall and this could discredit the classifier.

6. Accuracy
Accuracy is included for completeness, however the metric on its own does not
describe well the quality of the classifier.

Accuracy = (tp+ tn)/(tp+ fp+ tn+ fn) (4.5)

i.e. the number of samples correctly classified, divided by the total number of
samples.
TheKappa statistic will be calculated to help interpret more clearly the accu-
racy scores of the models. The Kappa statistic describes how well a classifier
model performs above the baseline model (of choosing the majority class only).
It is found using:

kappa = (model accuracy−baseline accuracy)/(1−baseline accuracy) (4.6)

Most metrics described were implemented using the SciKit Learn metric class,
except Specificity and kappa, which were calculated directly using their formulae
given in above.

4.2 Experimental Results

4.2.1 Feature Importance

The important features were identified by 4 different models.

1. Random forest algorithm using original data

2. Random forest algorithm using SMOTE-upsampled data

3. XGBoost algorithm using original data

4. XGBoost algorithm using SMOTE-upsampled data

The random forest algorithm identifies all features that it believes to be useful in
discriminating between classes, by its reduction in “Gini” impurity in the tree. The
top 50 features (peptides) were chosen from those with a feature_importances_
score ≥ 0. The mean number of features identified with feature importance greater
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than 0, for T1 original (not-SMOTE) data was 192, for T2 it was 195, and for T1_T2
it was 202 features. The XGBoost algorithm, however, identifies relatively few
important features. Using the same data the algorithm found 8 features important
from T1, T2 and T1_T2. This could be because we have many correlated features
within our data. When the XGBoost algorithm chooses a feature, it might use this
feature in many trees (learnt sequentially) and any correlated features will not be
used, as they do not add any additional information. Instead, the RF algorithm
chooses features randomly for each tree, done in parallel, and may choose different,
correlated features for each new tree.

T1

361 : IAALLSPYSYSTTAVVTNPKE was found to be the most important
peptide by all 4 models. This peptide was found to have one of the top five biggest
differences in mean abundance between NS and S samples, in our earlier data anal-
ysis.

Additionally, 2 more peptides were found to be important by all 4 models:
427 : KTETQEKNPLPSKETIEQEKQAGES
1 : AAEVISNARENIQ

The XGBoost algorithm agreed on 5 features (out of 8 and 7) based on original
and SMOTE data:
361 : IAALLSPYSYSTTAVVTNPKE
1 : AAEVISNARENIQ
10 : AEDSLADQAANKWGRSGRDPNH
427 : KTETQEKNPLPSKETIEQEKQAGES
750 : SSKITHRIHWESASLLR

The RF algorithm agreed on 28 features (out of 50 for each) based on the original
and smote data. See appendix A for full list of 50 peptides identified.

T2

1204 : FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF was found to be
the most important peptide by 3 out of 4 models, and 2nd most important by the
4th model. This peptide was found to have one of the top five biggest differences in
mean abundance between NS and S samples, in our earlier data analysis.

Additionally, 1 more peptide was found to be important by all 4 models:
1111 : EESNYELEGKIK

The XGBoost algorithm agreed on 3 features (out of 8 and 7) based on original
and SMOTE data:
1204 : FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
1111 : EESNYELEGKIK
939 : AAEAISDARENIQ
None of the important XGBoost T2 peptides were the same as the XGBoost T1
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peptides.

The RF algorithm agreed on 21 features (out of 50 for each) based on the original
and smote data. See appendix A for full list of 50 peptides identified.

11 T2 peptides identified as important by the random forest algorithm were also
identified as important in T1. These include EESNYELEGKIK (found important
by all models in T2; key:1111) and KTETQEKNPLPSKETIEQEKQAGES (found
important by all models in T1; key:427).

T1_T2

This data includes all abundance measures of peptides at both times, T1 and T2.
This is therefore the most comprehensive (and complex in terms of dimensionality)
dataset.

1204 : FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF (the most
important peptide from T2) was also deemed to be the most important from data
including T1 and T2, for 3 out of the 4 models, and 2nd most important for the 4th
model.

Additionally, 1 more peptide (from T2) was found to be important in all 4 mod-
els:
1111 : EESNYELEGKIK

The XGBoost algorithm agreed on 4 features (out of 8 and 9) based on original
and SMOTE data:
1204 : FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
45 : ALTLTKAPADLRGVAHNNLMA (was not chosen as important by XGBoost
using just T1 data)
1111 : EESNYELEGKIK
361 : IAALLSPYSYSTTAVVTNPKE
Of the 13 unique features identified by both XGBoost algorithm models, from the
T1 and T2 data, only 4 were identified as important in separate T1 and T2 data.
These are the peptides with keys: 1204, 1111, 1802, 361. Of the 9 “new” peptides
identified, 8 were T1 peptides.

The RF algorithm agreed on 24 features (out of 50 for each) based on the original
and smote data. Of the 76 unique peptides identified by both random forest models,
from the T1 and T2 data, only 1 was not identified in separate T1 and T2 data. See
appendix A for full list of 50 peptides identified.

4.2.2 Classification using Important Features

Baseline classification model

The chosen metrics are evaluated for the baseline model and shown in 4.1. The
baseline classification model is defined by classifying all samples as the majority
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class (0/Survivor). Due to the high class imbalance in this dataset, a high accuracy
score of 0.7931 is obtained using this baseline model. The kappa statistic is a measure
of improvement of the model on this baseline and therefore is 0. The recall, precision
and F1 scores evaluate the ability of the model to identify the Non-survivor (NS)
class and exactness of the NS class predictions. The baseline model does not identify
the NS class by definition, and therefore baseline recall, precision and F1 scores are
0. The ROC AUC metric returns a score of 50%, which indicates that this model is
an uninformed classifier. The specificity is a measure of how well the model classifies
the survivor class, so by definition of the baseline model, this score is 1.

ROC AUC Recall Precision F1 Specificity Accuracy Kappa
0.5 0 0 0 1 0.7931 0

Table 4.1: Baseline metrics results

T1 Discussion

The results based on peptides taken at T1, i.e. 16 hours after shock first diag-
nosed, illustrate various degrees of success for classification of patient outcome. The
best classification results for T1, considering all metrics, are achieved using a SVM
classifier on the top features found with SMOTE-upsampled data by the XGBoost
algorithm. These results can be seen in Table 4.2, highlighted in bold. A recall rate
of 0.7222 is achieved, indicating that 72% of all the NS are correctly classified. A
specificity score of 0.9565 indicates that less than 5% of S samples are misclassified
i.e. S classified as NS. Furthermore, the overall accuracy of this model is 90.8%
(approximately 10% higher than baseline), which equates to a kappa value of 0.56.
In general, the models were able to more easily successfully classify S samples than
NS samples. This is intuitive as there is a large bias in the size of classes, with 79%
S samples, and therefore the model has more data to better learn the S class. Each
of the 12 permutations of models tested achieved a specificity (ability to predict S)
rate ≥ 92%. However, the recall rate (ability to predict NS) was as low as 11%, and
the average recall rate was 40%. This demonstrates the difficulty for the models to
learn to classify NS patients, from a very small number of samples (n=6).

T2 Discussion

The classification models using the most important features found in T2 data were
largely successful. The best result was found using the best features obtained by the
XGBoost algorithm with SMOTE-upsampled data, and SVM classifier (as in T1).
This result, shown in bold in Table 4.6, achieved 100% for all metrics. We observe,
generally, that the XGB features achieved better results overall than the RF chosen
features. This could be because of the number of features chosen. Using the RF
algorithm, the best 50 features were included. However, 50 features may still be too
many features for the optimisation of our classification algorithms.

It is worth observing in Table 4.4 that 4 models achieved 100% recall score of
NS samples. Three of these 4 models were the three classifiers using the XGBoost
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ROC AUC Recall Prec F1 Spec Acc
Baseline .5 0 0 0 1 .7931

rf50
LogReg 0.6667 0.3333 1 0.5 1 0.8621
SVM 0.7283 0.5 0.75 0.6 0.9565 0.8621
MLP 0.6667 0.3333 1 0.5 1 0.8621

rf50 (smote)
LogReg 0.715 0.4444 0.8889 0.5926 0.9855 0.8736
SVM 0.6111 0.2222 1 0.3571 1 0.8391
MLP 0.7222 0.4444 1 0.6111 1 0.8851

xgb
LogReg 0.6993 0.5 0.5667 0.5303 0.8986 0.8161
SVM 0.686 0.4444 0.7 0.5152 0.9275 0.8276
MLP 0.5556 0.1111 0.6667 0.1905 1 0.8161

xgb (smote)
LogReg 0.7415 0.5556 0.6667 0.6061 0.9275 0.8506
SVM 0.8394 0.7222 0.8111 0.7626 0.9565 0.908
MLP 0.5761 0.1667 0.8333 0.2738 0.9855 0.8161

Table 4.2: T1 mean 5-fold CV classification results, using features selected by RF
algorithm (best 50 features: rf50) and XGBoost algorithm (xgb)

(non-SMOTE) chosen features. Therefore, using these features (peptides), it ap-
pears that a classifier is able to identify all NS samples and so these peptides could
be important in further exploration as indicators of NS patient outcome. In addi-
tion, these models would be good choices if it is most important to identify patients
with high risk of death, although this may be done with a bias towards the NS class
meaning others may be wrongly classified (false-positives).

Features used to classify patient outcome with 100% accuracy

Our SVM classifier is able to classify patient outcome with 100% accuracy using the
T2 features (peptides) obtained using XGBoost algorithm on SMOTE-upsampled
data. Analysing the SVM coefficients, we can identify which features (peptides)
are used to classify the data as Non-survivors and Survivors and also their relative
importance, shown in Fig.4.1. We see from this plot that the following peptides
are used by the classifier to achieve 100% correct classification, listed in order of
importance:

1. 1204 : FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF (=> NS)

2. 1289 : HPNSPLDEENLTQEN (=> NS)

3. 976 : ALEEQLQQIRAE (=> S)

4. 1111 : EESNYELEGKIK (=> NS)

5. 1226 : GAGGEDSAGLQGQTLTGGPIRIDWED (=> NS)

6. 1066 : DLSTPDAVMGNPKVKA (=> S)

7. 939 : AAEAISDARENIQ (=> NS)
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ROC AUC Recall Prec F1 Spec Acc
Baseline .5 0 0 0 1 .7931

rf50
LogReg 0.6667 0.3333 1 0.5 1 0.8621
SVM 0.75 0.5 1 0.6667 1 0.8966
MLP 0.6667 0.3333 1 0.5 1 0.8621

rf50 (smote)
LogReg 0.75 0.5 1 0.6667 1 0.8966
SVM 0.5833 0.1667 1 0.2857 1 0.8276
MLP 0.75 0.5 1 0.6667 1 0.8966

xgb
LogReg 0.6848 0.5 0.5 0.5 0.8696 0.7931
SVM 0.6014 0.3333 0.4 0.3636 0.8696 0.7586
MLP 0.5616 0.1667 0.5 0.25 0.9565 0.7931

xgb (smote)
LogReg 0.7065 0.5 0.6 0.5455 0.913 0.8276
SVM 0.8116 0.6667 0.8 0.7273 0.9565 0.8966
MLP 0.5833 0.1667 1 0.2857 1 0.8276

Table 4.3: T1 LOOCV classification results, using features selected by RF algorithm
(best 50 features: rf50) and XGBoost algorithm (xgb)

Figure 4.1: T2 SVM coefficients

Taking a look at the boxplot distributions for NS and S patients for each of
these peptides, in 4.2 we see that for each, they are remarkably different, which is
presumably why they are important for classifying patient outcome. We show the
peptides used to help classify NS samples in the top row of the figure, in order of
importance. We notice the top 4 peptides are in noticeably higher abundance for NS
patients. On the contrary, shown together in the bottom row, we see the 2 peptides
that help to classify S samples have higher abundance for S patients.

Furthermore, in Fig.4.3 we observe that if we plot the abundances of the top
3 of these “important” peptides for classifying samples, i.e. 1204, 1289 & 976, we
see that the six NS patient samples are plotted in the same region, i.e. they are
potentially separable from the S samples. We also observe this result when we plot
the same for the top 3 peptides used to classify NS samples, i.e. 1204, 1289, 1111.
These results are intriguing, and contribute to the conclusion that these peptides
alone could be used to predict patient outcome.
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ROC AUC Recall Prec F1 Spec Acc
Baseline .5 0 0 0 1 .7931

rf50
LogReg 0.8611 0.7222 1 0.8364 1 0.9425
SVM 0.8611 0.7222 1 0.8364 1 0.9425
MLP 0.8611 0.7222 1 0.8364 1 0.9425

rf50 (smote)
LogReg 0.8539 0.7222 0.9333 0.8121 0.9855 0.931
SVM 0.8333 0.6667 1 0.7919 1 0.931
MLP 0.7705 0.5556 0.9333 0.6869 0.9855 0.8966

xgb
LogReg 0.971 1 0.8214 0.9011 0.942 0.954
SVM 0.9928 1 0.9524 0.9744 0.9855 0.9885
MLP 0.9928 1 0.9524 0.9744 0.9855 0.9885

xgb (smote)
LogReg 0.8188 0.6667 0.8667 0.7515 0.971 0.908
SVM 1 1 1 1 1 1
MLP 0.8333 0.6667 1 0.8 1 0.931

Table 4.4: T2 mean 5-fold CV classification results, using features selected by RF
algorithm (best 50 features: rf50) and XGBoost algorithm (xgb)

Finally, in Fig.4.4 we include a heatmap plot of the abundances of the peptides
used to classify patient outcome with 100% accuracy, for all patients. For ease
of visual understanding, the S patients are the top 23 rows of the heatmap and
the NS patients are the bottom 6. It is useful to compare the variations in abun-
dances for each peptide. We notice that there are some clear examples where the
abundances for the last 6 rows are quite different from the others. In general, this
is mostly true for peptides 1204, 1289 (the top 2 most important peptides) and 1226.

Features used to classify patient outcome with 99% accuracy

We also take a closer look at our model that achieved 99% accuracy, which is still
an exceptional result. The model used the peptides selected by XGBoost algorithm
(using not-SMOTE-upsampled data) and a SVM classifier. There were 8 peptides
selected by XGBoost, of which, 3 are the same as our other ‘best’ model. We bet-
ter analyse the use of these peptides in our classification model by obtaining and
plotting the SVM coefficients, shown in 4.5. We find the same result in this model:
peptide 1204 is the most important for classification. Peptide 1111 is the next most
important, this is also used in our 100% model. We plot 4.6 the abundances of the
top 3 peptides from this model: 1204, 1111, 960 and observe again that our samples
are visually separable. Furthermore, we plot just the top two peptides: 1204 vs
111; and we observe the NS and S samples are clearly grouped and again visually
separable. This is an interesting result that indicates that these two peptides alone
could provide a lot of information regarding septic shock prognosis.

T1_T2 Discussion

We observe in Tables 4.7 and 4.8 that our classification results using peptides from
T1 and T2, are better than for T1 peptides but less successful than classifiers using
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ROC AUC Recall Prec F1 Spec Acc
Baseline .5 0 0 0 1 .7931

rf50
LogReg 0.9167 0.8333 1 0.909 1 0.9655
SVM 0.8333 0.6667 1 0.8 1 0.931
MLP 0.75 0.5 1 0.6667 1 0.8966

rf50 (smote)
LogReg 0.8333 0.6667 1 0.8 1 0.931
SVM 0.9167 0.8333 1 0.9091 1 0.9655
MLP 0.75 0.5 1 0.6667 1 0.8966

xgb
LogReg 0.9783 1 0.8571 0.9231 0.9565 0.9655
SVM 1 1 1 1 1 1
MLP 1 1 1 1 1 1

xgb (smote)
LogReg 0.8116 0.6667 0.8 0.7273 0.9565 0.8966
SVM 1 1 1 1 1 1
MLP 0.8333 0.6667 1 0.8 1 0.931

Table 4.5: T2 LOOCV classification results, using features selected by RF algorithm
(best 50 features: rf50) and XGBoost algorithm (xgb)

T2 peptides only. Like our T2 classifiers, the results improve when using the XG-
Boost chosen features over the RF 50 top features. The result with highest mean
accuracy for 5-fold CV was achieved using the XGBoost chosen features (original,
not up-sampled data), with a logistic regression classifier. The classifier averaged
94% successful classification of NS samples, and 100% of S samples. The average
accuracy achieved was 98.85%, which equates to a kappa score of 94%. The SVM
classifiers, using the same data and the SMOTE-upsampled xgb data, obtain 100%
recall scores i.e. all NS samples are identified, and overall accuracy is just slightly
lower, 96.55% and 97.7% respectively.
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ROC AUC Recall Prec F1 Spec Acc
Baseline 0.5 0 0 0 1 0.7931

xgb

LogReg CV 0.971 1 0.8214 0.9011 0.942 0.954
LOOCV 0.9783 1 0.8571 0.9231 0.9565 0.9655

SVM CV 0.9928 1 0.9524 0.9744 0.9855 0.9885
LOOCV 1 1 1 1 1 1

MLP CV 0.9928 1 0.9524 0.9744 0.9855 0.9885
LOOCV 1 1 1 1 1 1

xgb (smote)

LogReg CV 0.8188 0.6667 0.8667 0.7515 0.971 0.908
LOOCV 0.8116 0.6667 0.8 0.7273 0.9565 0.8966

SVM CV 1 1 1 1 1 1
LOOCV 1 1 1 1 1 1

MLP CV 0.8333 0.6667 1 0.8 1 0.931
LOOCV 0.8333 0.6667 1 0.8 1 0.931

Table 4.6: T2 classification results using features selected by XGBoost algorithm
(xgb)

Figure 4.2: Distribution for NS and S of peptides used to classify patient outcome.
Top row (l-r): Peptides important to classify NS from most to least; bottom row
(l-r): Peptides important to classify S from most to least.
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Figure 4.3: Plot of abundances of peptides used in 100% accuracy classification
result: (l) Top 3 peptides used for classification by SVM; (r) Top 3 NS features used
for classification by SVM

Figure 4.4: Heatmap of abundances of peptides used in 100% accuracy classification
result [Key: S samples are top 23; NS samples are bottom 6]
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Figure 4.5: T2 SVM coefficients from 99% accuracy model

Figure 4.6: Plot of abundances of peptides used in 99% accuracy classification re-
sult: (l) Top 3 peptides used for classification by SVM; (r) Top 2 features used for
classification by SVM

ROC AUC Recall Prec F1 Spec Acc
Baseline 0.5 0 0 0 1 0.7931

rf50
LogReg 0.7778 0.5556 1 0.7111 1 0.908
SVM 0.8188 0.6667 0.8667 0.7515 0.971 0.908
MLP 0.75 0.5 1 0.6667 1 0.8966

rf50 (smote)
LogReg 0.7222 0.4444 1 0.6111 1 0.8851
SVM 0.7838 0.6111 0.7833 0.6848 0.9565 0.8851
MLP 0.6389 0.2778 1 0.4286 1 0.8506

xgb
LogReg 0.9722 0.9444 1 0.9697 1 0.9885
SVM 0.9783 1 0.8571 0.9231 0.9565 0.9655
MLP 0.8056 0.6111 1 0.7556 1 0.9195

xgb (smote)
LogReg 0.8309 0.7778 0.6455 0.7001 0.8841 0.8621
SVM 0.9855 1 0.9048 0.9487 0.971 0.977
MLP 0.8816 0.7778 0.9444 0.8475 0.9855 0.9425

Table 4.7: T1_T2 mean 5-fold CV classification results, using features selected by
RF algorithm (best 50 features: rf50) and XGBoost algorithm (xgb)

33



ROC AUC Recall Prec F1 Spec Acc
Baseline .5 0 0 0 1 .7931

rf50
LogReg 0.75 0.5 1 0.6667 1 0.8966
SVM 0.8333 0.6667 1 0.8 1 0.931
MLP 0.75 0.5 1 0.6667 1 0.8966

rf50 (smote)
LogReg 0.75 0.5 1 0.6667 1 0.8966
SVM 0.8116 0.6667 0.8 0.7273 0.9565 0.8966
MLP 0.75 0.5 1 0.6667 1 0.8966

xgb
LogReg 0.8333 0.6667 1 0.8 1 0.931
SVM 0.8949 0.8333 .8333 0.8333 .9565 0.931
MLP 0.75 0.5 1 0.6667 1 0.8966

xgb (smote)
LogReg 0.808 0.8333 0.5 0.625 0.7826 0.7931
SVM 0.9783 1 0.8571 0.9231 0.9565 0.9655
MLP 0.8949 0.8333 0.8333 0.8333 0.9565 0.931

Table 4.8: T1_T2 LOOCV classification results, using features selected by the RF
algorithm (best 50 features: rf50) and XGBoost algorithm (xgb)
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5 | Conclusions

The experiments reported in the previous chapter offer the following headlines :

• Peptide abundances at T2 predict patient outcome with 100% ac-
curacy (but sample size is limited, and confirmatory studies are
necessary)

• T2 peptidome: best predictor of patient outcome

• XGBoost selected features: best features for prediction of patient
outcome

• SVM: best classifier for patient outcome prediction

• Further study: clinical understanding of results

Peptide abundances at T2 predict patient outcome with 100% accuracy
(but sample size is limited, and confirmatory studies are necessary)

The best result in this study achieved 100% mean accuracy in classifying patient
outcome with septic shock. This was achieved for 5-fold CV, repeated 3 times with
different random data splits, and for LOOCV. Obviously, this is the best result a
classifier can hope for and signals clearly that the classifier is able to learn enough
from the peptide abundance measures about whether a patient will survive or not.
Although this is a ‘perfect’ result, it is important to note that the sample size used
in this study is small (only 29 patients). It is nearly impossible to generalise for a
population of 30 million septic patients per year [47], from this model built from
29 patients, but the result is insightful for the entire population and should be de-
veloped further with confirmatory studies. Additionally, the dataset was comprised
of peptidome measured at only two time points within 48 hours of shock diagnosis.
It would be thorough to investigate peptidome measurements taken at additional,
later times to observe the peptidome changes as the disorder progresses and how
this affects the classification models.

T2 peptidome: best predictor of patient outcome

The T1 blood samples are likely to be “noisy”, in a sense, because they occur when
patients have only recently been diagnosed and admitted. Patient outcome with
sepsis and septic shock is dependent on a quick diagnosis and treatment, therefore
within the first 24 hours their treatment will begin to combat the sepsis. This could
be represented in patient blood samples and make it more difficult to identify which
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peptides are found and whether they can be attributed to shock or to other treat-
ments the patient is receiving. Furthermore, for each patient it is not known the
length of time that they have been in shock, previous to diagnosis, and these times
could be different. As septic shock is difficult to diagnose without laboratory tests,
some patients could have a slower diagnosis than others, if their symptoms did not
appear to the same degree. This means that at T1, patients may be experiencing
different stages of septic shock, which would result in “noisy” blood samples, as it
is hard to judge if the samples collected are “like-for-like”. It is likely that, on the
contrary, the blood samples taken at T2 will be greater “like-for-like”. After 48 hours
of treatment, it is likely that the treatment would have started to take effect and
the blood samples would be more representative of each patient. I believe this to
be the main reason for far greater classifier results achieved with T2 peptides. Fur-
thermore, it is intuitive, that since T2 is later and therefore closer in time to the
’outcome’ than T1, that there would be a greater relationship between T2 (rather
than T1) and outcome. Our classifier results using peptides in T1 and T2 were
not as successful as T2 only, but more successful than T1 only. Interestingly, the
important features chosen from the T1_T2 dataset were not exactly those chosen
from T1 and T2 separately.

XGBoost selected features: best features for prediction of patient out-
come

In general, the classification models using features selected by the XGBoost algo-
rithm achieved superior results to the models using features selected by the random
forest algorithm. This could be because some/all of the chosen features were supe-
rior for discriminating between classes or could be linked to the number of features
selected. The number of features selected by the XGBoost algorithm ranged from 7
to 9 features, whereas the random forest algorithm selected roughly 200 features, of
which the top 50 were used by the classifiers. As the number of samples in our data
was only 29 i.e. # features (p=50) ≥ # samples (n=29), this could be a reason for
the poor performance of these models. It is well known that there is generally an op-
timal number of features that a classifier learns from, and too many features/too few
samples can be described as the “curse of dimensionality”. In fact, [48] suggests at
least 5 samples for each dimension/feature in the data representation i.e. 6 features;
for our 29 samples. Hughes [49] found that as the number of features increases, error
decreases up to a certain threshold, after which, due to complexity error increases.
It is an open area of research to find the optimal features (and feature set size) and
is different for each dataset. Additionally, there is an element of random selection
of features in the random forest algorithm. The algorithm was run 100 times to
find stability in its results but this randomness may still have influenced some of
the selected features. It would be prudent to continue this study and compare the
results for using only the top 5, 10, 15, 20, 25 random forest chosen features to be
able to identify if we can achieve superior results with less chosen features.

SVM: best classifier for patient outcome prediction

In general, the best results were achieved using a SVM classifier on our data. Fur-
thermore, interestingly, the recall rates were generally higher for SVM than for the
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other tested classifiers, which indicates that SVM are able to better identify the
non-survivor class. Logistic regression (LR) and linear SVM are linear models that
both performed well for our classification, suggesting that the feature space is some-
what linearly separable. The rbf-kernel SVM is able to learn non-linearity and this
was used in the best model, achieving 100% accuracy, so this added non-linearity
clearly benefits the model. The Multi-Layer Perceptron (MLP) is a more complex
non-linear classifier, which can be prone to overfitting. The MLP achieved the low-
est recall rate of the three classifiers in all but one of the permutations of models
tested (which was T1 rf50 SMOTE).

Further study: clinical understanding of results

The T2 peptides 4.2.2 that were used to predict patient outcome with 100% and
99% accuracy warrant further investigation. The result so far is purely a machine
learning one, and the clinical understanding of the peptides has not been investi-
gated. We cannot describe a relationship of causality of patient outcome based on
these results, but we can conclude that these peptides may have some potential
pathophysiologic importance and represent increased risk for septic shock patients.
Visually, the most interesting results can be seen in 4.3 and 4.6, where it appears
by plotting the samples in 3D (and 2D), using just 3 (or 2) of the 939 dimensions,
we are able to visually separate the S and NS samples. These individual peptides
should be investigated, and also the interactions between them.

Most importantly, more data is needed for deeper and confirmatory testing of
the results found. If we are able to confirm the predictive power of these peptides
4.2.2, there is potential for their presence (abundance measure) to be used for pa-
tient prognosis, and further, to direct better targeted treatment for the management
of sepsis. The future challenge is the translation of the results of this study to some
kind of clinical insight, which can positively impact diagnostics or treatment for
sepsis/septic shock.
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A | Appendix

A.1 Important features

The following are listed in order of importance.

T1

Key T1 RF50 peptides

361 IAALLSPYSYSTTAVVTNPKE
327 GLEEELQF
640 RFKDLGEENFKA
925 YLWVGTGASEAEKTGAQEL
933 YSIITPNILRLESEET
393 INEQWLLTT
419 KPEEEAPAPEVGASKPEGI
496 LVAASQAALGL
741 SPYSYSTTAVVTNPKE
551 NGYSAVPSPG
91 DEPPQSPWDRVKDLATVY
426 KSQLQKVPPEWKALTDMPQMRM
360 HWESASLLR
192 ESFGDLSTPDAVMGNPKVKAHGKKV
710 SILGSDVRVPSY
935 YTQKSLSLSPG
323 GILNPSQPGQSSSSSQT
427 KTETQEKNPLPSKETIEQEKQAGES
85 DAPGQYGAYFHDDGF
172 EESNYELEGKIK
679 SESGSFRPDSPGSGNARPNNPDWGTF
77 DAHKSEVAHRFKDLGEE
516 MGVVSLGSPSGEVSHPRKT
168 EEEAPAPEVGASKPEGI
599 QEKNPLPSKETIEQEKQAGES
543 NAFGDMTSEEFR
616 QLTYNPDESSKPNM
392 INEQWLLT
166 EEAPAPEVGASKPEGI
413 KITPNLAE
137 DSGEGDFLAEGGGVR
313 GGGGGAKANQDRVKRPM
572 NVEIDPEIQ
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508 MAMNAFGDMTSEEFR
1 AAEVISNARENIQ
408 KDLGEENFKAL
823 VAWKADSSPVKAGVETTTPSKQ
911 YEDIAQKSKAEAE
27 AIFYETQPSLW
129 DNNRSLDLDSIIAEVK
290 GANIITQAREL
736 SPMYSIITPNILRLE
517 MIEQNTKSPL
443 LEDNIRM
127 DLSTPDAVMGNPKVKA
52 APRSALYSPSDPLTL
603 QFTSSTSYNRGDSTFESKSYKMA
511 MEPLGRQLTSGP
399 ISWYDNEFGYSNRVVDL
146 DTASTGKTFPGFFSPMLGEF

Table A.1: 50 most important features selected by random forest algorithm on
original (not SMOTE) T1 data

Key T1 rf50 SMOTE peptides

361 IAALLSPYSYSTTAVVTNPKE
551 NGYSAVPSPG
933 YSIITPNILRLESEET
360 HWESASLLR
427 KTETQEKNPLPSKETIEQEKQAGES
741 SPYSYSTTAVVTNPKE
327 GLEEELQF
429 KVNVDEVGGEAL
192 ESFGDLSTPDAVMGNPKVKAHGKKV
862 VNVEINVAPGKD
732 SPLFMGKVVNPTQK
413 KITPNLAE
750 SSKITHRIHWESASLLR
85 DAPGQYGAYFHDDGF
511 MEPLGRQLTSGP
599 QEKNPLPSKETIEQEKQAGES
925 YLWVGTGASEAEKTGAQEL
116 DKFLASVSTVLTSKYR
679 SESGSFRPDSPGSGNARPNNPDWGTF
736 SPMYSIITPNILRLE
313 GGGGGAKANQDRVKRPM
280 FVVRHNPTGTVL
1 AAEVISNARENIQ
38 ALEEYTKKLNTQ
894 VVAGKLQDRGPDVL
640 RFKDLGEENFKA
516 MGVVSLGSPSGEVSHPRKT
496 LVAASQAALGL
935 YTQKSLSLSPG
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182 EKLQDEDLGFL
393 INEQWLLTT
45 ALTLTKAPADLRGVAHNNLMA
710 SILGSDVRVPSY
290 GANIITQAREL
611 QGVNDNEEGFFSARGHRPLD
554 NKITPNLAE
616 QLTYNPDESSKPNM
447 LEVPEGRTNFDNDIAL
166 EEAPAPEVGASKPEGI
543 NAFGDMTSEEFR
390 ILRLESEET
125 DLSTPDAVMGNPK
669 SDGLAHLDNLKGTF
50 ANPGLVARITDKGLQYAAQEGLLALQSEL
517 MIEQNTKSPL
345 HGPGLIYRQPNCDDPETEEAAL
837 VEVSPFTIEMSA
928 YRSGGGFSSGSAGI
200 EVGGEALGRL
362 IAFAQYLQ

Table A.2: 50 most important features selected by random forest algorithm on T1
SMOTE data

Key T1 XGB peptides

361 IAALLSPYSYSTTAVVTNPKE
1 AAEVISNARENIQ
10 AEDSLADQAANKWGRSGRDPNH
427 KTETQEKNPLPSKETIEQEKQAGES
325 GKVNVDEVGGE
750 SSKITHRIHWESASLLR
4 AAPGVDLTQLLNNMRSQ
905 WGKVNVDEVGGEALG

Table A.3: Most important features selected by XGBoost algorithm on original (not
SMOTE) T1 data

Key T1 XGB SMOTE

361 IAALLSPYSYSTTAVVTNPKE
1 AAEVISNARENIQ
10 AEDSLADQAANKWGRSGRDPNH
427 KTETQEKNPLPSKETIEQEKQAGES
367 IAIESLADRVYTS
2 AAKRGPGGAWAAEVISNARENIQ
750 SSKITHRIHWESASLLR

Table A.4: Most important features selected by XGBoost algorithm on SMOTE T1
data
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T2

Key T2 RF50 peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
1289 HPNSPLDEENLTQEN
1802 VPDLVPGNFK
1578 RFKDLGEEN
1274 GSGSGWSSSRGPY
1412 LMIEQNTKSPLFMGKVVNPTQ
960 AGSVADSDAVVKLDDGHLNNSL
1226 GAGGEDSAGLQGQTLTGGPIRIDWED
1359 KPEVLEVTLNRPFL
1639 SGEGDFLAEGGGVRGPR
1448 MAPFEPLA
1111 EESNYELEGKIK
1473 MSLFGGKPMIIYKGGTSREGGQTAPASTRL
1394 LGTLSGIGTLD
1694 SSSYSKQFTSSTSYN
1564 QTDMSRKAFVFPKESDTSY
1561 QSTNAYPDLR
968 AISDARENIQ
1366 KTETQEKNPLPSKETIEQEKQAGES
1128 ESFGDLSTPDA
1235 GDLSTPDAVMGNPKVKAHG
1113 EGDFLAEGGGVR
1838 VVSLGSPSGEVSHPR
1586 RSFFSFLG
1791 VLLCGPPP
1497 NLNDRLASYLDKVR
1759 VATDLDTGRPSTTVR
1340 IVLTQSPATL
1342 IVMTQSPATL
1594 RSGASGPENFQVG
1524 PPFSALVSSPSL
1552 QKENAGEDPGLAR
1328 ILRELSEE
1231 GDEELLRFSN
1301 IAFAQYLQ
1350 KFIDTTSKF
1598 RVKDLATVY
977 ALEEYTKKLNTQ
1853 YGSKEDPQTFYYAVA
1617 SESGSFRPDSPGSGNARPNNPDWGT
1613 SDQVPDTESETRILLQGTPVAQMTED
1368 KVNVDEVGGEAL
1491 NHYTQKSLSLSPG
1431 LTAPKIPEGEKVDFDDIQK
1599 SAFGYVFPKAVSMPSF
1506 NSPLDEENLTQENQDRG
974 AKVAVLGASGGIGQPLSL
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1595 RSGGGGGGGLGSGGSIRSSY
1867 YRSGGGFSSGSAGI
1395 LIQPMAAEAAS

Table A.5: 50 most important features selected by random forest algorithm on
original (not SMOTE) T2 data

Key T2 RF50 SMOTE peptides

1289 HPNSPLDEENLTQEN
1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
1111 EESNYELEGKIK
1473 MSLFGGKPMIIYKGGTSREGGQTAPASTRL
1274 GSGSGWSSSRGPY
1561 QSTNAYPDLR
1586 RSFFSFLG
1791 VLLCGPPP
1694 SSSYSKQFTSSTSYN
1342 IVMTQSPATL
943 AAPGVDLTQLLNNMRSQ
1838 VVSLGSPSGEVSHPR
960 AGSVADSDAVVKLDDGHLNNSL
1216 FVLKTPSAAYLWVGTGASEAEKTGAQEL
1864 YLWVGTGASEAEKTGAQEL
1412 LMIEQNTKSPLFMGKVVNPTQ
1394 LGTLSGIGTLD
1386 LEVPEGRTNFDNDIAL
1341 IVLTQSPGTL
1337 ISWYDNEFGYSNRVV
989 ANPGLVARITDKGLQYAAQEGLLALQSEL
1450 MEPLGRQLTSGP
1340 IVLTQSPATL
1638 SGEGDFLAEGGGVR
1595 RSGGGGGGGLGSGGSIRSSY
1404 LLVRYTKKVPQVSTPTL
1113 EGDFLAEGGGVR
1867 YRSGGGFSSGSAGI
1433 LTSGPNQEQVSPLTL
1617 SESGSFRPDSPGSGNARPNNPDWGT
1217 FVTNPDGSPAYRVPVAVQGED
1684 SRSGGGGGGGLGSGGSIRSSY
1379 LEAIPMSIPPEVKFNKPFVF
1014 DAGLVYDAYLAPNNLKPVVAEF
1446 MAESPGLI
1019 DAHKSEVAHRFKDLGEENFK
1783 VISDGGDSEQFIDEER
1447 MAMNAFGDMTSEEFR
1698 SSYSKQFTSSTSYNRGDSTFESKS
971 AKLIALTLLG
1793 VLSPADKTNV
1503 NSPLDEENLTQEN
1448 MAPFEPLA
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1193 FQVLPWLKEKLQDEDLGFL
1599 SAFGYVFPKAVSMPSF
1339 IVEALNGKEVAAQVKAPLVLKD
1458 MIEQNTKSPLFM
1005 AVEDLESVGKGA
1501 NQEQVSPLTLLK
1006 AVIALLLWGQ

Table A.6: 50 most important features selected by random forest algorithm on
SMOTE T2 data

Key T2 XGB peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
939 AAEAISDARENIQ
1111 EESNYELEGKIK
1037 DHGSHVYTKALLAYA
1802 VPDLVPGNFK
1012 DAAQKTDTSHHDQDHPTFNKITPNLAE
952 AEISQIHQSVTD
960 AGSVADSDAVVKLDDGHLNNSL

Table A.7: Most important features selected by XGBoost algorithm on original (not
SMOTE) T2 data

Key T2 XGB SMOTE peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
1111 EESNYELEGKIK
1289 HPNSPLDEENLTQEN
1226 GAGGEDSAGLQGQTLTGGPIRIDWED
939 AAEAISDARENIQ
976 ALEEQLQQIRAE
1066 DLSTPDAVMGNPKVKA

Table A.8: Most important features selected by XGBoost algorithm on SMOTE T2
data

T1_T2

Key T1T2 RF50 peptides

361 IAALLSPYSYSTTAVVTNPKE
1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
327 GLEEELQF
1802 VPDLVPGNFK
933 YSIITPNILRLESEET
1289 HPNSPLDEENLTQEN
1578 RFKDLGEEN
551 NGYSAVPSPG
1412 LMIEQNTKSPLFMGKVVNPTQ
1359 KPEVLEVTLNRPFL
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360 HWESASLLR
323 GILNPSQPGQSSSSSQT
640 RFKDLGEENFKA
419 KPEEEAPAPEVGASKPEGI
1274 GSGSGWSSSRGPY
741 SPYSYSTTAVVTNPKE
935 YTQKSLSLSPG
172 EESNYELEGKIK
192 ESFGDLSTPDAVMGNPKVKAHGKKV
1473 MSLFGGKPMIIYKGGTSREGGQTAPASTRL
710 SILGSDVRVPSY
91 DEPPQSPWDRVKDLATVY
1564 QTDMSRKAFVFPKESDTSY
1561 QSTNAYPDLR
616 QLTYNPDESSKPNM
1111 EESNYELEGKIK
1226 GAGGEDSAGLQGQTLTGGPIRIDWED
1694 SSSYSKQFTSSTSYN
1448 MAPFEPLA
393 INEQWLLTT
925 YLWVGTGASEAEKTGAQEL
129 DNNRSLDLDSIIAEVK
599 QEKNPLPSKETIEQEKQAGES
85 DAPGQYGAYFHDDGF
496 LVAASQAALGL
508 MAMNAFGDMTSEEFR
1340 IVLTQSPATL
960 AGSVADSDAVVKLDDGHLNNSL
679 SESGSFRPDSPGSGNARPNNPDWGTF
1759 VATDLDTGRPSTTVR
1639 SGEGDFLAEGGGVRGPR
52 APRSALYSPSDPLTL
426 KSQLQKVPPEWKALTDMPQMRM
911 YEDIAQKSKAEAE
427 KTETQEKNPLPSKETIEQEKQAGES
1394 LGTLSGIGTLD
543 NAFGDMTSEEFR
392 INEQWLLT
1128 ESFGDLSTPDA
1113 EGDFLAEGGGVR

Table A.9: 50 most important features selected by random forest algorithm on
original (not SMOTE) T1T2 data

Key T1T2 RF50 SMOTE peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
361 IAALLSPYSYSTTAVVTNPKE
1289 HPNSPLDEENLTQEN
1274 GSGSGWSSSRGPY
327 GLEEELQF
1111 EESNYELEGKIK
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1412 LMIEQNTKSPLFMGKVVNPTQ
1473 MSLFGGKPMIIYKGGTSREGGQTAPASTRL
741 SPYSYSTTAVVTNPKE
427 KTETQEKNPLPSKETIEQEKQAGES
360 HWESASLLR
1216 FVLKTPSAAYLWVGTGASEAEKTGAQEL
943 AAPGVDLTQLLNNMRSQ
732 SPLFMGKVVNPTQK
1586 RSFFSFLG
1342 IVMTQSPATL
1838 VVSLGSPSGEVSHPR
1864 YLWVGTGASEAEKTGAQEL
1433 LTSGPNQEQVSPLTL
429 KVNVDEVGGEAL
1394 LGTLSGIGTLD
1791 VLLCGPPP
1448 MAPFEPLA
551 NGYSAVPSPG
862 VNVEINVAPGKD
1337 ISWYDNEFGYSNRVV
1341 IVLTQSPGTL
1802 VPDLVPGNFK
1595 RSGGGGGGGLGSGGSIRSSY
1599 SAFGYVFPKAVSMPSF
1301 IAFAQYLQ
1340 IVLTQSPATL
543 NAFGDMTSEEFR
1404 LLVRYTKKVPQVSTPTL
989 ANPGLVARITDKGLQYAAQEGLLALQSEL
616 QLTYNPDESSKPNM
750 SSKITHRIHWESASLLR
1447 MAMNAFGDMTSEEFR
1386 LEVPEGRTNFDNDIAL
1684 SRSGGGGGGGLGSGGSIRSSY
960 AGSVADSDAVVKLDDGHLNNSL
1113 EGDFLAEGGGVR
413 KITPNLAE
933 YSIITPNILRLESEET
1694 SSSYSKQFTSSTSYN
935 YTQKSLSLSPG
85 DAPGQYGAYFHDDGF
1771 VELLKIE
1217 FVTNPDGSPAYRVPVAVQGED
1698 SSYSKQFTSSTSYNRGDSTFESKS

Table A.10: 50 most important features selected by random forest algorithm on
SMOTE T1T2 data

Key T1T2 XGB peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
45 ALTLTKAPADLRGVAHNNLMA
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1111 EESNYELEGKIK
86 DDPDAPLQPVTP
1802 VPDLVPGNFK
7 ADSGEGDFLAEGGGVR
143 DSTFESKSYKMA
361 IAALLSPYSYSTTAVVTNPKE

Table A.11: Most important features selected by XGBoost algorithm on original
(not SMOTE) T1T2 data

Key T1T2 XGB SMOTE peptides

1204 FSPSVVHLGVPLSVGVQLQDVPRGQVVKGSVF
45 ALTLTKAPADLRGVAHNNLMA
1111 EESNYELEGKIK
453 LGRQLTSGP
200 EVGGEALGRL
862 VNVEINVAPGKD
989 ANPGLVARITDKGLQYAAQEGLLALQSEL
361 IAALLSPYSYSTTAVVTNPKE
823 VAWKADSSPVKAGVETTTPSKQ

Table A.12: Most important features selected by XGBoost algorithm on SMOTE
T1T2 data

A.2 Classifier parameters

C kernel gamma C hidden_layer_sizes alpha

rf50
LogReg 1 - - - - -
SVM - rbf 0.0005 10 - -
MLP - - - - 100 10

rf50 (smote)
LogReg 1 - - - - -
SVM - rbf 0.00005 10 - -
MLP - - - - 50 10

xgb
LogReg 1 - - - - -
SVM - rbf 0.005 10 - -
MLP - - - - 50 10

xgb (smote)
LogReg 1 - - - - -
SVM - rbf 0.001 100 - -
MLP - - - - 50 10

Table A.13: T1 classifier parameters
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C kernel gamma C hidden_layer_sizes alpha

rf50
LogReg 100 - - - - -
SVM - linear - 10 - -
MLP - - - - 100 1

rf50 (smote)
LogReg 100 - - - - -
SVM - linear - 10 - -
MLP - - - - 100 10

xgb
LogReg 1 - - - - -
SVM - rbf 0.005 100 - -
MLP - - - - 100 0.1

xgb (smote)
LogReg 0.1 - - - - -
SVM - rbf 0.01 10 - -
MLP - - - - 50 10

Table A.14: T2 classifier parameters

C kernel gamma C hidden_layer_sizes alpha

rf50
LogReg 1 - - - - -
SVM - rbf 0.0005 10 - -
MLP - - - - 50 10

rf50 (smote)
LogReg 1 - - - - -
SVM - rbf 0.0001 10 - -
MLP - - - - 50 10

xgb
LogReg 1 - - - - -
SVM - linear - 10 - -
MLP - - - - 50 10

xgb (smote)
LogReg 1 - - - - -
SVM - linear - 10 - -
MLP - - - - 100 10

Table A.15: T1_T2 classifier parameters
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