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Abstract

This work proposes the control of an autonomous vehicle using a Lyapunov-

based technique with a LQR-LMI tuning. Using the kinematic model of the

vehicle, a non-linear control strategy based on Lyapunov theory is proposed

for solving the control problem of autonomous guidance.

To optimally adjust the parameters of the Lyapunov controller, the closed

loop system is reformulated in a linear parameter varying (LPV) form. Then,

an optimization algorithm that solves the LQR-LMI problem is used to deter-

mine the controller parameters. Furthermore, the tuning process is comple-

mented by adding a pole placement constraint that guarantees that the maxi-

mum achievable performance of the kinematic loop could be achieved by the

dynamic loop. The obtained controller jointly with a trajectory generation

module are in charge of the autonomous vehicle guidance. Finally, the paper

illustrates the performance of the autonomous guidance system in a virtual re-

ality environment (SYNTHIA) and in a real scenario achieving the proposed

goal: to move autonomously from a starting point to a final point in a comfort-

able way.
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1. Introduction

Autonomous vehicles are gaining a huge popularity in society due to the

technological innovation and safety increase with regard to current available

vehicles. Between these improvements, one of the most important is the driv-

ing control system, which is responsible of generating comfortable and safe5

vehicle motion. In order to achieve such a right movement, a suitable control

technique is needed. Model-based controllers are widely employed in many

control applications where in the majority of the cases an elaborated modeling

task is required.

Over the past decades, a lot of research effort has been dedicated to de-10

velop different vehicle models for control purposes. Kinematic models have

been broadly used [1, 2, 3] as well as lateral dynamic models [1, 4, 5] and lon-

gitudinal dynamic models [1].

As it was expected, due to such model research progress many control tech-

niques appear at the same time for solving the control problem in autonomous15

guidance. In [1, 4, 5, 6, 7, 8] different types of lateral controls approaches are

presented: PI, LPV (Linear Parameter Varying), T-S (Takagi-Sugeno) and MPC

(Model Predictive Control).

In [9], a PID control approach is suggested for controlling the kinematic

part of a vehicle. Kinematic control is also used in [2, 10] based on Lyapunov20

approach obtaining promising results in slow velocity scenarios.

In the last decades, Lyapunov theory has become a standard rule for an-

alyzing stability of non-linear systems [11, 12], but also for obtaining model-

based strategies for controlling the studied systems [2, 3, 12]. In particular,

when working with linear parameter varying (LPV) systems, a linear matrix25

inequality (LMI) expression can be used for checking Lyapunov stability. Such

a LMI formalism has become a standard for analysis and control design in re-

cent years [13].

LPV paradigm [14] is nowadays considered a suitable strategy for embed-

ding the system non-linearities inside varying parameters obtaining in this30
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way a linear-like representation of a non-linear system. Such a formalism is

appropriate to use linear control schemes for designing the controller.

In this work, a non-linear kinematic Lyapunov-based control is proposed

for solving both, the lateral and longitudinal control problem. An optimiza-

tion algorithm for adjusting non-linear controller parameters is also proposed.35

This algorithm is based on formulating the closed-loop system in LPV form.

Then, the Lyapunov controller parameters are obtained based on LQR-LMI ap-

proach. The idea behind the proposed tuning approach is rooted in the work of

[15], where an approach for fixed structure controller is proposed splitting the

problem into a convex and a non-convex sub-problems. A method for solving40

the convex sub-problem via LMIs is presented in [16].

In this paper, the trajectory generation, which uses a map and a global

planner to compute the best trajectory for reaching the destination, is briefly

presented. This trajectory is coarsely defined by a reduced number of global

way-points, which are defined by its GPS coordinates and the vehicle orienta-45

tion. In order to execute the maneuvers comfortably, a local planner computes

a smooth trajectory by adding intermediate local way-points defined by their

GPS position, orientation and the desired linear and angular velocities.

Finally, the proposed techniques for vehicle motion control are first tested

in a virtual reality environment (SYNTHIA). Then, a real on-field test scenario50

using an electric Tazzari vehicle is used for showing effectiveness in real con-

ditions.

The paper is structured as follows: Section 2 presents and describes the

electric Tazzari vehicle considered in the real scenarios. Section 3 introduces

the vehicle model. The control design approach and its tuning are presented in55

Section 5. Section 4 describes the trajectory planning task. The simulation and

experimental results are shown and commented in Sections 6 and 7. Finally,

conclusions are stated in Section 8.
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Figure 1: Electric Tazzari Zero vehicle.

2. Vehicle description

The results presented in this paper are part of the project called Elektra 1 that60

aims to develop an autonomous vehicle. For such purpose, an electric Tazzari

zero vehicle [17] is used (see Figure 1). This system is a non-holonomic plat-

form that can move like a normal road vehicle. This platform is composed by

a set of sensors and actuators, as well as a PC and an electronic control unit

(ECU) that manage all algorithms and communications between them. The di-65

agram of the control architecture is depicted in Figure 2. On one hand, the ve-

hicle has on board an IMU-GPS and stereo cameras to obtain information about

the environment and current state. Proper algorithms have to be employed in

order to convert that crude information on convenient data for understanding

the environment and localize the vehicle. On the other hand, a set of actuators70

are employed to perform the motion (steering and driven electric motors) as

well as turning on the lights and opening doors. The rest of modules in Fig-

ure 2 (perception, localization, planning and control) compose the software for

performing the autonomous guidance task. This paper specially focuses on the

non-linear automatic control module. However, the trajectory planning task is75

1http://adas.cvc.uab.es/elektra/
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Figure 2: Elektra control architecture. The large block on the left represents the physical vehicle

devices (sensors, actuators and ECU). The rest of the blocks on the image (perception, localization,

trajectory planner and automatic control) represent software algorithms running over the PC.

introduced for better understanding.

All the algorithms involved run over a trunk PC (6-core i7 5930K, 32GB

DDR4) running ROS on GNU/Linux (Ubuntu distribution). An NVIDIA GTX

Titan X board is used to run GPU-based algorithms for perception-image anal-

ysis.80

The ECU, based on a Cortex-M4 MCU, runs a custom embedded software

which communicates the PC control actions to the different car actuators (steer-

ing, throttle, brake, lights, horn), as well as reads the values of the car state

sensors (steering, throttle, brake, speed, doors, battery).

The communication net is based on CAN bus protocol. Its cycle is currently85

set to 100 ms, which is sufficient for running all required algorithms.
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3. Vehicle modelling

The behaviour of the vehicle presented in Section 2 can be described by

using equations that represent the kinematic and dynamic behaviour. In this

section the development of the vehicle kinematic model is addressed for de-90

signing the control strategy. Kinematic model is based on the velocity vector

movement in order to compute longitudinal and lateral velocities referenced

to a global inertial frame.

Figure 3: Two-wheels bicycle model employed for control purposes. x, y frame represents the

global inertial frame. The body frame, represented by xb, yb, is located in the centre of gravity of

the vehicle. Kinematic velocity is represented as v and angular velocity as ω. CoG means center of

gravity.

3.1. Kinematic model

The kinematic model for the vehicle has been derived assuming that be-

haves as a bicycle-like vehicle. This is a quite standard assumption in the liter-

ature [18]. Kinematic based model is widely used for control design because of

its low parameter dependency. This model takes into account yaw, x and y mo-

tion while neglecting roll, pitch and z movements. Furthermore, its assumes
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null skidding and considers small lateral force. These two characteristics share

the idea of travelling at low speed. The kinematic equations for the bicycle

model are introduced below: 
ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω

(1)

where x, y and θ represent the current position and orientation of the vehicle in95

meters and radians respectively, with respect to the global frame; v is the linear

velocity and ω represents the angular velocity of the vehicle.

For developing the kinematic-based controller, an error model has been

built. It is defined as the difference between real measurements (x, y and θ)

and desired values (xd, yd and θd). However, this set of errors are expressed

with respect to the inertial global frame (x, y in Figure 3). For control purposes

is suitable to express the errors with respect to the vehicle, such that lateral

error is always measured in the lateral axis of the vehicle. Thus, a rotation

over the road orthogonal axis is considered to represent the errors in the body

vehicle frame (xb, yb):
xe

ye

θe

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1




xd − x

yd − y

θd − θ

 (2)

where subindexes d and e refer to desired and error values, respectively. For

developing the error model is needed to take into account a non-holonomic

constraint of the form:

ẋ sin(θ) = ẏ cos(θ) (3)

Hence, computing the time derivative of (2) and using (1), (3) and some

trigonometric identity, we obtain the following open-loop error system:
ẋe = ωye + vd cos θe − v

ẏe = −ωxe + vd sin θe

θ̇e = ωd −ω

(4)
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Details about the development of (4) can be found in Chapter 1 of [12]. In the

sequel, the open-loop kinematic error system (4) will be used for the control

design purposes.100

4. Trajectory generation

This section addresses the module responsible of generating the trajectory

planning for achieving the desired goal (observe this module in the overall

vehicle architecture presented in Figure 2). Information from other modules,

such as obstacle avoidance and localization, is received in order to compute105

free-collision trajectories. Figure 4 shows the trajectory generation module and

its sub-modules as well as the input and output data. At this point, the vehi-

Figure 4: Trajectory generation module. In case of the perception detects an obstacle the obstacle

avoidance module provides a new way-point (Obstacle avoidance way-point) to avoid such an

obstacle. Location goal represents the coordinates of the desired final point. x, y and θ are the

current states of the vehicle. The sub-index W p refers to Way-point.

cle is in charge of managing two planning stages: Global and Local planning.

They can be seen as two overlapping and connected layers being the Global

planner the upper one. Note that, both planners represent their coordinates110

and orientation (x, y and θ) with respect to the inertial global frame (x, y).

4.1. Global Planner

A human-vehicle interface based on the OpenStreetMap open software is

used to introduce the route as a set of way-points along the street (cyan ball
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in Figure 5). Moreover, information about close obstacles is introduced with115

the goal of recomputing the global trajectory. The position of each way-point

is provided in the Universal Transverse Mercator (UTM) coordinate system.

Once the global plan is defined, it provides way-point information (xW p, yW p,

θW p) to the local trajectory planner.

4.2. Local Planner120

Passenger comfort determines driving quality. The most remarkable vari-

ables affecting passenger comfort are the lateral and longitudinal accelerations.

High accelerations will annoy passengers, who will find it very difficult to

maintain posture. The ISO 2631-1 [19] standard recommends an overall ve-

hicle acceleration (aw) less than 0.315 m
s2 , which is defined as:

aw =
√

a2
wx + a2

wy + a2
wz (5)

Following [20, 21], a quintic spline-based trajectory planner is implemented

that generates smooth trajectories with a velocity profile with continuous ac-

celeration and low levels of jerk, ensuring the passenger comfort. Our work

adopts a simplified version of such an algorithm: instead of using smooth but

variable velocities in straight sections, which is harder for the tracking con-125

trol task, constant velocity sections are proposed. The algorithm defines three

operation modes:

• Acceleration stage: computes a smooth velocity profile under bounded

acceleration.

• Constant velocity stage: maintains a constant velocity reference using the130

control module.

• Deceleration stage: computes a smooth velocity profile under bounded

negative acceleration.

This module will provide a set of local way-points to the control module

(small blue points in Figure 6). Each local way-point is defined as a set of135

desired values (xd, yd, θd, vd and ωd) as it is shown in Figure 4.
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Figure 5: Global trajectory planning.

Cyan point represents one of the global

way-points along the route.

Figure 6: Local trajectory planning.

Small blue points depicts the reference

for the controller.

5. Automatic vehicle control

The automatic control strategy tackles the problem of generating an appro-

priate behaviour as of a desired trajectory. Thus, it is in charge of computing

smooth control actions (vehicle speed and steering angle) such that the vehi-140

cle is capable of achieving the required speed and orientation at the next local

way-point (observe this module in the overall vehicle architecture presented in

Figure 2).

In this section, a nonlinear automatic control strategy based on the Lya-

punov theory [18, 22, 23, 2] is introduced for trajectory tracking and navigation145

among way-points as well as a tuning methodology based on LPV LMI based

linear-quadratic regulation (LQR) approach.

The idea of the Lyapunov method is to define a control law that ensures

the stability and the asymptotic elimination of the error between the real and

desired vehicle trajectory. Figure 7 shows the Lyapunov control sub-modules150

as well as input and output variables.

The controller receives the set-points of the trajectory provided by the Local

planner (xd, yd, θd, vd and ωd) and the current localization of the vehicle (x, y,

θ). With all this information, a set of errors (xe, ye, θe) can be computed by using

(2) which will be used by the Lyapunov-based controller.155
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Figure 7: Lyapunov based controller diagram.

5.1. Lyapunov control design

The Lyapunov-based controller is designed according to the following The-

orem.

Theorem 5.1. Given the kinematic error model of the vehicle (4), the control law:v = k1xe + vd cos θe

ω = ωd + k2vd
sin θe

θe
ye + k3θe

(6)

stabilises the closed-loop dynamics in the Lyapunov sense if the controller parameters

k1, k2 and k3 are positive.160

Proof. Following the Lyapunov’s stability, the following Lyapunov function

candidate is proposed:

V(e) =
k2

2
x2

e +
k2

2
y2

e +
1
2

θ2
e (7)

Its time derivative is:

V̇(e) = k2xe ẋe + k2yeẏe + θe θ̇e (8)

Now, by substituting the open-loop equations (4) in (8):

V̇(e) = k2xevd cos θe − k2xev + k2yevd sin θe + θeωd − θeω (9)

By inspection, an expression of the controller in terms of control actions v

and ω is determined: v

ω

 =

 k1xe + vd cos θe

ωd + k2vd
sin θe

θe
ye + k3θe

 (10)
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such that:

V̇(e) = −k2k1x2
e − k3θ2

e < 0 (11)

fulfilling the Lyapunov’s Theorem under the condition that the control param-

eters satisfy:

k1, k2, k3 > 0 (12)

Once the control equations have been obtained the closed-loop error system

has the following shape by inserting (10) in (4):
ẋe

ẏe

θ̇e

 =


ωye − k1xe

−ωxe + vd sin(θe)

−k2vd
sin θe

θe
ye − k3θe

 (13)

Observe that from (11), the convergence of xe and θe is guaranteed, i.e.

lim
t→∞

xe(t) = 0 lim
t→∞

θe(t) = 0 (14)

However, the convergence of ye is not ensured. In order to demonstrate that

limt→∞ ye(t) = 0, the proof relies on the result presented in Theorem 1.2 of [22]

that shows:

lim
t→∞

θ̇e(t) = 0 (15)

when using the control law (10). Hence, (15) leads to:

lim
t→∞

k2 · vd(t) ·
sin θe(t)

θe(t)
ye(t) = 0 (16)

considering (14) and (13). And, consequently:

lim
t→∞

ye(t) = 0 (17)

assuming that, when following the desired trajectory, the velocity control ac-

tion vd(t) is not null and θe ∼= 0 such that:

lim
θe→0

sin θe

θe
= 1 (18)

Thus, the achievement of the global asymptotic stability can be concluded.
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5.2. Lyapunov control adjustment via LQR-LMI

The condition (12) guarantees that the controller is stable, but it does not165

allow to establish performance specifications. In this section, an iterative algo-

rithm for adjusting the non-linear Lyapunov controller using a LQR-LMI based

strategy is proposed.

The method starts by rewriting the closed-loop error system (13) in LPV

form, considering the small-angle approximation is used since orientation er-

ror remains very close to zero:

sin θe

θe
≈ 1 (19)

Considering ω, vd ∈ R1 as the scheduling variables and Ks = [k1 k2 k3]:


ẋe

ẏe

θ̇e

 =

Acl(Ks ,ω,vd)︷ ︸︸ ︷
−k1 ω 0

−ω 0 vd

0 −k2vd −k3




xe

ye

θe

 (20)

At this point, taken (19) in consideration, the control strategy (6) can be seen as

a state feedback control law in the form u = Kx + r:170

 v

ω

 =

K(Ks ,ω,vd)︷ ︸︸ ︷ k1 0 0

0 k2vd k3




xe

ye

θe

+

 vd cos θe

ωd

 (21)

The scheduling variables are bounded in a box (see Figure 8) defined by the

operating conditions. The controller is scheduled according to the expression

K(Ks, ω, vd) in (21).

The controller parameters (12) will be determined using the linear-quadratic

regulation (LQR) technique via LMI as suggested in [13] using the LMI solution175
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Figure 8: Bounding box governed by the robust controller K(Ks, ω, vd). Vi , with i = 1, ..., 4, repre-

sent the vertexes of the bounding box.

for the H2 problem given by:

Acl(Ks, ω, vd)P + (Acl(Ks, ω, vd)P)
T + 2αP > 0

Acl(Ks, ω, vd)P + (Acl(Ks, ω, vd)P)
T < 0 −Y R

1
2 K(Ks, ω, vd)P

(R
1
2 K(Ks, ω, vd)P)T −P

 < 0

trace(Q
1
2 P(Q

1
2 )T) + trace(Y) < γ

P ≥ 0, Y = YT > 0 f or vd ∈ [vd, vd], ω ∈ [ω, ω]

(22)

that is converted to an LMI by means of the following change of variable: W =

K(Ks, ω, vd)P. However, this procedure would deliver a free structure state

feedback controller K, i.e. not keeping the structure of the Lyapunov control

law (21). To preserve this structure is not an easy task as discussed in [16] since180

leads to a non-convex problem.

Here, to preserve the fixed structure of the control law (21), an optimiza-

tion problem that has as decision variables the control parameters (Ks) and as

objective function the infinity norm of the Lyapunov matrix (P) eigenvalues, is
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used to maximize the LQR performance as follows:185

min
Ks

‖eig(P)‖∞

s.t.

P = LQR-LMI-problem({Ks,i}4
i=1)

Ks,i ∈
(
0, Ks,i

]
i = 1, ..., 4

(23)

where eig() function returns a vector containing the eigenvalues of square ma-

trix P. The function LQR-LMI-problem has as input the set of Ks vectors and

solves the following set of LMIs:

Acl(Ks,i, ωi, vdi
)P + (Acl(Ks,i, ωi, vdi

)P)T + 2αP > 0 f or i = 1, ..., 4

Acl(Ks,i, ωi, vdi
)P + (Acl(Ks,i, ωi, vdi

)P)T < 0 f or i = 1, ..., 4 −Y R
1
2 K(Ks,i, ωi, vdi

)P

(R
1
2 K(Ks,i, ωi, vdi

)P)T −P

 < 0 f or i = 1, ..., 4

trace(Q
1
2 P(Q

1
2 )T) + trace(Y) < γ

P ≥ 0, Y = YT > 0

(24)

Note that, in (23) and (24), i represents each one of the polytope vertexes in

Figure (8), Ks,i represents the i optimization vectors Ks ∈ R1x3, K(Ks,i, ωi, vdi
)

is the controller matrix presented in (21), P ∈ R3x3 is the Lyapunov matrix and

the result of the LMI problem, Q ∈ R3x3, R ∈ R2x2, Y ∈ R2x2 and γ ∈ R are

tuning parameters in the LMI-LQR problem. The parameter α represents the190

boundary for setting the kinematic closed-loop poles (see Figure 9). Note that,

in (23), Ks,i is the upper boundary for the control parameters. Such a boundary

has been chosen as an arbitrary very high value in order to ensure the optimal

gains are found.

In order to select the constraint for the pole placement α in (24), the consid-195

eration that the Lyapunov controller provides the set point to the dynamic loop

has to be taken into account. This internal loop has been implemented by using

two decoupled PI controllers adjusted by means of the pole placement tech-

nique. In order to achieve a good kinematic reference tracking, the dynamic
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control loop has been considered four times faster than the kinematic one. This200

leads to locate the kinematic closed loop poles in a specific region between 0

and α (see Figure 9). Such a restriction is presented in the form of a LMI in

the optimization problem (23) as: Acl(Ks,i, ωi, vdi
)P + (Acl(Ks,i, ωi, vdi

)P)T +

2αP > 0.

Figure 9: Representation of the pole placement issue. Dominant kinematic poles (red one) must be

four times slower than the dominant dynamic poles (blue one). The hyper-plane is introduced as

a LMI in the optimization problem where the parameter α represents its position in the negative

real plane.

At this point four controllers (Ki) are considered, one per each vertex of

the polytope in Figure 8. These will be interpolated at every control iteration

following the rules shown down below:

Mvd =
vd − vd

vd − vd
Mω =

ω−ω

ω−ω
(25a)

µ1(ω, vd) = Mvd Mω (25b)

µ2(ω, vd) = Mvd(1−Mω) (25c)

µ3(ω, vd) = (1−Mvd)Mω (25d)

µ4(ω, vd) = (1−Mvd)(1−Mω) (25e)

K = µ1K1 + µ2K2 + µ3K3 + µ4K4 (25f)

It is important to note that due to the high non-convexity of the optimization205

problem, common gradient-based solvers are not applicable and thus, genetic
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algorithms have been useful for solving it. This heuristic algorithm does not

ensure a global optimal solution but only a local optimal solution.

6. Simulation results

In this section, the behavior of each module previously introduced is evalu-210

ated, i.e. global and local planning, and automatic control. For this purpose the

modules have been evaluated in SYNTHIA 2 [24]. It runs over Unity 3 which

is a game development platform.

In this environment, localization is considered ideal and neither noises nor

disturbances have been added. However, the point of interest is that vehi-215

cle dynamics is modeled in realistic manner considering the complex vehicle

physics [25]. The global planner defines the route composed with a set of way-

points along the scenario (cyan points in Figure 11). The local trajectory plan-

ner has been adjusted and constrains the overall vehicle acceleration as ex-

plained in Section 4.2. All algorithms are executed in a regular manner within220

a period of 0.1 s. The complete diagram for simulation can be seen in Figure

10.

Figure 10: Complete motion loop diagram composed by the trajectory planning and the Lyapunov

control modules. The lower level dynamic control is not depicted in this figure.

The section is divided in two simulations tests. On one hand, the Test A

is presented. It is composed by a circuit designed for testing the algorithms

along the whole range of urban velocities (i.e. 0 - 60 km
h ). It offers also different225

2http://synthia-dataset.net/
3https://unity3d.com/es
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Figure 11: SYNTHIA scenario: Screen shot of the simulation. The vehicle appears from an external

view in the left side and from the driver point of view in the right side.

curvature curves. On the other hand, Test B is composed by a geometrically

simpler circuit in which the vehicle works at lower velocities (i.e. 0 - 18 km
h ). It

is designed with the idea of simulating the real experiment.

6.1. Test A

For this test, the scheduling variables have been bounded in the following

intervals: ω ∈ [−1.417, 1.417] rad
s and vd ∈ [0.1, 16.7]m

s . The vd interval starts in

0.1 m
s since the null velocity is a singular point for the controller and it has to

be avoided. Both in simulation and in the real test, the vehicle begins the per-

formance by applying a little force over the rear wheels in order to achieve this

low velocity bound and being inside vd interval. The matrices and variables

used for adjusting the LQR optimization are:

Q =


10 0 0

0 2 0

0 0 1

 R =

 1 0

0 1

 γ = 0.0001

The control parameters are presented in Table 1 for each bounding box ver-230

tex. Note that the controller gains are only function of the linear velocity. This

is because of the vehicle geometry is symmetric with respect to its longitudinal

axis.
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vd ω k1 k2 k3

i=1 0.1 -1.42 3.9 1.1 1.5

i=2 16.7 -1.42 3.6 1.2 2.1

i=3 0.1 1.42 3.9 1.1 1.5

i=4 16.7 1.42 3.6 1.2 2.1

Table 1: Test A - Control parameters for each vertex of the bounding box (see Figure 8).

The results of applying the Lyapunov control technique adjusted by means

of the LQR-LMI approach are shown in Figure 12 and 13. Figure 12 shows the

X [m]
0 200 400 600 800

Y
 [m

]

0

200

400

600

800 Reference
Response

Figure 12: Results on SYNTHIA (Test A): Desired path and real trajectory followed by means of

using the Lyapunov based technique as controller.

235

proposed circuit and the trajectory result. Such a circuit has been designed with

the idea of offering the vehicle different levels of difficulty. Then, a set of curves

with different curvature has been introduced. From Figure 13.a, it can be seen

that the velocity profile is divided in two different velocity sections. Observe

that it is complex to differentiate reference and response signals. Thus, this240

means that barely exists velocity error and that the velocity tracking is work-

ing correctly. Figure 13.b depicts the evolution of the angular velocity. The
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Figure 13: Results on SYNTHIA (Test A): (a) Linear velocity reference and response. (b) Angular

velocity reference and response. (c) Longitudinal error obtained during the simulation. (d) Vehicle

lateral error.

reference proposed by the trajectory planner is followed quite well allowing

the vehicle to mitigate the possible lateral error that can exist.

Regarding the position errors (see Figure 13.c and d), the longitudinal one245

reaches a quite low error (around 0.02 meters) and the lateral error evolves

in the millimeter scale.

An evaluation of the control in terms of quadratic error has been done ob-

taining 0.0231 m2 of MSE (Mean Square Error) for the longitudinal position and

an amount of 0.0231 m2 for the lateral position.250
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6.2. Test B

In this test, due to the differences of the scenario with respect to Test A

(i.e. velocity and geometry) the scheduling variables have been bounded in

the following intervals: ω ∈ [−1.417, 1.417] rad
s and vd ∈ [0.1, 5]m

s . As in Test

A, vd interval starts in 0.1 m
s . The matrices and variables used for adjusting the255

LQR optimization are:

Q =


10 0 0

0 2 0

0 0 1

 R =

 1 0

0 1

 γ = 0.0001

The set of control parameters found for this scenario are presented in Table 2

for each bounding box vertex. The results of applying the Lyapunov control

vd ω k1 k2 k3

i=1 0.1 -1.42 0.27 0.23 0.31

i=2 5 -1.42 0.78 1.07 1.2

i=3 0.1 1.42 0.27 0.23 0.31

i=4 5 1.42 0.78 1.07 1.2

Table 2: Test B - Control parameters for each vertex of the bounding box (see Figure 8).

technique adjusted by means of the LQR-LMI approach are shown in Figure

14 and 15.260

Figure 14 shows the proposed circuit and the trajectory result. This circuit has

been proposed with the idea of simulating the real experimental test.

From Figures 15.a and b, it can be seen that both velocity references are fol-

lowed presenting low levels of error. However, the relevant signals when per-

forming a trajectory tracking task are the position errors. They are depicted in265

Figures 15.c and d. Observe that the longitudinal error is in the range of ± 0.05

m and the lateral error evolves in a range of few centimeters.

Furthermore, in order to value the simulation an evaluation of the control per-

formance in terms of quadratic error has been done. The obtained results are
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Figure 14: Results on SYNTHIA (Test B): Desired path and real trajectory followed by means of

using the Lyapunov based technique as controller.

0.0269 m2 of MSE for the longitudinal position and an amount of 0.0053 m2 of270

MSE for the lateral position.

Note that due to the differences in geometry and velocities on both circuits

(Tests A and B) they cannot be compared. Test A develops at higher velocity

than Test B, but has wider and longer curves than Test B achieving in this man-

ner a lower lateral acceleration in the curves. Hence, we can affirm that lateral275

error is function of the lateral acceleration that the vehicle suffers when arrives

to a curve and that the results are consistent.

Remark (Programming). The algorithms in SYNTHIA have been programmed by

using C# for Unity environment, linking at the same time functions programmed in

C++ over Visual Studio 2012.280

Remark (Solvers). The LMIs have been solved with YALMIP and SeDuMi solvers,

while the optimization problem (23) has been solved by using Matlab genetic algorithm

”ga”.
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Figure 15: Results on SYNTHIA (Test B): (a) Linear velocity reference and response. (b) Angular

velocity reference and response. (c) Longitudinal error obtained during the simulation. (d) Vehicle

lateral error.

7. Experimental results

Once planning and control systems have been evaluated and the simula-285

tions have proved to be satisfactory, a real scenario is used to validate their in-

tegrated applicability. The validation results of the complete vehicle behaviour

over a real scenario are presented. The test consists in starting from an initial

position, reaching a constant velocity while following the desired trajectory

and finally stopping in front of a detected pedestrian. The scenario where the290

test has been performed is a geometrically simple circuit (see Figure 16.a).

The results of perception, localization and obstacle avoidance modules have
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(a) (b)

Figure 16: In field test: (a) Space used to perform tests. Red circle represents the initial position,

green arrows are the global way points that define the trajectory and the yellow circle represents

the location of a pedestrian. (b) Visualization of test results in rviz tool (ROS) that displays in real

time: the cameras visualization, the global way points (green arrows), the desired trajectory (red

lines), the completed path (white lines), the real trajectory (yellow lines) and the stereo data (cloud

of 3D points).

been omitted in this work. However, they are used in the real validation (e.g.

obstacle avoidance module is in charge of varying the position of the next

global way-point if an obstacle is detected). The experimental controller has295

been adjusted with the same parameters than in simulation (Test B). They can

be seen in Table 2.

Remark (Programming). For this real scenario, the algorithms have been programmed

in C++ over a ROS-Ubuntu platform.

The vehicle has two main hardware constraints: the maximum resolution300

of steering and velocity. On one hand, the steering system has a maximum

resolution of two degrees. This is a hard constraint that limits the lateral con-

trol. Such limitation produces a nervous steering angle action while trying to

achieve the null error. On the other hand, the speed system has a maximum

resolution of 1km/h. This issue generates a limitation when controlling the305

longitudinal behaviour of the vehicle. Thus, it is easy to have an error in the
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longitudinal speed control and in the longitudinal position.

In Figure 16.b, the real trajectory is shown through rviz ROS tool 4. It shows

multiple data in real time: the stereo visualization, the global way points (green

arrow), the completed path (white lines) and the real trajectory (yellow lines).310

Figure 17 shows the resultant behaviour of the system during the experi-

mental test. Figure 17.a depicts how the vehicle follow the velocity reference

although being not able to eliminate completely the error in steady state. This

issue may be caused by the resolution constraint of 1 km/h and the localiza-

tion errors as well as the controller adjustment. In this experimental test, the315

control action measured and sent to the steering actuator is the steering angle.

Hence, such a steering variable has been depicted in Figure 17.b. It can also

be seen the problem of resolution, i.e. small jumps of 2 degrees, and how the

response does not exactly match the reference produced by the trajectory plan-

ner. Figures 17.c and 17.d show the longitudinal and lateral errors, respectively.320

These graphs are used to validate the performance of the vehicle. In this case

the response is not exactly the expected one. However, the vehicle is stable

and can correct the trajectory at every instant of time in spite of the constraints

appointed and localization errors. Finally, Figures 17.e and 17.f represent the

signals sent by the controller to the actuators of the vehicle. The Lyapunov325

controller produces a sharp velocity action trying to reduce the error, while the

steering signal is smoother in spite of the huge difference between the refer-

ence and the response. Moreover, as in simulation, an evaluation of the control

performance in terms of quadratic error has been done. The obtained results

are 0.8178 m2 of MSE for the longitudinal position and an amount of 0.3099 m2
330

of MSE for the lateral position. Comparing this results with the ones obtained

in simulation Test B, it can be appreciated the huge difference that exists in

between of simulation and reality scenarios.

The objective of this experimental test is to follow the trajectory proposed

minimizing the lateral and longitudinal errors at the fastest rate possible. The335

4 http://wiki.ros.org/rviz
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Figure 17: In field testing results: (a) Velocity reference generated by the trajectory planner and

real speed of the vehicle during the test. (b) Steering angle reference and real steering produced

after applying the steer angle control action. (c) Longitudinal error achieved during the test. (d) Ve-

hicle lateral error obtained while following the trajectory. (e) Longitudinal velocity control action

generated by the controller. (f) Steering angle control action computed by the controller.
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validation is performed graphically and using the Mean Square Error method.

We can conclude that the goals have been achieved although with localization

and hardware problems. The vehicle is able to go through the way-points being

stable and mitigating the errors. The test was performed 50 times and the goal

was achieved in 41 of them. The main problems are due to localization drift.340

An example video of the vehicle performing in SYNTHIA and real scenarios

can be seen in YouTube5.

8. Conclusions

In this work, a non-linear control strategy based on Lyapunov theory has

been introduced for solving the control problem of autonomous vehicle guid-345

ance. This work has also proposed an iterative algorithm for adjusting the

parameters of the non-linear controller to achieve not only stability but also

performance specifications. This algorithm relies on a LQR-LMI based strategy

using a LPV representation of the closed-loop kinematic error model. Further-

more, such an adjustment is fortified by adding a restriction between dominant350

dynamic poles and dominant kinematic poles for holding a correct physical be-

haviour. The obtained LPV-Lyapunov controller jointly with a trajectory gen-

eration module are in charge of moving the vehicle. It has been presented the

performance of the vehicle in simulation obtaining satisfactory results, and it

has been achieved the expected goal of moving autonomously from a starting355

point to a final point in a comfortable way in a real test. As a future work,

localization system will be improved to facilitate the mitigation of lateral and

longitudinal errors. Planning and control techniques will be enhanced as well

as researching other control strategies for autonomous vehicles. Furthermore,

different scenarios at different velocities will be tested to extract conclusions360

about the suitability of the controller for real world application.

5 https://www.youtube.com/watch?v=K0omhJXawTo
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Appendix A. Derivation of the error model

The dynamics of the error posture are what is needed for the trajectory370

tracking problem. Hence, (2) needs to be differentiated in order to obtain the

error model. The equations of motion for each state of the error model are

derived here for completeness.

• Time derivative of xe.

The equation that need to be derived is the one correspondent to the first row

in (2).

ẋe = (ẋd − ẋ) cos(θ) + (ẏd − ẏ) sin(θ)

− (xd − x)θ̇ sin(θ) + (yd − y)θ̇ cos(θ)

= ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ)

− (xd − x)θ̇ sin(θ) + (yd − y)θ̇ cos(θ)

Applying the change θ̇ = ω the last equation can be expressed as

ẋe = ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ)

− (xd − x)ω sin(θ) + (yd − y)ω cos(θ)

From the equation of ye in (2), we know that ye = −(xd − x) sin(θ) + (yd −

y) cos(θ) which appears in the previous equality. Hence

ẋe = ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ) + ωye

28



The negative terms of the previous equality, −ẋ cos(θ) and −ẏ sin(θ), can

be developed using the equations of the model of the vehicle (1)

ẋ cos(θ) + ẏ sin(θ) = v cos(θ) cos(θ) + v sin(θ) sin(θ)

= v(sin2(θ) + cos2(θ)) = v

Now, using this result

ẋe = ẋd cos(θ)− v + ẏd sin(θ) + ωye

By definition: θe = θd − θ, then θ = θd − θe. Replacing θ in ẋe

ẋe = ẋd cos(θd − θe)− v + ẏd sin(θd − θe) + ωye

The trigonometric identities for cos(α− β) y sin(α− β) are used in the next

step

ẋe = ẋd(cos(θd) cos(θe) + sin(θd) sin(θe))− v

+ ẏd(sin(θd) cos(θe)− cos(θd) sin(θe)) + ωye

= ωye − v + (ẋd cos(θd) + ẏd sin(θd)) cos(θe)

+ (ẋd sin(θd)− ẏd cos(θd)) cos(θe)

The non-holonomic constraint for the real wheels is: ẋd sin(θd) = ẏd cos(θd).

Therefore

ẋe = ωye − v + (ẋd cos(θd) + ẏd sin(θd)) cos(θe)

Following the same procedure that was used before, the terms inside the

parenthesis become

ẋd cos(θd) + ẏd sin(θd) = vd cos(θd) cos(θd) + vd sin(θd) sin(θd)

= vd(sin2(θd) + cos2(θd)) = vd

Finally, using the previous equality, the result for ẋe is

ẋe = ωye − v + vd cos(θe) (A.1)

• Time derivative of ye.375
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The derivation of the ẏe is similar to the one used for ẋe. The equation that need

to be derived is the one correspondent to the second row in (2).

ẏe = −(ẋd − ẋ) sin(θ) + (ẏd − ẏ) cos(θ)

− (xd − x)θ̇ cos(θ)− (yd − y)θ̇ sin(θ)

We had xe = (xd− x) cos(θ) + (yd− y) sin(θ) from (2) which appears in the

previous equality and we also know θ̇ = ω. Hence the last expression can be

represented as

ẏe = −(ẋd − ẋ) sin(θ) + (ẏd − ẏ) cos(θ)− xeω

= −xeω + ẋ sin(θ)− ẏ cos(θ)− ẋd sin(θ) + ẏd cos(θ)

The non-holonomic constraint for the rear wheels is: ẋ sin(θ) = ẏ cos(θ).

Therefore

ẏe = −xeω− ẋd sin(θ) + ẏd cos(θcur)

The error in θ is θe = θd − θ, then θ = θd − θe. Replacing θ in the previous

equation

ẏe = −xeω− ẋd sin(θd − θe) + ẏd cos(θd − θe)

The trigonometric identities for cos(α− β) y sin(α− β) are used in the next

step

ẏe = −xeω− ẋd(sin(θd) cos(θe)− cos(θd) sin(θe))

+ ẏd(cos(θd) cos(θe) + sin(θd) sin(θe))

= −xeω + (ẋd cos(θd) + ẏd sin(θd)) sin(θe)

+ (ẏd cos(θd)− ẋd sin(θd)) cos(θe)

The same non-holonomic constraint is fulfilled for the reference car: ẋd sin(θd) =

ẏd cos(θd). Using this constraint in ẏe

ẏe = −xeω + (ẋd cos(θd) + ẏd sin(θd) sin(θe)
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Following the same procedure that was used before, the terms inside the

parenthesis become

ẋd cos(θd) + ẏd sin(θd) = vd cos(θd) cos(θd) + vd sin(θd) sin(θd)

= vd(sin2(θd) + cos2(θd)) = vd

Finally, using the previous equality, the result for ẏe is

ẏe = −xeω + vd sin(θe) (A.2)

• Time derivative of θe.

The last state that need to be derivated is θe. This one is straightforward,

the equation to differentiate is: θe = θd − θ.380

The result is:

θ̇e = θ̇d − θ̇ = ωd −ω (A.3)

Kinematic error model equations

The obtained result for the error model, equations (A.1) to (A.3), are shown

here in matrix form 
ẋe

ẏe

θ̇e

 =


ωye − v + vd cos(θe)

−ωxe + vd sin(θe)

ωd −ω

 (A.4)
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