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ABSTRACT

Processing medical data is an active research task in both industry and academia. Med-
ical data can be found in different formats: textual, taxonomic, chemical structures,
etc. However, most of that data is in textual format or contain semantic information
(medical records and reports, articles, etc.), so that the processing of those data com-
monly includes the use of Natural Language Processing (NLP) techniques. There exists
a large list of applications within the medical domain in which NLP becomes essential.
Just to cite some of them: Clinical Decision Support, Medical Question Answering, Se-
mantic tagging of medical categories or Metrics in Ontologies in the Medical Domain.
The computation of semantic similarity or distance measures between medical entities
becomes essential for many of those tasks.

In this thesis, three different similarity measures between medical entities (drugs)
have been implemented. Each of those measures have been computed over one or
more dimensions of the drugs: textual, taxonomic and molecular information. All the
information has been extracted from the same resource, the DrugBank database.

Text similarity is the task of determining the degree of similarity between two
texts. Texts length can vary from single words to paragraphs to complete novels or
even books. In this work, drugs were represented in a vector space model, which is an
algebraic model for representing text documents, where similarities can be computed.
In particular, three data fields from the DrugBank database: description, indication
and pharmacodynamics –all expressed in natural language– were concatenated and,
after removing stop words and transforming to lowercase, their term frequency-inverse
document frequency (tf-idf ) representation was computed. In this case, each document
used to compute the tf-idf is the concatenation of the textual fields of each drug, while
the corpus is formed by all those documents as a whole. The obtained result is a sparse
matrix in which the Euclidean distance is meaningless. A dimension reduction based
on LSA is performed. The Euclidean distance is then computed over the reduced data,
then, the similarity is obtained from the distance.

Topological similarity is the task of determining the degree of similarity between
two taxonomic or ontological concepts/entities. Essentially, there are two sorts of
approaches: Edge-based (which use the edges and their types as the data source) and
Node-based (in which the main data sources are the nodes and their properties). The
DrugBank database contains two kinds of different taxonomic structures: a set of fields
named ’Classification’ and the ATC Codes1. In this project, the tag ’Classification’
is used to build a graph, which is used to compute the distance between drugs as the
shortest path. The similarity measure is obtained from the distance.

1The Anatomical Therapeutic Chemical (ATC) Classification System is used for the classification
of active ingredients of drugs according to the organ or system on which they act and their therapeutic,
pharmacological and chemical properties.



Measures of structural similarity play an important role in chemoinformatics for
applications such as similarity searching, database clustering and molecular diversity
analysis. The importance of structural similarity derives in large part from the Similar
Property Principle, which states that molecules that are structurally similar are likely
to have similar properties. In our approach, a molecular structure similarity measure
is computed using the Tanimoto (Jaccard) coefficient over the representation of the
molecules, specifically, the 2D fingerprints.

In order to study how good is each of the similarity measures, two different
evaluations have been performed: indirect and direct. The indirect evaluation is based
on clustering the drugs and evaluating how good the obtained clusters are. The direct
evaluation is done over the similarities, comparing them with a ground truth annotated
by hand by experts in the domain. A whole analysis of the obtained results is performed
and written in this document.

The thesis is closed with our conclusions and the statement of all contributions of
this work. Some future lines of work are also included in order to show the path which
could follow our efforts.
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CHAPTER 1

SCOPE AND CONTEXTUALIZATION

This chapter introduces our project to the reader. Here we provide some background
about the involved topics and the motivation behind the project. The project’s
objectives, as well as the proposed approach are stated. Finally, we show the structure
of the document.

1 1

Introduction

We address the task of obtaining similarity measurements among medical entities,
specifically, drugs. The term ’medical entities’ includes several relevant concepts one
can find within the medical domain. There is not one but several possible classifi-
cations for those entities. However, a good and well-known classification of medical
terms, accepted by the experts in the domain, is the one provided by SNOMED CT1

[Donnelly, 2006]. SNOMED Clinical Terms are a systematically organized (as a tax-
onomy) computer processable collection of medical terms providing codes, terms, syn-
onyms and definitions used in clinical documentation and reporting. Of course, there
exist other classifications: Wikipedia (although Wikipedia is not domain specific, it
provides a rich coverage of the medical domain), MeSH2 [Lipscomb, 2000], UMLS3

[Bodenreider, 2004] or other medical resources. Nevertheless, SNOMED CT is con-
sidered to be the most comprehensive, multilingual clinical health care terminology in
the world. The top SNOMED’s categories are shown in the Table 1.1. In our project,
we are interested in Drugs, which in the cited classification is named as ’Pharmaceuti-
cal/biologic products’.

Processing medical data is an active research task in both industry and academia.
Medical data can be found in different formats: textual, taxonomic, chemical
structures, etc. However, most of that data is in textual format or contain se-
mantic information (medical records and reports, articles, etc.), so that the pro-
cessing of those data commonly includes the use of Natural Language Process-
ing (NLP) techniques. Again, we can find plenty of applications within the
medical domain in which NLP becomes essential. Just to cite some of them:

1https://www.snomed.org. Last visit: April 2018.
2https://www.nlm.nih.gov/mesh/. Last visit: April 2018.
3https://www.nlm.nih.gov/research/umls/. Last visit: April 2018.
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Pharmaceutical / biologic product Physical force

Special atomic mapping values Clinical finding

Substance Special concept

Observable entity Procedure

Qualifier value Linkage concept

Environment or geographical location Physical object

Situation with explicit context Organism

Body structure Event

Staging and scales Social context

Table 1.1: SNOMED CT top categories

Clinical Decision Support [Demner-Fushman et al., 2009], Medical Question An-
swering [Goodwin and Harabagiu, 2016], Semantic tagging of medical categories
[Goeuriot et al., 2015, Vivaldi and Rodŕıguez, 2015] or Metrics in Ontologies in the
Medical Domain [Melnikov and Vorobkalov, 2014].

In this project, our aim is to make use of medical data in different formats in order
to extract information which let us compute distinct sorts of similarity measurements
among drugs. Those similarity measures can play an important role in NLP tasks.

Although there is no definitive consensus of axioms defining a similarity measure,
we will adopt the definition stated in [Gower, 1971].

Definition 1.1.1. Similarity Measure Let D be a set of items represented in an
euclidean space and let S : D × D ⇒ R. S is a similarity measure if it satisfies
the following properties:

• Boundary conditions : there are two x numbers a and b such that ∀x,y : 0 ≤
S(x,y) ≤ 1

• Symmetry ∀x, y : S(x, y) = S(y, x)

• Identity and indiscernibility: ∀x,y : x = y ⇔ , S(x,y) = 1

• Metric : S is positive semi-definite (PSD)

Sometimes, it is also considered the constrain named as triangular inequality, which
is not considered within this project since it is not needed. The inequality states:

∀x, y, z : S(x, y) + S(y, z) ≤ S(x, z) (1.1)

A visual intuition of the the cited inequality is provided in the Figure 1.1. Please,
note that the image shows the inequality from the perspective of distances, that is the
reason why the inequality’s symbol is the opposite. However, the principle is the same.
We use distances for better visualization, in fact, simple mappings can be used between
distances and similarities (see Section 2.2.1).

The problem of computing the similarity can be faced at type level (the concept)
or at a token level (mentions). The distinction is relevant when the word form of the
mentions are polysemic (as is the frequent case of acronyms). In this project, however,
we focus on the computation of similarity following the first interpretation (the concept,
not the mention).
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Figure 1.1: Triangular Inequality: visual intuition (distance).

1 2

Motivation

This section is devoted to make clear which is the interest and motivation behind this
project. In the following sections we analyze why computing similarity measurements
is important and which are the problems one faces when addressing the approach.
Finally, we show a conclusion which puts all the pieces together.

1 2 1 Why similarity measurements?

Similarity is all around us, we can see it in several events of our daily life: searching
for new music we could like, making decisions similar to previous ones, etc.

Every time we Humans make a decision taking into account previous events, we use
any similarity measure to infer which actions we should perform to achieve any desired
result. Specifically, we compare previous actions which led us to successful situations
with the set of possible actions we could perform now. Let’s consider a use case related
to the task ’Clinical Decision Support’. A doctor has a patient with a specific illness
which in other patients was treated using a concrete drug. If now the illness persists,
the doctor will look for a similar drug to treat the patient. Of course, knowing the
similarity among too many drugs can be unfeasible for a human and here is where
computing similarities can help.

Previous case is just an example of possible application in which computing sim-
ilarities among medical entities can be useful. However, there exist several tasks on
the inside of the medical domain in which similarity measurements are used. For in-
stance, Finding Patterns in Annotation Graphs [Benik et al., 2012a, Saha et al., 2010],
which is based on a complementary methodology of graph summarization and dense
subgraphs. For a graph G, dense subgraphs are highly connected subgraphs of
G that are almost cliques. The elements of a graph summary correspond to a
pattern. Another example is the task of Semantic tagging of medical categories
[Yeganova et al., 2012, Goeuriot et al., 2015, Vivaldi and Rodŕıguez, 2015], in which
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similarity measurements are used to tag and group medical entities automatically.

1 2 2 Difficulty of the problem

The difficulty of the problem resides in the heterogeneity of the domain. On the one
hand, there exist a large list of different representations of the information: textual
(formal and informal), chemical, etc. On the other hand, all medical entities have
several properties which can be used to extract information: name, description, etc.
Of course, coming back to our task, the high dimensionality of the domain, makes
difficult to compute similarity between drugs. In the upcoming paragraphs, we explain
in detail the two main difficulties which are present in our task.

Variety of Genres

As said before, the heterogeneity of the genres (sorts of resources) we find within the
medical domain is overwhelming. A list of some possible genres is explained below:

• Electronic Medical/Health Records. [Vasiljeva and Arandelovic, 2016,
Vasiljeva and Arandjelović, 2017] Electronic Health Record (EHR), or electronic
medical record (EMR), is the systematized collection of patient and population
electronically-stored health information in a digital format. EHRs may include
a range of data, including demographics, medical history, medication and aller-
gies, immunization status, laboratory test results, radiology images, vital signs,
personal statistics like age and weight, and billing information.

• Medical books and articles. This sort of documents are usually formal and
contain a lot of concrete vocabulary, which might be a difficulty for a NLP system.

• Social media. [Beykikhoshk et al., 2015, Nikfarjam et al., 2015, Pierce et al., 2017]
Medical domain is a hot topic on the Internet, one can find plenty of forums, blogs
and unofficial sources of information related to this domain.

• Wikipedia pages. Wikipedia is a huge source of information for any domain,
including the medical domain.

• Taxonomies. Some resources organize drugs into a taxonomy which can be eas-
ily translated into similarity measurement by knowing the paths (relationships)
among the the drugs. DrugBank, the resource used within this project, has two
different taxonomies: one based on the relation IS-A and another one based on
the ATC Codes4.

• Prospects. Again, a textual document containing information potentially useful
to compute the similarity.

• Clinical trials. [Arandjelović, 2015, Arandjelović, 2017] Clinical trials are ex-
periments or observations done in clinical research. Such prospective biomedical
or behavioral research studies on human participants are designed to answer
specific questions about biomedical or behavioral interventions, including new

4The Anatomical Therapeutic Chemical (ATC) Classification System is used for the classification
of active ingredients of drugs according to the organ or system on which they act and their therapeutic,
pharmacological and chemical properties.
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treatments (such as novel vaccines, drugs, dietary choices, dietary supplements,
and medical devices) and known interventions that warrant further study and
comparison.

Apart from the problem of heterogeneity, some of the previous resources present
difficulties for being used in a task related to NLP, in general.

For instance, textual resources might be written by doctors who can have their own
jargon (depending on the specialty) or can write with a lot of abbreviations and/or
acronyms. Another difficulty can be found in textual radiological reports, in which the
lack of the image can be relevant.

Another example is the context or the frame in which the text is found. On the
web, the expressions and vocabulary are normally less formal than in prospects, books
or articles, what is something to consider when using NLP techniques.

The main resource used in this project is the database DrugBank. Of course, there
were other options but, as we discuss during the Section 3.1.5, DrugBank is the more
suitable to us.

Several properties to choose from

Every time a similarity between entities of any sort is computed, it is necessary to do
so with respect a specific property or group of properties. In our case, we look for
computing the similarity between drugs, where several dimensions are found. A fact
which makes that computation a difficult process, since a pair of drugs can be similar
when considering one of their properties but completely different if the chosen property
is another one. Some of this properties are included into the main resource we use in
this project, DrugBank. Just to list some of the dimensions or properties we can use
to compute similarity between drugs:

• Name. There are different kind of names: Chemical, Generic (nonproprietary)
or drug brands. In some cases, the name of a drug gives information about
the family of the drug. For instance, the generic names usually indicate via
their stems what drug class the drug belongs to. For example, one can tell that
aciclovir is an antiviral drug because its name ends in the -vir suffix.

• Description. Description of the drug describing general facts, composition
and/or preparation.

• Pharmacodynamics. Description of how the drug works at a clinical or
physiological level.

• Indication. Description or common names of diseases that the drug is used to
treat.

• Chemical (Molecular) Structure. Similar chemical compounds are meant to
show similar effects. Nevertheless, this statement is not always true.

• Classification. This is a relevant field for us, so we explain it in detail in
the subsection 3.1.3. Used in order to compute the taxonomy based similarity
measure (see Section 3.3).

• ATC Code. This is a relevant field for us, so we explain it in detail in the
subsection 3.1.4. Used to evaluate the three computed similarity measures.
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The items above show just a short list of possible drug properties to be used to
compute similarity between drugs, but there exist much more.

Apart from the problem of high dimensionality of properties, some of them, while
useful for the desired task, present some drawbacks. For instance, in the case of using
the name of the drugs, we cannot ensure that all the drugs follow the rules for the
prefixes and suffixes, so we cannot perfectly group all known drugs by just knowing
their names. Another problem is that in the medical domain is rather common the use
of acronyms. Sometimes, one acronym could be referred to different drugs (polysemy)
what makes more difficult the task of identifying similarities.

In each of the proposed cases we find specific problems which would complicate the
computation of the similarity measure, a fact to take into account.

1 2 3 Conclusion

We can claim that the problem addressed within this project arouses enough interest
to be a research topic and this can be proved by the following statements:

1. The applicability of the approach in the medical domain.

2. The scope of the approach goes further than our proposal. Computing similarity
measurements among other medical entities (body parts, illnesses, etc.) might
be equally useful. Thus, our approach not only is interesting because its possible
applications but also because it could be extended.

3. The problem presents several difficulties which make it challenging enough to be
a research branch.

1 3

Proposed Methodology

We propose the implementation of various similarity measurements applied to drugs.
Specifically, a total of three similarities have been implemented within the development
of this project, each of them based on one dimension or property of the drugs.
In particular, we have used: textual information, the molecular structure and the
taxonomic structure of the drugs. The implementation of these similarities, can be
found on a free access repository on GitHub created by the author of this thesis5.

In order to evaluate how good the similarities are, two different evaluations are
performed, one of them indirect, the another one direct. In the case of the indirect
evaluation, we have used the similarities to cluster the drugs and then, we have
evaluated the clustering. For the direct evaluation, we have used an external ground
truth. The evaluation is performed for each of the three measurement.

The data used for the experiments come from the same resource, the database
DrugBank. It is a unique bioinformatics/cheminformatics resource that combines
detailed drug (i.e. chemical) data with comprehensive drug target (i.e. protein)
information [Wishart et al., 2006]. Specifically, we have used the latest version,
DrugBank 5.0 [Wishart et al., 2017]. In the section 3.1 there is a complete section
devoted to DrugBank, as well as a brief discussion why we have chosen it instead

5https://github.com/albertoOA/Medical-Entities-Similarity-Measurements
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of others. We can advance now that the main reason is that DrugBank is the most
complete database about drugs which there exists nowadays.

The latest release of DrugBank before April 2018 (version 5.0.11, released 2017-12-
20) contains 11,002 drug entries including 2,503 approved small molecule drugs, 943
approved biotech (protein/peptide) drugs, 109 nutraceuticals and over 5,110 experi-
mental drugs. Additionally, 4,910 non-redundant protein (i.e. drug target/enzyme/-
transporter/carrier) sequences are linked to these drug entries. Each DrugCard entry
contains more than 200 data fields with half of the information being devoted to drug/-
chemical data and the other half devoted to drug target or protein data. Some of those
fields are textual, like the ones used in the text based similarity explained in the sub-
section 1.3.1. Some other fields are related to the chemical structure of a drug and
have been used in the experiment explained in the sub-section 1.3.3. Some of the fields
we can find within the database are listed below:

• Description (textual)

• Indication (textual)

• Pharmacodynamics (textual)

• Name

• Kingdom

• Synonyms

• Brand names

Details of these fields are presented in Section 3.1.1.

1 3 1 Text Based Similarity

Text similarity is the task of determining the degree of similarity between two texts.
Texts length can vary from single words to paragraphs to complete novels or even
books. In our case, the texts are a concatenation of different textual fields extracted
from the DrugBank database. Since the way of computing the text-based similarity
lies on the bag of words (BoW)6 paradigm, simple concatenation of textual fields seems
to be a good choice (we do not care about the order of the words, just if they appear
or not). Single words constitute a special case of text similarity which is commonly
referred to as the task of computing word similarity [Zesch and Gurevych, 2010] and
is not the focus of this project.

The computation of text similarity is a very difficult task for machines. This is
mainly due to the enormous variability in natural language, in which texts can be
constructed using different lexical and syntactic constructions. Even so, comput-
ing text similarity has been for several years a fundamental means for many NLP
tasks and applications. Nowadays, still a lot of works are devoted to this topic
[Kenter and De Rijke, 2015, Kashyap et al., 2016, Ho et al., 2018].

6The bag-of-words model is a simplifying representation used in NLP and information retrieval
(IR). Also known as the vector space model. In this model, a text (such as a sentence or a document)
is represented as the bag (multiset) of its words, disregarding grammar and even word order but
keeping multiplicity.
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Our aim is to find a measure of similarity (or dissimilarity) among the drugs
found in DrugBank by means of text similarity. To this purpose, the drugs were
represented in a vector space model, which is an algebraic model for representing
text documents and, thus, similarities can be computed in this space. To obtain the
vector space model representation of the drugs, the data fields: description, indication
and pharmacodynamics –all expressed in natural language– were concatenated and,
after removing stop words and transforming to lowercase, their term frequency-inverse
document frequency (tf-idf ) representation was computed. In this case, each document
used to compute the tf-idf is the concatenation of the textual fields of each drug,
while the corpus is formed by all those documents as a whole. Thus, the the data is
represented as the matrix MεRn×d, where n is the number of drugs and d the number
of words in the whole corpus.

Usually, the number of terms within a corpus is large, this together with the fact
that only few terms appear in a specific document give room to a sparse matrix. The
high dimensionality and sparseness of the matrix M entail to a well-known phenomenon
called ’curse of dimensionality’. In a nutshell, we lose statistical significance and the
Euclidean distance becomes meaningless.

Reducing the dimension of the vector space model we have computed is the so-
lution proposed in this work. Specifically, we use the technique that in Information
Retrieval is known as Latent Semantic Indexing (LSI) [Dumais et al., 1995], for us,
Latent Semantic Analysis (LSA) [Deerwester et al., 1990]. LSA uses Singular Value
Decomposition (SVD) to find the most discriminative features of our data vectors. As
a result, we obtain a representation of our data in a reduced dimensional space in
return for losing part of the information. The similarity matrix is computed using the
Euclidean distance over the dimensionally reduced data.

1 3 2 Taxonomy Based Similarity

The DrugBank database contains two kinds of different taxonomic structures: a set
of fields named ’Classification’ and the ATC Codes7. The taxonomy contains implicit
information about the similarity of the drugs we can use for our purpose. For this
project, we have chosen to use the first one (Classification) to build a graph which is
used to compute the similarity among the drugs. The second graph (ATC Codes) is
used to evaluate the result. The classification field of DrugBank has 5 levels in total,
enumerated from the highest to the lowest:

• Kingdom - Organic or Inorganic

• Classes - drug classes form the major component of the classification system.
Drugs with the same class are considered structurally similar.

The Classes are divided into:

• SuperClass, for example - ”Organic Acids”

• Class, for example - ”Carboxylic Acids and Derivatives”

• SubClass, for example - ”Amino Acids, Peptides, and Analogues”

7The Anatomical Therapeutic Chemical (ATC) Classification System is used for the classification
of active ingredients of drugs according to the organ or system on which they act and their therapeutic,
pharmacological and chemical properties.
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• DirectParent, for example - ”Peptides” (can coincide with SubClass)

In our approach, similarity between drugs is computed using the graph structure
in which they are organized. Thus, it is logically inevitable for us to build a graph
in which the nodes are the drugs and the edges are the relationship between them.
The semantics of our taxonomy has only one sort of relationship: ’is-a’ relationship,
(e.g. Acetaminophen is-a SubClass of Benzenoids, or which is the same, Benzenoids
is-a SuperClass of Acetaminophen).

We have used the classification tag in the Drugbank database to construct 2 trees
of 6 levels (depth equals to 5) which would connect the drugs in the database through
undirected edges. Two different cases were contemplated: unweighted and weighted
graphs. On the one hand, in unweighted graphs all the edges have the same meaning
and value. On the other hand, in weighted graphs the cost of moving from one node
to another is different depending on the level of the taxonomy in which the nodes are.
This is to say, the edges between levels of the taxonomy imply a higher cost than edges
between the same level. The distance between drugs is calculated as a shortest path
distance. For the case of the weighted graph, the higher the level of the closest common
ancestor in the tree, the higher the weight for the distance.

The motivation behind having two trees instead of one is because the drugs belong
to either Organic or Inorganic kingdom, so we have not contemplated the most general
class ’Drug’. Thus, we have decided that the path between those kingdoms should not
exist, because of the very nature of the taxonomy (no or very little information gain).
Additionally, introducing full connectivity (any drug can be reached from any drug in
the database), by adding a common root, drastically increases computation time.

There are three main approaches to compute distances among concepts organized
in a taxonomic structure: path-based (weighted and unweighted), density-based and
information/content-based. In this project, we use the first one in its two forms (when
the graph’s edges are weighted and not).

Specifically, compute the distance between every pair of drugs as the length of the
path between them. In the cases in which there is no path, we set the distance to -1.
There exist several ways of turning those distances into similarities though, we have cho-
sen the method proposed by Leacock and Chodorow [Leacock and Chodorow, 1998].
The Leacock ando Chodorow Simiarily between two nodes of a graph (drugs, in this
case, d1 and d2) is as follows:

Sim(d1, d2) = − log

(
length

2D

)
Where length is the length of the shortest path between the two concepts (using

node-counting) and D is the maximum depth of the taxonomy. Based on this measure,
the shortest path between two concepts of the ontology restricted to taxonomic links is
normalized by introducing a division by the double of the maximum hierarchy depth.

1 3 3 Molecular Structure Based Similarity

Measures of structural similarity play an important role in chemoinformatics for ap-
plications such as similarity searching, database clustering and molecular diversity
analysis.

The importance of structural similarity derives in large part from the Similar
Property Principle, which states that molecules that are structurally similar are likely
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to have similar properties [Johnson and Maggiora, 1990].
The main three elements of any similarity measure based on Molecular Structure

are:

• Representation or Descriptor. It is used to characterize the two molecules
that are being compared. Among all the possible descriptors we use the finger-
prints8.

• Weighting Scheme. It is used to reflect the relative importance of different
parts of the representation. No weights are used in this project.

• Similarity Coefficient. It is used to quantify the degree of resemblance between
two appropriately weighted structural representations. In our case, we use the
Tanimoto (Jaccard) Coefficient.

In our approach, we first calculate the fingerprints of each drug, using the infor-
mation about the Molecular Structure which DrugBank contains. Although molecular
description can be obtained in two or three dimensions, we used 2D fingerprints since
the number of drugs with 3D information is limited in DrugBank and actually, even
thouhg it does make a different, there is not any instance of 3D representation as well
established as the fingerprints in the case of 2D representations [Willett, 2014].

Using the fingerprints, we compute the similarity among all of them using the
Tanimoto Coefficient. The computation of the Tanimoto Coefficient for two binary
vectors (a and b) of length k is defined as:∑k

j=1 aj × bj
(
∑k

j=1 a
2
j +

∑k
j=1 b

2
j −

∑k
j=1 aj × bj)

(1.2)

Another important issue to address, is how to actually represent the Molecular
Structure of a chemical compound so that a computer can process it efficiently.
Normally, the Molecular Structure is represented by well-known methods like: InChi
Key or SMILES. However, we cannot use those sorts of representation to compute
similarity between drugs. A more efficient representation is provided by fingerprints, a
list of binary values (0 or 1) which characterize a molecule. Obviously, the more bits we
use, the more precise the representation is. In this project, we have explored two of the
most well-known types: MACCS [Keys, 2011] and ECFPs [Rogers and Hahn, 2010].

1 3 4 Evaluation

There are two main sorts of evaluation: direct and indirect. On the one hand, a direct
evaluation is the one performed directly over the result you want to study. On the
other hand, an indirect evaluation is the one in which you use the obtained result to
solve a task and then you evaluate the performance of it over the task. Normally,
the ideal evaluation is a direct one, in which the result is compared with a ’golden
standard’. However, it is difficult to evaluate our work since there is not any clear
’golden standard’ to compare our results with.

8A fingerprint is a vector, each element of which describes the presence of one or more substructures
in a molecule, with typical fingerprints containing a few hundred or a few thousand elements, and
with two molecules being considered to be similar if their fingerprints share common values for many
of the constituent elements.
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In this project, we have performed two different evaluations over the computed
similarities:

• Clustering. This is an example of indirect evaluation. We have used the
similarities to cluster the drugs into groups. Then, we study the ATC Code
distribution of those clusters in order to check if our similarity measurements are
good.

• Ground Truth. This evaluation is a small direct evaluation we have done with
a ground truth annotated by experts in the domain. The similarity of a list
of 100 pairs of drugs were annotated by 143 experts. We have taken it from
[Franco et al., 2014] and modified and adapted to our convenience. We compare
the similarity computed for us with the similarity following the experts’s opinion.

Clustering

As said before within the present section, the similarity measurements we have imple-
mented are used to cluster the used drugs. This is meant to have an evaluation method
to measure the quality of the computed similarities.

The type of clustering we are using is Spectral Clustering. Spectral clustering
techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to
perform dimensionality reduction before clustering in fewer dimensions. The similarity
matrix is provided as an input and consists of a quantitative assessment of the relative
similarity of each pair of points in the dataset.

Spectral Clustering needs as input argument the number of clusters. Therefore, we
need to choose that number. Drugs in DrugBank has one unique identifier which is
named: ’Anatomical Therapeutic Chemical (ATC) Classification System’.

The Anatomical Therapeutic Chemical (ATC) Classification System is used for
the classification of active ingredients of drugs according to the organ or system on
which they act and their therapeutic, pharmacological and chemical properties. It is
controlled by the World Health Organization Collaborating Center for Drug Statistics
Methodology (WHOCC), and was published in 1976.

The system has a total of 5 levels, and the code consists of 7 alphanumerical
characters, which can be read in the following way:

• First level: character 0 - for example ’A’

• Second level: characters 1-2, for example - 02

• Third level: character 3 - for example ’C’

• Fourth level: character 4 - for example ’A’

• Fifth level: character 5-6 - for example 04

Although each level has it’s significance, we have decided to focus on the first one of
the system, which determines the anatomical main group and consists of 14 categories,
as shown in the Table 3.3:
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Ground Truth

The external (direct) evaluation consisted of comparing the computed similarities
values with the degree of similarity between 100 pairs of drugs which were annotated by
experts. That annotated data has been taken from [Franco et al., 2014] and modified
and adapted to our convenience.

Specifically, the ground truth was built using the opinion of 143 experts, who
provided Yes/No decisions on a set of 100 DrugBank 3.0 [Knox et al., 2010] molecule-
pairs. Basically, all those experts were asked to answer with Yes/No to the question:
“Are these molecules similar?”. The answers were collected and a distribution of
Yes/No answers was computed. In this project, we use the proportion (percentage) of
’Yes’ answers as degree of similarity. Of course, the reader should note that the experts
were not asked about the degree of similarity.

In order to evaluate how our similarity measures are related to the ground truth
values, we have studied three different aspects:

• Order. We order the pairs by the value of their similarity in both cases, the
list annotated by the experts and the one with our similarity measures. The
correlation between both ordered lists is studied using Kendall’s Tau Correlation.

• Value. The correlation between the value of the two lists (ground truth and
computed in this project) is studied using Pearson’s Correlation.

• Threshold. We have selected a threshold to classify the pairs of drugs into two
different categories: similar and non-similar. If their similarity value is greater
than the threshold, then, the drugs are similar. The threshold we have chosen
is 0.85. The reason is because one of our similarity measures, the Tanimoto
Coefficient, is considered relevant from that value. Then, we compute the
precision and the recall of the classification process.

1 4

Structure of the document

In this document, we have structured all information we have considered relevant
into five chapters. First chapter introduces the main topic of the thesis: semantic
distances/similarity measures between medical entities (drugs, in this case). The
motivation of doing this project and an introduction to the proposed approach are
explained in that chapter. Second chapter is devoted to explain the state of the art
and all the theoretical background we have researched for the development of the
project. Third chapter explains in detail how we have faced the exposed problem and
which is the proposed methodology for each experiment. Fourth chapter shows the
obtained results and their interpretation. Finally, the fifth chapter contains the final
conclusion, contributions and the future lines of work.
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CHAPTER 2

BACKGROUND AND THEORY

In this chapter we talk about the theoretical background related to the thesis. In
order to compute similarity/distance measures between medical entities and evaluate
the results, three main aspects have been researched:

• NLP in the medical domain

• Similarity measurements in NLP

• Clustering (since it is used as evaluation method)

Apart from those topics, we have also included a short section devoted to the
programming tools used within the project.

2 1

Natural Language Processing in the Medical Domain

This section aims to provide useful information on the topic of Medical Data Processing.
Since the topic is huge, the section is, obviously, incomplete, however, it gives a flavor of
the principle aspects of the domain and it serves as a good introduction to the general
framework in which this thesis belongs to.

The section is divided into several subsections. The first one accounts for the tasks
involved. The second subsection presents the issues associated to the tasks. In the next
subsection, we can find the different genres of medical information. Finally, we have a
subsection devoted to the presentation of the resources (both data and processors).

2 1 1 Tasks

In this section we list and explain some relevant NLP tasks which can be found within
the medical domain. Specifically, we have focused on tasks in which distance/similarity
measurements between drugs play a relevant role. Actually, the first explained task
is ’Metrics in Ontologies in the Medical Domain’. The concept of ’tasks’ is referred
here to specific applications in which NLP techniques are used to solve a problem.
Note that we do not talk about final user applications (products), that would be for
us named as ’systems’. In some of the references we provide along this section, the
authors implement complete systems which are based on solving one or several tasks
we expose.
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Metrics in Ontologies in the Medical Domain

With a wide range of research topics, such as Drug Discovery [Hauser et al., 2017,
Moffat et al., 2017], Drug Targets [Overington et al., 2006, Santos et al., 2017] and
Drug Interaction [Melnikov and Vorobkalov, 2014, Yi et al., 2017], it is not difficult to
imagine that detecting the underlying patterns of the functioning of the human body
with different drugs can have a wide specter of applications. An example of such as
application could be detecting the area of the body where one drug has an impact and
explore the possible correlations, as well as detecting different drugs that affect the
same organs or organ systems. For performing such tasks an initial pre-requirement
is disposing of appropriate metrics over the underground ontologies. A paradigmatic
case is DrugBank.

This is totally aligned to the task we try to address in this thesis. Several similarity
measurements are implemented to be used as metrics over the DrugBank database.

DrugBank is not the only ontology for which distance or similarity measures
should/could be defined. Metrics over disease databases (ICD-9, ICD-10 coding),
anatomical terms (Gray’s coding, ATC), generic Medical Terms (SNOMED-CT, MeSH,
UMLS, etc.). Some of those resources are explained in detail in Section 2.1.4.

Clinical Decision Support (CDS)

Computerized clinical decision support (CDS) aims to aid decision making of health
care providers and the public by providing easily accessible health-related information
at the point and time it is needed [Demner-Fushman et al., 2009]. NLP is instrumental
in using free-text information to drive CDS, representing clinical knowledge and CDS
interventions in standardized formats, and leveraging clinical narrative. The goal of
clinical decision support (CDS) is to ’help’ health professionals make clinical decisions,
deal with medical data about patients or with the knowledge of medicine necessary to
interpret such data.

The benefits of this topic are obvious, thus, it is a quite active research line
[Roberts et al., 2015, Roberts et al., 2016, Goodwin and Harabagiu, 2016, Ran et al., 2017].

Medical Question Answering (MQA)

MQA is a concrete instance of Question Answering (QA), which is a computer science
discipline within the fields of information retrieval and NLP. The task here is to
automatically answer questions proposed by humans in natural language.

A QA implementation, usually a computer program, may construct its answers
by querying a structured database of knowledge or information, usually a knowledge
base. More commonly, QA systems can pull answers from an unstructured collection
of natural language documents.

Questions occurring in clinical situations could pertain to:

• Information on particular patients

• Data on health and sickness within the local population

• Medical knowledge

• Local information on doctors available for referral

• Information on local social influences and expectation
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• Information on scientific, political, legal, social, management, and ethical changes
affecting both how medicine is practiced and how doctors interact with individual
patients

Some questions do not need NLP and can be answered directly by a known
resource. Questions about particular patients are currently answered by manu-
ally browsing or searching the Electronic Health Record (EHR). Answering these
questions can be facilitated by summarization (which requires NLP if informa-
tion is extracted from free-text fields) and visualization tools. Facilitating access
to medical knowledge by providing answers to clinical questions is an area of ac-
tive NLP research [Goodwin and Harabagiu, 2016, Goodwin and Harabagiu, 2017,
Zhang et al., 2017]. This sort of task can be embedded inside QA systems, whose
goal is to satisfy medical knowledge questions providing answers in the form of short
action items supported by strong evidence.

Finding Patterns in Annotation graphs

Biological knowledge is increasingly being represented using graphs, e.g., protein
interactions, metabolic pathways, gene regulation, gene annotation, etc. This graph
representation of medical entities and their relations is used for knowledge discovering.

One way of using this information is the location, extraction, normalization and
generalization of patterns of entities, relations, and events occurring in clinical narra-
tives. [Benik et al., 2012b], for instance, exploit the NCI Thesaurus1 for extracting
meaningful patterns. [Benik et al., 2012a] use Annotation graphs (see next use case,
12.1.18) with a tool, PAnG (Patterns in Annotation Graphs), that is based on a com-
plementary methodology of graph summarization and dense subgraphs. The elements
of a graph summary correspond to a pattern and its visualization can provide an ex-
planation of the underlying knowledge. The paper presents and analyzes two distance
metrics to identify related concepts in ontologies.

This task is currently a branch of research which actually has captured the attention
of many researchers [Palma et al., 2014, Grover and Leskovec, 2016, Galkin et al., 2017,
Singh et al., 2017] since it has plenty of applications embedded in different systems.

Relation Extraction in the Medical Domain

Once semantically tagged, the obvious extension of processing over clinical documents
consists of detecting meaningful relations between the tagged entities. A wide variety
of relations exist and are relevant to be detected and extracted. For instance, in the
genre of radiology reports, we could be interested on detecting a relation between a
clinical finding and a body part or between an affected body part and an anchoring
body part.

In Electronic Health Records (EHR) reports, we could be interested on a relation
between a disease and body part, between a drug and a disease, between a drug and
a dose, between a disease and a procedure, between a drug and a commercial brand
denomination, and many other relations.

In the Semeval-2013 task 9 [Segura-Bedmar et al., 2014], focusing on drug-drug
interaction (DDI), one of the challenges consisted of extraction of Drug-Drug inter-

1NCI Thesaurus covers vocabulary for cancer-related clinical care, translational
and basic research, and public information and administrative activities. Webpage:
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NCI/. Last visit: April 2018.
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actions. Several types of such interactions can be considered: reinforcement, adverse
effect, combination, etc.

Many approaches can be used for the task:

• Rule based

• Supervised Machine Learning

• Semi-supervised Machine Learning

• Unsupervised Machine Learning

• Clustering

Processing radiology reports

Radiology reports are probably the most studied type of clinical narrative, thus, it
is an active branch of research in NLP, [Pons et al., 2016, Campos et al., 2017]. As
a matter of fact, even experts from the medical domain (doctors) are exploring the
potential of the use of Machine Learning techniques (including NLP) in tasks related
to radiology [Lakhani et al., 2018]. This extremely important source of clinical data
provides information not otherwise available in the coded data and allows performing
tasks from coding of the findings and impressions, to detection of imaging technique
suggested for follow up or repeated examinations, to bio-surveillance.

Radiology reports contains not only terminology from the Medical domain but also
from the domain of imaging and graphical software. As narrative is related to images
many special references can occur as well as challenging forms of anaphora.

Types of Radiology Reports include:

• Computed Tomography (CT)

– CT Angiography (CTA)

– CT Venography (CTV)

Automatic extraction of clinical trial characteristics from medical literature

Clinical trials are one of the most important sources of evidence for guiding evidence-
based practice and the design of new trials. However, most of this information is
available only in free text - e.g., in journal publications - which is labor intensive to
process for systematic reviews, meta-analyses, and other evidence synthesis studies.

[Milian et al., 2013] face the problem of extracting eligibility criteria. Since eligibil-
ity criteria of clinical trials are represented as free text, their automatic interpretation
and the evaluation of patient eligibility is challenging.

[Dunn et al., 2018] evaluated the use of document similarity methods to identify
unreported links between ClinicalTrials.gov and PubMed. They extracted terms and
concepts from a dataset of 72,469 ClinicalTrials.gov registrations and 276,307 PubMed
articles, and tested methods for ranking articles across 16,005 reported links and 90
manually-identified unreported links. Distance measures used were Euclidean distance,
cosine , and Jaccard.
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Others

Of course, there are plenty of tasks within this domain, so we cannot cover all of them.
We have explained in detail those we have considered more relevant nowadays or more
related to our work. Some other examples of tasks are listed below:

• Representing clinical knowledge and CDS interventions in standardized formats

• Developing specific NLP processors for the Medical domain

• Clinical events monitoring

• Timeline extraction from clinical reports

• Clinical data and evidence summarization for clinicians and/or patients

• Management of patients’ narratives for diagnostic and prognostic purposes

2 1 2 Issues on Processing Medical Texts

Processing Medical Texts presents several issues which are not easy to tackle. In this
section, we cite and analyze just some instances of those issues among all possible
which could exist:

• Difficulties in finding medical (chemical) named entities [Krallinger et al., 2015]:

– The official IUPAC nomenclature guidelines are only partially followed in
practice in the literature.

– Chemical compounds/drugs often have many synonyms or aliases (e.g.
systematic names, trivial names and abbreviations referring to the same
entity).

– Existence of hybrid chemical mentions (e.g. mentions that are partially
systematic and trivial).

– Chemical compounds are ambiguous with respect to other entities or terms
(in particular abbreviations and short formula).

– Existence of naming variation: typographical variants (alternating uses of
hyphens, brackets, spacing, etc.) and alternative word order.

– New chemical compound are discovered and described in papers every day
(novel chemical names).

– Definition of both chemical entity mention boundaries and word tokenization
is complicated.

• Drug-Drug similarity. Consider the following example relevant to a group of
monoclonal antibodies (mab) drugs. Ranibizumab and Bevacizumab belong to
this group as their suffix “mab” points out.

• Incidental findings, i.e. asymptomatic lesions that are discovered through routine
radiography.
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2 1 3 Genres

• Electronic Medical/Health Records. [Vasiljeva and Arandelovic, 2016,
Vasiljeva and Arandjelović, 2017] Electronic Health Record (EHR), or electronic
medical record (EMR), is the systematized collection of patient and population
electronically-stored health information in a digital format. EHRs may include
a range of data, including demographics, medical history, medication and aller-
gies, immunization status, laboratory test results, radiology images, vital signs,
personal statistics like age and weight, and billing information.

• Medical books and articles. This sort of documents are usually formal and
contain a lot of concrete vocabulary, which might be a difficulty for a NLP system.

• Social media. [Beykikhoshk et al., 2015, Nikfarjam et al., 2015, Pierce et al., 2017]
Medical domain is a hot topic on the Internet, one can find plenty of forums, blogs
and unofficial sources of information related to this domain.

• Wikipedia pages. Wikipedia is a huge source of information for any domain,
including the medical domain.

• Taxonomies. Some resources organize drugs into a taxonomy which can be eas-
ily translated into similarity measurement by knowing the paths (relationships)
among the the drugs. DrugBank, the resource used within this project, has two
different taxonomies: one based on the relation IS-A and another one based on
the ATC Codes2.

• Prospects. Again, a textual document containing information potentially useful
to compute the similarity.

• Clinical trials. [Arandjelović, 2015, Arandjelović, 2017] Clinical trials are ex-
periments or observations done in clinical research. Such prospective biomedical
or behavioral research studies on human participants are designed to answer
specific questions about biomedical or behavioral interventions, including new
treatments (such as novel vaccines, drugs, dietary choices, dietary supplements,
and medical devices) and known interventions that warrant further study and
comparison.

2 1 4 Resources

There exists a colossal amount of resources (data and processors) within the medical
domain. We devote this section to the explanation of some of them we have considered
relevant enough or somehow related to the work done in this thesis.

DBpedia

DBpedia3 (from ’DB’ for ’database’) is a project aiming to extract structured content
from the information created in the Wikipedia project. This structured information is
made available on the World Wide Web. DBpedia allows users to semantically query

2The Anatomical Therapeutic Chemical (ATC) Classification System is used for the classification
of active ingredients of drugs according to the organ or system on which they act and their therapeutic,
pharmacological and chemical properties.

3http://wiki.dbpedia.org. Last visit: April 2018.
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relationships and properties of Wikipedia resources (e.g. medical resources), including
links to other related datasets. Tim Berners-Lee described DBpedia as one of the most
famous parts of the decentralized Linked Data effort.

BioPortal

BioPortal4 [Whetzel et al., 2011] the world’s most comprehensive repository of
biomedical ontologies. It provides access to commonly used biomedical ontologies and
to tools for working with them. BioPortal allows you to:

• Browse the library of ontologies

• Search for a term across multiple ontologies

• Browse mappings between terms in different ontologies

• Receive recommendations on which ontologies are most relevant for a corpus

• Annotate text with terms from ontologies

• Search biomedical resources for a term

• Browse a selection of projects that use BioPortal resources

More than 300 ontologies are currently included allowing a federated access to their
content through a sparql endpoint [Salvadores et al., 2012]. All information available
through the BioPortal Web site is also available through the NCBO Web service REST
API5.

WordNet

WordNet6 is a large lexical database of English. Nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct
concept. Synsets are interlinked by means of conceptual-semantic and lexical relations.
The resulting network of meaningfully related words and concepts can be navigated
with the browser (link is external). WordNet is also freely and publicly available for
download. WordNet’s structure makes it a useful tool for computational linguistics
and NLP.

Eben though WordNet is a general purpose resource, we have included it here
because we consider it one of the most used resources in NLP. Furthermore, there are
several Medical related words included within WordNet.

PubMed

PubMed7 is a free search engine accessing primarily the MEDLINE database of refer-
ences and abstracts on life sciences and biomedical topics. The United States National
Library of Medicine (NLM) at the National Institutes of Health maintains the database
as part of the Entrez system of information retrieval.

From 1971 to 1997, MEDLINE online access to the MEDLARS Online computerized
database primarily had been through institutional facilities, such as university libraries.

4https://bioportal.bioontology.org. Last visit: April 2018.
5http://data.bioontology.org/documentation. Last visit: April 2018.
6https://wordnet.princeton.edu. Last visit: April 2018.
7https://www.ncbi.nlm.nih.gov/pubmed/. Last visit: April 2018.
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PubMed, first released in January 1996, ushered in the era of private, free, home- and
office-based MEDLINE searching. The PubMed system was offered free to the public
in June 1997, when MEDLINE searches via the Web were demonstrated, in a ceremony,
by US Vice President Al Gore.

Medline

MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS
Online) is a bibliographic database of life sciences and biomedical information. It in-
cludes bibliographic information for articles from academic journals covering medicine,
nursing, pharmacy, dentistry, veterinary medicine, and health care. MEDLINE also
covers much of the literature in biology and biochemistry, as well as fields such as
molecular evolution.

Compiled by the United States National Library of Medicine (NLM), MEDLINE
is freely available on the Internet and searchable via PubMed and NLM’s National
Center for Biotechnology Information’s Entrez system.

DrugBank

DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed
drug (i.e. chemical) data with comprehensive drug target (i.e. protein) information
[Wishart et al., 2006]. Specifically, we have used the latest release, DrugBank 5.0
[Wishart et al., 2017].

The latest release of DrugBank (version 5.0.11, released 2017-12-20) contains 11,002
drug entries including 2,503 approved small molecule drugs, 943 approved biotech (pro-
tein/peptide) drugs, 109 nutraceuticals and over 5,110 experimental drugs. Addition-
ally, 4,910 non-redundant protein (i.e. drug target/enzyme/transporter/carrier) se-
quences are linked to these drug entries. Each DrugCard entry contains more than 200
data fields with half of the information being devoted to drug/chemical data and the
other half devoted to drug target or protein data.

It is the main resource utilized in our work. In the section 3.1 there is a complete
section devoted to DrugBank, as well as a brief discussion why we have chosen it instead
of others. We can advance now that the main reason is that DrugBank is the most
complete database about drugs which there exists nowadays.

SnoMed CT

SNOMED CT8 or SNOMED Clinical Terms is a systematically organized computer
processable collection of medical terms providing codes, terms, synonyms and defini-
tions used in clinical documentation and reporting. SNOMED CT is considered to
be the most comprehensive, multilingual clinical healthcare terminology in the world
[Donnelly, 2006]. The primary purpose of SNOMED CT is to encode the meanings
that are used in health information and to support the effective clinical recording of
data with the aim of improving patient care. SNOMED CT provides the core general
terminology for electronic health records. SNOMED CT comprehensive coverage in-
cludes: clinical findings, symptoms, diagnoses, procedures, body structures, organisms
and other etiologies, substances, pharmaceuticals, devices and specimens.

8https://www.nlm.nih.gov/healthit/snomedct/index.html. Last visit: April 2018
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UMLS

The UMLS9 [Bodenreider, 2004], or Unified Medical Language System, is a set of
files and software that brings together many health and biomedical vocabularies and
standards to enable interoperability between computer systems.

You can use the UMLS to enhance or develop applications, such as electronic health
records, classification tools, dictionaries and language translators.

One powerful use of the UMLS is linking health information, medical terms, drug
names, and billing codes across different computer systems. Some examples of this are:

• Linking terms and codes between your doctor, your pharmacy, and your insurance
company

• Patient care coordination among several departments within a hospital

The UMLS has many other uses, including search engine retrieval, data mining,
public health statistics reporting, and terminology research. UMLS contains a unique
identifier, Concept Unique Identifier (CUI), which is frequently used as the facto
standard identifier.

MeSH

Medical Subject Headings (MeSH) [Head-ingB, 1965] is a comprehensive controlled
vocabulary for the purpose of indexing journal articles and books in the life sciences;
it serves as a thesaurus that facilitates searching. Created and updated by the United
States National Library of Medicine (NLM), it is used by the MEDLINE/PubMed
article database and by NLM’s catalog of book holdings. MeSH is also used by
ClinicalTrials.gov registry to classify which diseases are studied by trials registered
in ClinicalTrials.gov.

MeSH was introduced in 1960, with the NLM’s own index catalogue and the subject
headings of the Quarterly Cumulative Index Medicus (1940 edition) as precursors. The
yearly printed version of MeSH was discontinued in 2007 and MeSH is now available
online only. It can be browsed and downloaded free of charge through PubMed.
Originally in English, MeSH has been translated into numerous other languages and
allows retrieval of documents from different languages.

NCI Thesaurus

The NCI Metathesaurus is product of the US National Cancer Institute’s Enterprise
Vocabulary Service10, a collaborative effort of the NCI Center for Bioinformatics and
the NCI Office of Communications. The NCI Metathesaurus is based on NLM’s Unified
Medical Language System Metathesaurus supplemented with additional cancer-centric
vocabulary.

The public version of the NCI Metathesaurus currently contains all public domain
vocabularies from the National Library of Medicine’s UMLS Metathesaurus, as well
as a growing number of NCI-specific vocabularies developed by the National Cancer
Institute.

9https://www.nlm.nih.gov/research/umls/. Last visit: April 2018.
10https://ncit.nci.nih.gov/ncitbrowser/. Last visit: April 2018.
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BioScope corpus

BioScope11 contains biomedical texts annotated for uncertainty, negation and their
scopes. The corpus [Vincze et al., 2008] consists of three parts, namely medical free
texts, biological full papers and biological scientific abstracts. The dataset contains
annotations at the token level for negative and speculative keywords and at the
sentence level for their linguistic scope. The annotation process was carried out by
two independent linguist annotators and a chief linguist – also responsible for setting
up the annotation guidelines – who resolved cases where the annotators disagreed.
The resulting corpus consists of more than 20.000 sentences that were considered for
annotation and over 10% of them actually contain one (or more) linguistic annotation
suggesting negation or uncertainty.

Foundational Model of Anatomy Ontology

The Foundational Model of Anatomy Ontology (FMA12) [Rosse and Mejino, 2008]
is an evolving computer-based knowledge source for biomedical informatics; it is
concerned with the representation of classes or types and relationships necessary for
the symbolic representation of the phenotypic structure of the human body in a form
that is understandable to humans and is also navigable, parseable and interpretable by
machine-based systems. Specifically, the FMA is a domain ontology that represents a
coherent body of explicit declarative knowledge about human anatomy. Its ontological
framework can be applied and extended to all other species.

The Foundational Model of Anatomy (FMA) ontology is one of the information
resources integrated in the distributed framework of the Anatomy Information System
developed and maintained by the Structural Informatics Group at the University of
Washington. The FMA is open source.

2 2

Similarity Measurements In Natural Language Processing

In statistics and related fields, a similarity measure or similarity function is a real-
valued function that quantifies the similarity between two objects. Although no single
definition of a similarity measure exists, usually such measures are in some sense the
inverse of distance metrics: they take on large values for similar objects and either zero
or a negative value for very dissimilar objects.

The concept of similarity is also related to other concepts like: proximity, affinity,
distance, difference or divergence. Whenever we see any of those concepts, we will be
talking about the same: how close (and far) are two or more entities.

2 2 1 Distance vs Similarity

As stated above, there is not a clear definition of similarity, so normally, it is computed
as the inverse of distance metrics. Some simple methods to compute similarity from
a distance are shown in 2.2.1 and 2.2.1. The expression 2.2.1 is really simple but it
makes sense only if the Distance is normalized from 0 to 1. The formula 2.2.1 is more
general and could be used with other distances (e.g. simple Euclidean).

11Website: http://rgai.inf.u-szeged.hu/index.php?lang=en&page=bioscope. Last visit: April 2018.
12Visit http://si.washington.edu/projects/fma. Last visit: April 2018.
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S(x, y) = 1−D(x, y) (2.1)

S(x, y) =
1

1 +D(x, y)
(2.2)

We could think about the question: ’why would we use similarity if there is not
a proper definition?’. There are some benefits of using Similarity instead of Distance
since the Distance can only be used when some metric properties hold (see 2.2.1).

Definition 2.2.1. Metric Properties Constrains to be hold in the case of using a
Distance measure (D).

• ∀x : D(x, x) 6= 0

• ∀x, y : D(x, y) ≥ 0 when x 6= y

• ∀x, y : D(x, y) = D(y, x) (Symmetry)

• ∀x, y, z : S(x, y) + S(y, z) ≤ S(x, z) (Triangular Inequality)

On the other hand, similarity can be used in more general cases:

• Function: sim : A × B → S (where S is often [0, 1])

• Homogeneous: sim : A × A → S (e.g. word-to-word)

• Heterogeneous: sim : A × B → S (e.g. word-to-document)

• Not necessarily symmetric, or holding triangular inequality.

2 2 2 Applications

The range of possible applications of similarity in the NLP domain id wide. In this
section we just list some of them in order to give a flavor of it.

• Clustering, case-based reasoning, Information Retrieval, etc.

• Discovering related words - Distributional similarity

• Resolving syntactic ambiguity - Taxonomic similarity

• Resolving semantic ambiguity - Ontological similarity

• Acquiring selectional restrictions/preferences

• Others
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2 2 3 Relevant Information

In order to compute a similarity measure, it is necessary to know the problem we try
to tackle. Three main aspects have been identified:

• Content or information about compared units:

– Words: form, morphology, Part of Speech (PoS), ...

– Senses: synset, topic, domain, ...

– Syntax: parse trees, syntactic roles, ...

– Documents: words, collocations, Name Entities (NEs), ...

• Context or information about the situation in which the similarity is computed.
For instance, we could have Window-based vs. Syntactic-based.

• External Knowledge: Monolingual/bilingual dictionaries, ontologies, corpora,
etc.

2 2 4 A suit of methods and similarities

In this section, we analyze several methods and similarities which can be used in NLP.
Note that some of them are just general purpose measurements and the use of them
in the NLP domain rely upon a proper representation of the units. For instance,
sometimes, we need to represent our units (which can be words) as vectors.

Vectorial Methods

This sort of methods can be used when our data has been represented in a vectorial
space (units are vectors), where the distances exposed below make sense. Representing
linguistic units as vectors (both, large dimensional or sparse vectors and low dimen-
sional or dense vectors) is an active area of research [Bowman et al., 2017]. All meth-
ods explained in this section are distances, in order to compute similarities from them,
it is possible to use the formula 2.2.1. In the following definitions, xi and yi are the
two vectors representing our units (e.g. vectors representing words, texts, etc.) and N
is the length of those vectors.

• Manhattan Distance (L 1 Norm). D(~x, ~y) =
∑N

i=1 |xi − yi|

• Euclidean Distance (L 2 Norm). D(~x, ~y) = |~x− ~y| =
√∑N

i=1 |xi − yi|

• Cosine Distance. D(~x, ~y) = ~x·~y
|~x|·|~y| =

∑N
i=1 xiyi√∑N

i=1 x
2
i ·
√∑N

i=1 y
2
i

• Camberra Distance. D(~x, ~y) =
∑N

i=1
xi−yi
xi+yi

• Chebychev Distance. D(~x, ~y) = max|xi − yi|, i = [1, n]
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Set-oriented Methods

In this case, we also have a specific representation for our units, binary-valued vectors.
The similarities are computed considering the values which agree in those boolean
vectors. All methods showed in this section have values in [0,1], so we could compute
the Distance as: D = 1 − S, where D is the distance and S is the similarity. In the
following expressions, X and Y are binary vectors which represent our data (e.g. words,
text, etc.).

• Dice. S(X, Y ) = 2·|X
⋂
Y |

|X|+|Y |

• Jaccard (Tanimoto). S(X, Y ) = |X
⋂
Y |

|X
⋃
Y |

• Overlap. S(X, Y ) = |X
⋂
Y |

min(|X|,|Y |)

• Cosine. S(X, Y ) = |X
⋂
Y |√

|X|·|Y |

Distributional Similarity

It is a particular case of vectorial method, where the attributes of the vectors are
probability distributions computed over the context of the linguistic unit. Some
examples of this sort of similarity are: Relative Entropy and Mutual Information.

Semantic Similarity

Consist of the projection of words to a semantic space (concepts) where the similari-
ties/distances are computed. It is not a straightforward task because of several reasons.
On the one hand, it is not straightforward to project words, since semantic space is
composed of concepts, and a word may map to more than one concept. On the other
hand, it is not obvious how to compute distance in the semantic space.

Instances of semantic spaces are Ontologies (WordNet, SUMO, etc.) or Graph-like
Knowledge Bases (Wikipedia).

Ready to go similarities: WordNet

WordNet provides several similarity measures already computed among all the words
contained inside the database. Some of them are available through the WordNet’s
accessor implemented in the Python library ’nltk’, a complete library with NLP tools.

2 3

Clustering

Clustering is the basis of one part of our evaluation framework. Cluster analysis or
clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense, we need a similarity measure)
to each other than to those in other groups (clusters). It is a main task of exploratory
data mining, and a common technique for statistical data analysis, used in many fields,
including machine learning, pattern recognition, image analysis, information retrieval,
bioinformatics, data compression, and computer graphics.

The assignment of objects to clusters can be: hard or soft. On the one hand, an
assignment is hard when we assign one cluster per object. On the other hand, we say
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that the assignment is soft when there is a degree of membership, thus, one same object
can belong to several clusters with a specific probability.

Each cluster has a representative, which is named as Centroid, its definition is as
follows:

~µ =
1

|c|
∑
~xεc

~x (2.3)

where c is the number of clusters and ~x is the vectorial representation of each object.
Note that the Centroid is artificially computed from the members of the cluster (it is
not a member). The Medoid is the analogue concept but with the restriction of actually
being a member of the cluster. Meaning, the Medoid is the closest member to the rest
of members of a cluster.

Cluster analysis itself is not one specific algorithm, but the general task to be
solved. It can be achieved by various algorithms that differ significantly in their notion
of what constitutes a cluster and how to efficiently find them. Popular notions of
clusters include groups with small distances between cluster members, dense areas of
the data space, intervals or particular statistical distributions. Clustering can therefore
be formulated as a multi-objective optimization problem. The appropriate clustering
algorithm and parameter settings (including parameters such as the distance function
to use, a density threshold or the number of expected clusters) depend on the individual
data set and intended use of the results. Cluster analysis as such is not an automatic
task, but an iterative process of knowledge discovery or interactive multi-objective
optimization that involves trial and failure. It is often necessary to modify data
preprocessing and model parameters until the result achieves the desired properties.

In Section 2.4, we present a list of possible clustering algorithms which are already
implemented within one Python library which is used in this thesis.

2 3 1 Cluster Models

The notion of a ’cluster’ cannot be precisely defined, which is one of the reasons why
there are so many clustering algorithms. There is a common denominator: a group
of data objects. However, different researchers employ different cluster models, and
for each of these cluster models again different algorithms can be given. The notion
of a cluster, as found by different algorithms, varies significantly in its properties.
Understanding these ’cluster models’ is key to understanding the differences between
the various algorithms. Typical cluster models include:

• Connectivity models: for example, hierarchical clustering builds models based on
distance connectivity.

• Centroid models: for example, the k-means algorithm represents each cluster by
a single mean vector.

• Distribution models: clusters are modeled using statistical distributions, such
as multivariate normal distributions used by the expectation-maximization algo-
rithm.

• Density models: for example, DBSCAN and OPTICS defines clusters as con-
nected dense regions in the data space.
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• Subspace models: in biclustering (also known as co-clustering or two-mode-
clustering), clusters are modeled with both cluster members and relevant at-
tributes.

• Group models: some algorithms do not provide a refined model for their results
and just provide the grouping information.

• Graph-based models: a clique, that is, a subset of nodes in a graph such that
every two nodes in the subset are connected by an edge can be considered
as a prototypical form of cluster. Relaxations of the complete connectivity
requirement (a fraction of the edges can be missing) are known as quasi-cliques,
as in the HCS clustering algorithm.

• Neural models: the most well known unsupervised neural network is the self-
organizing map and these models can usually be characterized as similar to one or
more of the above models, and including subspace models when neural networks
implement a form of Principal Component Analysis or Independent Component
Analysis.

2 3 2 Cluster Similarity

As it is stated before, in order to group objects into clusters, it is necessary to
use a measure of closeness among those objects. Therefore, we need to compute a
similarity/distance measure. Any of the similarity and/or distances metrics we have
explained within the Section 2.2 could be used.

2 3 3 Clustering Algorithms

Clustering algorithms can be categorized based on their cluster model, as listed above,
or based on the structure they produce. In this section, we show two main groups of
algorithms based on the structure among the objects of the produced clusters.

Hierarchical Clustering

Connectivity-based clustering, also known as hierarchical clustering, is based on the
core idea of objects being more related to nearby objects than to objects farther away.
These algorithms connect ’objects’ to form ’clusters’ based on their distance. A cluster
can be described largely by the maximum distance needed to connect parts of the
cluster. At different distances, different clusters will form, which can be represented
using a dendrogram, which explains where the common name ’hierarchical clustering’
comes from: these algorithms do not provide a single partitioning of the data set, but
instead provide an extensive hierarchy of clusters that merge with each other at certain
distances. In a dendrogram, the y-axis marks the distance at which the clusters merge,
while the objects are placed along the x-axis such that the clusters don’t mix.

There are two different types of hierarchical clustering:

• Bottom-up. Also named ’Aglomerative Clustering’, it is based on merge objects
to form the clusters. At the initial state, every object is a cluster, then we group
the most similar iteratively until a degree of satisfaction is reached.
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• Top-Down. In this case we address the problem in the contrary direction, we
start with a unique cluster. Then, an iterative process of division form new
clusters until a degree of satisfaction is reached. This technique receives also the
name of ’Divisive Clustering’.

Apart from the usual choice of distance functions, the user of this algorithm also
needs to decide on the linkage criterion (since a cluster consists of multiple objects,
there are multiple candidates to compute the distance) to use. Popular choices are
known as single-linkage clustering (the minimum of object distances), complete linkage
clustering (the maximum of object distances) or UPGMA (’Unweighted Pair Group
Method with Arithmetic Mean’, also known as average linkage clustering).

• Single link. In single-link clustering or single-linkage clustering , the similarity
of two clusters is the similarity of their most similar members. This single-link
merge criterion is local. We pay attention solely to the area where the two
clusters come closest to each other. Other, more distant parts of the cluster and
the clusters’ overall structure are not taken into account. Thus, we obtain local
coherence, since close objects are clustered in the same group). However, we
also obtain elongated clusters because of the local nature of the criterion. Since
the merge criterion is strictly local, a chain of points can be extended for long
distances without regard to the overall shape of the emerging cluster. This is
know as chaining effect.

• Complete link. In complete-link clustering or complete-linkage clustering,
the similarity of two clusters is the similarity of their least similar members.
This is equivalent to choosing the cluster pair whose merge has the smallest
diameter. This complete-link merge criterion is non-local; the entire structure
of the clustering can influence merge decisions. This results in a preference for
compact clusters with small diameters over long, straggly clusters, but also causes
sensitivity to outliers. A single object far from the center can increase diameters of
candidate merge clusters dramatically and completely change the final clustering.

• UPGMA. Unweighted Pair Group Method with Arithmetic Mean. The UP-
GMA algorithm constructs a rooted tree (dendrogram13) that reflects the struc-
ture present in a pairwise similarity matrix (or a dissimilarity matrix). At each
step, the nearest two clusters are combined into a higher-level cluster. The dis-
tance between any two clusters A and B is taken to be the average of all distances
d(x, y) between pairs of objects x in A and y in B, that is, the mean distance
between elements of each cluster:

1

|A| · |B|
∑
xεA

∑
yεB

d(x, y) (2.4)

In this method there is a trade-off between global coherence and efficiency.

13Dendogram is a tree diagram frequently used to illustrate the arrangement of the clusters produced
by hierarchical clustering.
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Non-hierarchical Clustering

In this type of clustering there is not a hierarchy between the objects. Within this
group, we can find a large list of algorithms, depending on the foundation in which
they are based to cluster the objects. Two relevant groups are listed below, however,
the reader should notice that there exist much more sorts of algorithms.

All these sorts of clusterings have the following three steps:

1. Initial partition of the set in clusters based on random seeds.

2. Iteratively refine the partition by means of reallocating objects.

3. Stop when the cluster quality does not improve further. The cluster quality can
be: group average similarity, mutual information between adjacent clusters or
likelihood of data given a cluster model, among others.

• Centroid-based Clustering. In centroid-based clustering, clusters are repre-
sented by a central vector, which may not necessarily be a member of the data
set. One of the most well known methods is K-means [MacQueen et al., 1967].
When the number of clusters is fixed to k, k-means clustering gives a formal
definition as an optimization problem: find the k cluster centers and assign the
objects to the nearest cluster center, such that the squared distances from the
cluster are minimized.

• Distribution-based Clustering. The clustering model most closely related to
statistics is based on distribution models. Clusters can then easily be defined as
objects belonging most likely to the same distribution. A convenient property
of this approach is that this closely resembles the way artificial data sets are
generated: by sampling random objects from a distribution. A good example is
the Clustering based on the Expectation Maximization Algorithm [Moon, 1996].

2 3 4 Clustering Evaluation

This section is devoted to show some approaches commonly used to evaluate the
performance of a clustering and indirectly, of the similarity measure used for the
clustering process. There are several techniques but all of them can be included into
two groups: internal and external evaluations.

Internal Evaluation

Evaluations which can be done without the need of other external resources. The
performance of the clustering is evaluated based on the data that was clustered itself.

Internal evaluation methods usually assign the best score to the algorithm that
produces high intra-cluster similarity and low inter-cluster similarity, that is to say,
clusters with high similarity between their own objects and low similarity between
all clusters. One drawback of using internal criteria in clustering evaluation is that
high scores on an internal measure do not necessarily result in effective information
retrieval applications. Additionally, this evaluation is biased towards algorithms that
use the same cluster model. For example, k-means clustering naturally optimizes
object distances, and a distance-based internal criterion will likely overrate the resulting
clustering.

Somme cluster quality measures: coherence, average internal distance, average
external distance, etc.
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External Evaluation

This is the case when a gold standard is available. Meaning, we have an external
resource which can be compared to the clustering result. An example of this is to have
a set of clusters manually annotated by experts or stemming from a well established
classification.

In those cases, we can compute several cluster quality measurements. Maybe the
most well-known is the metrics of Purity 2.5 and Inverse Purity 2.6.

P =
1

|D|
∑
c

maxx|c
⋂

x| (2.5)

IP =
1

|D|
∑
x

maxc|c
⋂

x| (2.6)

2 4

Programming Tools

The code implementation of this work has been done in Python14, specifically, Python
3.6. Python is an interpreted high-level programming language for general-purpose
programming. Created by Guido van Rossum and first released in 1991, Python
has a design philosophy that emphasizes code readability, notably using significant
whitespace. It provides constructs that enable clear programming on both small and
large scales.

Python features a dynamic type system and automatic memory management.
It supports multiple programming paradigms, including object-oriented, imperative,
functional and procedural, and has a large and comprehensive standard library.

Python provides several tools for Artificial Intelligence tasks. In this section, we
analyze some of the specific purpose libraries and tools we have used within this project.
Please, note that we have used several libraries, but some of them are the common
libraries included in Python, thus, we do not explain them.

2 4 1 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create
and share documents that contain live code, equations, visualizations and narrative
text. Uses include: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

The code implemented in this project, includes three notebooks, apart from the
classes and other support codes. The notebooks present the implementation and use of
each of the similarity measures we have developed. In there, we not only program but
also explain the steps of our implementation, thus, the notebooks are a good resource
for anyone who would be interested in the work performed in this thesis.

2 4 2 Libraries

As stated before, Python includes several libraries and tools which help you to develop
more powerful codes. In this section, we analyze some of them which have been used

14https://python.org. Last visit: April 2018.
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in the thesis.

NumPy

NumPy15 is the fundamental package for scientific computing with Python. It contains
among other things:

• a powerful N-dimensional array object

• sophisticated (broadcasting) functions

• tools for integrating C/C++ and Fortran code

• useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-
dimensional container of generic data. Arbitrary data-types can be defined. This allows
NumPy to seamlessly and speedily integrate with a wide variety of databases.

SciPy

SciPy16 is an open-source Python library used for scientific computing and technical
computing. It contains modules for optimization, linear algebra, integration, interpo-
lation, special functions, FFT, signal and image processing, ODE solvers and other
tasks common in science and engineering.

SciPy builds on the NumPy array object and is part of the NumPy stack which
includes tools like Matplotlib, pandas and SymPy, and an expanding set of scientific
computing libraries.

Scikit-learn

Scikit-learn17 (formerly scikits.learn) is a free software machine learning library for
the Python programming language. It features various classification, regression and
clustering algorithms including support vector machines, random forests, gradient
boosting, k-means, spectral clustering and DBSCAN, and is designed to interoperate
with the Python numerical and scientific libraries NumPy and SciPy.

NLTK

NLTK18 is a leading platform for building Python programs to work with human lan-
guage data. It provides easy-to-use interfaces to over 50 corpora and lexical resources
such as WordNet, along with a suite of text processing libraries for classification, tok-
enization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-
strength NLP libraries, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside
topics in computational linguistics, plus comprehensive API documentation, NLTK
is suitable for linguists, engineers, students, educators, researchers, and industry users
alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a
free, open source, community-driven project.

15http://www.numpy.org. Last visit: April 2018.
16https://www.scipy.org. Last visit: April 2018.
17http://scikit-learn.org/stable/. Last visit: April 2018.
18http://www.nltk.org. Last visit: April 2018.
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RDKit

RDKit19 is a collection of cheminformatics and machine-learning software written in
C++ and Python. Among its features, we can find:

• BSD license - a business friendly license for open source

• Core data structures and algorithms in C++

• Python (2.x and 3.x) wrapper generated using Boost.Python

• Java and C# wrappers generated with SWIG

• 2D and 3D molecular operations

• Descriptor and Fingerprint generation for machine learning

• Molecular database cartridge for PostgreSQL supporting substructure and simi-
larity searches as well as many descriptor calculators

• Cheminformatics nodes for KNIME20

• Contrib folder with useful community-contributed software harnessing the power
of the RDKit

19http://www.rdkit.org. Last visit: April 2018.
20https://www.knime.com. Last visit: April 2018.
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CHAPTER 3

MEASURING SIMILARITY BETWEEN DRUGS

In this chapter, we explain in depth the core of the work developed in this thesis.
First, we explain the main resource we have used: DrugBank. Then, we explain each
of the similarity measures between drugs we have implemented. Finally, we tackle the
explanation of the evaluation process done over our similarities.

The implementation of this work can be found on a free access repository on GitHub
created by the author of this thesis1.

3 1

DrugBank

The DrugBank2 database is a comprehensive, freely accessible, online database con-
taining information on drugs and drug targets. As both a bioinformatics and a chemin-
formatics resource, DrugBank combines detailed drug (i.e. chemical, pharmacological
and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure,
and pathway) information. Because of its broad scope, comprehensive referencing and
unusually detailed data descriptions, DrugBank is more akin to a drug encyclopedia
than a drug database. As a result, links to DrugBank are maintained for nearly all
drugs listed in Wikipedia. DrugBank is widely used by the drug industry, medicinal
chemists, pharmacists, physicians, students and the general public. Its extensive drug
and drug-target data has enabled the discovery and repurposing of a number of existing
drugs to treat rare and newly identified illnesses.

The latest release of DrugBank before April 2018 [Wishart et al., 2006] (version
5.0.11, released 2017-12-20) contains 11,002 drug entries including 2,503 approved small
molecule drugs, 943 approved biotech (protein/peptide) drugs, 109 nutraceuticals and
over 5,110 experimental drugs. Additionally, 4,910 non-redundant protein (i.e. drug
target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each
DrugCard entry contains more than 200 data fields with half of the information being
devoted to drug/chemical data and the other half devoted to drug target or protein
data.

DrugBank is used in this project as the main resource. All the information about
drugs which is utilized within our work, comes from this database. Please, note that

1https://github.com/albertoOA/Medical-Entities-Similarity-Measurements
2See https://www.drugbank.ca. Last visit: April 2018.
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the used version is not the latest one. There exists a new version which was published
at the beginning of April, obviously, we had not time to use it and change all our
analysis of the results. However, the changes are minimal, instead of 11,002 drugs now
there are 11,037.

3 1 1 Database Fields

DrugBank is a detailed database on small molecule and biotech drugs. Each drug entry
(”DrugCard”) includes extensive information on properties, structure, and biology
(what the drug does in the body). Below you can find some definitions, and a detailed
reference of the sources used for each field.

In this subsection, we analyze part of the documentation or fields which are
contained in the DrugBank. We have included not only the fields we are using but
also some of the ones we consider important.

Below we list part of the possible fields3 a drug can have within the data contained
in DrugBank. Please, note that no all of the possible fields are available for all the
drugs.

• Drug Type. Drugs are categorized by type, which determines their origin. Here
is the list of possible types:

– Small Molecule. Low molecular weight drugs (900 daltons) which are pro-
duced by chemical synthesis. These drugs have well defined structures and
chemical properties. In DrugBank, some drugs larger than 900 daltons are
considered small molecule drugs (such as monomers: ribo- or deoxyribonu-
cleotides, amino acids, and monosaccharides), as long as they are chemically
synthesized.

– Biotech. Drugs with a biological origin (manufactured in, extracted from,
or semisynthesized from biological sources). These include vaccines, blood,
blood components, allergenics, somatic cells, gene therapies, tissues, recom-
binant therapeutic protein, and living cells used in cell therapy. Biotech
drugs are also known as biopharmaceuticals or biologics.

• Drug Group(s). Drugs are categorized by group, which determines their drug
development status. Here is the list of possible groups:

– Approved. A drug that has been approved in at least one jurisdiction, at
some point in time.

– Vet Approved. A drug that has been approved in at least one jurisdiction,
at some point in time for the treatment of animals.

– Nutraceutical. A drug that is a pharmaceutical-grade and standardized
nutrient (with confirmed or unconfirmed health benefits)

– Illicit. A drug that is scheduled in at least one jurisdiction, at some point
in time.

3For a complete list visit: https://www.drugbank.ca/documentation#drug-cards. Last visit April
2018.
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– Withdrawn. A previously approved drug that has been withdrawn from
the market in at least one jurisdiction, at some point in time. Note that
because a drug can be approved in one jurisdiction, and withdrawn in
another, it’s possible for a drug to be in both groups.

– Investigational. A drug that is in some phase of the drug approval process
in at least one jurisdiction.

– Experimental. A compound that has been shown experimentally to bind
specific proteins in mammals, bacteria, viruses, fungi, or parasites. This
includes compounds that are Pre-Investigational New Drug Applications
(Pre-IND, or Discovery Phase compounds).

• DrugBank ID. It is the Primary Accession Number and unique identifier for a
drug.

• Name. Standard name of drug as provided by drug manufacturer. Note that
there are other fields including synonyms and other names like ’brand names’.
Used in order to compute the text based similarity measure (see Section 3.2).

• Description. Description of the drug describing general facts, composition
and/or preparation. Used in order to compute the text based similarity measure
(see Section 3.2).

• Pharmacodynamics. Description of how the drug works at a clinical or
physiological level. Used in order to compute the text based similarity measure
(see Section 3.2).

• Indication. Description or common names of diseases that the drug is used to
treat. Used in order to compute the text based similarity measure (see Section
3.2).

• Classification. This is a relevant field for us, so we explain it in detail in
the subsection 3.1.3. Used in order to compute the taxonomy based similarity
measure (see Section 3.3).

• ATC Code. This is a relevant field for us, so we explain it in detail in the
subsection 3.1.4. Used to evaluate the three computed similarity measures.

• Chemical Formula. Describing atomic or elemental composition.

• Structure. The 2D/3D chemical structure including links to download and view
the structure in various formats. In our case we are not using this field but a
specific file in which we find all information related to the molecular structure of
the drugs. See Section 3.4 for more detail.

3 1 2 Available Files

On account of there are a lot of information on inside of the DrugBank database, there
exist several sorts of files4 which offer different content. In this section we talk briefly
about all possible those files and we explain which ones are used in our project.

4See https://www.drugbank.ca/releases/latest#full. Last visit, April 2018.
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• Complete Database. It is a XML file which contains all fields for all available
drugs. An example of the DrugBank fields used in this work, extracted from the
complete XML, can be seen in the Listing 3.1. This file is utilized in two of the
similarities we compute (Sections 3.2 and 3.3) as well as to evaluate using the
ATC Codes.

• Structures. It consists of a file in SDF format. The format is one of a family
of chemical-data file formats developed by MDL; it is intended especially for
structural information. ”SDF” stands for structure-data file, and SDF files
actually wrap the molfile (MDL Molfile) format. A feature of the SDF format is
its ability to include associated data (not only molecular, but also general purpose
data like ’drug id’). We use it for the Molecular Structure Based Similarity (see
Section 3.4). The reason why we decided to use this document was because
we discovered there was a specific library for Python to deal with this sort of
document. That tool (RDKit) was perfectly aligned to the work we wanted to
do.

• External Links. CSV with links to other databases. Not used in this project.

• Protein Identifiers. Protein identifiers include external IDs to resources such as
UniProt and PDB. These downloads are divided first by protein/compound type
(target, transporter, etc.). Secondly they are divided by drug group (approved,
illicit, etc.). Not used in this project.

• Target Sequences. Not used in this project.

• Drug Sequences. Not used in this project.

Listing 3.1: Extract of just used fields from the full XML DrugBank database.

<?xml version="1.0" encoding="UTF-8"?>

<drugbank xmlns="http://www.drugbank.ca"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.drugbank.ca

http://www.drugbank.ca/docs/drugbank.xsd"

version="5.0" exported-on="2017-12-20">

<drug type="biotech" created="2005-06-13" updated="2017-11-06">

<drugbank-id primary="true">DB00001</drugbank-id>

<drugbank-id>BTD00024</drugbank-id>

<drugbank-id>BIOD00024</drugbank-id>

<name>Lepirudin</name>

<description>Lepirudin is identical to natural hirudin except for

substitution of leucine for isoleucine at the N-terminal end of

the molecule and the absence of a sulfate group on the tyrosine at

position 63. It is produced via yeast cells. Bayer ceased the

production of lepirudin (Refludan) effective May 31, 2012.

</description>

<indication>For the treatment of heparin-induced thrombocytopenia

</indication>

<pharmacodynamics>Lepirudin is used to break up clots and to reduce
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thrombocytopenia. It binds to thrombin and prevents thrombus or

clot formation. It is a highly potent, selective, and essentially

irreversible inhibitor of thrombin and clot-bond thrombin.

Lepirudin requires no cofactor for its anticoagulant action.

Lepirudin is a recombinant form of hirudin, an endogenous

anticoagulant found in medicinal leeches.

</pharmacodynamics>

<atc-codes>

<atc-code code="B01AE02">

<level code="B01AE">Direct thrombin inhibitors</level>

<level code="B01A">ANTITHROMBOTIC AGENTS</level>

<level code="B01">ANTITHROMBOTIC AGENTS</level>

<level code="B">BLOOD AND BLOOD FORMING ORGANS</level>

</atc-code>

</atc-codes>

<classification>

<description/>

<direct-parent>Peptides</direct-parent>

<kingdom>Organic Compounds</kingdom>

<superclass>Organic Acids</superclass>

<class>Carboxylic Acids and Derivatives</class>

<subclass>Amino Acids, Peptides, and Analogues</subclass>

</classification>

3 1 3 Classification Field

The DrugBank database contains some kinds of different taxonomic structures. One
of them is the field named ’Classification’. A taxonomy contains implicit information
about the similarity of the drugs we can use for our purpose. For this project, we
have chosen to use the Classification to build a graph which is used to compute the
similarity among the drugs. The classification field of DrugBank has 5 levels in total,
enumerated from the highest to the lowest:

• Kingdom - Organic or Inorganic

• Classes - drug classes form the major component of the classification system.
Drugs with the same class are considered structurally similar.

The Classes are divided into:

• SuperClass, for example - ”Organic Acids”

• Class, for example - ”Carboxylic Acids and Derivatives”

• SubClass, for example - ”Amino Acids, Peptides, and Analogues”

• DirectParent, for example - ”Peptides” (can coincide with SubClass)

In our approach, similarity between drugs is computed using the graph structure
in which they are organized. Thus, it is logically inevitable for us to build a graph
in which the nodes are the drugs and the edges are the relationship between them.
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The semantics of our taxonomy has only one sort of relationship: ’is-a’ relationship,
(e.g. Acetaminophen is-a SubClass of Benzenoids, or which is the same, Benzenoids
is-a SuperClass of Acetaminophen).

3 1 4 ATC Code

The Anatomical Therapeutic Chemical (ATC) Classification System is used for the
classification of active ingredients of drugs according to the organ or system on which
they act and their therapeutic, pharmacological and chemical properties. It is con-
trolled by the World Health Organization Collaborating Center for Drug Statistics
Methodology (WHOCC), and was published in 1976.

ATC Codes are one of the fields of the DrugBank database and it can be used to
build a taxonomy. We use this information in order to perform one of the evaluations
our approach.

The system has a total of 5 levels, and the code consists of 7 alphanumerical
characters, which can be read in the following way:

• First level: character 0 - for example ’A’

• Second level: characters 1-2, numbers - 02

• Third level: character 3 - for example ’C’

• Fourth level: character 4 - for example ’A’

• Fifth level: character 5-6 - for example 04

Although each level has it’s significance, we have decided to focus on the first one of
the system, which determines the anatomical main group and consists of 14 categories
(the same number of clusters we use), as shown in the Table 3.1:

3 1 5 Discussion

Our aim is to compute different and heterogeneous similarity measurements: text,
taxonomy and molecular structure based similarities. This is the principal constrain
when found when looking for data resources. For us, it was important to try to find
one unique resource which could be used for all the experiments developed within the
project. This mainly the reason why we chose DrugBank.

Of course, there are plenty of resources related to the medical domain we consid-
ered potentially useful: MeSH [Lipscomb, 2000], SnoMed [Donnelly, 2006], UMLS
[Bodenreider, 2004] or ChEMBL [Gaulton et al., 2011]. However, none of them are
so complete as DrugBank, actually, some of them are just vocabularies or just contain
chemical information. DrugBank has enough information to perform the three experi-
ments proposed in this project and it is accepted in the domain as the most complete
resource in terms of medical drugs. For all those reasons, it is the database we use
during the development of this project.
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Code Contents

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito-urinary system and sex hormones

H Systemic hormonal preparations, excluding sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides and repellents

R Respiratory system

S Sensory organs

V Various

Table 3.1: First Level ATC-code Meaning

3 2

Text Based Similarity

Text similarity is the task of determining the degree of similarity between two texts.
Texts length can vary from single words to paragraphs to complete novels or even
books. In our case, the texts are a combination of different textual fields ex-
tracted from the DrugBank database. Single words constitute a special case of text
similarity which is commonly referred to as the task of computing word similarity
[Zesch and Gurevych, 2010] and is not the focus of this project.

The computation of text similarity is a very difficult task for machines. This is
mainly due to the enormous variability in natural language, in which texts can be
constructed using different lexical and syntactic constructions. Even so, comput-
ing text similarity has been for several years a fundamental means for many NLP
tasks and applications. Nowadays, still a lot of works are devoted to this topic
[Kenter and De Rijke, 2015, Kashyap et al., 2016, Ho et al., 2018].

Our aim is to find a measure of similarity (or dissimilarity) among the drugs found
in DrugBank by means of text similarity. To this purpose, we propose to use several
textual fields extracted from DrugBank and compute the similarity of them from one
drug to another.

The number of drugs used in this experiment were 1,661. DrugBank has much more
drugs, however, we have selected just the ones which contain some information in the
textual fields we are interested in. In the cases in which the drug missed one of the
following fields, it wast discarded: description, indication, pharmacodynamics or ATC
Code.

In the upcoming subsections, we explain the main parts of this approach as well as
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the decision making we faced.

3 2 1 Data representation

As said before, we are going to use several textual fields to compute similarity between
the drugs. In order to do so, the drugs were represented in a vector space model, which
is an algebraic model for representing text documents and, thus, similarities can be
computed in this space.

To obtain the vector space model representation of the drugs, the data fields:
description, indication and pharmacodynamics –all expressed in natural language– were
concatenated and, after removing stop words and transforming to lowercase, their term
frequency-inverse document frequency (tf-idf ) representation was computed. We have
chosen those three textual fields because we think they contain information which can
be relevant to discriminate the drugs from each other. We thought also about using
the field ’name’ because, as said at some point in the introduction, the name of a drug
can contain useful information about the drug in it prefixes and suffixes. However, we
considered that adding just one more word to the concatenation will be meaningless,
since the high dimension of our vectorial space. In future approaches, the use of the
cited field could be interesting but just alone, so that the weight of the prefixes and
suffixes is noted.

In information retrieval, tf–idf or TFIDF, short for term frequency–inverse docu-
ment frequency, is a numerical statistic that is intended to reflect how important a
word is to a document in a collection or corpus. In this case, each document used to
compute the tf-idf is the concatenation of the textual fields of each drug, while the
corpus is formed by all those documents as a whole.

Thus, the the data is represented as the matrix MεRn×d, where n is the number of
drugs and d the number of words in the whole corpus. In other words, the rows of the
matrix are the samples while the columns correspond to features of each sample.

3 2 2 Sparseness as a problem

Usually, the number of terms within a corpus is large, this together with the fact that
only few terms appear in a specific document give room to a sparse matrix. The high
dimensionality and sparseness of the matrix M entail to a well-known phenomenon
called ’curse of dimensionality’. The curse of dimensionality refers to various phenom-
ena that arise when analyzing and organizing data in high-dimensional spaces (often
with hundreds or thousands of dimensions) that do not occur in low-dimensional set-
tings such as the three-dimensional physical space of everyday experience. The ex-
pression was coined by Richard E. Bellman when considering problems in dynamic
optimization[Bellman, 2015]. The issue with this phenomena is that the Euclidean dis-
tance becomes meaningless. For us, this fact is obviously a problem to be solved, since
we want to use the data represented in the matrix M to compute similarity (which is
basically the unit minus the distance).

3 2 3 Dimensional reduction as a solution

Reducing the dimension of the vector space model we have computed, is the solution
proposed in this work. Specifically, we use the technique that in Information Retrieval is
known as Latent Semantic Indexing (LSI) [Dumais et al., 1995], for us, Latent Semantic
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Analysis (LSA) [Deerwester et al., 1990]. Latent semantic analysis (LSA) is a technique
in NLP, in particular, distributional semantics, of analyzing relationships between a set
of documents and the terms they contain by producing a set of concepts related to the
documents and terms. LSA assumes that words that are close in meaning will occur
in similar pieces of text (the distributional hypothesis). Singular Value Decomposition
(SVD) [Golub and Reinsch, 1970] is used to rank the features (unique words in this
case) from the more relevant (named ’singular values’) to the less relevant.

LSA uses Singular Value Decomposition (SVD) to find the most discriminative
components of our data vectors. The SVD of MεRn×d is the factorization given by:

M = UΣV T (3.1)

where U is an orthonormal n× r matrix, V T is a r × d orthonormal matrix and
Σ is a diagonal r × r matrix which elements are the ordered singular values σi,
iε[1, rank(M)]. Thus, r is the rank of the space. In the Figure 3.1 we see a visual
intuition of this in which the MatricesM and Σ are represented as A and D respectively.

Figure 3.1: The SVD decomposition of an n× d matrix.
.

By taking the first k singular values σk, the expression 3.1 can be rewritten as 3.2:

M(k) = U(k)Σ(k)V
T
(k) (3.2)

where U(k) and V T
(k) are, respectively, the n× k and k × d matrices with orthonormal

columns and Σ(k) is the k × k diagonal matrix with elements σ1; ... ;σk. The matrix
M(k) is then an approximation of M in a space of dimension k. With regard to LSA,
V T
(k) can be thought as a matrix which maps terms to concepts and U(k) a matrix that

maps concepts to documents. In this sense, the LSI is said to capture the semantic
content of a text corpus. For the case in which we actually do not approximate (e.g.
k = r), LSA reduces the dimensionality with no loss using a new basis for the semantic
space. For k<r, some information is lost, so the result is an approximation.

In this project, the LSA was done with k equals to 500, 200 and 100. We have used
all sets of data (reduced and original) in most of the upcoming steps, however, for the
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clustering we used the similarity matrix obtained with the reduced data with k equals
to 100. The reason is that for that value we obtained the most interesting results in
the evaluation performed in Section 4.2.4.

As a result, we obtain a representation of our data in a three reduced dimensional
spaces in return for losing part of the information.

3 2 4 Similarity measure

For this approach, the measurement we are using to compute the similarity is quite
simple. The similarity matrix is computed based on the Euclidean distance over the
dimensionally reduced data. Specifically, we first compute the Euclidean distance then
we normalize it (to have a distance between zero and one) and finally, we calculate the
similarity as the unit minus the normalized distance.

3 3

Taxonomy Based Similarity

Semantic similarity is a metric defined over a set of documents or terms, where the
idea of distance between them is based on the likeness of their meaning or semantic
content as opposed to similarity which can be estimated regarding their syntactical
representation (e.g. their string format). Semantic relatedness includes any relation
between two terms, while semantic similarity only includes ’IS-A’ relations. The
semantics of our taxonomy has only one sort of relationship: ’is-a’ relationship, (e.g.
Acetaminophen is-a SubClass of Benzenoids, or which is the same, Benzenoids is-a
SuperClass of Acetaminophen).

Computationally, semantic similarity can be estimated by defining a topological
similarity, by using ontologies to define the distance between terms/concepts (as we
propose in the present section). For example, a naive metric for the comparison of
concepts ordered in a partially ordered set and represented as nodes of a directed
acyclic graph (e.g., a taxonomy), would be the shortest-path linking the two concept
nodes. Based on text analyses, semantic relatedness between units of language (e.g.,
words, sentences) can also be estimated using statistical means such as a vector space
model to correlate words and textual contexts from a suitable text corpus (as we do in
Section 3.2).

In our approach, similarity between drugs is computed using the graph structure
in which they are organized, that is, topological similarity. There are essentially two
types of approaches that calculate topological similarity between ontological concepts:

• Edge-based [Cheng et al., 2004, Pekar and Staab, 2002, Del Pozo et al., 2008],
also named path-based, which uses the edges and their types as the data source.
This is the type we are using.

• Node-based [Resnik, 1995, Lin et al., 1998] in which the main data sources are
the nodes and their properties.

3 3 1 Data representation

DrugBank organizes the data in some taxonomic structures, but we have used the
classification tag to construct 2 trees of 6 levels which would connect the drugs in



3.3 Taxonomy Based Similarity 433.3 Taxonomy Based Similarity 433.3 Taxonomy Based Similarity 43

the database through undirected edges. So we do not have a graph but two trees. Two
different cases are contemplated: unweighted and weighted graphs. On the one hand,
in unweighted graphs all the edges have the same meaning and value. On the other
hand, in weighted graphs the cost of moving from one node to another is different
depending on the level of the taxonomy in which the nodes are. This is to say, the
edges between levels of the taxonomy imply a higher cost than edges between the same
level. The distance between drugs is calculated as a shortest path distance. For the
case of the weighted graph, the higher the level of the closest common ancestor in the
tree, the higher the weight for the distance.

The motivation behind having two trees instead of a unique graph is because the
drugs belong to either Organic or Inorganic kingdom, so we have not contemplated
the most general class ’Drug’. Thus, we have decided that the path between those
kingdoms should not exist, because of the very nature of the taxonomy (no or very
little information gain). Additionally, introducing full connectivity (any drug can be
reached from any drug in the database), by adding a common root, drastically increases
computation time. From now on, even though our graph is actually formed by two
trees, we are going to refer to them as ’graph’ just to simplify the writing.

Shape of our graph

We have built the graphs with six levels: the five fields from the Classification tag
of DrugBank (see Section 3.1.3) and the DrugBank ID of the drugs. In the Figure
3.2 we can see an extract of the final graph. As we see, there are five levels which
come from the Classification tag of DrugBank, finally, at the bottom, the DrugBank
ID. In the Figure we can also see in a different tone of gray the Direct Parent of the
drug ’DB00316’. The reason is because it is completely equal to the Sub-class so in
our graph, for cases like that one, we omitted the Direct Parent (in order to have less
nodes). Meaning, that node actually does not exist in our graph, the edge goes directly
from the subclass to the drug.

Data of the graph

In this section, we analyze some properties that our graph has. First, we introduce
the properties we have considered and finally, we show a table with the value of those
properties.

• Number of drugs. Number of drugs used to build the graph.

• Number of nodes. Number of nodes of a graph.

• Number of edges. Number of edges (connectors between nodes) of a graph.

• Average degree. The node degree is the number of edges adjacent to that node,
the average is the mean for all nodes.

• Directed. If the edges of a graph have direction, then the graph is directed.

• Radius. The radius is the minimum eccentricity5.

• Center. The center is the set of nodes with eccentricity equal to radius.

5The eccentricity of a node v is the maximum distance from v to all other nodes in the graph.
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Figure 3.2: Example of a subgraph of the total graph built in our project. The drugs
used for this example are: Acetaminophen and Acetylsalicylic acid

.
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Code Contents

Number of drugs 1,661

Number of nodes 2,360

Number of edges 2,452

Average degree 2.0780

Directed No

Radius 7

Center ’Organic acids and derivatives’

Density 0.000880867359768934

Depth 5

Table 3.2: Graph information for both cases: unweighted and weighted.

• Density. The density is 0 for a graph without edges and 1 for a complete graph.
The density of multigraphs can be higher than 1.

• Depth. The different levels of a graph, in our case, the graph is formed by two
trees, each of them with five levels (Classification field from DrugBank).

Please, note that the number of drugs we have used to build the graphs is 1,661, as
we did for the measure of text based similarity. Although we could build a graph now
with all the drugs, we just want to have comparable results of all our experiments.
In the table 3.2 we show the values the properties of our graphs (weighted and
unweighted).

3 3 2 Similarity measure

Once we have built a graph, it is necessary to use it to compute a similarity among
our nodes, specifically, we use a distance measure. In the mathematical field of graph
theory, the distance between two vertices in a graph is the number of edges in a shortest
path (also called a graph geodesic) connecting them. This is also known as the geodesic
distance. Notice that there may be more than one shortest path between two vertices.
If there is no path connecting the two vertices, i.e., if they belong to different connected
components, then conventionally the distance is defined as infinite (in our case, it is
set to -1).

In the case of a directed graph the distance d(u, v) between two vertices u and v is
defined as the length of a shortest directed path from u to vconsisting of arcs, provided
at least one such path exists. Notice that, in contrast with the case of undirected
graphs, d(u, v) does not necessarily coincide with d(v, u), and it might be the case that
one is defined while the other is not. In our case, we work with an undirected graph.

We work with two different sorts of graphs: weighted and unweighted. On the one
hand, a weighted graph uses differentiates the cost of moving from one node to another
giving different weights to the edges. The closer we are to the root node, the bigger is
the weight of the edges.
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Unweighted Graph

This is the simples example of graph in which each edge has the same value (weight)
when computing the shortest path. So basically, in order to find the shortest path, we
just focus on the length of it.

Using the small taxonomy showed before, we have created another image in which
we show a possible path between two drugs: Acetaminophen (paracetamol) and Acetyl-
salicylic Acid (aspirin) (see Figure 3.3). The path is highlighted in green (see edges)
and in blue circles we have written the weight of every edge, in this case, it is always
one.

The length of the path (considering all the edges and their weights) is 7. Please,
note that the node corresponding to the ’Direct Parent’ of the Acetaminophen is not
included in our graph (since it is equal to the Subclass).

Weighted Graph

In this case, we work with weighted graphs which means that now not only the length
of the path but also the weight of the edges are important to compute the shortest
path.

Using the small taxonomy showed before, we have created another image in which
we show a possible path between two drugs: Acetaminophen (paracetamol) and Acetyl-
salicylic Acid (aspirin) (see Figure 3.3). The path is highlighted in green (see edges)
and in blue circles we have written the weight of every edge. The weight is a param-
eter of the function we have implemented to build the graph. However, we have set
a default value for the weights: 1, 10, 20, 25 and 50. We research about what values
to use and since it is not crucial, we just made the weights increase the deeper is the
edge. A good alternative would be to use the inverse of the depth as the weight for an
edge.

The length of the path (considering all the edges and their weights) is 111. Please,
note that the node corresponding to the ’Direct Parent’ of the Acetaminophen is not
included in our graph (since it is equal to the Subclass).

Distance to Similarity

We are interested in measuring the similarity between drugs, however, with the shortest
path computation we obtain a distance. Thus, it is necessary to translate that distance
into a similarity, which is not trivial this time. In the text based similarity, we could
obtain the distance from the similarity and vice-versa just calculating the unit minus
one of them. Nevertheless, in this case we need to use other kind of transformation.

There exist several ways of turning those path distances into similarities though, we
have chosen the method proposed by Leacock and Chodorow [Leacock and Chodorow, 1998].
The Leacock ando Chodorow Simiarily between two nodes of a graph (drugs, in this
case, d1 and d2) is as follows:

Sim(d1, d2) = − log

(
lenght

2D

)
Where length is the length of the shortest path between the two concepts (using

node-counting) and D is the maximum depth of the taxonomy. Based on this measure,
the shortest path between two concepts of the ontology restricted to taxonomic links is
normalized by introducing a division by the double of the maximum hierarchy depth.
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Figure 3.3: Example of a subgraph of the total graph built in our project in which
an unweighted distance path is computed between two drugs. The drugs used for this
example are: Acetaminophen and Acetylsalicylic acid

.
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Figure 3.4: Example of a subgraph of the total graph built in our project in which
a weighted distance path is computed between two drugs. The drugs used for this
example are: Acetaminophen and Acetylsalicylic acid

.
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3 4

Molecular Structure Based Similarity

Measurements of structural similarity play an important role in chemoinformat-
ics for applications such as similarity searching, database clustering and molecu-
lar diversity analysis. Thus, computing similarity among chemical structures is a
current trend in the domain and it is used for tasks such as Drug-Drug Inter-
action Prediction [Liu and Zhao, 2016, Vilar and Hripcsak, 2016, Wang et al., 2016,
Takeda et al., 2017].

The importance of structural similarity derives in large part from the Similar
Property Principle, which states that molecules that are structurally similar are
likely to have similar properties [Johnson and Maggiora, 1990]. Actually, most of
the drug/chemical compounds databases use the molecular structure for different ap-
plications. For instance, DrugBank, PubChem [Bolton et al., 2008] and ChEMBL
[Gaulton et al., 2011], have a search engine in which, if we have the molecular struc-
ture of a compound, we can find other similar ones. Another example is STICH
[Kuhn et al., 2007] (Search Tool for Interactions of Chemicals), a database which uses
molecular structure similarities to predict relations between chemicals.

The main three elements of any similarity measure based on Molecular Structure
are:

• Representation or Descriptor. It is used to characterize the two molecules
that are being compared. Among all the possible descriptors we use the 2D
fingerprints6, for more detail, see Section 3.4.2.

• Weighting Scheme. It is used to reflect the relative importance of different
parts of the representation. No weights are used in this project.

• Similarity Coefficient. It is used to quantify the degree of resemblance between
two appropriately weighted structural representations. In our case, we use the
Tanimoto Coefficient (see Section 3.4.3).

Typical 2D and 3D representations of a drug can be seen in Figures 3.5 and 3.6,
where we show the molecular structure of the Acetaminophen drug.

3 4 1 Data Format

Drugbank database contains a lot of data which is rather heterogeneous, however, it
is possible to download a complete database, written in XML, which includes all the
fields for the covered drugs. For other experiments we have done in this project, it was
better to use that generic file. Nevertheless, in this concrete experiment, we are using
a specific file which is devoted to work with the molecular structure information of the
drugs.

In every Drugbank release there are several different documents to download (see
Section 3.1.2). Thus, we can ensure that the drugs within the different documents
are the same. This is just to clarify that we are using the same information than

6A fingerprint is a vector, each element of which describes the presence of one or more substructures
in a molecule, with typical fingerprints containing a few hundred or a few thousand elements, and
with two molecules being considered to be similar if their fingerprints share common values for many
of the constituent elements.
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Figure 3.5: Molecular Structure in 2D of the Acetaminophen drug.
.

Figure 3.6: Molecular Structure in 3D of the Acetaminophen drug.
.
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in the rest of performed experiments. Readers and users of this document could get
confused about this, since in the present experiment we use more drugs than in others.
The reason is that here we have used all the drugs which have a complete molecular
structure, 8,738 from a total of 10,562 included in the used release.

The format of the file which contains the specific information related to Molecular
Structures is SDF, which is one of a family of chemical-data file formats developed by
MDL7; it is intended especially for structural information. ”SDF” stands for structure-
data file, and SDF files actually wrap the molfile (MDL Molfile) format. A feature of
the SDF format is its ability to include associated data (not only molecular, but also
general purpose data like ’drug id’). The reason why we decided to use this document
was because we discovered there was a specific library for Python to deal with this
sort of document. That tool (RDKit) was perfectly aligned to the work we wanted
to do since it includes several useful functions. Some of them to generate fingerprints
automatically (from a SDF file) and to compute typical similarity coefficients commonly
used in this domain.

RDKit

RDKit [Landrum et al., 2006] is an Open source toolkit for cheminformatics and
Machine Learning which contains a lot of methods and functionalities to deal with
Molecular Structure data from chemical compounds (including similarity measures).
It is written in Python (2 and 3) and has been used in several relevant open source
projects (ChEMBL Beaker [Nowotka et al., 2014], myChEMBL [Ochoa et al., 2013],
etc.).

3 4 2 Data representation

An important issue is how to actually represent the Molecular Structure of a chemical
compound so that a computer can process it efficiently. Normally, the Molecular
Structure is represented by well-known methods like: InChi Key [McNaught, 2006]
or SMILES [Weininger, 1988]. For instance, the SMILES representation for the
Acetaminophen, molecular structure showed in Figures 3.5 and 3.6, is:

CC(=O)NC1=CC=C(O)C=C1

Even though both, SMILES and InChi Key, are included within the fields of
DrugBank, we cannot use those sorts of representation to compute similarity between
drugs, a more efficient representation is needed. In this work, we have used 2D
fingerprints, a list of binary values (0 or 1) which characterize a molecule.

A complete analysis of similarity measures based on molecular structure is pro-
vided in [Nikolova and Jaworska, 2003] and [Willett, 2014], where different ways of
representation are studied. In both reviews, is claimed that, even though 2D Fin-
gerprints compress the molecular information (losing part of it) are preferable to
other complicated representations. While the improvement provided by those other
complex representations is not significant, the efficiency and simplicity of 2D Finger-
prints is noteworthy. Indeed, 2D Fingerprints are the state of the art in this domain
[Yu et al., 2015, Cereto-Massagué et al., 2015, Muegge and Mukherjee, 2016].

7MDL Information Systems, Inc. was a provider of R&D informatics products for the life sciences
and chemicals industries. The company was launched as a computer-aided drug design firm (originally
named Molecular Design Limited, Inc.) in January 1978 in Hayward, California.
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Fingerprints are lists of binary values which characterize a molecule. Obviously,
the more bits we use, the more precise the representation is. In this project, we
have explored two of the most well-known types: MACCS [Keys, 2011] and ECFPs
[Rogers and Hahn, 2010].

MACCS

The MACCS keys are a set of questions about a chemical structure. Here are some of
the questions: Are there fewer than 3 oxygens? Is there a S-S bond? Is there a ring of
size 4? Is at least one F, Cl, Br, or I present?

The result of this is a list of binary values – either true (1) or false (0). This list
of values for a given chemical structure is called the MACCS key fingerprint for that
structure.

ECFP

Extended-Connectivity Fingerprints (ECFPs) are circular topological fingerprints de-
signed for molecular characterization, similarity searching, and structure-activity mod-
eling. They are among the most popular similarity search tools in drug discovery and
they are effectively used in a wide variety of applications.

The length for the fingerprints we are using in this project are: 167 bits for MACCS
and 1,024 bits for ECFP. This fact has an effect on the result of the computed
similarities. The values of similarities when using MACCS are higher in general.
ECFP has more precision (more bits) but that leads us to smaller values of similarity,
obviously, the more bits we have, the more difficult is for the pairs of fingerprints to
be similar. We have studied the correlation between the similarities computed using
MACCS and ECFPs in order to see if we can just choose one of them. However, the
value of Pearson Correlation is around 0.6, which is not enough to say that they are
really correlated, so we use both for the evaluation.

3 4 3 Similarity measure/coefficient

The selection of a similarity coefficient is made a condition of the sort of chosen
representation, in this case, 2D fingerprints. The most well-known coefficient used
with fingerprints is the Tanimoto Coefficient (also known as Jaccard Index). The
computation of the Tanimoto Coefficient for two binary vectors (a and b) of length k
is defined as: ∑k

j=1 aj × bj∑k
j=1 a

2
j +

∑k
j=1 b

2
j −

∑k
j=1 aj × bj

(3.3)

However, there are other coefficients to be used in this case. One instance is the
Dice Coefficient, which is actually, quite similar to Tanimoto. The computation of the
Dice Coefficient for two binary vectors (a and b) of length k is defined as:

2
∑k

j=1 aj × bj∑k
j=1 a

2
j +

∑k
j=1 b

2
j

(3.4)

As we see, both expressions are rather similary. Even so, we wanted to prove
that relation which exists between then, so that we studied the correlation between the
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obtained similarity matrices in both cases. We used the Person’s Correlation Coefficient
(see 3.5.2 and the value was around 0.98. Person’s Correlation Coefficient denotes total
positive correlation when the value is 1, so we can say that both coefficients (Tanimoto
and Dice) are totally correlated. Note that this study was done for the two sorts of
fingerprints we use (MACCS and ECFP) and it was similar in both cases.

A whole study of the convenience of using the Tanimoto Coefficient is provided
in [Bajusz et al., 2015]. The conclusion of that study claims that the Tanimoto
index, Dice index, Cosine coefficient and Soergel distance were identified to be the
best (and in some sense equivalent) metrics for similarity calculations. The similarity
metrics derived from Euclidean and Manhattan distances are not recommended on
their own, although their variability and diversity from other similarity metrics might
be advantageous in certain cases (e.g. for data fusion).

As said before, in our approach, two different coefficients were used: Tanimoto
(Jaccard) and Dice. The correlation between the similarity values that both provided
was studied using the Pearson Correlation. The value of correlation was about 0.99 for
both sorts of fingerprints: MACCS and ECFP. For this reason and for the evidences
about the benefits of using Tanimoto Coefficient proved in other works, we decided
just to use it to cluster and evaluate.

3 5

Evaluation Setup

There are two main sorts of evaluation: direct and indirect. On the one hand, a direct
evaluation is the one performed directly over the result you want to study. On the other
hand, an indirect evaluation is the one in which you use the obtained result to solve
a task and then you evaluate the performance of it over the task. Normally, the ideal
evaluation is a direct one, in which the result is compared with a ’golden standard’.
However,it is difficult to evaluate our work since there is not any clear ’golden standard’
to compare our results with.

In this project, we have performed to different evaluations over the computed
similarities:

• Clustering. This is an example of indirect evaluation. We have used the
similarities to cluster the drugs into groups. Then, we study the ATC Code
distribution of those clusters in order to check if our similarity measurements are
good.

• Ground Truth. This evaluation is a small direct evaluation we have done
with a ground truth annotated by experts in the domain. The similarity of a
list of 100 pairs of drugs were annotated by experts. We have taken it from
[Franco et al., 2014] and modified and adapted to our convenience. We compare
the similarities computed within this project with the similarity following the
experts’s opinion. In Section 3.5.2, we talk more about this.

3 5 1 Clustering

As said before within the present section, the similarity measurements we have imple-
mented are used to cluster the used drugs. This is meant to have an evaluation method
to measure the quality of the computed similarities.
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Figure 3.7: A comparison of the clustering algorithms in scikit-learn library (Python)
.

In a nutshell, our approach is to cluster the drugs in 14 groups. The number of
clusters is chosen from the ATC Code classification, specifically, the first level, which
classifies the drugs into fourteen different groups. During this section we explain why
we decided to use that number. Then, we study the ATC first level distribution of all
the drugs within the clusters, in order to see if actually we are grouping drugs which
belong to the same ATC First Level group. We evaluate this using histograms.

In this section we talk about all the different aspects of this evaluation: decision
making about the type of clustering and number of clusters.

Clustering Technique

An interesting library of Python named scikit-learn has several ready to use techniques
to do clustering. We studied the properties of the clustering algorithms included in
that library and we thought which one would fit better with our problem. In the Figure
3.7 we show a table from the main page of scikit-learn in which all possible techniques
are compared.

The type of clustering we are using is Spectral Clustering, the reasons of our decision
are the followings:

1. We want to evaluate if our similarities group correctly the drugs by their ATC
Codes. ATC Codes are a classification of drugs which can be think as a graph.
Scikit-learn offers two different techniques in which the geometry is based on a
graph distance: Affinity Propagation and Spectral Clustering. We think that one
of those two options would be good for our problem.

2. Affinity Propagation is normally used for cases in which the number of clusters is
large while Spectral Clustering is used for small number of clusters (see column
’Usecase’ in Figure 3.7). In addition, the only needed parameter for Spectral
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Clustering is the number of clusters, while the needed parameters for Affinity
Propagation are two: damping and sample preference. In our case, it is easier for
us to choose the number of clusters and we do not want to have many clusters
(because then, the evaluation using the histograms would be more difficult and
meaningless).

Spectral clustering techniques make use of the spectrum (eigenvalues) of the simi-
larity matrix of the data to perform dimensionality reduction before clustering in fewer
dimensions. The similarity matrix is provided as an input and consists of a quantitative
assessment of the relative similarity of each pair of points in the dataset.

Spectral Clustering needs as input argument the number of clusters, therefore, we
need to choose that number.

Number of Clusters

The Anatomical Therapeutic Chemical (ATC) Classification System is used for the
classification of active ingredients of drugs according to the organ or system on which
they act and their therapeutic, pharmacological and chemical properties. It is con-
trolled by the World Health Organization Collaborating Center for Drug Statistics
Methodology (WHOCC), and was published in 1976.

The system has a total of 5 levels, and the code consists of 7 alphanumerical
characters. The more characters we use, the more specific is the ATC code, until
we reach the final pharmacological compound. The five levels are as follows:

• First level. The first level of the code indicates the anatomical main group and
consists of one letter (character 0). For instance: C Cardiovascular System.

• Second level. The second level of the code indicates the therapeutic subgroup
and consists of two digits (characters 1-2). For instance: C03 Diuretics.

• Third level. The third level of the code indicates the therapeutic/pharmaco-
logical subgroup and consists of one letter (character 3). For instance: C03C
High-ceiling diuretics.

• Fourth level. The fourth level of the code indicates the chemical/therapeu-
tic/pharmacological subgroup and consists of one letter (character 4). For in-
stance: C03CA Sulfonamides.

• Fifth level. The fifth level of the code indicates the chemical substance and
consists of two digits (character 5-6). For instance: C03CA01 Furosemide.

Although each level has it’s significance (as shown before), we have decided to
focus on the first one of the system, which determines the anatomical main group and
consists of 14 categories, as shown in the Table 3.3. This first level is the most relevant
one, since it indicates the anatomical parts of the body in which the drug could act.

Clustering Evaluation Measurement

Along the Section 2.3, some clustering evaluation techniques are formally explained.
In this project, we can evaluate using a external set of clusters: the real ATC Code
distribution of the drugs. Specifically, we use Purity, which is a measure of the extent
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Code Contents

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito-urinary system and sex hormones

H Systemic hormonal preparations, excluding sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides and repellents

R Respiratory system

S Sensory organs

V Various

Table 3.3: First Level ATC-code Meaning

to which clusters contain a single class. In our case, the correct classified classes are
each of the fourteen possible ATC Codes.

Usually, the calculation of Purity can be thought of as follows: For each cluster,
count the number of data points from the most common class in said cluster. Now
take the sum over all clusters and divide by the total number of data points. This is a
quantitative evaluation measurement, however, in this work we have studied the Purity
in a more qualitatively way. Specifically, we have obtained the histograms of the ATC
Codes distribution in each cluster and we have analyzed them.

The reason why we have not computed the Purity directly, is because the result
of the clustering is not really good. Thus, we have preferred just to perform the
evaluation with a visual approach more than with the exact value of Purity. Actually,
Purity evaluation is not perfect, since high purity is easy to achieve when the number
of clusters is large - in particular, purity would be 1 (maximum value) if each document
(ATC Code) gets its own cluster. Thus, we cannot use purity to trade off the quality
of the clustering against the number of clusters. Even so, the principle we follow, it is
the same.

3 5 2 Ground Truth

The external (direct) evaluation consisted of comparing the computed similarities
values with the similarity between 100 pairs of drugs which were annotated by experts.
That annotated data has been taken from [Franco et al., 2014] and modified and
adapted to our convenience. In the Figure 3.8, we can see how the original file provided
in [Franco et al., 2014] looks like.

Specifically, the ground truth was built using the opinion of 143 experts, who
provided Yes/No decisions on set of 100 DrugBank 3.0 [Knox et al., 2010] molecule-
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Figure 3.8: Three molecule-pairs with the corresponding fractions of YesNo responses
to the question: ’Are these molecules similar?’ The similarity values in the right-hand
column were computed by the authors using the Tanimoto coefficient and ECFP4
fingerprints.

.
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Figure 3.9: Extract of the CSV file used to evaluate our similarities against the proposed
ground truth.

.

pairs. Basically, all those experts were asked to answer with Yes/No to the question:
“Are these molecules similar?”. The answers were collected and a distribution of
Yes/No answers was computed. In this project, we use the proportion (percentage) of
’Yes’ answers as degree of similarity. Of course, the reader should note that the experts
were not asked about the degree of similarity among the drugs but if the molecules
were similar or not.

Even though the original file contains 100 pairs of drugs, we have been able to use
just 97 pairs. We have not been able to find some of the names of the drugs. In the
original file provided by the authors of the cited paper, we find the fields showed in
Figure 3.8 and the SMILES representation of the molecules. Making use of different
search tools and taking the 2D structure and the SMILES representation of the drugs,
we were able to find the DrugBank IDs of just 97 pairs of drugs. That is the reason
why our final ground truth is shorter than the original.

We built a new file, a .csv file, which contains, on the one hand, three columns
(the two DrugBank IDs and the similarity), and on the other hand, 97 rows (all the
pairs). In the Figure 3.9 we show ten of the rows of that file (which can be found in
our GitHub repository).

In order to evaluate how our similarity measures are related to the ground truth
values, we have studied three different aspects:

• Correlation between the ground truth and our measurements considering the
values of the similarities.

• Correlation between the ground truth and our measurements considering the
order inferred by the similarity values (from the most different pair to the most
similar one).

• Classification of the drugs as similar or non-similar using a threshold.

Note that all those evaluations have been performed individually for each of the
three similarities computed in this project: text, taxonomy and molecular structure
based similarity.

Of course, not all the pairs of drugs which exist in the ground truth are used in our
experiments. On the one hand, for the cases of text and taxonomy based similarity,
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we use just the drugs which contain non-empty data in the fields we are interested in.
This, reduces a lot the number of drugs we use. On the other hand, in the molecular
structure similarity measurement, we work with more drugs, so it is more likely to find
all the pairs of the ground truth.

Value

Each pair of drugs has associated a similarity value. In the case of the ground truth,
that value is the percentage of experts who said that the pair of molecules is similar.
In the case of our measurements, is the similarity value computed with each of our
three different approaches.

We study the correlation between the value of the ground truth and our measure-
ments (individually). For that, we have used Pearson’s Correlation Coefficient.

Pearson’s Correlation Coefficient has a value between +1 and -1, where 1 means
total positive correlation, 0 is no linear correlation and -1 is total negative correlation.

Pearson’s correlation coefficient when applied to a sample (as it is in this case) is
commonly represented by the letter r and may be referred to as the sample correlation
coefficient or the sample Pearson correlation coefficient.

Let xi and yi with i ∈ [1, n] be a set of observations of the variables X and Y . We
can obtain r from the next formula:

r =

∑
xiyi − nx̄ȳ√

(
∑
x2i − nx̄2)

√
(
∑
y2i − nȳ2)

(3.5)

where x̄ and ȳ are the sample mean.

For us, X and Y are two lists which contain the similarity values for each of the
drug pairs. One of them is for the ground truth, the another one is for one of our
similarity measurements.

Order

We have ordered the pairs by the value of their similarity, from the most different to
the most similar, in both cases (our similarity measurement and the ground truth).
Our aim is to study how each of our similarities and the ground truth are correlated,
in this case, we study the rank inferred using the similarity values. We use one of the
most well-known rank correlation methods: Kendall’s Tau.

Kendall’s τ has a value between +1 and -1, where 1 means total positive correlation,
0 is no linear correlation and -1 is total negative correlation.

Let xi and yi with i ∈ [1, n] be a set of observations of the variables X and Y . Any
pair of observations (xi, yi) and (xj, yj), where i 6= j, are said to be concordant if the
ranks for both elements (more precisely, the sort order by x and by y) agree. That
is, if both xi > xj and yi > yj; or if both xi < xj and yi < yj. They are said to be
discordant, if xi > xj and yi < yj; or if xi < xj and yi > yj. If xi = xj or yi = yj, the
pair is neither concordant nor discordant.

The Kendall τ coefficient is defined as:

τ =
(numberofconcordantpairs)− (numberofdiscordantpairs)

n(n− 1)/2
(3.6)
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For us, X and Y are two lists which contain the pairs of drugs ranked by their
similarity values. One of them is for the ground truth, the another one is for one of
our similarity measurements.

Threshold

We have selected a threshold to classify the pairs of drugs into two different categories:
similar and non-similar. If the similarity value is greater than the threshold, then, the
drugs are similar. The threshold we have chosen is 0.85. The reason is because one of
our similarity measures, the Tanimoto Coefficient (see Section 3.4.3), is considered
relevant from that value. Then, we compute the precision and the recall of the
classification process.
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CHAPTER 4

EXPERIMENTS AND ANALYSIS

Three different experiments have been developed within this work. Each of them
is devoted to evaluate the different similarity measures we have computed. In this
chapter we talk about those experiments and the obtained results for the evaluation
of the measurements. In particular, we have divided the chapter into four different
sections:

• General Experimental Setup

• Text Based Similarity

• Taxonomy Based Similarity

• Molecular Structure Based Similarity

As a reminder, the implementation of this similarities, can be found on a free access
repository on GitHub created by the author of this thesis1. In there, there is a folder
named ’notebooks’ in which the three experiments appear.

4 1

General Experimental Setup

There are some general aspects which are shared among the three experiments. This
section is dedicated to set the general framework in which the experiments have been
done.

As said in previous chapters, we are using the previous most updated release of
DrugBank 5.0. [Wishart et al., 2017]. Please, note that the used version is not the
latest one. There exists a new version which was published at the beginning of April,
obviously, we had not time to use it and change all our analysis of the results. However,
the changes are minimal, instead of 11,002 drugs now there are 11,037.

Specifically, we use two different files: the complete database (a .xml file) and the
molecular structure information (a .sdf file). The first one is used in Sections 4.2 and
4.3 while the second one is used in Section 4.4. The previously cited release, is said to

1https://github.com/albertoOA/Medical-Entities-Similarity-Measurements
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contain a total of 11,002 drugs, however, we have been able to read just 10,562 drugs
from the .xml file, because, actually, there are just that number of drugs2.

One of the evaluations we do is based on clustering the drugs using our implemented
similarity measures (see Section 3.5.1). Considering that DrugBank is not totally
complete, some drugs do not contain all the fields, we decided to see what number
of drugs had ATC Code in DrugBank. From the total number of drugs, just 2,287
has a non-empty ATC Code. Thus, we are going to be limited by that number in our
evaluation. Note that each drug can have more tan one ATC Code, so that the number
of ATC Codes is not 2,287 but 3,876. In the Figure 4.1, we can see a distribution of
the First Level of all available ATC Codes. ATC Code has five levels, the reason why
we are just interested in the first one is because we use the number of classes of that
level (fourteen) as number of clusters. The classes are alphabetical characters. Please,
for further information about ATC Code, see Section 3.1.4.

Figure 4.1: Distribution of the first level of all ATC Codes contained in DrugBank.

As we see in the the Figure 4.1, the distribution of the fourteen groups is not
balanced. This will affect the performance of the clustering, since the classes with less
samples are more difficult to be discriminated from the rest.

4 2

Text Based Similarity

In this section, we explain the experimental setup and the results of the experiment
for the text based similarity. Note that in the upcoming paragraphs we just talk about
the experiment itself, avoiding some details. For more detailed description about how
the similarity measure is computed, please, see Section 3.2.

2It is strange, but we have downloaded several times the cited version and checked that the number
of times that the xml field ’drug’ appears into the .xml file is 10,562. So that it is not a problem of
our accessor.
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4 2 1 Experimental Setup

Our aim is to measure similarity between drugs, in particular, using the analysis
of textual information about those drugs. The textual information of each drug is
gathered from the complete DrugBank database file (.xml format). The textual fields
for each drug we use are: description, indication, pharmacodynamics. Note that other
fields are also collected: name, synonyms, ATC Code, etc. Some are used to other
parts of this project, others might be useful in future versions of our code.

When reading the information of the drugs, we make sure that, for each collected
drug, the three textual fields and the ATC Code are not empty. This reduces the
number of drugs we use during the experiment from 10,562 to 1,661.

4 2 2 Similarity Matrix

The similarity between all pairs formed by the 1,661 drugs is computed using our
measurement and saved into a redundant square matrix. We have a n × n matrix
(where n is the number of drugs), then each pairwise combination from the set exists
twice, once in each order, the similarity between the drug x to the drug y and vice-versa.
However, those two values of similarities are the same.

In the Figure 4.2, we can see a heat map of the similarity matrix used to cluster
the drugs. Please, note that, as explained in the Section 3.2.3, in this experiment
we have reduced the dimensionality of the data using LSA. The main parameter of
that technique is the number of final components you want, k. In this work we
have used three different values: 500, 200 and 100. With them, we have computed
three different similarity matrices which have been used to evaluate our similarity
measurement against the ground truth (see Section 4.2.4). We did not want to cluster
for the three cases, so we chose one of the three similarity matrices. For the case in
which k was equal to 100, we got the best result in that evaluation against the ground
truth, so we decided to use it to do the indirect evaluation based on clustering.

4 2 3 Indirect Evaluation: Clustering

Using the similarity matrix showed in the Figure 4.2 we have clustered the drugs into
fourteen clusters with a Spectral Clustering. For further information about the used
clustering technique or other aspects about the clustering process, like the number of
clusters, please, see Section 3.5.1.

Ordered Similarity Matrix

With the obtained clusters we have ordered the columns and rows of the similarity
matrix, the result is showed in the Figure 4.3. The clusters are the green/yellow
squares around the diagonal of the matrix. Even though it is obvious we would like
to note that the diagonal is completely drawn in yellow because it corresponds to the
similarity to each drug to itself.

Clusters - Overview

As we have done before with the total number of ATC Codes. We have studied the
First Level ATC Codes distribution for the number of drugs used in this experiment
(1,661). In this case, the total number of ATC Codes is 3,007 and the distribution of



64 Chapter 4 Experiments and Analysis64 Chapter 4 Experiments and Analysis64 Chapter 4 Experiments and Analysis

Figure 4.2: Similarity matrix based in text mining. The textual data has been reduced
from original number of features to 100 using LSA.

drugs for ATC code is shown in the Figure 4.4. We have ordered the histogram from
the most to the least common ATC Code.

We have fourteen clusters because we have fourteen classes of First Level in the
ATC Codes. The ideal scenario, would be to see that all the drugs with one specific
first level of ATC Code were together in the same cluster. However, the reality is quite
different to that.

As said before, the result of the clustering is not really good. In this section, we
try to figure out which could be the reasons (at least some) of this fact.

The first level of the ATC Code indicates the anatomical main (not only) group in
which the drug is supposed to act. The similarity measure computed for this experiment
uses textual information of three DrugBank fields:

• Description. Description of the drug describing general facts, composition
and/or preparation.

• Indication. Description or common names of diseases that the drug is used to
treat.

• Pharmacodynamics. Description of how the drug works at a clinical or
physiological level.

As we see, Indication and Pharmacodynamics provide information which could be
related to the anatomical group in which the drug acts. Even so, the description can
include a lot of information which could be misleading to cluster the drugs into the
fourteen classes of first level of ATC Codes. This could be one of the reasons why the
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Figure 4.3: Similarity matrix based on text mining ordered using the clusters. The
textual data has been reduced from original number of features to 100 using LSA.

Figure 4.4: Distribution of the first level of all ATC Codes for the 1,661 drugs used in
the textual mining experiment.

performance of the clustering is not perfect. In addition, there is another reason which
comes from the nature of the data. As we have seen in the Figure 4.18, the distribution
of our classes is really unbalanced, what increases the difficulty of clustering properly.

In spite of everything we have exposed above, we claim that we have not totally
failed. Our text based similarity measure still has value, actually, we got the best
clustering results for the text mining similarity experiment, as we will see later.



66 Chapter 4 Experiments and Analysis66 Chapter 4 Experiments and Analysis66 Chapter 4 Experiments and Analysis

It is relevant to remind that our principal aim (task) was not to cluster the drugs
into the fourteen chosen classes but to evaluate if the computed similarity measure
was good or not, and we can say that, definitely, it is not bad. Of course, if the
performance of the clustering had been really good, our conclusion about the quality
of our measurement would be more positive.

Clusters - Deep Analysis

Now it is time for us to actually analyze more in depth the obtained clusters. As we have
said before, the similarity measure computed in this experiment is not perfect, since the
drugs are not totally grouped by their ATC Code. However, in some cases we actually
have got good results. Note that even though Spectral Clustering is not completely
deterministic, it is more stable than K-means. If someone runs our experiment several
times, slightly different clusters may be found, but we have deprecated this and just
run it once. In the Figures 4.5 and 4.6, we can see the distribution for the fourteen
obtained clusters.

Looking at the distribution of all the clusters, we have divided the clusters in three
different groups:

• Clusters in which the most common ATC Code represents a good percentage
of the total number of occurrences of the ATC Code within the complete set
of used data. This could be equivalent to the notion of Purity we have talked
before along the Section 3.5.1, meaning, how good we are grouping in the same
cluster all instances of drugs with a certain ATC Code. The clusters which show
this behavior are: 0. 7, 9 and 13. The most evident example is the Cluster
number 0, which includes around the 75% of the drugs with ATC Code ’C’. The
number of occurrences within the cluster is around 300 (see Figure 4.5) while
the total number of occurrences of that ATC Code inside the total data set we
used is around 400 (see Figure 4.4). The other three examples (clusters 7, 9 and
13) show around the 50% of the instances of the ATC Codes ’J’, ’G’ and ’D’,
respectively.

• Clusters in which the most common ATC Code appears clearly more times within
the cluster than the rest of ATC Codes included in the cluster. Even though it
is not exactly the same, this is somehow related to the notion of Purity. The
clusters which show this behavior are: 0, 3, 5, 6, 7, 8, 9, 10, 11 and 12. Maybe the
clusters which shows better this are numbers: 7, 8, 10 and 12. Note that two of
the clusters included in the previous group (7 and 9), are also here. Because they
have the characteristics of both groups: the most common ATC is predominant
in the cluster and it is also a good representation of the total of drugs of that
ATC code.

• Clusters which are a bit meaningless for us because either they cannot be included
in one of the previous cases or because the number of drugs within the cluster is
too small. The clusters which show this behavior are: 1, 2 and 4. For instance, in
clusters 2 and 4 we do not have a predominant ATC Code, which make difficult
for us to give to the distribution a meaning. Please, note that we have not
strongly claimed that those clusters are meaningless, we just cannot extract a
clear conclusion from them. Maybe, with the help of some experts in the domain
we could have a better understanding of our results. Might be possible to discover
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Figure 4.5: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 0-5 for the text experiment.
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Figure 4.6: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 6-13 for the text experiment.
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that it actually makes sense to have a cluster like the number 2, in which the
number of ATC Codes ’B’, ’L’ and ’A’ is closely the same. Might be that those
ATC Codes are somehow related.

Conclusion

As a general note, we would like to say that from the fourteen original ATC Codes,
just eight of them were detected: ’N’, ’A’, ’R’, ’M’, ’C’, ’J’, ’G’ and ’D’. Actually,
six of them are the six most common ATC Codes of the used data (see Figure 4.4).
Thus, our expectations about the unbalanced nature of the data were true, those ATC
Codes with less instances were more difficult to cluster inside a unique group. Whit
’detected’, we mean that those ATC Codes were predominant in at least one of the
clusters explained above.

4 2 4 Direct Evaluation: Ground Truth

This evaluation is explained in the Section 3.5.2, please, for detailed information, read
that section. Basically, we use 100 pairs of drugs which have been annotated by 143
experts (henceforward, ground truth). They were asked if the two molecules were or
not similar. Our aim is to see if our approach actually gives a similar answer to the
one provided by those experts. Keeping in mind that aim, we have decided to evaluate
our similarity measurements against the ground truth in three different dimensions or
aspects:

• Value of similarity. Study of the correlation between the value of similarity
computed by our measure and the similarity from the ground truth. For this
experiment we use Pearson’s Correlation Coefficient. Please, note that the value
of similarity provided by the ground truth is not a degree of similarity between
the drugs, but the percentage (from 0 to 1) of the experts who said that the pair
of drugs were similar.

• Order. Study of the order or rank inferred by the value of similarity. We have
ordered the pairs from the least to the most similar and then studied the rank
correlation using Kendall’s τ Correlation Coefficient.

• Threshold. We have set a threshold in order to classify our pairs of drugs into
two classes: similar and non-similar. The threshold is 0.85, because the Tanimoto
Coefficient, one of the similarities we use (see Section 3.4) has shown to indicate
similarity between two molecules from that value. Once we have classified the
pairs using our similarity measure and the ground truth, we compute the accuracy
and the recall.

In this case, we have three different experiments, one for each of the values of
number of components for LSA: 100, 200 and 500. In the Table 4.1, we can see all
relevant information for those experiments, including all the evaluation coefficients
explained above. Note that we have also included the number of pairs we have from
the ground truth (97) and the pairs which are among our computed similarities (65).
Originally, the ground truth is a set of 100 pairs, however, we have not been able to find
all the names of some drugs from the original paper [Franco et al., 2014]. The reason
is that the authors just published the molecular structure of the pairs, the SMILE
representation and the decision of the experts, but not the names of the drugs. Thus,



70 Chapter 4 Experiments and Analysis70 Chapter 4 Experiments and Analysis70 Chapter 4 Experiments and Analysis

we needed to search for the structure and the SMILE representation on different webs,
and we could not find some of them. The file we have used for this evaluation is a .csv
file which looks like it is shown in the Figure 3.9.

Of course, since we even have less pairs among the computed similarities (65), we
just evaluate considering those pairs.

Number of components for LSA 100 200 500

Pairs in ground truth 97 97 97

Pairs in computed similarity 65 65 65

Kendall’s τ 0.2327 -0.0269 0.0125

Pearson’s Correlation 0.7920 0.7385 0.6875

Accuracy 0.7385 0.7385 0.7385

Recall 0.0556 0.0556 0.056

Table 4.1: Direct Evaluation against a ground truth of the Text Based Similarity

The recall is really bad value in the three experiments, which means that a really
small portion of the similar drugs are classified as similar. This can be because the
threshold is to high and our similarity measures are below it. However, the accuracy
is not bad (around 0.75), so a good portion of drugs which are classified as similar,
actually, are classified properly. Those values are equal for the three experiments, so
they do not give us a lot of information about choosing one of them to cluster.

As said implicitly above, we would like to identify which case of LSA reduction is
better, in order to just use that one for the clustering. In order to make a decision,
we chose the one with better Person’s and Kendall’s τ Correlations, LSA with 100
components. Even so, we have to say that, while Pearson’s correlation values could be
considered as good, it is not the case with Kendall’s correlation.

As a matter of fact, we have discovered that our similarity measure based on text
mining techniques, does not seem to be very useful to infer a rank of the similarity
among drugs (compared to the ground truth). Actually, as a conclusion, based on the
values of Accuracy, and correlations, we could say that our method is relatively good
to infer the similarity between a pair of drugs. However, is not really good to infer
the degree of similarity between two drugs taking into account how similar are other
pairs of drugs. So that, the measure of similarity is good locally, but we cannot say
that it is good globally. Even so, it is possible that this fact is not only caused by the
quality of our measure. It could be caused because, as said before, the ground truth
gives us information about how many experts said that a pair of drugs is similar or
not. Nevertheless, the experts were not asked about which degree of similarity have
those drugs, neither they were asked to say how similar are two drugs in comparison
to another two other ones.

4 3

Taxonomy Based Similarity

In this section, we explain the experimental setup and the results of the experiment
for the taxonomy based similarity. Note that in the upcoming paragraphs we just talk
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about the experiment itself, avoiding some details. For more detailed description about
how the similarity measure is computed, please, see Section 3.3.

4 3 1 Experimental Setup

Our aim is to measure similarity between drugs, in particular, using taxonomic infor-
mation about those drugs. The taxonomic structure of the drugs is built using the
information from the complete DrugBank database file (.xml format). Specifically, we
use all the fields related to the classification tag: kingdom, superclass, class, etc.

It could be possible to build a whole graph of the DrugBank, with all the drugs
(10,562), however, we have chosen to use the same number as we used in the text
experiment (see Section 4.2). The reason is that if we used all the drugs, the cost
of computation of the similarity matrices would be really high. Actually, we consider
that using the same amount of drugs between two experiments could be interesting, in
order to see how two distinct approaches address the exact same problem.

When reading the information of the drugs, we make sure that, for each collected
drug, the three textual fields (used in the previous section) and the ATC Code are not
empty. This reduces the number of drugs we use during the experiment from 10,562
to 1,661.

4 3 2 Similarity Matrix

The similarity between all pairs formed by the 1,661 drugs is computed using our
measurement (see below) and saved into a redundant square matrix. We have a n× n
matrix (where n is the number of drugs), then each pairwise combination from the set
exists twice, once in each order, the similarity between the drug x to the drug y and
vice-versa. However, those two values of similarities are the same.

Just as a reminder, for this experiment, we have built two different sorts of graphs:
unweighted and weighted. For each graph, we compute the distance between the drugs
(as the shortest path in the taxonomic structure) and then the similarity using the
method proposed by Leacock and Chodorow [Leacock and Chodorow, 1998]. Please,
note that all of this, is explained in the Section 3.3. The similarities are put into two
matrices, which can be visually inspected in the Figures 4.7 and 4.8.

As it is shown in the Figures 4.7 and 4.8, the weighted similarity matrix looks
darker, that is why it contains smaller values of similarity (closer to zero). This
totally reasonable, because its values of distances between drugs are greater (paths
are weighted), thus, when we normalize the distance and compute the the similarity
the result is smaller for this case.

4 3 3 Indirect Evaluation: Clustering

Making use of the similarity matrices showed in the Figures 4.7 and 4.8 we have
clustered the drugs into fourteen clusters with a Spectral Clustering. For further
information about the used clustering technique or other aspects about the clustering
process, like the number of clusters, please, see Section 3.5.1.

Ordered Similarity Matrix

With the obtained clusters we have ordered the columns and rows of the similarity
matrices, the result is showed in the Figures 4.9 and 4.10. The clusters are the
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Figure 4.7: Similarity matrix based on taxonomy for the case: unweighted graph.

Figure 4.8: Similarity matrix based on taxonomy for the case: weighted graph.

green/yellow squares around the diagonal of the matrix. Even though it is obvious
we would like to note that the diagonal is completely drawn in yellow because it
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corresponds to the similarity to each drug to itself.

Figure 4.9: Similarity matrix based on taxonomy ordered using the clusters for the
case: unweighted graph.

Clusters - Overview

As in the previous experiment, we have studied the First Level ATC Codes distribution
for the number of drugs used in this experiment (1,661). As in the previous experiment,
the total number of ATC Codes is 3,007 and the distribution is shown in the Figure
4.11. We have ordered the histogram from the most to the least common ATC Code.

We have fourteen clusters because we have fourteen classes of First Level in the
ATC Codes. The ideal scenario, would be to see that all the drugs with one specific
first level of ATC Code were together in the same cluster, nevertheless, it is not the
case. In the upcoming paragraphs, we try to understand which could be the cause of
that fact.

The first level of the ATC Code indicates the anatomical main (not unique) group
in which the drug is supposed to act. The similarity measure computed for this
experiment uses taxonomic information of the DrugBank Classification. In principle,
there is not a clear relationship between the DrugBank Classification and the ATC
Code Classification, so the performance of the clustering is not expected to be perfect.
In addition, there is another reason which comes from the nature of the data. As we
have seen in the Figure 4.11, the distribution of our classes is really unbalanced, what
increases the difficulty of clustering properly.

Nevertheless, our principle aim is not cluster but just to evaluate if our similarity
measurement is good. Of course, the better we cluster, the better could be our measure,
but it is important to note that our task is not to cluster perfectly.
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Figure 4.10: Similarity matrix based on taxonomy ordered using the clusters for the
case: weighted graph.

Figure 4.11: Distribution of the first level of all ATC Codes for the 1,661 drugs used
in the taxonomic experiment.

Clusters - Deep Analysis

As we have said before, the similarity measure computed in this experiment is not
perfect, since the drugs are not totally grouped by their ATC Code. Even so, in some
cases we actually have got good results.

In this experiment, we have used two different graphs, weighted and unweighted,
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however, the clustering results are equal for both of them. This actually make sense
since our clustering algorithm is relatively stable (not deterministic though) and with
the weights we have just scaled the similarities. Consequently, we have decided to show
and analyze just one of the cases: the weighted. In the Figures 4.12 and 4.13, we can
see the distribution for the fourteen obtained clusters.

Please, note that the clusters will remain the same if the used data does not change
a lot, since the Spectral Clustering is more or less stable (not deterministic though).
However, if someone ran our experiment several times, slightly different clusters could
be found, but we have deprecated this and just run it once.

As we did in the previous experiment, we have divided the clusters in three different
types:

• Clusters in which the most common ATC Code represents a good percentage
of the total number of occurrences of the ATC Code within the complete set of
used data. This could be equivalent to the notion of Purity we have talked before
(see Section 3.5.1), meaning, how good we are grouping in the same cluster all
instances of drugs with a certain ATC Code. The only cluster we have which
this characteristics is the number 12, in which we have grouped around the 50%
of the instances of the ATC Code ’G’.

• Clusters in which the most common ATC Code appears clearly more times within
the cluster than the rest of ATC Codes included in the cluster. Even though it
is not exactly the same, this is somehow related to the notion of Purity. Just
one cluster could be included in this category, the number 6. In that cluster, the
most common ATC Code, ’J’, appears around four times the sum of all the rest
of the ATC Codes which are inside the cluster. Note that Cluster 12 could be
also included in this group.

• Clusters which are a bit meaningless for us because either they cannot be included
in one of the previous cases or because the number of drugs within the cluster is
too small. The rest of the clusters would be part of this last group. We cannot
easily extract conclusions. Just an interesting additional comment, we have found
three clusters (1, 3 and 4) in which the four most common ATC Codes are ’J’,
’N’, ’C’ and ’A’. They do not appear in the same order, but it is clear that
our similarity measure has found a connection between those drugs. It would
be really interesting to study this fact with experts, maybe, some drugs of those
ATC Codes are actually similar because medical reasons we are not aware of. Or
might be caused because those four ATC Codes are the most common within the
data we work with (see Figure 4.11).

Conclusion

For this experiment, we did not get as good results from the clustering as in the
text based experiment (Section 4.2). However, we can at least see that our similarity
measurement has good properties and could be useful, maybe not individually but used
together with other measures.

4 3 4 Direct Evaluation: Ground Truth

This evaluation is explained in the Section 3.5.2, please, for detailed information, read
that section. Basically, we use 100 pairs of drugs which have been annotated by 143
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Figure 4.12: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 0-5 for the taxonomy experiment.
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Figure 4.13: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 6-13 for the taxonomy experiment.
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experts (henceforward, ground truth). They were asked if the two molecules were or
not similar. Our aim is to see if our approach actually gives a similar answer to the
one provided by those experts. Keeping in mind that aim, we have decided to evaluate
our similarity measurements against the ground truth in three different dimensions or
aspects:

• Value of similarity. Study of the correlation between the value of similarity
computed by our measure and the similarity from the ground truth. For this
experiment we use Pearson’s Correlation Coefficient. Please, note that the value
of similarity provided by the ground truth is not a degree of similarity between
the drugs, but the percentage (from 0 to 1) of the experts who said that the pair
of drugs were similar.

• Order. Study of the order or rank inferred by the value of similarity. We have
ordered the pairs from the least to the most similar and then studied the rank
correlation using Kendall’s τ Correlation Coefficient.

• Threshold. We have set a threshold in order to classify our pairs of drugs into
two classes: similar and non-similar. The threshold is 0.85, because the Tanimoto
Coefficient, one of the similarities we use (see Section 3.4) has shown to indicate
similarity between two molecules from that value. Once we have classified the
pairs using our similarity measure and the ground truth, we compute the accuracy
and the recall.

In this case, we have two different experiments: unweighted and weighted graph.
In the Table 4.2, we can see all relevant information for those experiments, including
all the evaluation coefficients explained above. Note that we have also included the
number of pairs we have from the ground truth (97) and the pairs which are among
our computed similarities (65). Originally, the ground truth is a set of 100 pairs,
however, we have not been able to find all the names of some drugs from the original
paper [Franco et al., 2014]. The reason is that the authors just published the molecular
structure of the pairs, the SMILE representation and the decision of the experts, but
not the names of the drugs. Thus, we needed to search for the structure and the SMILE
representation on different webs, and we could not find some of them. The file we have
used for this evaluation is a .csv file which looks like it is shown in the Figure 3.9.

Of course, since we even have less pairs among the computed similarities (65), we
just evaluate considering those pairs.

Graph Unweighted Weighted

Pairs in ground truth 97 97

Pairs in computed similarity 65 65

Kendall’s τ 0.2212 0.0673

Pearson’s Correlation 0.6721 0.6998

Accuracy 0.7538 0.7692

Recall 0.7222 0.7778

Table 4.2: Direct Evaluation against a ground truth of the Taxonomy Based Similarity

Following the data showed in the Table 4.2 we could claim:
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1. In both cases, there exists certain positive correlation between the values of our
computed similarities and the ground truth (see Pearson’s Correlation).

2. The Classification using the threshold shows good results for both, weighted and
unweighted, since the values of accuracy and recall are relatively good.

3. The weighted path shows that there is not rank correlation (Kendall’s τ), while
the unweighted improves that value.

As we see, the result of the correlation using the Kendall’s τ is not good at all. It
says that there does not exist any rank correlation. We expected to find correlation, but
actually, the ground truth we use should not be expected to infer any order between the
similarity of the pairs. The experts were not asked about which degree of similarity
a pair of drugs had, neither they were asked to say how similar were two drugs in
comparison to another two other ones. They were asked just to say if two drugs were
or not similar. Then, a percentage of the experts saying ’yes’ was calculated and used
here in our experiment.

4 4

Molecular Structure Based Similarity

In this section, we explain the experimental setup and the results of the experiment for
the molecular structure based similarity. Note that in the upcoming paragraphs we just
talk about the experiment itself, avoiding some details. For more detailed description
about how the similarity measure is computed, please, see Section 3.4.

4 4 1 Experimental Setup

Our aim is to measure similarity between drugs, in particular, utilizing the similarity
between the molecular structure of those drugs. The molecular information of each
drug is gathered from the specific DrugBank file devoted to it (.sdf format). There
are several fields within the database which contain information about the molecular
structure of the drugs: 2D and 3D structure, different sorts of representation, etc.
We could access to the molecular structure using the complete database (.xml file),
however, it is easier and more powerful to use the specific file devoted to the structure
of the molecules (.sdf file). The reason is because we are using a Python library, RDKit,
which includes several methods to extract exploit the potential of the .sdf files.

As said in previous sections, DrugBank is not totally complete, some drugs are
missing part of their fields. In this case, we read the drugs from the .sdf file using a
method of RDKit. That method is able to read the file and generate a list of molecules,
however, some of those molecules are not complete and we discard them. This reduces
the number of drugs we use during the experiment from 10,562 to 8,738, still, a really
good number and quite greater than in the other two experiments.

4 4 2 Similarity Matrix

The similarity between all pairs formed by the 8,738 drugs is computed using our
measurement and saved into a redundant square matrix. We have a n × n matrix
(where n is the number of drugs), then each pairwise combination from the set exists
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twice, once in each order, the similarity between the drug x to the drug y and vice-versa.
However, those two values of similarities are the same.

RDKit library contains methods to compute automatically the fingerprints (binary
vectors representing the molecular structures) from the molecules we have read before.
We generate the two most well-known different sorts of fingerprints: MACCS (167 bits)
and ECFP (1024 bits). We want to analyze the performance of both, which is expected
to be different, since ECFP offers more precision (more bits).

The similarity matrices are built using the Tanimoto Coefficient, which measures
how different those fingerprints (binary vectors) are from each other. Please, remember
that we have used another coefficient, Dice, but we do not show the results here and we
do not use it for clustering because it is extremely correlated to Tanimoto. The study
of correlation between the similarity matrices obtained with each of the coefficients
appears within the Python notebooks we have in our Git repository. The aspect of the
two similarity matrices is shown in the Figures 4.14 and 4.15.

Figure 4.14: Similarity matrix based on molecular structure similarity. The molecular
structure has been represented using ECFP fingerprints (1,024 bits).

We can observe in the visualization of the matrices that the values of similarity of
the MACCS fingerprints are greater (closer to yellow) than in the case of using ECFP
fingerprints. This is an expected behavior, since ECFP fingerprints have quite more
bits, it is reasonable that the drugs are less similar between each other (since their
representation is more specific/precise). We also studied the correlation between these
two similarity matrices, but the correlation was around 0.6. Even though that value
of correlation shows certain positive correlation, a value of correlation is considered as
relevant from 0.7. Thus, we decided to continue the experiment (with the complete
evaluation) using both similarity matrices.
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Figure 4.15: Similarity matrix based on molecular structure similarity. The molecular
structure has been represented using MACCS fingerprints (167 bits).

4 4 3 Indirect Evaluation: Clustering

Using the similarity matrices showed in the Figures 4.14 and 4.15, we have clustered
the drugs into fourteen clusters with a Spectral Clustering. For further information
about the used clustering technique or other aspects about the clustering process, like
the number of clusters, please, see Section 3.5.1.

Ordered Similarity Matrix

With the obtained clusters we have ordered the columns and rows of the similarity
matrix, the result is showed in the Figure 4.3. The clusters are the green/yellow
squares around the diagonal of the matrix. Even though it is obvious we would like
to note that the diagonal is completely drawn in yellow because it corresponds to the
similarity to each drug to itself.

Clusters - Overview

Even though we compute the similarity between pairs using 8,738 drugs, as we have
explained in the Section 4.1, from the total number of drugs (10,562), just 2,287 has
a non-empty ATC Code. In addition, in this experiment we are not using all but
just 8,738 drugs, so the number of drugs with non-empty ATC Code are even less,
specifically, 2,003 drugs. Thus, this evaluation is not not going to be done over all the
similarity values we have computed but just the ones with ATC Code. In particular,
the total number of ATC Codes is 3,512 and the distribution is shown in the Figure
4.18. We have ordered the histogram from the most to the least common ATC Code.
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Figure 4.16: Similarity matrix based on molecular structure similarity ordered using
the clusters. The molecular structure has been represented using ECFP fingerprints
(1,024 bits).

We have fourteen clusters because we have fourteen classes of First Level in the
ATC Codes. The ideal scenario, would be to see that all the drugs with one specific
first level of ATC Code were together in the same cluster. However, the reality is
obviously different to that. In this part of the document, we try to find possible causes
of the bad performance of the clustering.

The first level of the ATC Code indicates the anatomical main (not only) group
in which the drug is supposed to act. The similarity measure computed for this ex-
periment uses the molecular information. Based on the similar property principle
of Johnson and Maggiora, which states: similar compounds have similar properties
[Johnson and Maggiora, 1990], we could say that drugs with similar molecular struc-
ture would have similar properties.

There is a drawback tough, since that principle is not always true. Furthermore,
the principle talks about the properties of a molecule (drug, in our case). However,
the first level of the ATC Codes gives information about the main anatomical group in
which the drug is meant to act, which not always has to be related to the properties of
a drug. In addition, there is another reason which comes from the nature of the data.
As we have seen in the Figure 4.18, the distribution of our classes is really unbalanced,
what increases the difficulty of clustering properly.

For those reasons, we could justify the relatively good but not great performance
of the clustering. Nevertheless, this fact does not mean we have totally failed. Our
molecular structure based similarity measure still has value, as we will see later. Note
that our principal aim was not to cluster the drugs into the fourteen chosen classes,
but to build some similarity measures and evaluate if they were good or not, and we
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Figure 4.17: Similarity matrix based on molecular structure similarity ordered using
the clusters. The molecular structure has been represented using MACCS fingerprints
(167 bits).

Figure 4.18: Distribution of the first level of all ATC Codes for the 8,738 drugs used
in the molecular structure experiment.

can say that, definitely, in this case is not bad.

Clusters - Deep Analysis

In this section, we analyze more deep in detail the obtained clusters. As we have said
before, the similarity measure computed in this experiment is not perfect, since the
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drugs are not totally grouped by their ATC Code. However, in some cases we actually
have got good results.

In this experiment, we have worked with two different sorts of fingerprints so that
we have all the results in duplicate. Even so, the results and conclusions are not
too different no matters if we utilize ECFP or MACCS. Therefore, we have decided to
comment all the clusters at the same time (always referring our thoughts to the specific
experiment).

Please, note that even though Spectral Clustering is not completely deterministic,
it is more stable than K-means. If someone runs our experiment several times, slightly
different clusters could be found, but we have deprecated this and just run it once.
In the Figures 4.19 and 4.20, we can see the distribution for the fourteen obtained
clusters when using the ECFP fingerprints. In the Figures 4.21 and 4.22, we can see
the distribution for the fourteen obtained clusters when using the MACCS fingerprints.

In order to make easier the analysis of the results, we have divided the clusters in
three different groups:

• Clusters in which the most common ATC Code represents a good percentage
of the total number of occurrences of the ATC Code within the complete set of
used data. This could be equivalent to the notion of Purity we have talked before
(see Section 3.5.1), meaning, how good we are grouping in the same cluster all
instances of drugs with a certain ATC Code. In this experiment, we have not
been able to find clusters with this characteristics.

• Clusters in which the most common ATC Code appears clearly more times within
the cluster than the rest of ATC Codes included in the cluster. Even though it
is not exactly the same, this is somehow related to the notion of Purity. The
clusters which show this behavior are: 1 and 7 (for ECFP) and 1 and 2 (for
MACCS). In the ECFP clusters number 1 and 7 we have just one predominant
ATC Code, ’N’ and ’C’, respectively. While in the clusters number 1 and 2 we
have just one predominant ATC Code, ’N’ and ’G’, respectively.

• Clusters which are a bit meaningless for us because either they cannot be included
in one of the previous cases or because the number of drugs within the cluster is
too small. The rest of the clusters could be included within this group. Please,
note that we have not strongly claimed that those clusters are meaningless, we
just cannot extract a clear conclusion from them. Maybe, with the help of some
experts in the domain we could have a better understanding of our results. Might
be possible to discover that it actually makes sense to have clusters like the
number 2 and number 6 (ECFP, Figures 4.19 and 4.20), in which the number
of ATC Codes ’J’, ’C’, ’N’ and ’A’ is closely the same. Might be that those
ATC Codes are somehow related. We are not experts in the medical domain,
but it seems to be a relationship between those four ATC Codes, which are:
Antiinfectives for systemic use, Cardiovascular System, Alimentary tract and
metabolism and Nervous System. We observe a similar behavior in the MACCS
clusters number 5 and 13 (Figures 4.21 and 4.22). Of course, this is just a
conclusion extracted from our results, would be necessary to ask to several experts
if this actually makes sense. In fact, those four ATC Codes, are the most common
ones within our data, so maybe we group them just because there are more of
them (see Figure 4.18).
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Figure 4.19: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 0-5 for the molecular structure experiment. The clustering was
done using the similarity matrix computed with the ECFP fingerprints.
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Figure 4.20: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 6-13 for the molecular structure experiment. The clustering was
done using the similarity matrix computed with the ECFP fingerprints.
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Figure 4.21: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 0-5 for the molecular structure experiment. The clustering was
done using the similarity matrix computed with the MACCS fingerprints.
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Figure 4.22: Distribution of the first level of all ATC Codes for the drugs contained
within the Clusters 6-13 for the molecular structure experiment. The clustering was
done using the similarity matrix computed with the MACCS fingerprints.
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Conclusion

We have seen that the results of the clustering are quite less useful than for the previous
cases. The conclusions we have extracted here are a bit meaningless in order to show
a really good performance of the clustering. Even so, our conclusion is that further
analysis of the results, with the help of experts, should be done. Because, as it is shown
in the evaluation done using the ground truth (Section 4.4.4), the molecular structure
based similarity has shown the most promising results. In fact, they are the most used
similarity measurements among drugs in the state of the art.

4 4 4 Direct Evaluation: Ground Truth

This evaluation is explained in the Section 3.5.2, please, for detailed information, read
that section. Basically, we use 100 pairs of drugs which have been annotated by 143
experts (henceforward, ground truth). They were asked if the two molecules were or
not similar. Our aim is to see if our approach actually gives a similar answer to the
one provided by those experts. Keeping in mind that aim, we have decided to evaluate
our similarity measurements against the ground truth in three different dimensions or
aspects:

• Value of similarity. Study of the correlation between the value of similarity
computed by our measure and the similarity from the ground truth. For this
experiment we use Pearson’s Correlation Coefficient. Please, note that the value
of similarity provided by the ground truth is not a degree of similarity between
the drugs, but the percentage (from 0 to 1) of the experts who said that the pair
of drugs were similar.

• Order. Study of the order or rank inferred by the value of similarity. We have
ordered the pairs from the least to the most similar and then studied the rank
correlation using Kendall’s τ Correlation Coefficient.

• Threshold. We have set a threshold in order to classify our pairs of drugs into
two classes: similar and non-similar. The threshold is 0.85, because the Tanimoto
Coefficient, one of the similarities we use (see Section 3.4) has shown to indicate
similarity between two molecules from that value. Once we have classified the
pairs using our similarity measure and the ground truth, we compute the accuracy
and the recall.

In this case, we have two different experiments, one for each of the sorts of
fingerprints we use: ECFP and MACCS. In the Table 4.3, we can see all relevant
information for those experiments, including all the evaluation coefficients explained
above. Note that we have also included the number of pairs we have from the ground
truth (97) and the pairs which are among our computed similarities (96). Originally,
the ground truth is a set of 100 pairs, however, we have not been able to find all
the names of some drugs from the original paper [Franco et al., 2014]. The reason
is that the authors just published the molecular structure of the pairs, the SMILE
representation and the decision of the experts, but not the names of the drugs. Thus,
we needed to search for the structure and the SMILE representation on different webs,
and we could not find some of them. The file we have used for this evaluation is a .csv
file which looks like it is shown in the Figure 3.9.
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Even though in this experiment the difference is not so high as before, since we
even have less pairs among the computed similarities (96), we just evaluate considering
those pairs.

Sort of Fingerprint ECFP MACCS

Pairs in ground truth 97 97

Pairs in computed similarity 96 96

Kendall’s τ -0.0404 0.0601

Pearson’s Correlation 0.8886 0.9186

Accuracy 0.7708 0.8854

Recall 0.12 0.76

Table 4.3: Direct Evaluation against a ground truth of the Molecular Based Similarity

Even though we have clustered using both cases, ECFP and MACCS, still, based on
the results showed in the table, we can say that MACCS seems to be a better measure.

Both experiments show similar values for the two correlations, so that we have
determined that MACCS could be a better solution just based on the values of accuracy
and recall. The accuracy of both cases is good but in the case of using MACCS is
actually quite good (0.8854). Nevertheless, the value of the recall is quite better for the
case of using MACCS. The measure recall gives us an idea of which portion of ’similar’
drugs were classified as ’similar’. In the case of ECFP, the values of similarities are
quite smaller than in the MACCS. This is something we have already talked about when
we have shown the two similarity matrices. This fact comes from the length of both
fingerprints, ECFP is quite larger, so it is more difficult for the drugs to be similar (since
the representation of them is more specific and unique). ECFP is normally consider
even better than MACCS, since it contains more bits and it is more precise. Even
so, in this case, since we are using a high threshold, the similarity measure computed
with ECFP seems to be worse. We are not going to claim which one is better, we just
want to state that even though with ECFP we probably obtain better similarity values
(more precise), the absolute values are lower, and this should be taken into account if
you want to classify the drugs using a threshold.

As happened in the previous experiments, Kendall’s τ Correlation says that there
is not correlation at all. However, Person’s Correlation is quite good in both cases,
so that there is correlation considering the values of the similarities. Actually, as a
conclusion, based on the values of Accuracy, and correlations, we could say that our
method is relatively good to infer the similarity between a pair of drugs. However, is
not really good to infer the degree of similarity between two drugs taking into account
how similar are other pairs of drugs. So that, the measure of similarity is good locally,
but we cannot say that it is good globally. Even so, it is possible that this fact is not
only caused by the quality of our measure. It could be caused because, as said before,
the ground truth gives us information about how many experts said that a pair of
drugs is similar or not. Nevertheless, the experts were not asked about which degree of
similarity have those drugs, neither they were asked to say how similar are two drugs
in comparison to another two other ones.
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CHAPTER 5

CONCLUSION

The current chapter, is devoted to discuss, on the one hand, the obtained results and
draw a final conclusion of the work done along this master thesis. On the other hand,
we state the contributions of the project and a set of possible future lines. Note that,
when needed, specific conclusions for each experiment have been explained in their
respective section along the Chapter 4.

5 1

Statement and Contributions

In this project, three different similarity measurements between drugs from the Drug-
Bank database have been developed. Each of those measures have been computed over
one or more dimensions of the drugs: textual, taxonomic and molecular information.
In order to study how good is each of the similarity measures, two different evaluations
have been performed: indirect and direct. The indirect evaluation is based on cluster-
ing the drugs and evaluating how good the obtained clusters are. The direct evaluation
is done over the similarities, comparing them with a ground truth provided by experts
in the domain. This section is devote to list and explain which are the contributions
of this thesis.

• A text similarity measure has been computed over some of the textual fields of
the DrugBank database. Even though there exist several works devoted to the
implementation of text similarity measures, we do not know other works in which
they have used that sort of similarity over DrugBank.

• A taxonomy similarity measure has been computed over the main classification
structure provided by DrugBank. This is the only approach we know in which
graph similarity has been computed over the taxonomic structure of DrugBank.

• A molecular structure based similarity has been computed over pairs of drugs
from the DrugBank database. This is a well known topic in the domain, so it is
not a novel work. Nevertheless, our work provides the largest number of pairs of
drugs in which the similarity has been already computed and it is ready to be
used.
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• To summarize the three previous items, we have computed three different simi-
larity measures within the same framework. Usually, other works focus on just
one of them, here we provide results for three different ones.

• A qualitative indirect evaluation of the similarities is performed over the perfor-
mance of clustering drugs using the computed similarities. The results are rather
good sometimes and interesting and useful conclusions arose.

• A quantitative direct evaluation is done using a small ground truth. The results
provide conclusions which can be useful for the research community. One of the
contributions we have done with this evaluation is to actually prepare a document
of the ground truth which is ready to be used. The original version provided by
the authors could not be interpreted by a computer.

• Several future lines of work are proposed, therefore the research effort done in
this thesis had continuity.

• The implemented code and used resources have been uploaded to a open repos-
itory in GitHub under a MIT license1. This fact adds value to our work since
all the exposed results can be easily obtained by other researches. Furthermore,
this together with the fact that we provide a list of future lines of work, makes
more possible to have an extension of our work.

5 2

Conclusions

In this section we draw some conclusions about the results we have obtained in each
of the tasks developed within our work (see Chapter 3). Along Chapter 4, we have
already give some specific conclusions to the experiments when we have considered
it necessary. A more global perspective of the conclusions is provided in the current
section.

As it is stated several times along the document, two different evaluations have been
performed: indirect (clustering) and direct (ground truth). Conclusions from each of
them are extracted and analyzed separately in the upcoming subsections.

5 2 1 Clustering Evaluation: Conclusions

Considering the results exposed within the Chapter 4, we claim that the best results
of the clustering are achieved when the similarity based on text mining is used (see
Section 3.2). The purity of the clusters, even though it is studied qualitatively, seems
to be much better in this case. In fact, we obtain three clusters in which the most
predominant ATC Code represents a good percentage of the total number of drugs
with that ATC Code. We also get several clusters in which a unique ATC Code is
really predominant, so that the clusters can be understood as belonging to that ATC
Code. Nevertheless, it is not a perfect result.

1The MIT License is a permissive free software license originating at the Massachusetts Institute of
Technology. As a permissive license, it puts only very limited restriction on reuse and has, therefore, an
excellent license compatibility. See more information on: https://en.wikipedia.org/wiki/MIT License.
Last visit: April 2018.
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In general, the picture is not totally optimistic, we cannot state that the clustering
has provided a prominent result. The performance of the clustering is not good in
the cases of using similarity measures based on taxonomic information and molecular
structure. The main reason why we obtain this bad result is because the data is
clearly unbalanced (see Figures 4.4, 4.11, 4.18). Spectral clustering (algorithm used in
this project) and graph-based semi-supervised learning algorithms, in general, are well
known to be sensitive to how graphs are constructed from data. In particular if the data
has proximal and unbalanced clusters these algorithms can lead to poor performance.
On the other hand, we think that since we are using different information of the drugs,
the meaning of our similarity measures is different from each other. It is to say, the
first level of the ATC Code (14 categories), used to evaluate the clusters, indicates
the anatomical main (not only) group in which the drug is supposed to act. However,
each of our similarities is based on different characteristics of the drugs (DrugBank
taxonomy, textual information and molecular structure). Might be the case that our
similarity measures are good to cluster the drugs following another structure, not the
ATC Code classification. For instance, the taxonomic information extracted from
DrugBank might have nothing to do with the anatomical main group (ATC Code first
level).

To conclude, the indirect evaluation based on clustering has lights and shadows. We
see some relatively favorable results but it is not enough to claim that our similarities
are really good. We have found though, some possible causes of the bad performance
of the clustering. Further research in this direction should be done.

5 2 2 Ground Truth Evaluation: Conclusions

In the Chapter 4, we show the results of the evaluation of each similarity against what
we call ’ground truth’. The best result has been obtained for the case of Molecular
Structure based Similarity. The reason is quite clear, the ground truth was built by
asking to 143 experts if the molecular structure of several pairs of drugs were or not
similar. This result makes even more evident something we have said implicitly before:
each of the similarity measures computed along this thesis has its own meaning and
thus, its possible field of application. We have not gone so far to analyze in which
applications each of the similarities would be more suitable, but it is clear that each of
them has a proper meaning different from the rest.

Just as a reminder, three different studies have been done inside this evaluation:
correlation between the values, the order inferred by the similarities and how both,
ground truth and our similarities, classify the drugs into similar or not. In the following
paragraphs, some specific comments about those three studies are provided.

Correlation between the value

In most of the cases we have seen positive values of correlations which were close to
or bigger than 0.7, so we can say there exists correlation. The worst case is found
in the text mining experiment. This result can be interpreted as there is a certain
correlation between the degree of similarity of our measurements and the percentage
of experts who said that a pair of drug was similar. Please, note that we expressed
that percentage between 0 and 1.
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Correlation of the inferred order

In all the cases, this value is nearly 0, which means that there does not exist correlation
at all. The order inferred using the values of similarity we have computed is not
correlated to the order inferred using the ground truth. Even though we expected to
find correlation, the bad result might reasonable if we think about how the ground
truth was built. The experts were not asked about which degree of similarity have
those drugs, neither they were asked to say how similar are two drugs in comparison
to another two other ones.

Result of the classification

The best performance in this case is found in the Molecular Structure based Similarity.
Reasonable, since we used 0.85 as the threshold to decide if a pair of drugs was similar or
not. It is exactly the value which is recommended to use when the Tanimoto (Jaccard)
Coefficient (basis of the molecular structure based similarity experiment) is used.

As a general comment, it would be really necessary to extend the ground truth in
order to give better conclusions. However, we have not found a larger option so this is
the best we can do.

5 3

Future Work

The heterogeneity of the work developed in this project is doubtless. Therefore, several
future lines of work have been opened with this thesis. In this section, we list and
explain briefly some of those possible lines, of course, the list could be larger and since
we have shared all our work (including code) we are open to possible contributions
with other groups.

• Combine the result provided by each of the similarity measures. As we have
shown, any of them gives an irrefutable result, thus, a good approach would be
to combine them, linearly, for instance. This combination could be weighted or
not, therefore, choosing the corrects weights is another possible future work.

• Improvements in the text based similarity:

– Just three textual fields from DrugBank have been used, we could use others
or even detect which are the most useful for the task and weight the relevance
of each of them. An easy way of weighting would be to just divide the tf
value of the tf-idf by the length of the field. Thus, we were doing a Bag of
Words not in the total but in each textual field.

– Another possible improvement would be to use the name of the drug. As
we explained in the first chapters, the name of a drug contains prefixes and
suffixes which sometimes are related to the type of drug.

– Finally, we could use Latent Dirichlet Allocation (LDA) instead of LSA. LSI
or LSA learn latent topics by performing a matrix decomposition (SVD) on
the term-document matrix. LDA is a generative probabilistic model, that
assumes a Dirichlet prior over the latent topics. In practice, LSI is much
faster to train than LDA, but has lower accuracy.
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• Improvements in the taxonomy based similarity can be done in choosing the
weights of the weighted graph. It would be good also to look for more sophisti-
cated ways of computing the distances/similarities between the drugs.

• Improvements in the molecular structure based similarity are, for instance, using
3D representations of the drugs, not only 2D fingerprints.

• Share and evaluate our results with experts in the domain in order to get better
conclusions.

• One of our ideas was to program a parametric function to compute similarity
between two list of drugs. Possible parameters of that function could be: type or
type of similarities, sorts of coefficients, used fields in the text similarity measure,
fingerprints used in the molecular structure measure, etc. This task would be just
to put together all the pieces of our code.

• Build an API for users without specific programming skills. Once the similarities
have been tested more than in this project, it would be interesting to build an
API for people like doctors or chemists, etc.

• Enlarge the ground truth.

• Apply the implemented similarities to other medical entities (e.g. body parts,
illnesses, etc.). Of course, the similarity based on the molecular structure of
the drugs cannot be used in much more other cases. However, we could use
the textual and taxonomic similarities over ontologies and other resources about
body parts or illnesses. The potential of having similarity measures among those
three medical entities is inestimable. We could know if a drug could be used to
treat a specific illness in a specific body part, for instance, if that drug has been
used to treat the same specific illness in another part of the body which is similar
to the target one.
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A., Grouin, C., Palotti, J., and Zuccon, G. (2015). Overview of the clef ehealth
evaluation lab 2015. In International Conference of the Cross-Language Evaluation
Forum for European Languages, pages 429–443. Springer.



BIBLIOGRAPHY 99BIBLIOGRAPHY 99BIBLIOGRAPHY 99

[Golub and Reinsch, 1970] Golub, G. H. and Reinsch, C. (1970). Singular value de-
composition and least squares solutions. Numerische mathematik, 14(5):403–420.

[Goodwin and Harabagiu, 2016] Goodwin, T. R. and Harabagiu, S. M. (2016). Medical
question answering for clinical decision support. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management, pages
297–306. ACM.

[Goodwin and Harabagiu, 2017] Goodwin, T. R. and Harabagiu, S. M. (2017). Knowl-
edge representations and inference techniques for medical question answering. ACM
Transactions on Intelligent Systems and Technology (TIST), 9(2):14.

[Gower, 1971] Gower, J. C. (1971). A general coefficient of similarity and some of its
properties. Biometrics, pages 857–871.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec: Scalable
feature learning for networks. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 855–864. ACM.

[Hauser et al., 2017] Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth,
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(2008). The bioscope corpus: biomedical texts annotated for uncertainty, negation
and their scopes. BMC bioinformatics, 9(11):S9.



BIBLIOGRAPHY 103BIBLIOGRAPHY 103BIBLIOGRAPHY 103
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