
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER THESIS

On the Impact of Heterogeneous NoC
Bandwidth Allocation in the WCET of

Applications

Author:
Jordi CARDONA NADAL

Supervisors:
Dr. Carles HERNANDEZ LUZ

Dr. Jaume ABELLA FERRER

Dr. Francisco J CAZORLA

ALMEDIA

A thesis submitted in fulfillment of the requirements
for the degree of Master in Innovation and Research

in the

Facultat d’Informàtica de Barcelona (FIB)
Departament d’Arquitectura de Computadors (DAC)

and the

Computer Arquitecture and Operating Systems (CAOS)
Barcelona Supercomputing Center (BSC-CNS)

April 16, 2018

http://http://www.upc.edu/ca
http://people.ac.upc.es/chernan/
http://people.ac.upc.es/jabella/main.html
http://people.ac.upc.edu/fcazorla/
http://people.ac.upc.edu/fcazorla/
https://www.fib.upc.edu/
https://www.ac.upc.edu/
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computer-architecture-operating-systems-caos
http://www.bsc.es

i

Declaration of Authorship
I, Jordi CARDONA NADAL, declare that this master thesis titled, “On the Impact of

Heterogeneous NoC Bandwidth Allocation in the WCET of Applications” and the

work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master degree

at Universitat Politècnica de Catalunya .

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at Universitat Politècnica de Catalunya or any other

institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date:

http://http://www.upc.edu/ca
http://http://www.upc.edu/ca

ii

Abstract
Achieving high performance and time predictability in current manycore systems

is still a challenge these days as the number of cores in manycore systems keeps

increasing every day. Even though the memory speed has improved in the last

decades, the speed gap between cores and memory is still relevant since part of

the time that cores are stalled is due to waiting for data coming from memory. This

performance bottleneck gets even worse when we increase the core count as we have

more and more cores competing for the same memory bandwidth and for the same

interconnection network to reach memory.

In order to mitigate this issue, in the last few years Networks-on-Chip (NoCs)

such as meshes and trees, have been introduced in high-performance manycore pro-

cessors due to their physical scalability and low cost. In general, these NoCs lead

to heterogeneous latencies across cores to reach memory due to core location, which

determines the distance between the core and the memory accessed (i.e. number of

routers in between), the arbitration policy and the routing algorithm used, and the

contention caused by other cores in the NoC. Furthermore, in the context of parallel

applications running simultaneously in multiple cores, performance is determined

by the slowest thread, which may change across different thread-to-core allocations.

In the context of Critical Real-Time Embedded Systems (CRTES), the use of many-

cores deploying wormhole NoCs complicates the analysis of application’s timing

behavior. In particular, in order to assess whether applications will run within their

allocated time budget, we need to estimate their Worst-Case Execution Time (WCET)

which, in turn, depends on the Worst Contention Delay (WCD) that each packet can

experience to reach memory. In this thesis, we study the influence of core alloca-

tion on WCD and WCET for tree and mesh NoCs, and how specific modifications of

the arbitration algorithm allow reducing the WCET by homogeneizing the memory

latency across cores.

iii

Acknowledgements
First of all I would like to deeply thank my master thesis advisors Carles Hernán-

dez, Jaume Abella and Francisco J Cazorla for their guidance, mentoring and for

giving me the opportunity to undertake this master thesis in the Computer Archi-

tecture and Operating Systems’ group (CAOS) at Barcelona Supercomputing Center

(BSC-CNS). I also want to thank the rest of the members of the CAOS group as they

have always been available to provide feedback on my work and give me advices to

improve it.

Furthermore, I would like to acknowledge the BSC institution for financially sup-

port my master studies and these two others institutions as this work has been

partially funded by the Spanish Ministry of Science and Innovation under grant

TIN2015-65316-P and the HiPEAC Network of Excellence.

Finally, I would not forget to thank my entire family and specially my parents,

my sister and my closest friends for their unconditional support during all these

years, without you this master thesis would not be possible. My most heartfelt

thanks for the great confidence you have shown in me.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Structure of the Thesis . 5

2 Background 6

2.1 Timing Analysis . 6

2.2 NoCs . 8

2.2.1 Data organization and transmission 9

2.2.2 Network structure . 11

2.2.3 NoC concepts for CRTES . 13

2.3 Parallel Applications . 15

3 Related Work 17

4 Evaluation Framework 19

4.1 Simulation Platforms . 19

4.1.1 Processor details . 19

4.1.2 Network-on-chip Simulator . 20

4.2 Workload . 21

4.2.1 Synthetic Traffic . 21

4.2.2 Real Traffic . 21

v

4.2.2.1 Resource Stressing Kernels 21

4.2.2.2 Spinlock benchmarks properties 22

5 Controlling Bandwidth Allocation in NoCs 23

5.1 Arbiter Design . 25

5.1.1 Implementation cost of a weighted round-robin (WRR) arbiter . 28

5.1.2 Adapting arbitration weights . 30

5.2 On-Chip Interconnection Architectures 32

5.2.1 Tree . 32

5.2.2 Meshes . 33

5.3 A model for computing worst-case delay (WCD) from the allocated

bandwidth . 38

5.3.1 Baseline NoC . 38

5.3.2 Accounting for the Impact of Bandwidth Allocation in WCD . . 39

5.4 Computing WCET in NoC-based processors 41

6 Evaluation Results 42

6.1 Performance characterization of workloads 42

6.1.1 Execution time in Isolation . 42

6.1.2 Homogeneous executions . 43

6.1.3 Heterogeneous executions . 44

6.2 Tree-NoC arbitration and bandwidth allocation analysis 46

6.3 WRR arbitration analysis . 50

6.4 WCET analysis in RR and WRR NoCs 55

7 Conclusions and Future Work 58

vi

List of Figures

1.1 Schematic of the problem where this thesis contributes. 4

2.1 Packet format . 10

2.2 Pipelined router . 12

5.1 Binary Tree NoC structure . 25

5.2 2x2 Mesh representation in tree . 27

5.3 Window arbitration implementation. 30

5.4 3x3 mesh weight using XY routing and WRR arbitration 31

5.5 Binary tree with RR arbiter . 32

5.6 3x3 mesh flows using XY routing algorithm 33

5.7 3x3 mesh weights using XY routing and RR arbitration 34

5.8 Messages sent per NIC in a 3x3mesh XY routing and RR arbitration . . 34

5.9 Messages latency . 35

5.10 Messages sent per core in a RR 3x3Mesh varying the IR 36

5.11 Messages latency per core in a RR 3x3Mesh varying IR 37

5.12 2x2 Mesh with 4 cores . 40

6.1 Tree isolation benchmarks results . 42

6.2 Comparison between multicore homogeneous and isolation bench-

marks results . 43

6.3 Heterogeneous benchmarks results . 44

6.4 Comparison between multicore heterogeneous and homogeneous bench-

marks results . 45

6.5 Messages sent per NIC with 1.0 of IR and RR arbitration 46

6.6 Number of short and long messages sent per NIC with 1.0 of IR with

RR arbitration . 47

vii

6.7 Binary tree with WRR arbiter . 48

6.8 Messages sent per NIC with 1.0 of IR with WRR arbitration 48

6.9 Number of short and long messages sent per NIC with 1.0 of IR and

WRR arbitration . 49

6.10 WRR arbitration impact varying the tree NoC IR 49

6.11 Messages sent per NIC in a 2x2mesh XY routing 1.0 IR and WRR ar-

bitration . 50

6.12 Latency evolution in a 2x2 2D Mesh reducing IR 51

6.13 BW distribution in a 4x4 2D mesh with 1 FLIT messages 51

6.14 BW distribution in a 4x4 2D mesh with 5 FLIT messages 53

6.15 Message latency comparison with different 2D mesh sizes 53

6.16 WCET reduction along all the benchmarks 56

6.17 WCET normalized in a 4x4 mesh of benchmark A 57

7.1 IPC evolution along time results . 60

7.2 IPC evolution along time with spinlock reduction of x10 62

7.3 IPC evolution along time with spinlock reduction of x100 62

7.4 IPC evolution along time with spinlock reduction of x1000 63

7.5 Messages sent per NIC in a 3x3mesh XY routing 1.0 IR and WRR ar-

bitration . 64

7.6 Arbitration windows in R2 . 65

7.7 Messages sent per NIC in a 3x3mesh XY routing 1.0 IR with Fig-

ure 7.6b arbitration window . 66

7.8 Arbiter effectiveness lost due to window alignment 66

viii

List of Tables

4.1 Processor Configuration . 20

4.2 Single-threaded benchmarks . 22

4.3 Spinlock Benchmarks Properties . 22

5.1 Weights per input port direction for a 3x3 Mesh with WRR 31

5.2 WCD values for L-flit packets, where the maximum allowed packet

size is L. 41

6.1 Growth between isolation and homogeneous execution 44

6.2 WCET of applications running in a 4x4 2D Mesh 56

1

Chapter 1

Introduction

Computing systems require functional correctness, so that the outputs provided cor-

respond to the system specification. A subset of the computing systems, known as

real-time systems, also needs timing correctness. Timing correctness refers to the ex-

ecution of the corresponding functionalities before specific deadlines. For instance,

the braking system of a car needs to stop the car within limited time bounds. Anal-

ogously, video players need to process frames at a given speed.

Some real-time systems may afford missing some deadlines with certain fre-

quency, since those timing failures only produce a lower quality output, which may

not even be perceived if the deadline miss rate is sufficiently low. For instance, this

is the case of many systems related to entertainment (e.g. music and video players).

However, some other systems are intended not to miss any deadline, since a failure

of those systems could lead to catastrophic consequences (e.g. the navigation system

of a plane or the braking system of a car). These systems, often referred to as crit-

ical real-time embedded systems (CRTES), require a careful functional and timing

verification to prove – qualitatively and quantitatively – that the risk of failure can

be regarded as residual. In other words, the validation and verification (V&V) pro-

cess provides evidence that all relevant scenarios have been considered and safety

measures have been put in place to mitigate risks.

CRTES can be critical because of many reasons. For instance, safety-critical sys-

tems are those whose failure could cause casualties, injuries or severe damages to ob-

jects (including the system itself). Instead, mission-critical systems are those whose

Chapter 1. Introduction 2

failure may typically cause economical losses such as, for instance, systems control-

ling measurement instruments in a satellite. Even if those systems do not compro-

mise the integrity of the satellite itself, they may lead to a failure of accomplishing

the mission, which ultimately is a severe consequence. In this work, we target the

design and timing verification of CRTES, regardless of their type of criticality.

Until recently, CRTES built upon relatively-simple software running on relatively

low-performance (and low-complexity) hardware. For instance, many avionics sys-

tems still today build upon single-core processors with in-order execution and with-

out cache memories. The advantage of those systems is that timing verification is

relatively simple, since execution time variability is low. Hence, the Worst-Case Ex-

ecution Time (WCET) can be estimated with affordable costs either by using timing

models of the system or by collecting measurements and adding a safety margin

over the highest execution time observed.

However, the increasing automation of systems first, and the trend towards fully-

autonomous systems later, pushes CRTES industry for adopting hardware platforms

delivering much higher performance to respond to the performance demands of

complex functionalities. Multicore and manycore processors are one such type of

hardware platform. They consist of a number of cores capable of executing software

simultaneously, as well as an interconnection network to communicate cores among

them and with neighbor devices (e.g. main memory).

1.1 Motivation

Multicore and manycore processors have already been considered for the execution

of critical real-time software in experimental environments [24, 34, 39, 17, 3, 13] –

although they have not been deployed yet. While communication buses have been

proven effective for small multicores [33], they have been proven not to scale well

to larger multicores and manycores (e.g. ≥ 8 cores) [37]. Hence, more complex

Networks-on-Chip (NoCs) are used for the interconnection of the cores, as well as to

reach any other device.

Chapter 1. Introduction 3

Different types of NoCs have been considered to satisfy the communication re-

quirements of multi/manycores. We classify those works into two different cate-

gories: ad-hoc and commercial designs. The former category consists of those NoCs

that are particularly designed to provide time predictability, so that the WCET of

tasks can be easily estimated. In general, these designs trade average performance

for guaranteed performance (WCET), which is against efficiency. Therefore, chip

manufacturers are unlikely to adopt them. The latter category of NoC designs cor-

responds to Commercial Off-The-Shelf (COTS) designs [25, 9, 40]. In other words,

it corresponds to those designs that can already be found in commercial processors

(e.g. meshes, torus, etcetera). However, those designs often provide very high av-

erage performance at the expense of offering poor timing guarantees. Hence, they

are not suitable, in general, for CRTES. Recently, this has been addressed and small

modifications have been proposed on COTS NoC designs to make them amenable

to (tight) WCET estimation while preserving high average performance [24].

Those multi/manycore processors equipped with powerful NoCs have been proven

efficient for the execution of independent tasks in the different cores, or by running

some simple deployments of parallel applications [24]. Also, it has been shown that

almost-homogeneous bandwidth can be allocated to the different cores with appro-

priate hardware support on COTS NoCs, thus making core allocation irrelevant for

WCET estimation, since all cores experience similar worst-case communication de-

lays [22]. These NoCs are referred to as weighted NoCs. By using locally-unfair ar-

bitration, those NoCs achieve globally-fair bandwidth allocation across cores. How-

ever, the benefits of weighted NoCs (and in particular meshes) for different degrees

of traffic and application types have not been assessed. Also, the performance of

NoCs for different types of parallel applications has not been assessed.

1.2 Contribution

This thesis studies whether it is possible (and to what extent) configuring powerful

NoCs in multi/manycores to reduce the WCET of critical real-time parallel applica-

tions.

Chapter 1. Introduction 4

FIGURE 1.1: Schematic of the problem where this thesis contributes.

The magnitude of the problem is illustrated in Figure 1.1. As shown, mapping

parallel applications to a multi/manycore where bandwidth per link can be adjusted

is a very complex problem since both, thread mapping and weight allocated to each

link, are not independent. In this thesis we aim at investigating the tradeoffs in-

volved. Note that solving this problem is a complex research challenge much be-

yond the scope of this thesis. Instead, this thesis focuses on characterizing the prob-

lem and understand the tradeoffs involved.

In particular, the contributions of this work are as follows:

• We verify and adapt a NoC simulator to provide WCET bounds for requests.

• We implement a weighted mesh on that simulator where the bandwidth allo-

cated to each core and flow can be flexibly adjusted. In this process, we define

a number of parameters left open in the original description of the mechanism

implemented.

• We assess quantitatively the potential gains that thread-to-core allocation and

weight allocation can obtain by running experiments on a processor perfor-

mance simulator where the NoC simulator is integrated. For the sake of this

analysis, ad-hoc benchmarks have been developed, thus providing us with

controllability on the experiments and a-priori knowledge of the behavior of

applications. This is key for the verification of the design.

Chapter 1. Introduction 5

1.3 Structure of the Thesis

The rest of this document is organized as follows. Chapter 2 provides background

on timing analysis for CRTES, NoC design and application imbalance. Chapter 3

provides some related work on NoC designs for CRTES. Chapter 4 introduces the

evaluation framework used in this work. Chapter 5 presents weighted meshes in-

cluding their implementation, WCD modelling and characterization. Chapter 6 pro-

vides the result of our analysis for parallel applications. Finally, Chapter 7 draws

some conclusions and presents some future work.

6

Chapter 2

Background

2.1 Timing Analysis

Critical real-time tasks must complete their execution by a given deadline. In order

to assess whether this will be the case during operation, a process called timing anal-

ysis is performed as part of the verification of the system to estimate the WCET of

those tasks. This step is mandatory to schedule tasks such that they can complete

their execution before a given deadline.

Two main timing analysis strands have been pursued in industry and academia:

static timing analysis (STA) and measurement-based timing analysis (MBTA) [42].

STA builds a timing model of the hardware and on which it performs an ab-

stract interpretation of the program under analysis, modelling the potential hard-

ware states that can occur. Ideally, STA models all possible state transitions, thus

obtaining each potential state of the hardware at each step (i.e. after each instruction

or after each execution cycle). Finally, when all instructions of the program have

been analyzed, the final state with a higher execution time determines the WCET.

However, the number of potential states exploits exponentially due to potential out-

comes of branches, uncertainty on the addresses accessed (and so on the hit/miss

outcome of cache memories and the resulting cache state), and limitations of the

timing model. The way STA addresses this is by reducing the number of states mod-

elled making pessimistic assumptions. For instance, cache accesses that could hit

or miss, may be assumed to miss, or some data that could reside in cache at some

point, is assumed not to be in cache to allow merging several states. Overall, STA is

Chapter 2. Background 7

highly demanding on the amount of information needed to derive tight WCET esti-

mates and it has been shown only suitable for simple programs running on simple

hardware [4].

MBTA, instead, builds upon execution time measurements of the program col-

lected on top of the target platform. This removes the need for a timing model and

for any type of abstract interpretation. However, the challenge for MBTA resides in

relating the scenarios evaluated during the test campaign with those that can occur

during operation. Moreover, a number of features such as memory placement of ob-

jects (and so cache placement), contention in shared resources and values operated in

variable-latency units are, often, beyond the control of the end user. Hence, the lim-

ited controllability together with the difficulties to assess the coverage of the analysis

tests with respect to the scenarios during operation pose uncertainty on the WCET

estimates obtained with MBTA. In fact, MBTA usually uses the maximum observed

execution time (MOET) plus a safety margin (e.g. 20% in single-core processors [41])

as the WCET estimate. However, the confidence provided by the safety margin is

unknown. Hence, MBTA is convenient when users are highly familiar with the soft-

ware analyzed and the hardware platform, so that they can create relevant test cases

and set appropriate safety margins [4].

Some hybrid timing analysis approaches exist that attempt to combine the ad-

vantages of both, STA and MBTA, by, for instance, collecting measurements at finer

granularity than end-to-end program runs and applying some form of abstract anal-

ysis to estimate the execution time for paths that have not been measured [4]. While

conceptually those methods may bring tighter estimates than STA and less uncer-

tainty than MBTA, their tightness and confidence cannot be proven better than those

of STA and MBTA.

Overall, different timing analysis families bring their pros and cons. In general,

each approach is suitable for some specific systems, but all of them have been used

even for systems with the highest criticality. In general, MBTA is the most used

approach since it does not provide WCET estimates duly pessimistic, and its appli-

cation is less cumbersome than that of STA. In this thesis, we use specific models

to estimate the worst latency needed to traverse the NoC, as such latency can be

obtained analytically, and MBTA to measure the execution time of the program and

Chapter 2. Background 8

to estimate the WCET. In particular, the WCET is obtained by measuring execution

time in a contention-free scenario in the NoC, and then adding the Worst Contention

Delay (WCD) to each memory request to account for the potential contention that

packets could experience upon integration of the application with other software

that, potentially, could cause such worst-case contention. This methodology intro-

duces time composabilty as when we integrate for instance a new application in

our system, we do not need to reverify the timing correctness of all the applications

that are running but the new one. Time composability property is a highly sought

property as it allows industry to optimize the V&V process (e.i. it can be done in an

incremental manner) reducing the cost of the timing V&V part.

2.2 NoCs

The need for multicores and the fact that cores may need to communicate between

them and with other devices (e.g. main memory, shared caches) imposes the need

of setting up an interconnect network among cores and other devices. On small

multicores, classic monolithic solutions such as buses have been shown to be effec-

tive [33]. However, as the number of cores in the processor grows, buses become

easily a bottleneck. The main reason is that their latency increases due to their in-

creased capacity and long distance, which can only be partially mitigated pipelining

the bus. However, in general, the bus cannot serve more than one transfer simulta-

neously due to its monolithic nature. Hence, given that its latency grows with the

number of cores, the relative bus occupancy per core increases, and the number of

cores willing to use it also increases, thus making the bus being a potential bottle-

neck even with a few cores (e.g. > 4 cores).

To tackle this problem, NoCs have been proposed as the most convenient inter-

connection solution to connect cores and other devices in multicores [10]. NoCs rely

on setting up point-to-point connections inside the chip to keep all components con-

nected by means of switches and links. Hence, in a NoC one may not be able to reach

each device directly, but messages can be routed through those links and switches to

destination. Given that NoCs build upon many individual connections, they can af-

ford transmitting multiple messages simultaneously as long as they can be managed

Chapter 2. Background 9

not to clash in the same resources. For instance, routing messages appropriately may

avoid conflicts or, alternatively, setting up buffers may allow stalling messages when

the resource required is busy.

The most common NoC topologies used in multicores include rings [31], trees [37]

and meshes [33, 10]. For instance, some commercial processors build upon those net-

works. The Intel Nehalem [25] implements a bidirectional ring network. The Kalray

MPPA-256 implements a tree network [6, 9]. Finally, several processors, such as the

Tilera 100-core chip [40], the Polaris prototype [16] and the Single-chip Cloud Com-

puting (SCC) prototype [30], implement a 2D mesh network.

2.2.1 Data organization and transmission

When two or more networked devices try to read from each other’s memory, the

unit of information sent or received is called message. The device that sends the

petition, first has to compound this message and send it in the form of a request. This

request contains inter alia, the address where the receiver will found the requested

data. Then, after processing the request, the receiver will be able to send back a

reply message containing the data also known as payload. Alternatively, a networked

device may send a message containing data to a receiver, thus containing already the

payload. The receiver, upon data reception may or may not send a reply message

(without payload) to acknowledge the reception of the data, depending on the actual

data management policy of the network implemented.

Usually, network interfaces together with some direct memory access (DMA) engines

and link drivers are in charge of composing and processing messages before sending

and receiving information. In some networks, there is a fixed amount of information

that can be transferred so that network buffers can be sized appropriately. Messages

longer than the maximum transfer unit are divided into smaller units, called packets.

These packets are reassembled into messages at the destination end node before

delivery to the application.

Packets normally contain, in addition to the payload, a header and a tail part. In

Figure 2.1 it can be seen a representation of a possible packet format. Usually, the

packet header contains the destination port, the message ID of the packet it belongs

Chapter 2. Background 10

FIGURE 2.1: Packet format

to, a packet sequence number to enable reordering of the entire message in the des-

tination device and packet type (request, reply, acknowledge,...). Each packet also

uses to contain a checksum field that is used to check if the packet received has no

corruption (re-calculating the checksum value in the receiver device and comparing

it with the checksum field received in the tail part of the packet).

Packets may have sizes larger than the transmission bandwidth (links). For in-

stance, messages may be divided into packets of up to 512 bits, and links to com-

municate networked interfaces may be of up to 128 bits. Hence, messages cannot be

transmitted at once and may need to be divided into smaller network units called

flow control units (FLITS). FLITS, are the smallest data entity inside networks and

they can be transmitted atomically. The set of FLITS forming a message is known

as flow. All FLITS of a flow are transmitted atomically across several cycles between

two nodes, so only the first flit needs to include information about the destination,

whereas all FLITS contain a flow ID to determine when a packet has been completely

received and hence, a different packet can be sent.

Once a packet is ready to be sent at its source, it is injected into the network by

the network interface. The speed of the packet transmission will depend strongly on

the media, distance and the form factor used. In order to ensure reliable delivery of

packets, two main assumptions have to be taken into account: (1) The sender can-

not send packets at a faster rate than they can be processed by the receiver, and (2)

packets are correctly received (neither lost nor corrupted in transit). The most used

strategy is called flow control, where the receiver notifies the sender to stop send-

ing packets until the receiver has enough space in its input buffer or an emptiness

threshold has been reached. The basic implementation consists of using a simple

Chapter 2. Background 11

handshaking protocol between the sender and the receiver. Two main different strate-

gies exist to implement flow control:

• Stop & Go: The receiver notifies the sender to stop or to resume sending packets

once high or low buffer occupancy levels are reached respectively.

• Credit-based: Every time a packet is transmitted, the sender decrements the

credit counter. When the receiver processes it, it increments the sender’s credit

counter. The sender can send a new packet as long as its credit is above a given

threshold.

The most spread policy is the Stop&Go one as it introduces lower traffic in the

network (flow control messages are only sent when buffer capacity bounds are reached)

than the Credit-based strategy (flow control messages are sent every time that a

packet is processed by the receiver).

2.2.2 Network structure

A NoC consists of a number of physical components, including switches, links, net-

work interfaces, etc. Network interfaces connect end nodes to switches (also referred

to as routers). Then, routers are connected among them by means of links. Packet’s

flow is determined by routers, which implement a number of policies for switching,

routing and arbitration in general. Instead, links are passive components, and net-

work interfaces inject/eject packets with specific source and destination, but without

influencing when and how those packets will traverse the NoC.

Figure 2.2 depicts a typical pipelined router. First, a set of input buffers for each

port are used to store incoming packets. Second, a routing algorithm determines

the next router where those packets need to be sent (or the network interface at

destination). Third, an arbiter determines which input ports buffers grants access to

each output port. Finally, a switch allocator matches the corresponding input port

buffers with the output ports ones for the packets’ transfer. Eventually, whenever

input buffers are available at the destination router, packets leave the current router

and are stored in the input buffers of the next router.

Input buffers for a given input port can be organized into multiple queues (vir-

tual channels) to allow multiple flows being processed in parallel. This requires

Chapter 2. Background 12

FIGURE 2.2: Pipelined router

additional queues per input port and a virtual channel allocator. On the other hand,

however, virtual channels typically increase the average throughput of routers.

In many NoCs, multiple routes exist to forward a packet from its source to its

destination. Different routing policies have been proposed to accomplish this goal,

with some common goals, namely: (1) trying to minimize the number of hops from

source to destination, (2) avoiding deadlocks and (3) avoiding livelocks. In particu-

lar, minimizing the number of hops is desired for efficiency reasons, and only some

policies consider alternative routes to go around broken links or overly congested

NoC regions. Deadlocks in NoCs occur whenever a set of packets use multiple re-

sources (e.g. buffers) such that no packet can make forward progress because the

resources needed are busy, and no resource can be released because packets cannot

make any forward progress. Finally, livelocks occur when routing decisions may po-

tentially make a packet not to reach its destination despite it may keep moving in the

NoC (e.g. looping in a subset of routers). Routing policies implementing those goals

may be dynamic or static, either taking routing decisions based on dynamic condi-

tions or having predetermined routes. In the case of critical real-time tasks, static

policies are normally used since they allow guaranteeing efficient routes, as well as

Chapter 2. Background 13

deadlock and livelock avoidance. Among those, the most popular routing policy is

XY, where packets are forwarded in the X direction until they reach the Y-coordinate

of their destination, and then they are forwarded in the Y direction until the des-

tination node. Once a packet is forwarded in the Y direction, it cannot be further

routed in the X direction. Such policy guarantees, by construction, minimal distance

routes as well as deadlock/livelock avoidance. Moreover, it allows deriving tight

bounds to the worst delay to forward a packet from any node to its destination. In

critical real-time tasks we can also use other static routing policies that also belong

to the dimension-order routing where it belongs XY routing (e.g. YX (2D) or XYZ

and e-cube in 3D NoCs).

Switching algorithms determine how a packet is transferred from source to des-

tination. The two most popular switching policies are cut-through and wormhole.

The former does not allow a packet make any forward progress until enough re-

sources for the full packet cannot be allocated in the following router. Wormhole,

instead, allows individual FLITS moving forward, but once a flit has been sent, only

subsequent FLITS of the same packet are accepted in the destination buffer, thus

avoiding the interleaving of packets in a single buffer.

Wormhole NoCs are regarded as more efficient than cut-through ones since they al-

low some forward progress even if resources at the destination router cannot store

the full packet, and also allows arbitrarily long packets, as opposed to cut-through,

which may need large buffers if long packets may be communicated. Hence, in the

rest of this work we rely on wormhole switching, which has been proven to be the

preferred choice for CRTES [23].

2.2.3 NoC concepts for CRTES

In the context of CRTES, the most critical parameter for timing analysis (and so for

WCET estimation) is the amount of time a request can be delayed in the NoC due

to contention. In particular, the delay a request (packet) takes to traverse the NoC

consists of the minimum intrinsic delay to reach the destination in a congestion-

free scenario, also known as zero load latency (zll for short), plus the delay due to

contention. Since contention during operation cannot be forecasted tightly until late

Chapter 2. Background 14

design stages, but WCET estimates are needed much earlier in the design process,

worst-case assumptions need to be made in terms of congestion.

Two main approaches have been devised to account for such worst-case conges-

tion: Worst-Case Traversal Time (WCTT) and Worst Contention Delay (WCD).

The former [28, 19, 27, 8] accounts for the worst individual delay each request may

suffer. However, adding such delay to each request for WCET estimation has been

shown to be overly pessimistic because a large fraction of such delay can be over-

lapped for several requests being processed in parallel [23]. Hence, some authors

propose using WCD instead, which only accounts for the additional delay caused

by another request, discounting the delay that has already been accounted to other

requests. This delivers reliable but much tighter WCET estimates.

Since worst-case assumptions need to be made to account for worst-case con-

tention delay, it has been shown that several choices, despite not being the most ef-

ficient ones for average performance, deliver the lowest WCET estimates. Amongst

those we build on the following ones [23]:

• Packetization. Since a request may have to wait for requests in the other ports

to be processed first, and those requests (packets) could be arbitrarily long,

packetization has been proposed, where all packets are made to have a single

flit. Hence, each flit of the task under analysis has to compete with single flit

packets from other flows. Otherwise, each packet, regardless its length (e.g. 4

FLITS), would have to compete against maximum-size packets (e.g. 16 FLITS)

from other contenders, whose relative contention delay can be much higher

(e.g. 4x that of single-flit packets).

• Single Virtual Channel. The existence of multiple virtual channels, while ef-

fective in the average case, has a multiplicative effect on the number of con-

tenders that packets of the task under analysis will have to compete with in

every router. Hence, given N virtual channels, worst-case contention grows

by a factor of N w.r.t. a single virtual channel. Therefore, the best choice for

CRTES is using NoCs with a single virtual channel.

Chapter 2. Background 15

Finally, performance guarantees have been shown to vary drastically across cores

in meshes (one of the most commonly used NoC architectures) due to the varying

bandwidth effectively allocated to each core and diverse latencies caused by non-

homogeneous distances from cores to their target node (e.g. the one where main

memory is attached) [22]. Heterogeneous bandwidth and latency is, in general, un-

wanted due to the fact that tasks running in some cores – those with lower band-

width and higher latencies – can be severely penalized. This challenge has been

addressed with the use of weighted meshes, where heterogeneous bandwidth al-

location across links is given in the routers so that overall bandwidth can be ho-

mogenized across cores and, to some extent, performance across cores is homoge-

nized [22]. Later in this thesis, we provide details on weighted meshes, as they are a

key NoC design studied in the context of parallel applications as part of our work.

2.3 Parallel Applications

Most research on NoCs for CRTES has considered single-threaded applications, since

they are current practice in the domain. However, parallel applications are needed

for computing intensive tasks such as those related to autonomous driving and un-

manned navigation. Hence, NoC design and analysis cannot focus on the behavior

of each core in isolation only, but it also needs to account for the implications on

parallel applications.

Existing work has only considered default NoCs devised for single-threaded ap-

plications with just one exception: the parMERASA architecture [26, 24]. In the con-

text of parMERASA (an already finished FP7 programme project), investigation was

done on how to map parallel applications to cores for an efficient use of resources

building on some NoC designs including meshes. However, bandwidth and latency

heterogeneity was not tackled and thread allocation was applied on those default

architectures, which have been shown to offer highly unbalanced bandwidth and

latency across cores.

High imbalance across cores may lead to scenarios where, despite smart thread-

to-core mapping algorithms are used, threads experience highly diverse execution

Chapter 2. Background 16

times. In the context of single-threaded applications this can be mitigated by allocat-

ing additional tasks to the fastest cores. However, in the context of parallel applica-

tions, the slowest thread determines the full application execution time. Therefore,

high imbalance penalizes performance (and consequently WCET) severely.

Therefore, weighted meshes offer a great opportunity to optimize weight alloca-

tion and thread-to-core mapping, either independently or coordinately, to optimize

the performance of parallel applications in CRTES.

17

Chapter 3

Related Work

While there have been several proposals for real-time aware NoC designs, exploring

to which extent high-performance (COTS) NoC designs can be used in the real-time

domain is of paramount importance:

On the one hand, it is well accepted that the CRTES domain is a relatively small

market in comparison with other domains such as mobile. Hence, customized NoCs

specifically designed for real-time systems (e.g. time-triggered ones and those based

on time division and multiplexed access (TDMA)), which may require high non-

recurrent costs, are unlikely to be adopted in the context of industrial CRTES [39].

On the other hand, the big majority of the proposed manycore designs across all

computing domains use high-performance wormhole NoCs (wNoCs) to perform the

interconnection of cores and shared resources within the chip. This makes wNoCs

accessible (at low cost) by the CRTES since they are implemented in a vast set of

chips. In this paper we have focused on improving the performance guarantees

achieved by wNoCs in terms of bandwidth and latency.

Several real-time specific NoCs have been proposed based on TDMA such as

[34] and [12]. While TDMA-based NoCs deal with contention at transaction level

(e.g. read and write memory operations), time-triggered architectures [21] increase

the abstraction level by introducing a self-contained computational unit. In time-

triggered architectures micro-components exchange messages in contention-free slots.

However, event-triggered transactions, such as cache misses that access main mem-

ory through the NoC, may suffer contention delay which must be upper bounded.

We refer to NoC designs with real-time guarantees and time-composable behavior

as Guaranteed Service (GS) NoCs. Nostrum [20] and Aethereal [12] NoCs provide

Chapter 3. Related Work 18

GS using time-division multiplexing, and hence, time composable bounds.

Many studies have also been carried out with the purpose of providing real-

istic and feasible latency bounds for best-effort wNoC. Using prioritization on a

per-virtual channel basis has proven being an effective means to achieve tight la-

tency bounds in wNoCs [35]. However, the use of per-virtual channel prioritization

becomes impractical when a significant number of flows exist in the network. To

overcome this issue the impact of virtual channel sharing has been analyzed in [36]

and [29]. However, while these approaches effectively reduce the number of virtual

channels required, the timing guarantees obtained build upon a detailed knowledge

of the characteristics of the software (applications and/or tasks) that will execute in

the deployed system and hence, do not meet incremental qualification requirements.

The work in [18] has similar pros and cons, since the proposed solution guarantees

specific bandwidth allocation for GS connections per port, by splitting the band-

width of output ports among best effort and guaranteed service connections.

Authors in [19] made one of the first studies that provided reliable contention

bounds for wNoCs without building upon flit-level virtual channel preemption.

Later, this analysis has been improved in [28] where tighter bounds are presented.

The model in [28], as those mentioned above, also requires detailed information

on all communication flows that will be finally deployed in the system to estimate

reliable upperbounds. In other words, latency bounds provided in [28] are not time-

composable. Some recent works that build upon wNoCs propose interference-free

NoC designs [5, 14]. The solution in [5] has been proven to cause lower degrada-

tion on best-effort traffic than the one in [14]. The former achieves its goal by using

specific ways to multiplex virtual channels. However, despite its improved perfor-

mance, the performance degradation caused on best-effort traffic is still large.

Recently, as explained before, authors in [22] have proposed an alternative ap-

proach to meet CRTES requirements. In particular, that work proposes specific ways

to derive time-composable worst contention delay bounds without sacrificing aver-

age performance and by allocating weights to arbiters so that fair bandwidth alloca-

tion is achieved across cores. In our work we analyze the use of wNoCs for parallel

applications and the impact of using weighted meshes in that context.

19

Chapter 4

Evaluation Framework

In this section we describe the details of the evaluation framework we have used in

this thesis. In particular, we provide details about both the simulation platform and

the type of benchmarks/workloads we have employed.

4.1 Simulation Platforms

Our simulation platform is based on an enhanced version of the SoClib simula-

tor [38] that has been developed at the CAOS group of the Barcelona Supercom-

puting Center. This simulator platform models with high detail (cycle accurate) the

pipeline of the processors and the cache hierarchy. This simulator has been validated

against real boards showing that performance deviations of this simulation platform

are below 3% when modeling the NGMP multicore processor [7].

4.1.1 Processor details

We use Soclib to model a multicore/manycore processor. Cores used the PowerPC

architecture [15] since this architecture is one of the most interesting ones for avionics

platforms. Cores employed in these architecture are simple to ease its timing ana-

lyzable. In particular, we use in-order cores with 5-stage pipeline, single issue, and

floating-point support. Cores also comprise separate data and instruction L1 caches.

Data caches employ write-back write policy to reduce the amount of requests to the

shared resources. The exact details of the core are given in Table 4.1.

Chapter 4. Evaluation Framework 20

Core Features

Pipeline

32 bit Sparc PowerPC
In-order, single-issue
5-stage pipeline
FPU

Cache

L1private
4-way 16KB Instruction
4-way 16KB Data
LRU replacement
Modulo placement

TABLE 4.1: Processor Configuration

4.1.2 Network-on-chip Simulator

To model the behavior of NoCs we have attached the gNoCsim simulator to the So-

Clib platform [2]. The gNoCsim simulator is a cycle accurate simulator of wormhole

networks developed by Universitat Politècnica de València under the scope of the

FP7 NanoC project. The gNoCsim simulator supports several topologies like tree,

mesh, and torus and several different deterministic routing algorithms like XY, di-

mension order routing, and logic-based distributed routing. In this thesis, we only

use the mesh with XY routing and the tree configurations. In a similar way, even

gNoCsim implements different flow control algorithms, in this thesis we only use

Stop&Go already explained in the Background section. Meshes in gNoCsim can

be configured to support different router architectures while trees do only support

the router architecture presented in [37]. In this thesis, for meshes we have chosen

the canonical router architecture while we have used the default router architecture

provided for the trees.

The gNoCsim simulator can work in both master and slave modes. In slave

mode gNoCsim simulator simulates the requests produced by the SoClib simulator

that go through the network. Typically, these are the core to memory petitions and

the corresponding memory responses. However, gNoCsim simulator can also work

in master mode using different synthetic traffic patterns to characterize the network

behavior under different stressing situations. In this thesis, we have used both sim-

ulation modes provided by the gNoCsim simulator.

Chapter 4. Evaluation Framework 21

4.2 Workload

4.2.1 Synthetic Traffic

In order to analyze the behavior of the different network configurations analyzed,

namely trees and meshes, using round-robin (RR) or weighted round-robin (WRR)

arbitration, we have used synthetic traffic generation in gNoCsim simulator. The

gNoCsim simulator by itself offers the possibility to generate different types of traffic

in the NoC configuring some parameters such as:

• Size of short and long messages.

• Size of the links, packets, input link buffers.

• Percentage of short and long messages.

• Insertion rate in each core of the NoC.

Since the focus of this thesis is analyzing the worst-case impact of network con-

tention, we have focused on the all-to-one traffic pattern since it is the one creating

the worst-contention in a specific target, and allows modeling the case where all

cores attempt to access a shared memory.

4.2.2 Real Traffic

4.2.2.1 Resource Stressing Kernels

As benchmarks we have used and created specific resource stressing kernels using

C language and PowerPC assembly. The idea was to create workloads for which we

can specify the exact fraction of instructions of each type and distribute them ran-

domly. Additionally, for these benchmarks we can control at very fine granularity

the number of requests going to memory by enforcing a specific number of hits and

misses for the load and store instructions in each kernel.

For each of the stressing benchmarks generated, we execute 1 million instruc-

tions. Table 4.2 summarizes the properties of the different benchmarks employed in

the evaluation.

Note that we have not used real applications because we want to have exact

control of the amount of traffic generated by each benchmark since this is the most

Chapter 4. Evaluation Framework 22

relevant parameter in the context of the worst-case network performance. Real ap-

plications are required to accurately characterize average performance. However,

resource stressing kernels are the preferred solution to characterize the impact of

contention on the different processor shared resources.

Benchmarks A B C D E F G H

% Local Op 80 50 50 60 95 87.5 87.5 90

% LD Op 10 10 40 20 2.5 2.5 10 5

% ST Op 10 40 10 20 2.5 10 2.5 5

TABLE 4.2: Single-threaded benchmarks

4.2.2.2 Spinlock benchmarks properties

In order to analyze the spinlock effect, we have created 4 different benchmarks all of

them with 5% of memory instructions and 95% of integer instructions but with dif-

ferent number of instructions each one, as shown in Table 4.3. These benchmarks are

intended to evaluate the impact of spinlocks for synchronization purposes whenever

some threads of a parallel application finish their execution and others still run.

Spinlock benchmarks Bench0 Bench1 Bench2 Bench3

% INT Op 95 95 95 95

% LD Op 5 0 0 0

% ST Op 0 5 5 5

instructions 1.100.000 100.000 300.000 500.000

TABLE 4.3: Spinlock Benchmarks Properties

23

Chapter 5

Controlling Bandwidth Allocation

in NoCs

In this thesis we analyze the potential of using a Flexible Bandwidth Allocation

(FBA) scheme to improve WCET estimates. In particular, we explore how assigning

each core with a given fraction of the available shared resources bandwidth impacts

the execution time of parallel applications. The idea behind FBA is that by allowing

a fine-grain allocation of bandwidth, we can better exploit the computing resources

of manycore systems by enabling a balanced execution time of the different tasks ex-

ecuting on the processor. The goal of the FBA is maximizing the overall performance

guarantees of the system.

Applications parallelization is a well known topic in the high performance com-

puting domain. In CRTES domain, parallelization of the application also has to pre-

serve timing guarantees. This introduces an additional set of challenges: (i) time-

predictable parallel software patterns and algorithms in order to facilitate the paral-

lelization of legacy code as well as the development of new applications, (ii) time-

predictable low-level synchronization primitives and (iii) hardware support for "fair

load balancing". It is in this last aspect in which we focus our attention.

In parallel programming, a significant effort is devoted to balancing the work-

load of application threads i.e. sizing the computation chunk of each thread evenly.

However, regardless of the programmer’s effort, load imbalance can occur, either

intrinsic (e.g. due to a specific input set) or extrinsic (due to, from an application per-

spective, external factors such as the hardware or the operating system). We focus

on the hardware part.

Chapter 5. Controlling Bandwidth Allocation in NoCs 24

Non-uniform memory access (NUMA) architectures are commonly employed in

systems with a high number of cores. Processors including a high number of cores

are typically interconnected using a NoC that interconnects the cores, memory re-

sources, and processor peripherals using a given topology (e.g. mesh, torus, tree,

etc.) that determines the latency in the communication flows (e.g. from cores to

memory). On NUMA systems, the latency which a given task experiences to access

memory depends on the actual location where this task is mapped to. While this

uneven latency distribution affects the task’s execution time, its impact is in general

reduced since, in terms of average performance, caches help to minimize the num-

ber of accesses to the different shared resources and this makes at the same time the

contention experienced by the requests to be low. However, since in general, de-

riving WCET estimates requires accounting for the worst potential contention, the

impact of NUMA is not negligible in this case. In fact, to calculate the WCET in a

correct way, we need to be conservative and assume the worst-case scenario in every

core-memory request. That means that for every core request, we need to assume

the highest contention from the other cores (the core request will be the last one to

receive the arbitration grant in the routers in its path).

A FBA scheme can be implemented at the different shared resources arbiters in

the processor. However, in this thesis we focus on the impact of bandwidth allo-

cation in the interconnection architecture i.e. the connection between the cores and

the shared memories or caches. For instance, in a multicore that uses an on-chip

bus to connect the cores to a shared memory controller, FBA requires modifying the

arbiter to allow distributing the bandwidth from cores to memory. Assuming a N-

core system, a plain bandwidth allocation scheme assigns 1/N of the bandwidth to

each of the cores, whereas FBA assigns each core the fraction of the bandwidth that

maximizes guaranteed performance, where such fraction may not be homogeneous

across cores.

Chapter 5. Controlling Bandwidth Allocation in NoCs 25

5.1 Arbiter Design

We implement FBA by leveraging a weighted arbitration. The proposed weighed

arbitration is implemented on top of a round-robin arbiter and is based on using

weights for the different communication flows to allocate the available bandwidth

to the different cores on a flexible manner.

We base our design on a binary tree comparator structure [1] that easily extends

to every other NoC topology. In a binary tree comparator, the global arbitration deci-

sion is split into multiple simpler arbitration decisions where each decision involves

two contenders at most (see Figure 5.1). This kind of structures provides a fast re-

sponse, but they are not suitable when the number of bits for encoding the priority

increases [43].

FIGURE 5.1: Binary Tree NoC structure

Each 2to1 arbiter has to make a decision between two contenders. The winner is

forwarded to the next 2to1 arbiter until no competitors exist. In a 2to1 arbiter, only

those inputs with an active request can be forwarded. When both inputs request

the output port, that input with higher bandwidth allocated – weight – wins. If

both inputs have the same bandwidth allocated, a fair round-robin (RR) policy is

implemented.

We can have different implementations of the weighted round-robin (WRR) pol-

icy. The one explained before is one of the more straightforward ones (i.e. the imple-

mentation does not take into account which was the port that won the arbitration the

previous times). This means that, for similar weights, we can have a good arbitration

alternation on the input ports that compete for an output port (both applications can

Chapter 5. Controlling Bandwidth Allocation in NoCs 26

make progress alternatively). However, whenever we have very different counters,

we will have the case where one of the ports always wins the arbitration until the

counters equalize. For instance, if port 0 has 5 time slots and port 1 has only 2, the

first 3 arbitrations will be granted to port 0 (decreasing the corresponding counter

on every arbitration). Then, both counters will indicate 2 time slots for each port, so

RR arbitration will occur. Overall, the sequence of arbitration grants will be either

0000101 or 0001010.

Hereafter, we propose two possible implementations of the WRR arbiter policy:

• Weight counters’ implementation: the first solution is the implementation ex-

plained in the 2to1 arbiter. So as to implement this option, each router input

port has to store for each output port its current weight and the maximum

weight that can have. The arbitration policy grants the arbitration to the input

port that has the highest weight that contend for the same output port. When

an input port wins the arbitration, its current weight is decreased by one unit.

When both input ports that contend for the same output port have their cur-

rent weights equal to zero, all the input weights are set again to the maximum

weight they can have. If the prioritized input port to win the arbitration does

not have a ready petition, the arbitration will give the priority to the next input

port that has higher current weight counter (e.i the other input port). The max-

imum weight values are set at boot time and re-set when all input port weights

are equal to zero.

Make notice that every time that weights are set to their maximum value, the

order in which the arbitration policy grants the arbitration to input ports can

potentially vary not only because of the RR part when all input ports have the

same weight value, but also if one input port does not have a petition ready to

be sent.

• Arbitration window implementation: the second option is to explicitly spec-

ify the arbitration window that we want the arbitration to follow per each

router output port. This solution incurs in higher hardware overhead for the

implementation part (we need to identify each input port, a pointer to traverse

the arbitration window,...) but allows to have precise control on the arbitration

Chapter 5. Controlling Bandwidth Allocation in NoCs 27

that each output port is using. Every time that the window is traversed the

same pattern is followed. We can also set at boot time the arbitration windows

and all the values we need. In this case the port that has priority is the one

pointed by the window arbitration pointer. If this port has a ready petition

it wins the arbitration, otherwise we advance the pointer and we look for the

next input port that has a petition. We can implement the arbitration window

as a circular buffer and whenever the pointer reaches the last window slot, it

is automatically set to the first arbitration window position again.

As said before, the binary tree implementations can easily be extended to a generic

topology since, in the end, every NoC topology can be described as a tree structure

for a given target node, in which each tree node has as many leaves as the total

number of incoming links each router has.

(A) 2x2Mesh example with traffic flows (B) 2x2Mesh tree representation of flows

FIGURE 5.2: 2x2 Mesh representation in tree

In Figure 5.2a we can observe a 2x2 Mesh with 4 routers represented as R0 to

R3 and 4 cores represented as C0 to C3. We can also appreciate that all the routers

of the mesh have 5 ports in spite of some of them are not being traversed by the

traffic flows shown in the image. All the flows of the figure have as a source point

one of the cores and as a target the memory placed at port 4 of R1. As previously

mentioned, every NoC topology can be represented as a tree structure. Figure 5.2b

shows how the mesh topology shown in Figure 5.2a can be interpreted as a tree. The

tree structure only shows the input and output ports that are traversed by a given

set of flows even though we can have potentially a (P − 1)ary tree where P is the

number of ports that each router has (e.g. we can only have 4 contenders to the

same output port as the same output port cannot be competing as an input port).

Chapter 5. Controlling Bandwidth Allocation in NoCs 28

5.1.1 Implementation cost of a weighted round-robin (WRR) arbiter

In order to assess the cost of achieving a programmable arbitration in the NoC

routers, we analyze the cost of the two main alternative implementations explained

in the previous section. In this section we account for implementation costs of WRR

as the heterogeneous BW distribution to achieve homogeneous BW allocation and

we also commend how to be extended to any type of FBA.

Weight counters’ implementation. For each output port, we will need 1 counter

and 1 register per input port (with similar cost). The counter tracks the pending

arbitrations (weight) that decreases along the execution and the register keeps the

maximum value to set as initial value whenever all counters in the port reach zero.

That means that for a router with Pports for each potential output port (Pports) we

need as many counters as potential input ports for each output port (Pports − 1) per

output port multiplied by 2 (the counter and the register). So, for each of the Pports

per router in each of the Rrouters in the NoC we will need 2 · (Pports − 1) weights.

Each such weight has as many bits as needed to codify one flow for each core in the

system dlog2(Ccores)e.

ArbCostimp1 = Rrouters · Pports · 2 · (Pports − 1) · dlog2(Ccores)e (5.1)

For instance, for Figure 5.1, the cost of implementing weight counters would be

3 · 1 · 2 · 2 · 2 = 24 bits, so 3 bytes only. That is, we have 3 routers and in each router

has 1 potential output port and 2 potential input ports per this output port. Each

potential input port has to keep information about the current counter (counter) and

the maximum value that the counter will have when it will be set (register).

The previous formula easily extends for other topologies like meshes. In the

case of meshes, Rrouters = (NxM) where N and M are the X and Y dimensions

of the mesh respectively. For example, for a 4x4 2D mesh with 16 cores, the cost

of the implementation would be 16 · 5 · 2 · 4 · 4 = 2560 bits, so 320 bytes for the

whole NoC (20 bytes per router). That is, for each router (16) we have 5 potential

output ports and 4 potential input ports for each of this potential output ports. Each

potential input port has to keep information about the current counter (counter) and

the maximum value that the counter will have when it will be set (register). The

Chapter 5. Controlling Bandwidth Allocation in NoCs 29

more cores in the mesh we have, the more bits we need to codify the weights to

achieve homogeneous BW allocation (e.i number of cores in the mesh grows).

Arbitration Window implementation: we need an arbitration window for all

potential output ports (Pports) that each router has. Each arbitration window needs to

have as many entries as number of cores in the NoC (Ccores) to allow homogeneous

BW allocation in all NoC cores. In each of the entries of the arbitration window,

we need to codify the potential values of input ports per each output port that we

can have (Pports − 1). Thus, we need dlog2(Pport − 1)e. This values can be X+,X-

,Y+,Y- and Processor/Memory Element (PME) indicating the input port incoming

direction. This design is sketched in Figure 5.3). Then, each arbiter also needs a

dlog2(Ccores)e bit counter pointing to the next entry in the window along with an

incrementer for that counter. Alternatively, one could use shift registers with wrap-

up for the window and use always the value at a given position (e.g. first position)

to determine what port is granted access next.

ArbCostimp2 = Rrouters · Pports ·
(
Ccores · dlog2(Pports − 1)e+ dlog2(Ccores)e

)
(5.2)

For instance, for Figure 5.1 binary tree, the cost of implementing the window

arbiter would be 3 · 1 · (4 · 1 + 2) = 18 bits, so 2, 25 bytes only. Or for example, for a

4x4 2D mesh with 16 cores, the cost of the implementation would be 16 · 5 · (16 · 2 +

4) = 2880 bits, so 360 bytes for the whole NoC (22,5 bytes per router).

If we want to implement FBA not only to homogenize the BW allocation in all

the interconnect, the implementation will be more costly. When applying WRR ar-

bitration to homogenize BW it is enough to have counters of dlog2(Ccores))e bits or

arbitration windows of Ccore size. However, if we want a desired BW distribution

(not following the RR and homogenizing WRR), we will have to change the Ccore

value for the maximum weight value.

Some NoC implementations favor efficiency in front of flexibility and arbitration

choices are hardwired. Adapting such a NoC to implement the weighted arbitration

would require, at most, hardwiring different choices in the arbitration windows,

thus not increasing the hardware cost.

Chapter 5. Controlling Bandwidth Allocation in NoCs 30

FIGURE 5.3: Window arbitration implementation.

Overall, hardware modifications would have limited impact on the overall cost

of the NoC, which is mostly dominated by the buffering required at input ports.

5.1.2 Adapting arbitration weights

In weighted round-robin arbitration (WRR) to achieve homogeneous core BW al-

location, weights can be used to determine the frequency at which a given master

gets access to a given shared resource. In a NoC router with NIPcontenders input ports

contending for the access to a output port (OP) different arbitration weights can be

employed for each of the input ports (IPweight) provided that the following condi-

tions are meet:

OPBW = ∑ IPweight/NIPcontenders (5.3)

The equation above, simply illustrates formally that the total bandwidth (BW)

of the output port has to be shared by the different input ports. For instance, for

a plain round-robin arbitration, the weights are all 1 since all input ports are allo-

cated the same bandwidth. However, round-robin arbitration does not distribute

the bandwidth fairly in the context of NUMA-based network topologies like the

mesh. Weighted arbitration can be employed to homogeneously allocate the BW. To

do so, weights can be computed using the following expression:

w(Idir, Odir) = Idir/Odir (5.4)

where Idir represents the number of communication flows traversing the diri in-

put port of a given router being dir any of the possible mesh router port directions.

Similarly, Odir is the number of flows traversing the dir output port of the same

router.

Chapter 5. Controlling Bandwidth Allocation in NoCs 31

FIGURE 5.4: 3x3 mesh weight using XY routing and WRR arbitration

We can configure our mesh input ports’ weight for each output port as we show

in Figure 5.4, which in practice means:

• In both WRR arbiter implementations, we can set in R2 for the memory output

port, the weights 1 and 3 for ports that come from R1 (X+) and R5 (Y−) re-

spectively and weight 0 to all other input ports. Analogously for R5, having as

an output port the port that goes to R2, we can assign the weights 1, 3 and 2 to

input ports that come from C5 mapped in R5 as a Processor/Memory Element

(PME), R8 (Y−) and R4 (X+) respectively.

• In the particular case of the arbitration window implementation, in the mem-

ory output port of R2 we can use the window X+, Y−, Y−, Y− being X+ the

input port that comes from R1 and Y− the input port that comes from R5.

Analogously, for the output port that goes to R2 router in R5, we can set as ar-

bitration window the combination PME, Y−, X+, Y−, X+, Y− being PME the

input port that comes from C5 mapped in R5, and Y− and X+ the input ports

that come from R8 and R4 respectively.

Router id X+ X- Y+ Y- PME Router id X+ X- Y+ Y- PME

R0 0 0 0 0 1 R5 2 0 0 3 1

R1 1 0 0 0 1 R6 0 0 0 0 1

R2 1 0 0 3 0 R7 1 0 0 0 1

R3 0 0 0 0 1 R8 2 0 0 0 1

R4 1 0 0 0 1 - - - - - -

TABLE 5.1: Weights per input port direction for a 3x3 Mesh with WRR

Chapter 5. Controlling Bandwidth Allocation in NoCs 32

5.2 On-Chip Interconnection Architectures

We apply the FBA scheme to two of the common NoCs topologies implemented

in current multicore processors like the tree and the mesh. For each topology, we

analyze its particular behavior and propose solutions on how to take advantage of

using a FBA scheme.

5.2.1 Tree

We consider a tree NoC topology as the one proposed in [32]. This topology is also

implemented in real processors like the P2012 [6] and it can serve as the basis to

efficiently implement crossbar topologies as shown in [32]. In tree NoC topologies

all the cores are at the same distance from the memory. Thus, we have intrinsically

unified memory access (UMA) in all the cores. Having UMA in the NoC, allows

basic RR arbitration to homogeneously allocate BW across all the cores.

FIGURE 5.5: Binary tree with RR arbiter

When we apply homogeneous BW distribution in each router (i.e. using RR

arbitration), we observe homogeneous BW allocation as shown in Figure 5.5. In each

one of the routers, the RR arbitration policy divides by two the output BW to the

input ports that are contending for this output port. Applying this BW distribution

recursively, we end up with the weights shown in Figure 5.5. In this case, as we

have 4 cores, each core receives 1/4 of the available BW. We can generalize this BW

distribution in UMA NoCs in the following way: if we have N cores, when we follow

the RR policy to distribute the BW along the tree, we end up with 1/N of the initial

BW per core.

Chapter 5. Controlling Bandwidth Allocation in NoCs 33

5.2.2 Meshes

In this section we analyze the mesh topology. Meshes, unlike trees, have intrinsically

a non-unified memory access (NUMA) since, depending on the core location in the

mesh, it takes more or less time to access memory. On the one hand, we have differ-

ent latencies, which translates to different execution times from the same application

depending in which core we run the application even in isolation (i.e. the execution

time of the application does not depend on other contenders). On the other hand,

in the presence of contention, the fact that RR arbitration is applied in every router

along the path from source to destination, causes an uneven distribution of band-

width. This phenomena is illustrated in Figures 5.6 (flows) and 5.7 (weights).

FIGURE 5.6: 3x3 mesh flows using XY routing algorithm

In Figure 5.6, we can see which are the traffic flows when each core injects mes-

sages to the 3x3 mesh targeting the memory controller located in R2. We show how

flows are mapped in the mesh following XY routing algorithm which, as we have

already explained in section 2.2.2, is one of the most used routing algorithms since

it is easy to implement in hardware and it has deadlock/livelock free properties.

As said before, when we apply homogeneous BW distribution in each mesh

router (i.e. using RR arbitration), we observe globally heterogeneous BW allocation.

We can observe this phenomena in Figure 5.7. Note that the example we propose

in this figure shows a 3x3 mesh NoC with 8 cores as we connect a memory module

in R2 instead of C2. With this RR BW distribution, we have C0 and C1 with 1/4 of

Chapter 5. Controlling Bandwidth Allocation in NoCs 34

FIGURE 5.7: 3x3 mesh weights using XY routing and RR arbitration

the BW, C5 with 1/6, C3, C4 and C8 with 1/12, and C6 and C7 with 1/24 of the BW.

As we can notice, this BW distribution is highly related with the distance from each

core to the memory (placed in this case in R2) as the farther cores from memory (C6

and C7) tend to have less BW, even though it does not follow this trend perfectly (C6

and C7 receive the same amount of BW but C6 is farther away in number of hops

from memory as it has 4 hops whereas C7 it has 3).

FIGURE 5.8: Messages sent per NIC in a 3x3mesh XY routing and RR
arbitration

In Figure 5.8, we can observe the imbalance between messages sent per core

which is strongly related to the imbalance that the mesh topology brings intrinsically

when using RR arbitration. As we have explained, cores that are closer to the mem-

ory location have higher BW (i.e. C0 and C1) than the ones that are farther away (i.e.

Chapter 5. Controlling Bandwidth Allocation in NoCs 35

C6), which allows them to be granted more arbitration rounds than the others. This

plot also shows that, when we send 20000 messages along the mesh, C0 and C1 are

able to send 5000 messages each (25% of the BW),C3 3333 messages (33% of the BW),

C3, C4 and C8 1667 messages (8,33% of the BW) and C6 and C7 833 messages (4,1%

of the BW), which matches perfectly with the heterogeneous distribution showed in

Figure 5.7.

When we deal with a 2D mesh as a NoC, we have also to take into account the

real latency distribution, since messages sent from cores farther away from memory

will take more time to arrive to memory than the messages sent from the closer

cores. In Figure 5.9 we show the latency (time between a message is being sent and

it arrives to the memory) that messages have experienced depending on from which

core have been sent.

FIGURE 5.9: Messages latency

As said before, figure 5.9 shows the average latency that messages sent from all

cores have experienced after reaching memory when all the cores are injecting at a

1.0 rate (1 message/cycle). The results shown are quite intuitive as C6, that is the

farthest core in the system, is the one that has more latency reaching the memory.

After C6, that has 4 hops until memory, we have C7 followed by C3. Even though

C7 and C3 are at the same distance from memory (3 hops), C3 has lower average

latency because it has twice the BW allocated than C7 (1/12 of the BW against 1/24).

Observing that phenomena, we can say that, in non-uniform NoC topologies, the

latency that messages experience from source to destination nodes does not only

depends on the distance in hops between source and destination, but also on the

Chapter 5. Controlling Bandwidth Allocation in NoCs 36

amount of BW that the source has been allocated.

Having the latency and BW properties of 2D meshes, we can take advantage of

this and, for example, place the less memory demanding applications to cores far

from memory with low BW allocated, and the more memory demanding ones in

cores closer to memory, so with higher allocated BW.

However, in case of having a well-balanced parallel application, or applications

with threads having similar memory requirements properties, the task running for

instance in C1 (messages with average latency of 24.1 cycles) and the same task in

C6 (messages with average latency of 345.1 cycles) execution will be 14,3x faster in

C1 than in C6. This BW and latency imbalance in 2D meshes, when applying homo-

geneous BW distribution locally at each router, can cause a big drop in performance

of well-balanced parallel applications where the execution time of the entire appli-

cation is determined by the thread that needs more time to complete its execution.

This worst-imbalance case between latencies of different threads only happens

when all the cores or NICs in the mesh work at injection rates greater than 0.2 (1 mes-

sage inserted every 5 cycles). As we know, arbitration BW distribution effectiveness

is strongly related to the NoC utilization. Thus, when we decrease the injection rate

in cores’ NICs under 0.2, RR arbitration policy loses effectiveness very fast. How-

ever, computing WCET estimates requires making pessimistic assumptions on the

load other contenders can put in the network making the quality of these estimates

to be heavily degraded as a consequence of this uneven distribution of bandwidth,

even if, in practice, real contention is lower.

(A) Injection rate 0.2 per core (B) Injection rate 0.1 per core

FIGURE 5.10: Messages sent per core in a RR 3x3Mesh varying the IR

Chapter 5. Controlling Bandwidth Allocation in NoCs 37

In Figure 5.10 we can observe this arbitration effectiveness drop when reducing

from 0.2 to 0.1 the injection rate (IR) in all 8 cores in the mesh. In Figure 5.10a we can

observe that cores have the same BW distribution as in Figure 5.8, when the IR was

1.0 (NICs are able to send messages accordingly to their BW allocation). However,

in Figure 5.10b, when we have an IR of 0.1 (1 message every 10 cycles), the BW dis-

tribution is homogenized as the mesh NoC is no longer the bottleneck of the system

(messages can flow without waiting in the NIC when they are injected). In Figure

5.10b, we observe that all cores send more or less the same number of messages

(around 2500 messages), which correspond to 1/8 of the BW, so it matches with an

homogeneous BW allocation.

(A) Injection rate 0.2 per core (B) Injection rate 0.1 per core

FIGURE 5.11: Messages latency per core in a RR 3x3Mesh varying IR

We can also observe this effectiveness loss in the arbitration when we analyze the

latency values evolution when passing from 0.2 to 0.1 cores’ NICs IR. In Figure 5.11,

we can see, similarly as in Figure 5.10, a drop in the latency in all cores. The most

important change, as expected, is observed in the farthest memory core of the mesh

(i.e. R6 where C6 is placed) where we move from having a latency of 342.7 cycles

with a 0.2 IR to having 26.9 cycles with 0.1 IR. In other words, reducing the injection

from 0.2 to 0.1 involves a message latency reduction in the farthest core of the mesh

of 12.75x. Note that, in such a NoC, whenever the joint IR of the NoC is above 1

(e.g. 0.2 · 8 = 1.6 for the 8 cores), the NoC saturates and contention is constantly

the maximum. However, when the overall IR is below 1 (e.g. 0.1 · 8 = 0.8 for the

8 cores), the NoC is able to eject packets faster than they are injected, so interaction

among packets in routers is negligible – if any.

Chapter 5. Controlling Bandwidth Allocation in NoCs 38

5.3 A model for computing worst-case delay (WCD) from the

allocated bandwidth

WCET estimation in manycores needs bounding access times to shared hardware

resources [26, 11]. In the case of NoCs, this translates into i) bounded WCD such

that every request sent to the NoC has a service time, or traversal time, boundable

at analysis time; and ii) time-composable WCD such that the bound to the traversal

time derived for the request of a task does not depend on the load put by other co-

running tasks on the NoC. Low WCD translates into tighter WCET estimates, which

allows increasing the guaranteed performance that the manycore chip can provide.

5.3.1 Baseline NoC

We model a canonical 2D wormhole mesh router comprising five input ports that

have queues to store packet FLITS. The router arbiter grants an output port to a given

input flow. To be able to have time-composable WCD estimates, no prioritization

mechanism is used in the router, and arbitration decisions to select the flow accessing

the requested output port are taken using a time-analyzable arbitration policy, e.g.

round-robin.

We consider a NxM mesh NoC configuration as depicted in Figure 5.7, in which

each node can be identified using (x,y) coordinates. Each node comprises the router

that communicates the node to the mesh and a PME (Processor/Memory element).

The PME can be either a processor core, a cache memory, main memory, I/O, etc. In

the network, several traffic flows may exist. A traffic-flow (Fi) is a packet stream that

traverses the same H-node route from a source to a destination node and requires

the same grade of service along the path.

We use deterministic XY routing as explained before. It further enables identify-

ing routers in a given path as Rj where j is the hop number of the path (e.g. R1 is

the source node). With XY routing packets are forced to use the X dimension first.

In the X dimension the position of the target node with respect to the source node

determines whether to go right (X+) or left (X-) direction. The same approach is used

for the Y dimension. Once packets are routed using the Y dimension they cannot be

forwarded to the X dimension. Note that the opposite port is represented as Ȳ and

Chapter 5. Controlling Bandwidth Allocation in NoCs 39

X̄. For instance the opposite port of Y+ is Y−. Routing restrictions help determining

the exact number of requests (Pj
i) that might contend at router Rj for the same output

port as Fi, in the worst-case situation. Pj
i values can be determined as follows:

Pj
i =

2 i f destination is X+ or X−

4 i f destination is Y+, Y− or PME

5.3.2 Accounting for the Impact of Bandwidth Allocation in WCD

WCD values can be derived for regular NoC designs following the expressions given

in [28, 23]. In this section, we provide expressions to compute WCD bounds that

are also suitable for NoCs using weighted round-robin arbitration. The expressions

given in this section are based on the concept of worst-case ejection rate (ERj
i). We

define ERj
i as the rate at which FLITS of flow Fi can be ejected from router Rj to the

corresponding port when the next router (Rj+1) is accepting incoming packets (i.e.

it is not stalling Rj packet transmission). We also extend the concept of worst-case

network ejection rate to model the rate at which FLITS can be ejected from a given

router port when the network is fully congested. To do so, we define propagated

worst-case ejection rate PERwc as the minimum rate at which FLITS of Fi can be

ejected from Rj in the worst-case situation. ERj
i values can be computed by consid-

ering the maximum number of flows Pj
i contending at Rj

i for the same output port

as Fi as shown in Equation 5.5.

ERj
i =

1

Pj
i

(5.5)

Then, PERi(Rj) is computed by multiplying ERj
i factors from the current router

Rj
i to the target router RH

i as presented next:

PERj
i =

H

∏
k=j

1
Pk

i
(5.6)

Let Dj
i be the time that a packet of flow Fi requires to go from the input port of Rj

to its destination node. Dj
i can be computed recursively by considering the time re-

quired to reach Rj+1 (1/PERj
f x{i}) plus the time required to reach its destination once

Chapter 5. Controlling Bandwidth Allocation in NoCs 40

at Rj+1. f x{i} represents the index of the flow that causes the worst possible block-

ing in Fi. Note that a Ff x{i} packet stalled in a subsequent router of the path followed

by Fi might cause Fi to suffer worst contention than one following exactly the same

path. In the same way PERj
f x{i} represents the worst ejection rate for Fi packets. To

determine the flow causing the worst contention, PER values for all routers and all

flows have to be computed in advance, and for any particular flow and router we

choose the worst PERj
f x{i}. Equation 5.7 shows the recursive definition of Dj

i .

Dj
i =

1

PERj
f x{i}

+ Dj+1
i (5.7)

The WCD for flow Fi, given by D1
i , is the time required to reach its destination

(j = H) from the source node (j = 1).

(A) 2x2Mesh BW distribution with RR (B) 2x2Mesh flows

FIGURE 5.12: 2x2 Mesh with 4 cores

We illustrate how to compute WCD using Equations above with the example

presented in Figure 5.12 and considering round-robin arbitration first. We aim at

computing the WCD of packets with source node C2 in router R2 and destination

memory in router R1. First, we compute PERj
i as the product of the ERj

i coefficients

of all the routers that Fi (i = 2) traverses. Later, we start from the last hop (j = 3)

and compute all Dj
i values.

Chapter 5. Controlling Bandwidth Allocation in NoCs 41

D3
2 =

1
1/3

= 3

D2
2 =

1
1/6

+ D3
2 = 9 D1

2 =
1

1/6
+ D2

2 = 15

Table 5.2 provides the Dj
i values for all flows in a 2x2 mesh with RR and WRR

arbitration respectively.

Round-Robin Weighted Round-Robin

F2 F3 F0 F1 F2 F3 F0 F1

D3
i 3L - - - 2L - - -

D2
i 9L 3L 3L - 6L 2L 4L -

D1
i (WCD) 15L 9L 6L 3L 10L 6L 8L 4L

TABLE 5.2: WCD values for L-flit packets, where the maximum al-
lowed packet size is L.

5.4 Computing WCET in NoC-based processors

Once we have the worst contention (WCD) that each of the requests in the NoC is

exposed to, we can compute the WCET using the following expression:

WCET = OET + WCD · Nreq (5.8)

where OET stands for the observed execution time and Nreq is the number of re-

quests of the particular task traversing the NoC. The OET is computed by executing

applications in isolation (i.e. in the absence of contention). Nreq can be determined

by the statistics collected when tasks are executed in isolation. If there is no spe-

cific counter for the number of NoC requests, this number can be obtained from the

number of misses and evictions in the different caches and/or the number of write

operations depending on the employed cache write policy.

42

Chapter 6

Evaluation Results

In this chapter we show the results and performance characterization of applying

FBA in tree and mesh topologies for both single-threaded and multi-threaded work-

loads. We also want to mention that we have used the window arbitration imple-

mentation of FBA as it allows to have precise control on the arbitration that each

output port that applies WRR arbitration policy is using.

6.1 Performance characterization of workloads

In this section we analyze the impact of executing applications in a 4-core tree based

architecture. To do so, we have used the synthetic benchmarks mentioned in Table

4.2. Results shown in this section have been obtained using Soclib and the gNoCsim

simulator with the NGMP configuration described in chapter 4. The details of this

processor architecture were given in Table 4.1.

6.1.1 Execution time in Isolation

FIGURE 6.1: Tree isolation benchmarks results

Chapter 6. Evaluation Results 43

Figure 6.1 shows the execution time of the generated benchmarks in isolation.

We focus first in the first 4 benchmarks (A, B, C and D), which are the ones imposing

higher contention in the NoC. Later in this chapter we also analyze the remaining

ones. As expected, since all benchmark have the same amount of instructions, their

execution time is deeply related to the fraction of memory accesses (LD and ST) that

each benchmark has. For this reason, A benchmark is the fastest benchmark exe-

cuting in 6.559.367 cycles (20% of memory accesses) followed by the D benchmark

(60_20_20) with (40% of memory accesses) executed in 11.882.442 cycles and in the

last position benchmarks B (50_10_40) and C (50_40_10) with the same number of

memory accesses (50%) executed in 14.872.529 and 14.852.995 cycles respectively.

6.1.2 Homogeneous executions

FIGURE 6.2: Comparison between multicore homogeneous and iso-
lation benchmarks results

In Figure 6.2 we compare the execution time (in cycles) between A, B, C, D bench-

marks executed in isolation in the tree and the same benchmarks when they are

executed concurrently in each of the cores of the system simultaneously. We refer

to this concurrently executed workloads as AAAA, BBBB, CCCC and DDDD. As it

is expected, the execution time of multi-thread executions are higher than the isola-

tions executions because there are collisions between the cores in the interconnection

and the memory. Note that to avoid inter-task conflicts in the shared L2 we have

used way partitioning, so that each core has its own L2 cache space and no mutual

evictions can occur. In the plot, we can also see that the increment in the parallel

Chapter 6. Evaluation Results 44

execution time also depends on the fraction of memory accesses that A, B, C and D

benchmarks have. We can also observe this timing increase in Table 6.1.

Benchmark Execution time Growth
A 6,559,367
AAAA 18,540,331 2.83x
B 14,872,529
BBBB 46,125,611 3.10x
C 14,852,995
CCCC 46,585,611 3.14x
D 11,882,442
DDDD 36,016,375 3.03x

TABLE 6.1: Growth between isolation and homogeneous execution

6.1.3 Heterogeneous executions

FIGURE 6.3: Heterogeneous benchmarks results

In this section we analyze the impact of having concurrent heterogeneous work-

loads. These results are shown in Figure 6.3 (note the narrow y-axis scale). As it

can be seen, the execution times obtained in heterogeneous executions are closer be-

tween them than the ones obtained in isolation and homogeneous executions (we

analyze this in detail in Figure 6.4). That happens in this case, because all the execu-

tion combinations have B benchmark inside (the longest one) and the total execution

time of each combination is the time that needs the longest benchmark, B, in all com-

binations. In addition, the time that the benchmark needs to finish it is related to the

amount of contention that the other benchmarks running in other cores cause.

A desirable situation would be that, whenever a thread in a parallel application

completes its execution, it waits for the others to end without interfering with the

Chapter 6. Evaluation Results 45

FIGURE 6.4: Comparison between multicore heterogeneous and ho-
mogeneous benchmarks results

other cores execution (releasing all the NoC bandwidth required by this core so that

it can be used by the other cores). If we were in this case, the performance of the

other cores would increase (i.e. every time that one core of the system ends its exe-

cution the remaining cores executing have lower contention in the shared resources)

but we have observed this is not the case (see the spinlock analysis in Appendix A,

section 6.4). In general, the implementation of the barrier and other synchroniza-

tion calls depends on the runtime and the hardware support that each processor

and operating system provides. In our case, the combination of the NGMP atomic

operations and the kernel lib that was developed in the context of the parMERASA

project [26] created this inefficient synchronization mechanisms based on spinlocks.

So, what we observe executing these heterogeneous benchmarks is the following:

Let’s suppose that parallel execution benchmarks XYZT are mapped X to C0, Y to

C1, Z to C2 and T to C3, where X, Y, X and T benchmarks refer to one of the A,

B, C or D defined benchmarks. Whenever Ci ends its execution, it waits making a

spinlock loop checking if the other cores have already finished. The spinlock can be

translated as a loop of loads that directly go to memory as all the cores are checking

for the same shared variable (i.e. we have memory contention). This spinlock situ-

ation in Ci causes a performance loss in the other cores execution as Ci behaves as a

benchmark all whose instructions are loads from memory. To avoid this undesired

behavior, we have modified the way the spinlock is implemented as described in

Appendix A (see in Section 6.4).

Chapter 6. Evaluation Results 46

6.2 Tree-NoC arbitration and bandwidth allocation analysis

In this section we evaluate the effectiveness of the FBA scheme in tree NoC topolo-

gies. First, we corroborate the tree topology provides a fair BW distribution in all

cores. To do so, we have used synthetic traffic to simulate the bandwidth and the

latency of the packets in the network when using different types of messages.

FIGURE 6.5: Messages sent per NIC with 1.0 of IR and RR arbitration

Figure 6.5 shows the number of messages that each core NIC is able to send. For

this experiment we have used the same IR for all the cores in the tree and messages

of two different sizes: 4 FLITS for the long messages and 1 FLIT for the short ones.

All the experiments have been obtained injecting 20000 messages uniformly in all

the NICs in the Tree in order to observe the impact of BW distribution. We have var-

ied the injection rate (IR) and the proportion of short and long messages to observe

if there is any impact of this factors in the BW distribution. As we can observe in

Figure 6.5, independently of the percentage of short and long messages we are send-

ing (100_MES means 100% of short messages), cores 0 to 3 are sending around 5000

messages each (every core is sending 1/4 of all the messages injected in the NoC).

In Figure 6.6 we can observe the amount of short and long messages that are sent

as long as we vary the percentage of short and long messages. For example, when

we have 100% of short messages we can see that all cores send 20000 short messages

(5000 messages each core) whereas when we have 75% of short messages all the cores

send 15000 short messages and 5000 large messages uniformly distributed along the

four cores. Therefore, our experiments confirm that trees intrinsically have homo-

geneous BW allocation when we apply an homogeneous BW distribution technique

like RR arbitration policy.

Chapter 6. Evaluation Results 47

FIGURE 6.6: Number of short and long messages sent per NIC with
1.0 of IR with RR arbitration

Homogeneous BW allocation is specially indicated when the system executes

well balanced parallel applications or single-thread applications that have very sim-

ilar memory requirements at the same time in separate cores. In that case, the system

is able to achieve good performance. On the contrary, when we deal with unbal-

anced parallel applications or single-thread applications with very different memory

requirements that run simultaneously in different cores of the Tree, homogeneous

BW allocation is not a good option anymore as the threads that have more memory

access requirements will run slower meanwhile the threads with lower memory ac-

cess requirements will not be using the bandwidth that they have assigned. To solve

these issues, we can use the FBA based on weighted arbitration that we propose in

Chapter 5.

To illustrate this with an example, let us imagine that we want to run at the

same time in our 4-core Tree Noc system 4 different applications that can be split in

two different types of applications: one group has 10% of memory accesses and the

other group has 40% of memory accesses. Based on this we can tune our weighted

arbitration values in the Tree routers in order to allocate more BW to the cores where

we will map the more memory demanding applications and less BW to the cores

stressing less the memory.

Figure 6.7 shows the BW distribution across cores tuning the weights of those

input ports that contend for the same upper output port. Given that in this case we

have 2 applications of each type, we can modify the BW distribution only changing

the weights of S1_M0 input ports (i.e. put a 2 in input port 0 and an 8 in input port

1). By doing that, we can give more BW to the right branch of the tree (80%) and less

to the left one (20%). The arbitration weights of S0_M0 and S0_M1 do not need to

Chapter 6. Evaluation Results 48

FIGURE 6.7: Binary tree with WRR arbiter

be modified as they keep distributing the received BW in equal parts to their input

ports (50% each input port). Applying this changes, we end up with a tree NoC

where C0 and C1 have 10% and 10% and C2 and C3 have 40% and 40% of the BW.

FIGURE 6.8: Messages sent per NIC with 1.0 of IR with WRR arbitra-
tion

In Figure 6.8 we can observe a heterogeneous BW distribution in which core 0

and 1 branch has 20% of the BW and core 2 and 3 branch the remaining 80% of the

BW distributed (10%, 10%, 40% and 40% from core 0 to core 3). We can observe in

Figure 6.8 how cores 0 and 1 send around 2000 messages and cores 2 and 3 around

8000 matching with the the BW in the arbitration windows.

In Figure 6.9 we can also see that, independently of the percentage of short and

long messages that a given core injects in the tree, they continue being uniformly

distributed inside the BW allocated in each branch.

In this case, as we are using heterogeneous BW allocation (FBA), we know that

the effectiveness of this BW distribution using weighted arbitration is strongly re-

lated to the IR that NICs have. As we have explained in the Arbiter Design section

Chapter 6. Evaluation Results 49

FIGURE 6.9: Number of short and long messages sent per NIC with
1.0 of IR and WRR arbitration

(see Section 5.1), when the prior input port has no request to send, the following

input port with more priority wins the arbiter. That means that as long as we have

lower injection rates in the system NICs, the effectiveness of the weighted arbitra-

tion decreases. To corroborate this hypothesis, we have run the same experiments as

before but reducing the NICs IR (all the NICs have the same IR).

FIGURE 6.10: WRR arbitration impact varying the tree NoC IR

In Figure 6.10 we can clearly observe that when cores decrease below 0.5 their

message IRs, the weighted arbitration starts having less impact. We see this phe-

nomena between 0.5 and 0.2 rates. With 0.4 we start observing that cores 3 and

4 send less than 8000 messages, with rate 0.3 cores 3 and 4 only manage to send

close to 6000 messages and, finally, with rate 0.2 all cores send the same number of

messages (5000 messages each), which is the BW intrinsic distribution of trees. As

explained before, arbitration has negligible effects whenever the global IR is below

the ejection rate. Hence, IR values below 0.25 do not saturate the NoC and hence,

packets progress with virtually no contention at all.

Chapter 6. Evaluation Results 50

6.3 WRR arbitration analysis

In this section we evaluate the FBA impact in 2D meshes. In order to prove the ef-

fectiveness of FBA we use synthetic traffic experiments in gNoCsim simulator using

different mesh sizes, injection rates, and message sizes.

We start with a 2x2 2D Mesh with 3 cores that send packets to a memory module.

Figure 6.11 shows the amount of packets that each of the different cores is able to

send to the destination module. As shown in the plot, applying WRR arbitration we

achieve a perfectly homogeneous BW distribution.

FIGURE 6.11: Messages sent per NIC in a 2x2mesh XY routing 1.0 IR
and WRR arbitration

We see that the WRR arbitration, similarly as it was observed for the RR arbitra-

tion (see Section 5.2.2), losses effectiveness when the IR of messages in the NoC is

reduced. However, since in WRR we already achieve homogeneous BW allocation,

the impact of the IR on the number of packets sent per core is roughly null when

the IR is reduced in all cores from 1.0 to 0.01. In all tested cases all cores are able to

send around 6666 messages, which actualy matches with 1/3 of the BW when we

inject uniformly 20000 messages in the 2x2 2D mesh. This loss of effectiveness can

be seen between IR 0.3 and 0.2 if we pay attention to the latency of the messages

instead. This is shown in Figure 6.12. This effect can be explained by the fact that all

the cores can send the packets without suffering congestion anymore, as explained

before.

Chapter 6. Evaluation Results 51

(A) 0.3 injection rate (B) 0.2 injection rate

FIGURE 6.12: Latency evolution in a 2x2 2D Mesh reducing IR

We have also analyzed the behavior of WRR arbitration for bigger network sizes.

In particular, we analyze a 4x4 2D Mesh where 15 cores send requests to the same

memory device.

FIGURE 6.13: BW distribution in a 4x4 2D mesh with 1 FLIT messages

In Figure 6.13 we observe that, although WRR is able to balance the traffic much

better than RR arbitration, we still observe imbalance between the numer of mes-

sages from C0, C1 and C2 compared to the number of messages sent by the rest of

the cores. Indeed, the imbalance takes place between the Y+ port (that forwards C0,

C1 and C2 flows) and X- port (that forwards the flows of the 12 remaining cores).

Whereas we expect to observe near to 1333 messages sent from each core (when

sending 20000 messages in a 15 core 4x4 mesh), we observe that C0, C1 and C2 are

able to send 1667 messages each one (more than 1333 expected messages) and cores

from C4 to C15 are able to send 1250 messages (less than the messages expected).

Chapter 6. Evaluation Results 52

This phenomena can be explained by the impact that the presence of bubbles can

have w.r.t. to the alignment of the arbitration window.

During executions, bubbles can happen because of different reasons:

• Low core injection rate: If one or more than one core have a flow that traverses

a certain router with low IR, in some cycles the router will not have FLITS to

arbitrate in one or more input ports.

• Flow Control: If there is congestion in a certain path between a core and mem-

ory and the FLITS cannot make progress, the Flow Control will be in charge of

not allowing FLITS to overflow routers’ NICS and the Stop signal will be prop-

agated from the router that is full to the core (ending with a core stall). When

this stalled router resumes (FLITS can make progress) the Go signal will be

propagated again from the stalled router to the stalled core (or the last stalled

router). Traversing all the path until reaching the last stalled router or stalled

core can take many cycles and that can introduce bubbles in some pipelines

like in the previous situation exposed (the core IR has been 0 during a time

period).

The presence of bubbles challenge the efficiency of the WRR arbitration since

their presence can cause particular bad alignments w.r.t. the arbitration window,

leading to not perfect BW distribution. We elaborate more on this pathological cases

in Appendix B (see in Section 6.4).

In our case this phenomena occurs due to flow control in the router microarchi-

tecture (that has 5 stages) since, when we increase the message size from 1 FLIT to

5 FLITS, we are able to obtain a fair BW distribution as the one we were expecting

(see Figure 6.14).

Figure 6.14 shows the homogeneous bandwidth expected (1/15 of the BW in

each core) when increasing the message size (flow control is no longer producing

bubbles in the NoC).

Chapter 6. Evaluation Results 53

FIGURE 6.14: BW distribution in a 4x4 2D mesh with 5 FLIT messages

FIGURE 6.15: Message latency comparison with different 2D mesh
sizes

Figure 6.15 shows the message latency from the farthest core from memory in

2x2, 3x3 and 4x4 mesh sizes. Looking at the figure, we can underline three particular

observations:

• The latency of the farthest core packets grows steadily with the mesh size. This

happens because of two quite trivial things. First, when we increase the size

of the mesh, it also increases the distance in hops between the farthest core

and the memory. Second, independently of the arbitration used, WRR or RR,

when we increase the number of cores in the mesh, the same amount of BW

has to be split across more cores. So, for example in Figure 6.15 for 2x2, 3x3 and

Chapter 6. Evaluation Results 54

4x4 meshes with RR arbitration, we observe an exponential growth of message

latency from the farthest core from memory. We are reducing the BW in this

node and at the same time increasing its distance to memory.

• The distance between RR latency and WRR latency increases with the mesh

size. We observe that latencies for 2x2 RR and WRR are practically overlapped,

with 3x3 the difference between RR and WRR is more or less 230 cycles, and

with 4x4 the difference is around 1,818 cycles. This can be explained by the

fact that, whenever we use RR arbitration policy, the BW is homogeneously

distributed along the mesh (e.g. every time we split the BW that an output port

has among the input ports that contend for this output port in equal parts).

When we have a bigger mesh, as the distance between the farthest core from

memory and the memory increases, the BW that this core receives is every

time smaller and smaller. The bigger the mesh size is, the most unfair BW

distribution we have using RR. Still, when we use WRR distribution, the BW

is always homogeneously allocated. It is true that increasing the mesh size we

reduce the BW per core and increase the distance between memory and the

farthest core from memory but, in any case, the BW that the farthest core will

receive using WRR will be 1/N being N the number of cores in the mesh.

• Small meshes start losing arbitration’s effectiveness earlier than big meshes.

We observe that in a 2x2 mesh, RR and WRR arbitration start losing effective-

ness between 0.3 and 0.2 IR, whereas in 3x3 that happens between 0.2 and 01,

and in 4x4 between 0.1 and 0.01. The bigger the mesh we have, the more the

BW is distributed along the mesh. With big meshes, the BW is distributed

in smaller fractions, which has a good impact in the BW distribution as the

interconnection keeps being congested even having less traffic. That is good

because the NoC is more sensitive to the weights that we configure and the

arbitration keeps distributing the BW perfectly even when we have less traf-

fic inside. In general, given a mesh with N cores, whenever IR is below 1/N,

WRR arbitration loses effectiveness.

Chapter 6. Evaluation Results 55

6.4 WCET analysis in RR and WRR NoCs

In this section we show the impact that WRR arbitration has in WCET. We only

show results for the Mesh NoC topologies since in this topology the effect of FBA is

significant regardless of the actual balancing of the parallel applications. Results for

the tree follow the same trend when having parallel applications using tasks with

different computational requirements. For WCET computation, we have executed

the threads in isolation and used the expressions provided in Chapter 5. For the

analysis, we use a 4x4 2D Mesh with 16 cores XY routing algorithm.

First of all, we have derived the WCD for each workload. To do so, we have

used the model explained in 5.3 and we have applied the method for each bench-

mark and core using RR and WRR arbitration policies. In other words, we have

calculated the WCD for each benchmark in each one of the possible placements (e.g.

Benchmark A mapped in C0 to C15, Benchmark B mapped in C0 to C15, and so on

and so forth) for both arbitration policies. We have executed all the workloads in

isolation in each one of mesh placements in order to derive the observed execution

time (OET) and number of memory petitions (N_req). In order to emulate the WCD

we have chosen the worst possible placement of benchmarks (that is in C12 for all

the benchmarks, where the WCD is the highest, in RR and also using WRR). Then

applying the WCET equation (see in 5.8) we are able to obtain the WCET values for

RR and WRR arbitration policies).

Table 6.2 shows for each workload the number of requests going to the net-

work, the execution time in isolation (ET), the WCD of farthest node for both RR

and WRR, and the corresponding WCET. As shown in the table, WRR arbitration

achieves a significant improvement in WCET (gains between 73% and 83% when

using WRR instead of RR). This can also be seen graphically in Figure 6.16 that

shows the WCET reduction achieved by WRR w.r.t RR. The main reason for this

improvement is caused by the huge penalization incurred by the farthest node with

RR arbitration since this is the one that fill require more time to complete the execu-

tion and thus, the one determining the WCET of the application. In the same plot,

we can also appreciate that of course highest reductions occur in benchmarks with

more accesses to memory as even they have the same WCD they have less memory

Chapter 6. Evaluation Results 56

access and faster observed execution time (EOT)

Round-Robin Weighted

Benchmark N_req OET WCD WCET WCD WCET

A 204.108 9.892.993 417 95.006,029 36.67 17.376,953

B 504.108 22.592.930 417 232.805,966 36.67 41.076,890

C 504.108 22.582.871 417 232.795,907 36.67 41.066,831

D 394.108 17.936.458 417 182.279,494 36.67 32.387,085

E 58.207 5.887.606 417 30.159,925 36.67 8.021.863

F 133.207 12.126.203 417 67.673,522 36.67 17.010.460

G 133.207 9.063.806 417 64.611.125 36.67 13.948.063

H 105.707 8.820.795 417 52.900.614 36.67 12.696.719

TABLE 6.2: WCET of applications running in a 4x4 2D Mesh

FIGURE 6.16: WCET reduction along all the benchmarks

WRR allocates the bandwidth in a fair way. This makes that the farthest nodes

get more BW than with RR, but at the expense of a reduction in the BW of the nodes

that are closer to the destination node. This effect is illustrated in Figure 6.17 that

shows how with WRR the threads mapped to the nodes closer to memory achieve

WCET values that are worse than the ones achieved with RR. However, the opposite

trend is observed for the farthest nodes but with a more noticeable difference. The

reason for this is the the pessimism that needs to be considered for farthest flows

with RR is much higher making WCD values for these flows to grow exponentially.

Interestingly, in the context of parallel applications, the execution time is determined

by the slowest threads, making WRR to achieve significantly better performance for

these applications.

Chapter 6. Evaluation Results 57

FIGURE 6.17: WCET normalized in a 4x4 mesh of benchmark A

58

Chapter 7

Conclusions and Future Work

In this thesis we have analyzed the potential of using heterogeneous bandwidth al-

location to improve the WCET of applications executed in NoC-based multi- and

manycore processors. In particular, we have analyzed how weighted arbitration

schemes can be very useful to maximize the efficient utilization of shared resources.

We have analyzed the impact of controlling the bandwidth allocation in two differ-

ent scenarios. In the first scenario, we have shown that in processors with uniform

access to memory, heterogeneous bandwidth allocation results useful to maximize

the guaranteed throughput of parallel applications with heterogeneous threads. In a

second scenario, we have shown that using weighted arbitration becomes crucial to

equalize the uneven distribution of bandwidth in systems with non-uniform access

to memory like processors using NoCs implementing a mesh topology.

In particular, our results show that weighted arbitration (WRR) provides band-

width malleability with low cost and high flexibility. However, in the case of meshes,

while weighted meshes can homogenize bandwidth allocation, they cannot mitigate

the intrinsically variable core-to-memory latency since the distance from cores to

memory determines a minimum access latency.

We also show that flexible bandwidth allocation (FBA) is beneficial, not only in

equalizing the BW among all cores in non-uniform access to memory systems, but

also in distributing the BW in the most convenient way regardless of whether the

interconnection has unified memory access distance to memory or not.

In this thesis we have also analyzed the impact of weighted arbitration in BW

allocation and latency in different scenarios and have shown how BW distribution

effectiveness depends on parameters like the amount of traffic we have in the NoC,

Chapter 7. Conclusions and Future Work 59

the interconnection geometry, and how the different flows are routed in the topology,

which are some of the most relevant parameters. We have identified and analyzed

some FBA limitations caused by bubbles in the NoC pipeline that prevent WRR from

achieving fully-balanced BW allocation in some cases (e.g. medium size and large

meshes).

We have also proven that using WRR is specially beneficial to achieve homoge-

neous BW allocation in critical real time applications as we are able to achieve WCET

estimates reductions between 73% and 83% when using WRR arbitration instead of

RR.

Part of our future work consists in exploring the capabilities of heterogeneous

bandwidth allocation by allowing the task scheduler decide how weights should be

assigned according to the different requirements and features of each of the threads

that are to be scheduled concurrently. Similarly, we foresee that integrating hetero-

geneous bandwidth allocation in the timing analysis can lead to significantly better

WCET estimates, especially for parallel applications, since the thread-to-core alloca-

tion can be optimized together with the bandwidth allocation to each core so that

the maximum execution time across threads is minimized.

60

Appendix A: Spinlock analysis

To analyze the impact of spinlock in the performance of parallel applications we

have used specific PowerPC benchmarks with the characteristics shown in Table 4.3.

It is important to underline that Benchmarks Bench1, Bench2 and Bench3 have the

same properties (same amount of computation, load and store instructions) and only

varies the size of each benchmark. In this part, we analyze the performance impact

that have applications when finish their execution in the remaining execution of oth-

ers. For this reason, we have implemented benchmarks with similar properties but

different instruction counts. Bench0 is the longest benchmark that always remains

executing during the experiments. We assume that Bench0 is mapped to C0, Bench1

to C1 and so on and so forth, and the underlying NoC is a tree, hence with balanced

BW across cores.

FIGURE 7.1: IPC evolution along time results

Figure 7.1 shows in the x-axis the Instructions Per Cycle (IPC) of the 4 cores

during their execution. It can be observed that, initially, all cores have a growing

slope which corresponds to the initialization part common in all cores. After that, C1

Chapter 7. Conclusions and Future Work 61

(green) finishes and immediately starts executing the spinlocks part (very low IPC

as the spinlock is equivalent as a 100% load miss benchmark). The same behavior

can be observed in C2 and C3 some time later. On the other hand, C0 IPC remains

unaffected by the performance drop of other cores. The IPC of C0 is worse than that

of the other cores because C1, C2 and C3 are executing stores, and the write buffer can

mitigate the latency to serve stores. That is a better situation than the one is facing

C0, since Bench0 in C0 executes loads that stall its pipeline on every access (i.e. the

pipeline is stalled until the loaded data is received). One would expect that, upon

the finalization of some benchmarks in some of the cores, the IPC of C0 increased.

However, main memory has a relatively large latency so, even though the bench-

marks only have 5% of store instructions (write through policy), this access rate is

enough to saturate the memory queue. That means that, whenever a core wants

to access memory, even if it experiences no NoC contention, the core request gets

stalled in the memory queue because it is full. C0 can only send the next memory

request when the previous one has been served and, since they get stalled in mem-

ory, it has to wait long until it is served. Whenever a core ends its execution (C1, C2

or C3), it stops generating store requests and, instead, generates load requests due to

spinlock. Again, these requests do not alter the behavior of C0, which keeps finding

the memory queue full, thus experiencing the same (very high) contention in the

memory access.

In order to reduce the amount of times that a core checks the spinlock variable

when finishes its execution, thus reducing the memory contention caused, we have

explored a simple solution: a loop with division operations has been added in the

spinlock loop.

In Figure 7.2 we see the effect that produces a core when it ends its execution us-

ing 10 divisions between spinlock checks. For instance, when C1 ends the execution

(green), its IPC decreases a little because starts checking the spinlock variable, but

thanks to the division loop, the IPC is higher than in the baseline spinlock situation

shown in Figure 7.1 when the IPC of C1, C2 and C3 was under 0.05. The same be-

havior can be observed when C2 and C3 end the execution. When one of these cores

ends its execution, the IPC of the remaining cores grow (the other cores now have

more available memory bandwidth than before). This behavior is also shown in the

Chapter 7. Conclusions and Future Work 62

FIGURE 7.2: IPC evolution along time with spinlock reduction of x10

IPC of C0 (red) that grows in three steps. Although the first one is pretty small due

to the still high contention in memory, the other steps are more noticeable.

FIGURE 7.3: IPC evolution along time with spinlock reduction of x100

Figure 7.3 shows, as the previous plot, the IPC improvement in the cores that

continue executing tasks when one of the other cores ends, but this time using 100

divisions in-between spinlocks instead of 10. The IPC impact in other cores is higher

upon the finalization of any core due to the increased time in-between spinlock

checks (the core that ends accesses fewer times the spinlock variable).

In Figure 7.4 we show the same IPC evolution when different cores end their ex-

ecution using 1000 divisions instead of 100. Again, reducing the number of spinlock

Chapter 7. Conclusions and Future Work 63

FIGURE 7.4: IPC evolution along time with spinlock reduction of
x1000

checks, reduces memory contention and C0 speedup is higher upon the finalization

of any other core than in the cases with higher frequency spinlock checks (100 divi-

sions, 10 divisions, or no divisions).

64

Appendix B: Arbitration

pathological cases

For some settings we have observed some pathological arbitration scenarios caused

by the systematic bad alignment of request w.r.t. the arbitration window. Figure 7.5

shows, for a 3x3 NoC, a pathological behavior that occurred even when we used the

correct weights to obtain homogeneous BW distribution (e.g. 1/8 of the BW in each

core). We observe imbalance between messages sent from C0 and C1 compared with

the rest of cores in the 3x3 mesh. Instead of sending 2500 messages each core, we

see that C0 and C1 send 2942 messages (more than expected) and cores from C3 to

C8 send 2353 messages (less than expected). That means that we have an imbalance

problem in R2, as the imbalance is between 2 groups: flows from cores that come

from X+ port (C0 and C1) and flows from cores that com from Y- port (C3 to C8).

FIGURE 7.5: Messages sent per NIC in a 3x3mesh XY routing 1.0 IR
and WRR arbitration

We have observed that the root of such imbalance is at the implementation of

WRR. In this case, we were using for the memory output port in R2 and X+ port

(that traverse C0 and C1 flows) and Y- port (that traverse the remaining core flows).

Chapter 7. Conclusions and Future Work 65

(A) Original arbitration window (B) Permuted arbitration window

FIGURE 7.6: Arbitration windows in R2

If we analyze in detail the case of R2 arbitration, we see that, to provide a weighted

arbitration window with homogeneous BW allocation, we have to give 2/8 of the

BW to X+ port and 6/8 to Y-. So one could initially think that the arbitration win-

dow that provides the most uniform distance between arbitrations is the one shown

in Figure 7.6a. After the execution, we have realized that this window, instead of

providing 5000 messages to X+ port (2/8 = 25%) and 15000 messages to Y- (6/8 =

75%) was providing 5882 messages (≈2/7) and 14118 messages (≈5/7) to each port

respectively.

Observing the real arbitration that the arbitration window is performing, we

have identified a systematic pathological behavior occurring. In particular, a rel-

evant number of times (once in every full arbitration window), arbitration is not

given to Y- even if it has priority since there is no ready petition from Y-. Instead,

it is given to the next X+ port (that is the following port that has a ready petition

as X+). This is caused by how the arbitration window distributes the ports priority.

Two consecutive requests of X+ have to wait in the worst case 3 arbitrations of Y-

port. Instead, Y- may be granted the arbitration consecutively several times (up to 3

consecutive times) and 1 every 3 Y- requests has to wait for one arbitration round of

X+. This means that Y- is more sensitive to routing pipeline bubbles. In particular,

there is a bubble that makes that the 6 requests of the Y- port arrive in 7 cycles, but

having the bubble exactly after 2 requests. Hence, in one of the two groups of 3 con-

secutive Y- arbitrations, the third arbitration is lost. Therefore, every 8 arbitrations

(a full window), 2 are effectively given to X+, 5 are effectively given to Y- and 1 is

lost (the grant is given to the other port, X+ in our case).

We have also observed that this imbalance keeps appearing independently of the

injection rates employed, as long as they are sufficient to saturate the NoC, hence

above 1/N per core.

Chapter 7. Conclusions and Future Work 66

In order to improve BW distribution with WRR with high IR, we have modified

the permutations in the arbitration window that we were using (see Figure 7.6b). We

have observed that, for example, for the new arbitration window shown in Figure

7.6b, we achieve the homogeneous BW allocation in cores that we were expecting. In

particular, such new permutation allows aligning the bubble in Y- with an arbitration

grant to X+, so that no Y- arbitration is lost.

FIGURE 7.7: Messages sent per NIC in a 3x3mesh XY routing 1.0 IR
with Figure 7.6b arbitration window

Once adopted the new permuted window, we do not observe any imbalance on

the number of messages sent (see Figure 7.7) when we have IR greater than 0.4.

However, with this new permuted window we observe that it starts losing effec-

tiveness earlier than the original window that provided imbalance in all cases. This

effectiveness loss of the arbiter occurs due to the reduction in the traffic in the mesh,

which increases the likelihood of missing arbitration rounds.

(A) Injection Rate 0.4 (B) Injection Rate 0.3

FIGURE 7.8: Arbiter effectiveness lost due to window alignment

Chapter 7. Conclusions and Future Work 67

Figure 7.8 shows the permuted window arbitration effectiveness loss between

0.4 and 0.3 IR. As indicated, for lower IR, some imbalance occurs because Y- port

is more likely not to have any pending request in some arbitration rounds, which

ultimately leads to a non-fully-balanced BW allocation across cores.

68

List of Abbreviations

BW BandWidth

COTS Comertial Off The Shelf

CRTES Critical Real Time Embedded Systems

DMA Direct Memory Access

FBA Flexible Bandwidth Allocation

FLITS FLow control unITs

IR Injection Rate

MBTA Measurement-Based Timing Analysis

NIC Network Interface Controller

NUMA Non-Uniform Memory Access

NoC Network on Chip

PME Processor or Memory Element

RR Round Robin

STA Static TimingAnalysis

TDMA Time Division and Multiplexed Access

UMA Uniform Memory Access

V&V Validation and and Verification

WCD Worst Contention Delay

WCET Worst Case Execution Time

WCTT Worst Case Traversal Time

wNoC wormhole Network on Chip

WRR Weighted Round Robin

ZLL Zero Load Latency

69

Bibliography

[1] 6th International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC 2000), 2-6 April 2000, Eilat, Israel. IEEE Computer Society.

[2] NanoC: NaNoC design platform. http://www.nanoc-project.eu.

[3] Precision Timed Machines. http://chess.eecs.berkeley.edu/pret.

[4] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their trust-

worthiness. In SIES, 2015.

[5] A.Psarras, et. al. Phase-noc: Tdm scheduling at the virtual-channel level for

efficient network traffic isolation. DATE 2015.

[6] L. Benini et al. P2012: Building an ecosystem for a scalable, modular and high-

efficiency embedded computing accelerator. In DATE, 2012.

[7] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-NGMP-

DRAFT - Data Sheet and Users Manual, 2011.

[8] D. Dasari, et al. Noc contention analysis using a branch-and-prune algorithm.

ACM Trans. Embed. Comput. Syst., 13(3s), March 2014.

[9] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clé-

ment Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry Strudel. A dis-

tributed run-time environment for the kalray mppa R©-256 integrated manycore

processor. Procedia Computer Science, 18:1654 – 1663, 2013. 2013 International

Conference on Computational Science.

[10] José Flich and Davide Bertozzi, editors. Designing network on-chip architectures

in the nanoscale era. Chapman & Hall/CRC computational science series. Chap-

man and Hall/CRC, 2011.

http://chess.eecs.berkeley.edu/pret

BIBLIOGRAPHY 70

[11] GENESYS. GENeric Embedded SYStem Platform. http://www.genesys-

platform.eu.

[12] K. Goossens, et al. Aethereal network on chip: concepts, architectures, and

implementations. Design Test of Computers, IEEE, 2005.

[13] K. Goossens, et. al. Virtual execution platforms for mixed-time-criticality sys-

tems: The compsoc architecture and design flow. SIGBED Rev., 10(3):23–34,

October 2013.

[14] H. M. G. Wassel, et. al. Surfnoc: A low latency and provably non-interfering ap-

proach to secure networks-on-chip. SIGARCH Comput. Archit. News, 41(3):583–

594, June 2013.

[15] IBM. Power isa version 2.07, 2013.

[16] Intel Corporation. Intel’s Teraflops Research Chip. Advancing multi-core technology

into the tera-scale era.

[17] H. Kopetz and G. Bauer. The time-triggered architecture. Proc. of the IEEE,

91(1):112–126, 2003.

[18] T. Kranich and M. Berekovic. Noc switch with credit based guaranteed service

support qualified for GALS systems. In DSD, 2010.

[19] Sunggu Lee. Real-time wormhole channels. Journal Of Parallel And Distributed

Computing, 63:299–311, 2003.

[20] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The nostrum

backbone-a communication protocol stack for networks on chip. In IEEE VLSI

Design, pages 693–696, 2004.

[21] R. Obermaisser, et al. The time-triggered system-on-a-chip architecture. In ISIE,

2008.

[22] M. Panic, C. Hernandez, J. Abella, A. Roca, E. Quiñones, and F. J. Cazorla. Im-

proving performance guarantees in wormhole mesh noc designs. In 2016 De-

sign, Automation Test in Europe Conference Exhibition (DATE), pages 1485–1488,

March 2016.

BIBLIOGRAPHY 71

[23] M. Panic, C. Hernandez, E. Quinones, J. Abella, and F. J. Cazorla. Model-

ing high-performance wormhole nocs for critical real-time embedded systems.

In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 1–12, April 2016.

[24] Miloš Panić, Eduardo Quiñones, Pavel G. Zaykov, Carles Hernandez, Jaume

Abella, and Francisco J. Cazorla. Parallel many-core avionics systems. In Pro-

ceedings of the 14th International Conference on Embedded Software, EMSOFT ’14,

pages 26:1–26:10, New York, NY, USA, 2014. ACM.

[25] C. Park, R. Badeau, L. Biro, J. Chang, T. Singh, J. Vash, B. Wang, and T. Wang. A

1.2 tb/s on-chip ring interconnect for 45nm 8-core enterprise xeon processor. In

2010 IEEE International Solid-State Circuits Conference - (ISSCC), pages 180–181,

Feb 2010.

[26] parMERASA. EU-FP7 Project:http://www.parmerasa.eu/.

[27] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for best-effort

communication in wormhole networks on chip. In IEEE/ACM NoCS, 2009.

[28] D. Rahmati, et al. Computing accurate performance bounds for best effort

networks-on-chip. IEEE Transactions on Computers, 2013.

[29] E. A. Rambo and R. Ernst. Worst-case communication time analysis of

networks-on-chip with shared virtual channels. DATE, 2015.

[30] J. Rattner. Single-chip Cloud Computer: An experimental many-core processor from

Intel Labs.

[31] Govindan Ravindran and Michael Stumm. A performance comparison of hier-

archical ring- and mesh- connected multiprocessor networks. HPCA, 1997.

[32] A. Roca, et al. Enabling high-performance crossbars through a floorplan-aware

design. In ICPP, 2012.

[33] Erno Salminen, Tero Kangas, Vesa Lahtinen, Jouni Riihimäki, Kimmo Ku-

usilinna, and Timo D. Hämäläinen. Benchmarking mesh and hierarchical bus

networks in system-on-chip context. Journal of Systems Architecture, 2007.

BIBLIOGRAPHY 72

[34] M. Schoeberl et al. A statically scheduled time-division-multiplexed network-

on-chip for real-time systems. In IEEE/ACM NoCS, 2012.

[35] Zheng Shi and A. Burns. Real-time communication analysis for on-chip net-

works with wormhole switching. In NoCS, 2008.

[36] Zheng Shi and A. Burns. Real-time communication analysis with a priority

share policy in on-chip networks. In ECRTS, 2009.

[37] M. Slijepcevic, M. Fernadez, C. Hernandez, J. Abella, E. Quiñones, and F. J.

Cazorla. ptnoc: Probabilistically time-analyzable tree-based noc for mixed-

criticality systems. In 2016 Euromicro Conference on Digital System Design (DSD),

pages 404–412, Aug 2016.

[38] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.

[39] J. Sparsoe. Design of networks-on-chip for real-time multi-processor systems-

on-chip. In ACSD, 2012.

[40] Tilera. TILE-Gx Processors Family http://www.tilera.com/products/TILE-Gx.php.

[41] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones, J. Abella, A. Gogonel,

A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega, and F. J. Cazorla.

Measurement-based probabilistic timing analysis: Lessons from an integrated-

modular avionics case study. In 2013 8th IEEE International Symposium on Indus-

trial Embedded Systems (SIES), pages 241–248, June 2013.

[42] R. Wilhelm et al. The worst-case execution-time problem overview of methods

and survey of tools. ACM Transactions on Embedded Computing Systems, 7:1–53,

May 2008.

[43] Mei Yang, S. Q. Zheng, B. Bhagyavati, and S. Kurkovskyt. Programmable

weighted arbiters for constructing switch schedulers. In High Performance

Switching and Routing (HPSR). Workshop on, pages 203–206, 2004.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Background
	Timing Analysis
	NoCs
	Data organization and transmission
	Network structure
	NoC concepts for CRTES

	Parallel Applications

	Related Work
	Evaluation Framework
	Simulation Platforms
	Processor details
	Network-on-chip Simulator

	Workload
	Synthetic Traffic
	Real Traffic
	Resource Stressing Kernels
	Spinlock benchmarks properties

	Controlling Bandwidth Allocation in NoCs
	Arbiter Design
	Implementation cost of a weighted round-robin (WRR) arbiter
	Adapting arbitration weights

	On-Chip Interconnection Architectures
	Tree
	Meshes

	A model for computing worst-case delay (WCD) from the allocated bandwidth
	Baseline NoC
	Accounting for the Impact of Bandwidth Allocation in WCD

	Computing WCET in NoC-based processors

	Evaluation Results
	Performance characterization of workloads
	Execution time in Isolation
	Homogeneous executions
	Heterogeneous executions

	Tree-NoC arbitration and bandwidth allocation analysis
	WRR arbitration analysis
	WCET analysis in RR and WRR NoCs

	Conclusions and Future Work

